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Abstract—We introduce Learn++, an algorithm for incre- to belostto learn new information, as learning new patterns will
mental training of neural network (NN) pattern classifiers. The tend to overwrite formerly acquired knowledge. The dilemma
proposed algorithm enables supervised NN paradigms, such as ,qintg out the fact that a completely stable classifier will pre-

the multilayer perceptron (MLP), to accommodate new data, isting k led but will not dat
including examples that correspond to previously unseen classes.SEMVE €XISUNG kKnowleage, but will not accommodate any new

Furthermore, the algorithm does not require access to previously information, \_Nhereas a completely plas_tic classifier will learn
used data during subsequent incremental learning sessions, yet atnew information but will not conserve prior knowledge.

the same time, it does not forget previously acquired knowledge. A typical approach for learning new information involves
Learn++ utilizes ensemble of classifiers by generating multiple yjscarding the existing classifier, and retraining the classifier

hypotheses using training data sampled according to carefully = .
tailored distributions. The outputs of the resulting classifiers using all of the data that have been accumulated thus far. Ex-

are combined using a weighted majority voting procedure. We amples of this approach include common neural network (NN)
present simulation results on several benchmark datasets as well paradigms, such as multilayer perceptron (MLP), radial basis

as a real-world classification task. Initial results indicate that the  function (RBF) networks, wavelet networks, and Kohonen net-

proposed algorithm works rather wg!l in practice. A theoretical works. This approach, lying on the “stability” end of the spec-

upper bound on the error of the classifiers constructed by Learn++ " . . .

is also provided. trum, however, results in loss of all previously acquired informa-
tion, which is known agatastrophic forgettingFurthermore,

. t ; : this approach may not even be feasible in many applications,
rithms, ensemble of classifiers, incremental learning, knowledge PP y Y app

acquisition and retention, pattern recognition, supervised neural Particularly if the original data is no longer available. An alter-
networks. native approach, lying toward the “plasticity” end of the spec-
trum, involves the use of online training algorithms. However,
many existing online algorithms assume rather restricted form
of classifiers, such as classifiers that compute conjunctions of
ACHINE LEARNING offers one of the most cost ef-Boolean features. Consequently, such algorithms have limited
fective and practical approaches to the design of pattexpplicability in real-world applications. A third approach to in-
classifiers for a broad range of pattern recognition applicatiorgsemental learning is the use of instance-based learners such
The performance of the resulting classifier relies heavily on ti& nearest neighbor classifiers. However, this approach entails
availability of a representative set of training examples. In masyoring all of the data.
practical applications, acquisition of a representative training Various algorithms suggested in the literature for incre-
data is expensive and time consuming. Consequently, it is moental learning typically use one or a combination of the
uncommon for such data to become available in small batcragove-mentioned approaches, and fall somewhere in between
over a period of time. In such settings, it is necessary to upd#te stability—plasticity spectrum. Some of the more recent and
an existing classifier in an incremental fashion to accommptominent of such algorithms are discussed in the next section.
date new data without compromising classification performanceWe should also note that the term “incremental learning” has
on old data. Learning new information without forgetting prebeen used rather loosely in the literature, where the term re-
viously acquired knowledge, however, raises the so-callad ferred to as diverse concepts as incremental network growing
bility—plasticity dilemmgZ1], one of the fundamental problemsand pruning, on-line learning, or relearning of formerly misclas-
in knowledge management (KM): Some information may hawified instances. Furthermore, various other terms, such as con-
structive learning, lifelong learning, and evolutionary learning
have also been used to imply learning new information.
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2) It should not require access to the original data, usedvimilance parameter, to the noise levels in the training data and to
train the existing classifier. the order in which the training data is presented to the algorithm.
3) Itshould preserve previously acquired knowledge (that iBurthermore, the algorithm generates a large number of clus-
it should not suffer from catastrophic forgetting). ters causing overfitting, resulting in poor generalization perfor-
4) It should be able to accommodate new classes that nragince, if the vigilance parameter is not chosen correctly. There-
be introduced with new data. fore, this parameter is typically chosen inahhocmanner by
An algorithm that possesses these properties would betdal and error. Various algorithms have been suggested to over-
indispensable tool for pattern recognition and machine learningme such difficulties [15]-[20].
researchers, since virtually unlimited number of applica- Other incremental learning algorithms, such as incremental
tions can benefit from such a versatile incremental learnimgnstruction of support vector machine classifiers with provable
algorithm. The problem addressed in this paper is therefore gerformance guarantees [21], incremental learning based on re-
signing a supervised incremental learning algorithm satisfyimgoducible kernel Hilbert spaces [22], or incrementally adding
all of the above-mentioned criteria. new IF-THEN rules to an existing fuzzy inference system [23]
The rest of this paper is organized as follows. In Section Ihave also been suggested. These algorithms also fit to the in-
we provide an overview of various approaches suggested for anemental learning setting described above, however, they re-
cremental learning algorithms, as well as an overview of equire either precisa priori knowledge of data distributions, or
semble-based learning algorithms, which were originally preanad-hocselection of a large number of parameters.
posed for improving generalization performance of classifiers.
In Section 11, we show how ensemble-based approaches carBeeEnsemble of Classifiers
used in an incremental learning setting, and presentthe Learn+1n this paper, we follow a different approach to the incre-
algorithm in detail. In Section IV, we explain the benchmark angiental learning problem, and present an algorithm that not only
real-world databases used to evaluate the algorithm, along Wittisfies all criteria mentioned above, but also overcomes the
simulation results obtained on these databases. We also c@jifficulties that are associated with ARTMAP and ARTMAP
pare the Learn++ performance to that of fuzzy ARTMAP on thgased classifiers. In essence, instead of generating new cluster
real-world database. Finally, in Section V, we summarize ofpdes for each previously unseen (or sufficiently different) in-

conclusions and point at future research directions. stance, we generate multiple new “weak classifiers” for previ-
ously unseen portions of the feature space. This conceptually
II. BACKGROUND subtle difference, allows us to develop a fundamentally different

incremental learning algorithm that is insensitive to the order of
presentation of the training data, or even to the minor adjust-
As mentioned earlier, various algorithms have been sugents of the algorithm parameters.
gested for incremental learning, where incremental learningLearn++, the proposed incremental learning algorithm
implied different problems. For example, in some cases, tdescribed in the next section, was inspired by AuaBoost
phrase “incremental learning” has been used to refer to growitapaptive boostingalgorithm, originally developed to improve
or pruning of classifier architectures [2]-[4] or to selectiothe classification performance of weak classifiers. Schapire
of most informative training samples [5]. In other caseshowed that for a two class problemwaak learnerthat can
some form of controlled modification of classifier weightdarely do little better than random guessing can be transformed
has been suggested, typically by retraining with misclassifiéto a strong learnerthat almost always achieves arbitrarily
signals [6]-[12]. These algorithms are capable of learning ndow error rate using a procedure calledosting[24]. Freundet
information; however, they do not simultaneously satisfy adll. later developed AdaBoost, extending boosting to multiclass
of the above-mentioned criteria for incremental learning: thend regression problems [25], [26]. In essence, both Learn++
either require access to old data, forget prior knowledge aloagd AdaBoost generate amsemble of weak classifiermsach
the way, or unable to accommodate new classes. One notalbdned using a different distribution of training samples.
exception is the (fuzzy) ARTMAP algorithm [13], [14], whichThe outputs of these classifiers are then combined using
is based on generating new decision clusters in response. itlestone’s majority-voting scheme [27] to obtain the final
new patterns that are sufficiently different from previously seariassification rule. Combining weak classifiers take advantage
instances. This sufficiency is controlled by a user-defined vigif the so-callednstability of the weak classifier. This instability
lance parameter. Each cluster learns a different hyper-rectancpeses the classifiers to construct sufficiently different decision
shaped portion of the feature space in an unsupervised maslgfaces for minor modifications in their training datasets.
which are then mapped to target classes. Since previouslyfihe idea of generating an ensemble of classifiers for
generated clusters are always retained, ARTMAP does nmiproving classification accuracy was formerly introduced
suffer from catastrophic forgetting. Furthermore, ARTMARY many other researchers. For example, Wolpert suggested
does not require access to previously seen data, and it cambining hierarchical levels of classifiers, using a procedure
accommodate new classes. Therefore, ARTMAP fits perfectialled stacked generalizatiof28]. Jordan and Jacobs intro-
into our description of incremental learning. duced hierarchical mixture of experts (HME), where multiple
ARTMAP is a very powerful and versatile algorithm; how-classifiers were highly trained (hence experts) in different re-
ever, it has its own drawbacks. In many applications, researchgiens of the feature space, and their outputs were then weighted
have noticed that ARTMAP is very sensitive to selection of thesing a gating network [29], [30]. Kitleet al. analyzed error

A. Incremental Learning
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sensitivities of various voting and combination schemes [3Recall that a weak learning algorithm is used as a base clas-
whereas Rangarajagt al. investigated the capacity of votingsifier, to allow sufficiently different decision boundaries to be
systems [32]. Ji and Ma proposed an alternative approagénerated by slightly modified training datasets. Also note that
to AdaBoost that generates simple perceptrons of randonwost strong classifiers spend a majority of their training time in
parameters and then combines the perceptron outputs uding-tuning the decision boundary. As described below, Learn++
majority voting [33], similar to generating an ensemble of clasequires each weak learner to generate only a rough estimate of
sifiers through randomizing the internal parameters of a bahe actual decision boundary, effectively eliminating the costly
classifier, previously introduced by Ali and Pazzani [34]. Ji anfihe-tuning step, allowing faster training and less over fitting.
Ma give an excellent review of various methods for combining Each classifier can be thought of as a hypothédiom the
classifiers in [35], whereas Dietterich compares ensemble input spaceX to the output spac¥. Learn++ asks WeakLearn
classifiers to other types of learners, such as reinforcement andyenerate multiple hypotheses using different subsets of the
stochastic learners in [36]. training datasSy, and each hypothesis learns only a portion of the

There have also been some attempts for using HMES in imput space. Thisis achieved by iteratively updating a distribution
online setting to incrementally learn from incoming data [30,,t = 1, 2, ..., T} from which training subsets are chosen.
[37], however such attempts have not addressed all of the ab@We distribution itself is obtained by normalizing a set of weights
mentioned issues of incremental learning, in particular, learniagsigned to each instance based on the classification performance
new classes. Consequently, research on combining classifigrthe classifiers on that instance (Step 1). In general, instances
have been mostly limited to improving performance of classihatare difficultto classify receive higherweightstoincreasetheir
fiers, rather than incremental learning. This leads us to considéiance of being selectedintothe nexttraining dataset. Theweights
adaptations of ensemble-based methods such as AdaBoosbdf) for the first iteration are initialized taé/m, giving equal
HME to achieve incremental learning. likelihood to each instance to be selected into the first training
subset, unlessthereis sufficientreasontoinitialize otherwise.

At each iterationt = 1,2,..., T}, Learn++ first di-
chotomizesS;, into a training subse?’ R, and a test subset
TE, according to the current distributio, (Step 2), and

Combining ensemble of classifiers in Learn++ is specificallyalls WeakLearn to generate the hypothesis X — Y
geared toward achieving incremental learning, as described(8yep 3) using the training subs#R,. The error ofh, on
the criteria mentioned earlier. However, due to their similari,, = TR, + TE, is defined as (Step 4)
ties, Learn++ also inheritgerformance improvemeptoperties
of AdaBoost, as shown in simulation results. Learn++ is based g = Z Dy (%) 1)
on the following intuition: Each new classifier added to the en- i he(@:)#us
semble is trained using a set of examples drawn accordingtoa .

distribution, which ensures that examples that are misclassifi\ﬁ{H o
by the current ensemble have a high probability of being safiStances. Ik, > 1/.2’ hi is discarded and ne iy andT'k
selected. That is, the weak hypothesis is only expected to

pled. In an incremental learning setting, the examples that ha\"\‘;%_ 0 o e
a high probability of error are precisely those that are unkno ieve a 50% (or better) empirical classification performance
on theS,,. For a binary class problem, this is the least restrictive

or that have not yet been used to train the classifier. . . .
As mentioned earlier. both AdaBoost and Learn++ genera[%quwement one could have, since an error of one-half for a bi-

weak hypotheses and combine them through weighted majomg‘y cllass problem means random gues;ing. ngever_, thaining
voting of the classes predicted by the individual hypotheses. DA aX|mbum irrlor of oqe—half becp mefs c;}g;:ea5|ngl)éld|ﬁ|ctl;]|t as
hypotheses are obtained by retraining a base classifier (Wélav‘a(num erot (;absseagcrease, S"_‘Ceﬂé 1as]3p_rrc;] eT’ €
learner) using strategically updated distributions of the trainirfg O 9enerated by random guessings — 1)/V. Therefore,

database. AdaBoost's distribution update rule is optimized f f? C?_O'Ce offa weak Iea;rggl/g algorlthtn; Wt't.h _a|m|_||n|mum Cllfl‘il-
improving classifier accuracy, whereas Learn++ distributio ication performance o o May NOLbe rivial. However,

update rule is optimized for incremental learning of new data, gorithms can easily be configured to simulate weak learners,

particularwhenthe newdataintroducesnewclasses. Intheinte é’sEnOd'fymg their size and error goal parameters. Use of strong

of space, only Learn++, and its major differences from AdaBoo&"’_‘metL‘c" onthe obtlherfh?nd,_fe_lre not recorﬂmt_andeshln al_g?_rt[['tlhr?s
are givenbelow. Details of AdaBoostcanbefoundin[25]. using tne ensembule of classiliers approach, since there IS 1itte 1o

Tt . . in Eig. 1. +pe gained from their combination, and/or they may lead to over
The Learn++ algorithm is given in Fig. 1. Inputs to Learn fitting of the data [25], [35].

I1l. ENSEMBLE OF CLASSIFIERS FORINCREMENTAL LEARNING:
LEARN++

are : o .
. If, &, < 1/2is satisfied, then the normalized errgr (0 <
l) tl’alnlng dataSk = [(‘le yl); ('T27 212)7 AR (‘Tnlv ynl)]’ ﬂt < ]_) is Computed as
where z; are training instances angl are the corre-
sponding correct labels far = 1, 2, ..., m samples By =e/1 — e 2)

randomly selected from thi¢" databaséy;
2) aweak learning algorithmeakLearn, to be used asthe All hypotheses generated in the previduterations are then
base classifier; combined using weighted majority voting (Step 5). The voting
3) an integefl}, specifying the number of classifiers to bewveights are computed as the logarithms of the reciprocals of
generated. normalized errorg. Therefore, those hypotheses that perform
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Algorithm Learn++
Input: For each database drawn from Dy k=1,2,...K

® Sequence of m training examples S=[(x1,y,),(x2 ¥2),-..,(XuYm)].
¢ Weak learning algorithm WeakLearn.
e Integer T}, specifying the number of iterations.
Do for k=12, .., K:
Initialize wy (i) = D(i) = 1/m, Vi, unless there is prior knowledge to select otherwise.
Dofor:=1.2..T;
m
1. SetD, =w, z w, (i) so that Dy is a distribution.
i=1
2. Randomly choose training TR, and testing TE, subsets according to D,
3. Call WeakLearn, providing it with 7R,.

4. Get back a hypothesis % : X < Y, and calculate the error of #; : &; = th (@) on
ith (x;)2y;

S=TR + TE,. If >4, sett =t 1, discard /s, and go to step 2. Otherwise,
compute normalized error as §; = &,/ (1-¢).

5. Call weighted majority, obtain the composite hypothesis /7, = arg max Zlog(l/ Bi),
Lh, (x)=y )

. m
and compute the composite error £, = Z D, ()= Z D, (i)l] H (%)= y; |]
PH (x;)2y; i=1
IfE, >, sett =t - I, discard H, and go to step 2.

6. Set B, = E/(1-E,) (normalized composite error), and update the weights of the instances:

By, if H(x;)=y;
1 , otherwise

W (i) = w, (i) X{
=w, (i) x Btl—nHt(xi)¢Yi|]

Call weighted majority on combined hypotheses H, and Output the final hypothesis:

K
1
H g = argmax Z Z logE
Yel o tH (x)=y !

Fig. 1. Algorithm Learn++.

well on their own training and test data are given larger votingn misclassified instances, whdje |] is 1 if the predicate is
powers. A classification decision is then made based on ttiee, and 0 otherwise. IE; > 1/2, currenth, is discarded, a
combined outputs of individual hypotheses, which constitutegw training subset is selected and a rigws generated. We

the composite hypothesid, note thatF, can only exceed this threshold during the immediate
iteration after a new databag®,.; is introduced. At all other
o 1 times, E;, < 1/2 will be satisfied, since all hypothesés that
He = a1g1;1685( Z log B, (3) make up the composite hypothesis have already been verified
t ha(@)=y in Step 4 to achieve a minimum of 50% performanceSgn|f

. . . E, < 1/2, composite normalized error is computed as
Note thatH, decides on the class that receives the hlghesf

total vote from allt hypotheses. The composite error made by

H, is then computed as B, = E/1 - E,. (5)

The weightsu,(7) are then updated, for computing the next

E,= > Dyi)=>_ Dy(i)[|Hy(z:) #wl (4 distributionD,., which in turn is used in selecting the next
i Hy(w )7y i=1 training and testing subset§R;.; andTFE, .1, respectively.
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The distribution update rule constitutes the heart of the alghg are generated due to training with different subsetsof
rithm, as it allows Learn++ to learn incrementally Hypotheses decide whether a data point is within the decision
Bi, it Hu(ws) = u; boundary. They are hierarchically combined to form composite
t 1\Ei) = Yi hypothesedd,, ¢ = 1, ...8, which are then combined to form
1,  otherwise the final hypothesisd ¢,,q;.
— wy(i) x Bl @)y:] ©6) Learn++ guarantees convergence on any given training
¢ ) dataset, by reducing the classification error with each added

According to this rule, if instance; is correctly classified hypothesis. We state the theorem that relates the overall upper
by the composite hypothesi;, its weight is multiplied by a €error bound of Learn++ to individual errors of each hypothesis,
factor of B, which, by its definition, is less than 1.4f is mis- the proof of which is given in the Appendix.
classified, its distribution weight is kept unchanged. This rule Theorem: The training error of the Learn++ algorithm given
reduces the probability of correctly classified instances beifftFig. 1 is bounded above b < 27 [[_, /E; - (1 — Ey),
chosen intd’R, 11, while increasing the probability of misclas-where E; is the error of thetth composite hypoth-
sified instances to be selected iriftR, ;. If we interpret in- €sis H;. Furthermore, E; is itself bounded above by
stances that are repeatedly misclassified as hard instances,and< 2 I[.—; V/es - (1 —¢,), where e, is the error of
those that are correctly classified as simple instances, the tie individual hypothesié,.
gorithm focuses more and more on hard instances, and forces
additional classifiers to be trained with them. Instances coming IV. EXPERIMENTSWITH LEARN++
from previously unseen parts of the feature space, such as tho : .
from new classes, can be interpreted as hard instances at the tins1](efh N ?(Ijggnthtr)n was tested on \ll_ar!oug. benchn|1ark a;nd
they are introduced to the algorithm. Note that using the co [eal-world databases. Due to space |m|t.a_t|ons, results on four
posite hypothesis in (6) makes incremental learning possil %tabases are presen.ted here, .W|.th additional results available

on the web [38]. Detailed descriptions of each database along

rticularly when instan from new cl re intr !
particularly when instances from new classes are int Oduc%ﬂ}h the performance of the algorithm on these databases are

since these instances will be misclassified by the composite h : : : . . .
Y P e¥<pla|ned in the following sections. In all experiments, previ-

pothesis and forced into the next training dataset. The proce- . .
. ! . ously seen data were not used in subsequent stages of learning,
dure would not work nearly as efficiently, if the weight update "~ : )
and in each case the algorithm was tested on an independent

rule were based on the performance of the previgusnly (as

AdaBoost does) instead of the composite hypothEsisApart validation dataset thqt was not used durmg tralmng. In all cases,
P . we have used a relatively small MLP trained with a large error

from the distribution update rule, Learn++ also differs from Ad- o .

goal as the base classifier to simulate a weak learner. We note

aBoost in definition of training error and the evaluation of ins : . o
. ining . . hat Learn++ itself is independent of the classifier used. MLP
dividual hypotheses. During each iteration, Learn++ generates . . P
. . . was used since it is the most commonly employed classification
an additional test subs€T'R;) on which the training error and . . : : :
: . Igorithm that is not capable of incremental learning without
hypothesis evaluation are based, whereas AdaBoost comput€es ) .
o : . . catastrophic forgetting.
the individual hypothesis errors on their own training d&fs, . - .
) . . Different architectures and error goals were tried to test the
only. Finally, since AdaBoost does not compute a composite hy- """~ = s . . . I
. : . . : Igorithm’s sensitivity and invariance to minor modifications
pothesis, composite error is also not applicable in AdaBoost.

After T}, hypotheses are generated for each dataBaséhe to parameter selections, including the MLP architecture, mean

final hypothesis is obtained by the weighted majority voting orjuare error (MSE) goal,_and the number qf hypotheses gen-
. erated. The parameters given below are typical representatives
all composite hypotheses

of those that have been tried. Furthermore, in order to test the

wern (i) =u@) x {

K 1 sensitivity of Learn++ to the order of presentation of the data,
Hyinq = argmax E E log —-. (7) multiple experiments were performed for all databases, where
yeY Bt . . .
k=1 t: H,(z)=y the order of the datasets introduced to the algorithm at different

Note that while incremental leaming is achieved througtereS were varied. The results for all cases were virtually the

generating additional classifiers, former knowledge is not IOjsi}ame. Average representative performance results are presented
since all classifiers are retained. Another important prope low
of Learn++ is its independence of the base classifier used . L
as a weak learner. In particular, it can be used to convétt OPtical Digits Database
any supervised classifier, originally incapable of incremental This benchmark database, obtained from the UCI machine
learning, to one that can learn from new data. learning repository [39], consisted of 5620 instances of dig-
Fig. 2 conceptually illustrates Learn++ architecture oitized handwritten characters; 1200 instances were used for
an example. The dark curve is the decision boundary to training and all remaining instances were used for validation.
learned and the two sides of the dashed line represent Titee characters were numerals 0-9, and they were digitized on
feature space for two training databasesandS-, which need an8 x 8 grid, creating 64 attributes. This dataset was used to
not be mutually exclusive. Weak hypotheses are illustratedtaluate Learn++ on incremental learning without introducing
with simple geometric figures, generated by weak learnemsw classes. Fig. 3 shows sample images of this database. The
(WL;, i« = 1,2,...8), whereh; through/, are generated training dataset of 1200 instances were divided into six subsets,
due to training with different subsets ¢f, and 5 through S; ~ Sg, each with 200 instances containing all ten classes
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Fig. 2. Combining classifiers for incremental learning. ['] : I “ hi Li
to be used in six training sessions. In edgdining session

only one of these datasets was used. For each training sessi

k,(k =1,2,...,6) 30 weak hypotheses were generated by

Learn++. Each hypothesis, (¢ = 1, 2, ..., 30) of the ith i

training session was generated using a training sub&gtand [1] I I t] Fi El
a testing subset’E; (used to compute hypothesis error), each 1 :

with 100 instances drawn frorfi,. The base classifier was a i
single hidden layer MLP with 30 hidden layer and ten output

nodes with a MSE goal of 0.1. An additional validation sefig. 3. Sample images from the optical digits database.

TEST of 4420 instances was used for validation purposes.

Note that NNs can simulate a weak learner, when their gretheses were generated using a 30-node single hidden layer
chitecture is kept small and their error goal is kept high witMLP with an error goal of 0.1. This particular benchmark data-
respect to the complexity of the particular problem. The reldase is considered as one of the more difficult databases in the
tively high error goal of 0.1 allowed the MLP to serve as a wealepository, since generalization performances using various al-
learner in this case, as shown in theerage/learnecolumn of gorithms (strong learners) have been in the 65%—-80% range
Table I, which indicates the average performance of individug0], [41]. The results are presented in Table Il, where the Av-
hypotheses on each databage On average, weak learnerserage/learner column indicates the average performance of a
performed little over 50%, which improved to over 90% wheweak hypothesis (a single MLP). We note from the average 62%
the hypotheses were combined. This improvement demonstrgiesformance that the chosen MLP architecture and error goal
theperformance improvemeptoperty of Learn++ (as inherited was able to simulate a weak learner. The other columns indi-
from AdaBoost) on a given single database. Each column thecate the Learn++ performance on individual training datasets
after indicates Learn++ performance on the current and previargd on the validation dataset after each of the three training ses-
training datasets as additional data were introduced. Previaimns. As seen in Table Il, there is a minor and gradual loss of
datasets were not used for training in subsequent training sie$ermation on the previous training datasets as new datasets are
sions, but they were only used to evaluate the algorithm pémtroduced, however, the generalization performance on the val-
formance on previously seen instances to make sure that prédation dataset improved from 78% to 83%. This performance
ously acquired knowledge was not lost. The last row of Tablenlas comparable, or better, than the performance of most algo-
shows the classification performance on the validation datagétms that were trained using the entire data [41].
which gradually and consistently improved from 82% to 93% as
new databases became available, demonstrating the incremédntafoncentric Circles Database
learning capability of the proposed algorithm. This rather simple synthetic database of concentric rings with

In order to compare the performance of Learn++ to that @fo attributes and five classes was generated for testing Learn++
a strong learner trained with the entire training data of 12@frformance on incremental learning when new classes are in-
instances, various architecture—error goal combinations weréduced. Fig. 4 illustrates this database. The database was di-
tried. An MLP with 50 hidden layer nodes and a 100 timegided into six training datasets); throughSs, and a valida-
smaller error goal of 0.001 was able to match (and slightly e§on datasefTEST S; and S» had 50 instances from each of
ceed) Learn++ performance, by classifying 95% of the TESHe classes 1, 2, and 3; datasStsand S, had 50 instances
dataset. from each of the classes 1, 2, 3, and 4; and dataset§s had
50 instances from each of the classes 1-5. The validation set
TESThad 500 instances from all five classes. Table Il presents

Also obtained from the UCI depository, the vehicle silhouthe classification performance results. The validatiom&$T
ette database consisted of 18 features from which the type afataset shows steadily increasing generalization performance,
vehicle is determined. The database consisted of 846 instandedicating the algorithm was able to learn the new informa-
which was divided into three training dataséts~S3 of 210 tion, and the new classes, successfully. Note that largerimprove-
instances each, and a validation dataBEST of 216 instances ments in the performance are obtained after the third and fifth
in four classes. For each training sessior= 1, 2, 3, 30 hy- training sessions, since these training sessions introduced new

B. Vehicle Silhouette Database
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TABLE |
TRAINING AND GENERALIZATION PERFORMANCE OFLEARN++ ON OPTICAL DIGITS DATABASE

Inc. Train>  Average/  Training 1 Training 2 Training3 Training4  Training 5 Training 6

W Dataset learner
Si 55% 94% 94% 94% 93% 93% 93%
Sh 53% --- 93.5% 94% 94% 94% 93%
S3 51% - - 95% 94% 94% 94%
S4 53% --- === === 93.5% 94% 94%
Ss 56% - --- -—- -—-- 95% 95%
Se 58% 95%

TEST 41.3% 82% 84.7% 89.7% 91.7% 92.2% 92.7%
TABLE I

TRAINING AND GENERALIZATION PERFORMANCE OFLEARN++ ON VEHICLE DATABASE

Ine. Train> Average / Training 1 Training 2 Training 3
 Dataset Learner
S 62% 93% 82% 79%
S 60% === 86% 78%
S3 64% === === 91%
TEST 57% 78% 80.4% 83%
5 . — tally, to test the algorithm’s sensitivity to the order of presenta-

tion of the data. The results, which are provided on the web [38],
were virtually the same.

Finally, in order to compare the incremental learning perfor-
mance of Learn++ to that of a strong learner trained on the en-
tire training data, a larger MLP with 50 hidden nodes and an
error goal of 0.005 was trained. The performance of this strong
learner was 95%, only slightly better than that of Learn++.

D. Gas Sensing Dataset
Learn++ was then implemented on real-world data obtained

2r from a set of six polymer-coated quartz crystal microbalances
3t (QCMs) used to detect volatile organic compounds (VOCSs).
Detection and identification of VOCs are of crucial importance
-4r for environmental monitoring and in gas sensing. Piezoelectric
5 acoustic wave sensors, which comprise a versatile class of

-5 0 5 chemical sensors, are used for the detection of VOCs. For
sensing applications, a sensitive polymer film is cast on the
surface of the QCM. This layer can bind a VOC of interest,
altering the resonant frequency of the device, in proportion
classes that were not available earlier. Similarly, the improve the added mass. Addition or subtraction of gas molecules
ments in the performance after the fourth and sixth training séssm the surface or bulk of an acoustic wave sensor results
sions are minor compared to the previous sessions, since thiesa change in its resonant frequency. The frequency change
sessions did not introduce new classes. This is also reflectedNifi, caused by a deposited madsn can be described by
the number of hypotheses generated during each training sAg- = —2.3 x 10° - f2.(Am/A) wheref is the fundamental
sion, which are given in parentheses on the first row of the tabtesonant frequency of the bare crystal, aads the active
Note that when new classes are introduced, the number of Bytface area [42]. The sensor typically consists of an array of
potheses generated in each session is not the same. The nusderal crystals, each coated with a different polymer. This
of hypotheses generated was determined simply by monitoridgsign is aimed at improving identification, hampered by the
the classification performance, where each training session Miasted selectivity of individual films. Employing more than
terminated when the performance no longer improved. one crystal, and coating each with a different partially selective
The last column titled “Last 7” indicates the Learn++ perforpolymer, different responses can be obtained for different
mance on the last seven hypotheses. Although these hypothgssss. The combined response of these crystals can then be
were trained with a dataset that included all classes, they weised as a signature pattern of the VOC detected.
not adequate to give satisfactory performance, demonstratinghe gas sensing dataset used in this study consisted of re-
that all hypotheses are required for the final classification. sponses of six QCMs to five VOCs, including ethanol (ET),
An alternative set of six datasets was also generated from tkjdene (XL), octane (OC), toluene (TL), and trichloroethelene
database, by changing the order of classes introduced increm@@E). Fig. 5 illustrates sample patterns for each VOC from

Fig. 4. Circular regions database.
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TABLE Il
TRAINING AND GENERALIZATION PERFORMANCE OFLEARN++ ON CONCENTRIC CIRCLES DATABASE

Inc. Train>  Trainingl  Training2  Training 3 Training 4  Training 5 Training 6 Last 7
< Dataset (10) (10) (13) 3) (15) (7)

S 98.7% 96.7% 91.4% 91.4% 95.3% 95.3% 41.7%

S --- 96.1% 87.1% 85.8% 92.2% 91.6% 40.6%

S --- --- 98.3% 98.3% 72% 90.8% 51.5%

M - - --- 93.6% 77% 88.4% 49.8%

Ss - - - -—- 88% 95.2% 60.4%

S 96.4% 53.6%

TEST 55.6% 56.8% 73.2% 74.4% 85.8% 89.6% 52.8%

1 Ethanol 1 Toluene  Xylene 1 TCE ; Octane
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2

0 0 0 0 0
123456 1234586 1234586 1234586 1234586

Fig. 5. Sample responses of the six-QCM sensor array to VOCs of interest.

TABLE IV the dataset at a time. This dataset was also presented to the algo-
DATA-CLASS DISTRIBUTION FOR THEGAS SENSING DATABASE rithm in a different order, and the resulting performances were
N Y G S N R AR Ry Vvirtually the same, implying that the algorithm is not sensitive
Sy 20 0 20 0 40 to the order of presentation of the training data. Furthermore,
gj 2 255 : 400 2 various minor modifications to the base classifier architecture
TEST 37 32 14 10 62 (15 ~ 40 nodes) and error goad 05 ~ 0.2) also resulted in

similar performances, indicating that the algorithm is not very
aﬁensitive to minor changes in its parameters. A formal analysis

six QCMs coated with different polymers, where the vertic . :
. . on how much such parameters can be changed without affecting
axis represents normalized frequency change. Note that the 71

: .- he performance is currently underway.
terns from toluene, xylene, and TCE look considerably similar; Finally, Learn++ was also compared to fuzzy ARTMAP on

hence, they are difficult to distinguish from each other. Further. datab Table VI h ‘ f. ¢f
details on VOC recognition using QCMs can be found in [42 Is database. anle v presentst € pertormance figures ottuzzy
RTMAP on the identical dataset described in Table IV for var-

whereas more information on this dataset, experimental Se|885valuesofthevigilance parameger he classification perfor-

for generating the gas sensing signals, and sample pattemsrr?éence of fuzzy ARTMAP is always 100% on training data, since
provided on the web [43].

. - . according to the ARTMAP learning algorithm, convergence is
The dataset consisted of 384 six-dimensional patterns, ha?’rc. g - g ag g
. - .’ achieved only when all training data are correctly classified. Fur-
of which were used for training. Table IV presents the distr|y : . . .
hefrmore, once apatternislearned, a particular cluster is assigned

bution of the datasets, where subsequent datasets are stropcgi , and future training does not alter this clustering. Therefore,

biased toward the new class. Such a distribution results in R TMAP never forgets what it has seen as a training data in-

even tougher challenge; since the algorithm will no longer hav? : . e
the opportunity to see adequate number of instances from sree}nce. The improvementin the classification performance of the
bp y d N&stdataonce againdemonstratesthat ARTMAP isindeed capable

viously introduced classes in the subsequent training Sessmr}sihcremental learning. However. fuzzv ARTMAP was indeed
The performance of Learn++ on this dataset is shown in Table({/ 9. ' y

- . sénsitive to slight changes inits vigilance parameter, and even its
The generalization performance of Learn++ on the valldatl%n :
) . estperformance of 83.8% far= 0.90 was about 5% pointsless
dataset, gradually improving from 61% to 88% as new data was
) A . .Nat than of Learn++.
introduced, demonstrates its incremental learning capability
evenwhen instances of new classes are introduced in subsequent
training sessions. Learn++ performance on this dataset was
comparable to that of a strong learner, a two hidden layer MLPThis paper introduced Learn++, a versatile incremental
of error goal 0.001, trained with the entire training data, whidearning algorithm based on synergistic performance of an
had a classification performance of 90%. Learn++ was ableeaasemble of weak classifiers/learners. Learn++ can learn

perform as well as the strong learner, by seeing only a portionfadm new data even when the data introduces new classes.

V. SUMMARY AND DISCUSSION
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TABLE V stance, based on statistical distance metriespmsterioriprob-
TRAINING AND GENERALIZATION PERFORMANCE OFLEARN*+ ON abilities, and determine voting weights accordingly for each in-
GAS SENSING DATABASE
stance.
Inc. Train> Trainingl Training 2 Training 3 Other issues include selection of algorithm parameters, and
- T o T using other classifiers as weak learners. The algorithm param-
S, 87.5% $2.5% eters, such as base classifier architecture, error goal, number of
S 90% hypotheses to be generated, are currently chosen in a eather
TEST 60.78% 70.1% 88.2% hoc manner. Although the algorithm appears to be insensitive
to minor changes in these parameters, a formal method for se-
lecting them would be beneficial. Future work will also include
TABLE VI evaluating Learn++ with other classifiers used as weak learners,
Fuzzy ARTMAP PERFORMANCE ON THEGAS SENSING DATABASE such as RBF NNs and non-NN-based classification/clustering
Inc. Train—> Trainingl Training 2 Training 3 algc.)rltth' . . . L
¢ Dataset ° - ° Finally, the weighted majority voting for combining the hy-
S 100% 100% 100% potheses hints at a simple way of estimating the reliability of the
‘Z}f 100% }gg://“ final decision and confidence limits of the performance figures.
'1%:.9‘7/‘};:70. %5 S19% 1% sz.svi In particular, |f a va_st (marginal) maj_onty af; agree on the
TEST (p—0.90) 50.5% 67.2% 33.8% class of a particular instance, then this can be interpreted as the
TEST (p=0.95) 43.6% 59.3% 71.1% algorithm having high (low) confidence in the final decision. A

formal analysis of classifier reliability and confidence intervals
_ _ of the classifier outputs can be done by compuangpsteriori
Learn++ does not require access to previously used data dufitgbabilities of classifier outputs, which can then be compared

subsequent training sessions, and it is able to retain previouglthose obtained by using vote count mechanism.
acquired knowledge. Learn++ makes no assumptions as to

what kind of weak learning algorithm is to be used. Any APPENDIX

weak learning algorithm can serve as t_he base classifi_er of ERROR BOUND ANALYSIS FOR L EARN++

Learn++, though the algorithm is optimized for supervised _ o ] ]
NN-type classifiers, whose weakness can be easily controlled! N€orem: The training error of the Learn++ algorithm given

A . . T
via network size and error goal. in Fig. 1 is bounded above by < 2" [[,_; VE: - (1 — E),
ﬁqhereEt is also bounded above by the AdaBoost.M1 error

Learn++ is also intuitively simple, easy to implement, an dE. < 2t TT" 1
converges much faster than strong learning algorithms. This undEy < 2°J[,_, ves - (1 -e).

because using weak learners eliminates the problem of ﬁn%- Proof: Following a similar approach given in [25], we first

tuning and over fitting, since each learner only roughly appro%- 3V¥r:hat t?]e abtﬁvf error Itgoltjnd h0|d§| fora twol;clasz progktam,
imates the decision boundary. and then show that a multiclass problem can be reduced to a

.binary class problem, allowing the same error bound to hold for

Initial results using this algorithm look promising, but there i3 . . .
L ; . e multiclass case as well. Let us call the algorithm working
significant room for improvement and many questions to be an- binary problems Learn+ (as opposed to Learn++, which is

. -on
swered. The algorithm has two key components, both of Wh"?(ra;ﬁerved for the multiclass problem).

can be improved. The first one is the selection of the subseque . : .
In a binary class setting where the two possible valueg for

training dataset, which depends on the d|str|but|on update rué(?.e 0 and 1, the equations for error terms and distribution update
AdaBoost depends solely on the performance of individyal

whereas Learn++ uses the performance of ovéfafior distri- rules given in Fig. 1 can be simplified as follows. The combined

) hypothesis is obtained b
bution update. The former guarantees robustness and preveXPs y
performance deterioration, whereas the latter allows efficient in-

T T
cremental learning capability when new classes are introduced. 1, if log(1/8,) - hy(z) > & log(1/;)
An appropriate combination of the two updating schemes mitht () = ; 2;
provide optimum performance levels. Initialization of the dis- 0, otherwise
tribution when a new database is introduced can also be opti- (8)

mized by an initial classification evaluation of the compositehereas the error foH, is
hypotheses on the new database. .

The second key factor in Learn++ is the hypothesis combina- _ N P N
tion rule. Currently, voting weights are determined based on per- B = Z Dili) = ; De()lHu(xs) —wil - ©)
formances of the hypotheses on their own training data subset. -
This is suboptimal, since the performance of a hypothesis of@ gistribution update rule is given by
specific subset of the input space does not guarantee the perfor-
mance of that hypothesis on an unknown instance, which may ) )
come from a different subset of the space. This static combina- wiy1(2) =w (i) X {
tion rule can be replaced by a dynamic rule that estimates which
hypotheses are likely to correctly classify a given (unknown) in- =wy () X B}"Hﬁ(”)_y” (10)

i Hy (@) 7w

By, if Ht(%) =Y

1 otherwise

7
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and the final classification rule for each dataset is Hence,
Hyinar(z) m )
1 > wra(i)
= arg I;lg;(t Hz(:) logE E< =t (19)
c He(z)=y 1/2
T T HB
1, |f 10g 1/Bt Ht Z l 1/Bt
= ; 2; (11) giving us an upper bound for the error of the final hypothesis.

0, otherwise. However, t_his upper bounq ba;gd o.n.the weights of individual

i ) . ..instances is of little use, since it is difficult to keep track of the
We. define the error of thg fln_al hypothesis as sum of the 'nmarleights of every instance used for each hypothesis. These sum
weights of the misclassified instances, that is of weights can also be limited by an upper bound, based on the

E= Z D(d). (12) errors of eacit;. Recognizing thaB” < 1 — (1 — B) -  for
i H oo () s 0 < B < 1, and starting with the sum of the weights of all
' instances

To find and upper bound foE, we analyze the final weights .
of the instances after iterations, and associate these weights Z Wi (4
with the errors committed by combined hypothegés Note
that afterZ” rounds, the final weight for any instance is

T - Zwt(L) LByl
wT+1 = wl HBl |Ht y7 = D(L) . HBtl_lHt_yil. i=1

(13) Z i)(1— (1 —B)(1—|Hy(z;) —wl). (20)

The summation over all instances gives
We now define the intermediate variatlle(:) = |Hy(x;) — vl
N — ; 1—|Hy—yil : A i Yi
Z wr1 (i) = Z D(i) - H B, . (14)  asthe loss of theth hypothesis on instanéethen the total error
i= i=1 =

of the#th combined hypothesis is
Comparing the sum of weights of all instances to the sum of the

weights that are misclassified Z D) - | Hy(2:) — wi]
Z wr41(4) > Z wr41(1)
=1 i Hpjmat (2)7Y: = Z D,('L) . \I/f('l.) = Dt . \I/t. (21)

m

T
= > D@ -] Byl (15)  Furthermore, recall from Step 1 of Learn++ algorithm that
@ Hpinar(2)7y:

We now note that the final hypothedty;o; will make a mis- D, = w, / Z wy(4). (22)
take on instanceéif and only if i=1

Substituting (21) and (22) into (20), we obtain

m
Z We+1 (L)
i=1

T T
ZlOgBt_lHt(-’L‘i)_yil > Zlog(Bt)—l/Q (16)
t=1 t=1

or alternatively, if and only if

T T il ) m ‘ ‘
HB;|Ht(l‘i)*yi| > H(Bt)_l/Q- (17) < z_; we(é) — (1 — By) z_; we(6)(1 — We(3))
t=1 t=1 = =

Incorporating (17) into (15) for misclassified instances, we ob- ¢ p < y
tain S ; wi (i) — (1= By) - wy (4) — wy - Wy

m

m T
> wria(i) > > D@y -I] B - p1H=D=vil from (22), we obtain
= it H pimat (2)7Y: t=1

m T m
I R =2 wl) - (1= B)
t=

i Hypjnai (@) Fy:

T u u .
—E-[[ B (18) <§_: W <§_; wt(z)) )
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andy; = 0. We also define the initial distribution for Learn+
instances to be the same as Learn++ instances.
For each iterationt we pass the hypothesi#l;(i) =

< wi(i)— (1— B wili) — E, - wi (i [|He(z;) # wi|] as if WeakLearn returns it to Learn+. Note
B ; () = ( 2 ; @) = B ; +(0) that according to this formulation, if Learn++ misclassifigs
m m then it will return 1 toH,(:). Since the correct class of the
< Z wy(3) — (1 — By) Z w, ()(1 — Ey) correspo_ndmg:i |_s O (all |nsta~nc§s fo_r Learr_lfr are (_Jf _class 0 by
= = our previous definition), thett,(¢) misclassifies this instance
. as well. On the other hand, if Learn++ correctly classifies
< Z w()(1 — (1 — B)(1 — E,)). (23) instancer;, it will return 0 to_Ht(z), and since this |s_e_1lso the
P correct class for all Learn+ instancds, (<) also classifies the
) _ _ corresponding instancg; correctly. In other words, when the
After T" iterations, we obtain multiclass algorithm makes an error, the binary class algorithm
m T makes an error, and when the multiclass algorithm correctly
Z w1 (i) < H 1—-(1-B)(1 - E). (24) classifies an instance, so does the binary class algorithm. Since
i=1 t=1 initial distributions for both algorithms were defined to be
. . . identical, errors computed by both algorithms will also be
Substituting (24) into (19), we obtain identical, hence?;, = E,, B; = B;, andw; = w;. Therefore,
m T the error of the final hypothesig will also be identical to that
S wrn@)  J[i-0-B)1-Ey) given in (27). .
i=1 t=1
E< T < T R
1/2 1/2
HBt/ HBt/ EFERENCES
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