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Abstract—Constructive learning algorithms offer an attractive
approach for the incremental construction of near-minimal
neural-network architectures for pattern classification. They help
overcome the need forad hocand often inappropriate choices of
network topology in algorithms that search for suitable weights
in a priori fixed network architectures. Several such algorithms
are proposed in the literature and shown to converge to zero
classification errors (under certain assumptions) on tasks that
involve learning a binary to binary mapping (i.e., classification
problems involving binary-valued input attributes and two output
categories). We present two constructive learning algorithms

approach is not only computationally expensive but also does
not guarantee that the selected network architecture will be
close to optimal or will generalize well. This suggests the need
for algorithms that learn both the network topology and the
weights.

A. Constructive Neural-Network Learning Algorithms

Constructive(or generativé learning algorithms offer an at-
tractive framework for the incremental construction of near-

MPyramid-real and MTiling-real that extend the pyramid and minimal neural-network architectures. These algorithms start
tiling algorithms, respectively, for learningreal to M-ary mappings  with a small network (usually a single neuron) and dynamically
(i.e., classification problems involving real-valued input attributes grow the network by adding and training neurons as needed

and multiple output classes). We prove the convergence of these™ . . S .
algorithms and empirically demonstrate their applicability to Until @ satisfactory solution is found [20], [23]. Some key moti-

practical pattern classification problems. Additionally, we show Vations for studying constructive neural-network learning algo-

how the incorporation of a local pruning step can eliminate several rithms are the following.

redundant neurons from MTiling-real networks.

Index Terms—Artificial neural networks, classification, con-
structive learning algorithms, multicategory, perceptron, pruning,
real-valued pattern.

. INTRODUCTION

RTIFICIAL neural networks have been successfully

applied to problems impattern classification function
approximation optimization pattern matchingandassociative
memorieg10], [30]. Multilayer feedforward networks trained
using thebackpropagatiorearning algorithm [44] are limited
to searching for a suitable set of weights inaipriori fixed
network topology. This mandates the selection of an appro-
priate network topology for the learning problem on hand.
However, there are no known efficient methods for determining
the optimal network topology for a given problem. Too small
networks are unable to adequately learn the problem well while
overly large networks tend to overfit the training data and con-
sequently result in poor generalization performance (see [12]
for an analogy to theurve fittingproblem). In practice, a va-

riety of architectures are tried out and the one that appears best

suited to the given problem is picked. Suclirial-and-error
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 Flexibility of Exploring the Space of Neural-Network

Topologies

Constructive algorithms overcome the limitation of

searching for a solution in the weight space obgpriori

fixed network architecture by extending the search, in a

controlled fashion, to the entire space of neural-network

topologies. Further, it has been shown that at least in

principle, algorithms that are allowed to add neurons and

weights represent a classufiversal learnerg3].
 Potential for Matching the Intrinsic Complexity of the
Learning Task

It is desirable that a learning algorithm construct net-
works whose complexity (in terms of relevant criteria such
as number of nodes, number of links, and connectivity)
is commensurate with the intrinsic complexity of the un-
derlying learning task (implicitly specified by the training
data) [26]. Constructive algorithms search for small solu-
tions first and thus offer a potential for discovering a near-
minimal network that suitably matches the complexity of
the learning task. Smaller networks are also preferred be-
cause of their potential for more efficient hardware im-
plementation and greater transparency in extracting the
learned knowledge.
Estimation of Expected Case Complexity of the Learning
Task

Most practical learning problems are known to be
computationally hard to solve. However, little is known
about theexpectedtase complexity of problems encoun-
tered and successfully solved by living systems primarily
because it is difficult to mathematically characterize the
properties of such problems. Constructive algorithms, if
successful, can provide useful empirical estimates of the
expected case complexity of practical learning problems.

1045-9227/00$10.00 © 2000 IEEE
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» Tradeoffs Among Performance Measures work to approximate complex functions using relatively simple
Different constructive learning algorithms allow tradingheuron transfer functions like the sigmoid [13], [39], [49].
off certain performance measures (e.g., learning time) forPattern classifications a special case of function approxi-
others (e.g., network size and generalization accuraapation where the function’s outpytis restricted to one afi/
[47]. (M > 2) discrete values (or classes) i.e., it involveseal to
Incorporation of Prior Knowledge M-ary function mapping. A neural network for solving classi-
Constructive algorithms provide a natural frameworfcation problems typically ha®’ input neurons and/ output
for incorporating problem-specific knowledge into initialneurons. Theith output neuronl < £ < M) is trained to
network configurations and for modifying this knowledgeutput one (while all the other output neurons are trained to
using additional training examples [14], [33], [34]. output zero) for patterns belonging to thit classt Clearly, the
Lifelong Learning class of constructive algorithms that implement the more gen-
Recent research iifelong learning[48] has proposed eralreal to real mapping can be adapted to pattern classification
training networks that learn to solve multiple related prol{see [54] for an example). However, a special class of construc-
lems by applying the knowledge acquired from the simpléive learning algorithms can be designed to closely match the
problems to learn the more difficult ones. Constructiveniqgue demands of pattern classification. Since it is sufficient
learning algorithms lend themselves well to the lifelonfpr each output neuron to be binary valued (i.e., output zero or
learning framework. A network that has domain knowlene), individual neurons can implement the sirmtpiesholdor
edge from the simpler task(s) built into its architecturbard-limiting activation function (with outputs zero and one)
(either by explicitly setting the values of the connectiomstead of a continuous activation function like the sigmoid.
weights or by training them) can form a building block foiThreshold neurons offer the following advantages over their
a system that constructively learns more difficult tasks. continuous counterparts: First, they are potentially easier to im-
plement in hardware. Second, therceptron learning rul¢42]
B. Network Pruning is a simple iterative procedure for training threshold neurons.
Network pruning)ffers another approach for dynamically deThe Iearning rules for Singid neurons and the like are more
termining an appropriate network topology. Pruning techniquéemplicated and thus computationally more expensive. Third,
(see [40] for an excellent survey) begin by training a largéhreshold functions can be clearly described in terms of simple
than necessary network and then eliminate weights and neurdiéhen-elsé rules. This makes it easier to incorporate domain
that are deemed redundant. Constructive algorithms offer sewpertise (which is usually available in the form of if-then-else
eral significant advantages over pruning-based algorithms Iites) into a network of threshold neurons [14]. Similar argu-
cluding, the ease of specification of the initial network topologynent suggests that the task of extracting learned knowledge
better economy in terms of training time and number of trainirfgom a network of threshold neurons would be considerably sim-
examples, and potential for converging to a smaller netwogher. In this paper, we will focus on constructive learning of net-
with superior generalization [27]. In this paper we will focugvorks of threshold neurons for pattern classification.
primarily on constructive learning algorithms. In Section IV we 1) Constructive Learning Using Iterative Weight Updaté:
show how a local pruning step can be integrated into the n&tmber of algorithms that incrementally construct networks of
work construction process to obtain more compact networksthreshold neurons for learning thenary to binary mapping
have been proposed in the literature (for example,toeer,
C. Constructive Algorithms for Pattern Classification pyramid [19], tiling [31], upstart [15], oil-spot [29], and

Neural-network learning can be specified afuaction ap- sequential[28] algorithms). These algorithms differ in terms
proximation problem where the goal is to learn an unknowRf their choices regarding: restrictions on input representation
function f: RY — R (or a good approximation of it) from a (e.g., binary or bipolar valued mpu_ts_); when to add a neuron;
set of input—output pair§ = {(zV, y)lz® € R, y € R}. A whgre to ?‘d_d a neuron; connectivity of the added neuron;
variety of constructive neural-network learning algorithms havéeight initialization for the added neuron; how to train the
been proposed for solving the general function approximati@§ded neuron (or a subnetwork affected by the addition); and
problem (see [27] for a survey). These algorithms typically usé§ On- They can be shown to converge to networks which yield
greedy strategyvherein each new neuron added to the netwodA€ro classification errors on any noncontradictory training set
is trained to minimize the residual error as much as possib{Bvolving two output classes (see [47] for a unifying framework
Often the unknown target functiorf) is inherently complex that explains the convergence properties of these constructive
and cannot be closely approximated by a network comprisingft\igorithms)- A geometrical analysis of the decision boundaries
a single hidden layer of neurons implementing simple transfétsome of these algorithms is presented in [7]. Practical pattern
functions (e.g.sigmoid. To overcome this difficulty, some con-classification often requires assigning patternsio(where
structive algorithms use different transfer functions (e.g., tHd > 2) categories. Although in principle, thé/ category
Gaussian[21]) while others such as tharojection pursuit re- classification task can be decomposed it 2-category
gression[18] use a summation of severabnlinear transfer classification tasks, this approach does not take into account the
functions. Alternatively, algorithms such as ttescade corre- interrelationships between tlié output categories. Further, the
lation family construct multilayer networks wherein the struc- 1A single output neuron suffices in the case of problems that involve two
tural interconnections among the hidden neurons allow the nedtegory classification.
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algorithms mentioned above have been designed to operate on Il. PRELIMINARIES
binary (or bipolar) valued attributes only. Real-valued attributeAS
are almost invariably encountered in practical classification i ) )
tasks. One work around for this problem is to discretize theA V-input threshold logic unit (TLU, also known
real-valued attributes prior to training [11]. Discretization cafiS & Perceptro) is an elementary processing unit that
result in a loss of information and also greatly increase tf@mputes the threshold (hard-limiting) function of the
number of input attributes. Thus, it is of interest to desigif€ighted sum of its inputs. The outpuOX) of a TLU
algorithms that can directly accept real-valued attributedith weights W = (Wo, Wy, Wy, -+, W) (where

We present constructive neural-network learing algorithnfd€ weight Wo is referred to as thethreshold or bias)

that are capable of handling multiple output categories affyj 'esponse to a patteriX” = (X7, X7, ---, X}) is
real-valued pattern attributes. O = 1if Wo+3 i, W;-X; > 0andO? = —1 otherwise?

2) Exploiting Geometric Properties for Constructive FOr notational convenience, we prefix each pattét with
Learning: The class of constructive learning algorithms wé 1 (i.e., X? = (1, X7, X3, ---, X)) and denote the TLU
focus on in this paper trains individual neurons using a@HtputO? as the hard-limiting function oV - X*.
iterative weight update strategy (such as pleeceptronrule). 1) Perceptron Learning RuleAn N-input TLU implements
Another class of constructive learning algorithms that used@® (N — 1)-dimensional hyperplane that partitions thedi-
one-shotearning strategy deserves mention. These algorithigensional Euclidean pattern space defined by the coordinates
exploit the geometric properties of the training patterns 1, -~ -, X~ into two regions (or classes). A TLU can thus
directly (i.e., in one-shot) determine appropriate weight§nction as a 2-category classifier. Consider a sebamples
for the neurons added to the network. Tg®w and learn S = ST U S~ whereSt = {(X?, CP)|C? = 1} andS~ =
(GAL) algorithm [1] and theDistAl algorithm [52] construct a {(X”, C?)|C? = —1} (C? is the desired output for the input
single hidden layer network that implements a kinchefirest PatternX” andp ranges from one t{). A TLU can be trained
neighbor classificationscheme. Each hidden neuron is abSing theperceptron learning rulg42] (W «— W + n(C? —
exemplarrepresenting a group of patterns that belong to t§&”)X” wheren > 0 is the learning rate) to attempt to find
same class and are close to each other in terms of some suit@bWyeight vecto such thatv X € S+, W - X > 0 and
chosen distance metric. Theminimizing resourcesnethod VX? € S, W - X? < 0. If such a weight vectorW) exists
[43], the multisurfacemethod [4], and thé/oronoi diagram then.S' is said to bdinearly separable
approach [5] are based on the ideapafrtitioning the input 2) Stable Variants of the Perceptron Rul#:the setS is not
space by constructing linear hyperplanes. Hidden layer neurdifgarly separable then the perceptron algorithm behaves poorly
are trained to partition the input space into homogeneolfisthe sense that the classification accuracy on the training set
regions where each region contains patterns belonging té&an fluctuate widely from one training epoch to the next. Sev-
single output class. The output layer neurons combine regidi@l modifications to the perceptron algorithm (e.g., pheket
that represent the same output class. The geometric appro@i@i®rithm with ratchet modification{19], the thermal percep-
to constructive learning can be applied successfully in solvifign algorithm[16], theloss minimization algorithni24], and
small to medium scale problems. However, the global searétgbarycentric correction procedur8]) are proposed to find
strategy employed by these algorithms can pose a limitatisrseasonably good weight vector that correctly classifies a large
when learning from very large training sets [47]. Further, thgaction of the training set when S is not linearly separable
reliance on a suitably chosen distance metric (in the caseayd to converge to zero classification errors wiseis linearly
GAL andDistAl) makes it imperative for the user to try out sSeparable. Siet al. have established the necessary and suffi-
variety of distance metrics for each learning problem. cient conditions for a training sétto be nonlinearly separable

In this paper, we present extensions of ygamidand the [46]. They have also shown that the problem of identifying a
tiling algorithms to handle multiple output classes and red@rgest linearly separable subsetis NP-complete. Thus, we
valued pattern attributésWe prove the convergence of theséely on a suitable heuristic algorithm (such as floeket algo-
algorithms and demonstrate their applicability on some praidthm with ratchet modificatiohto correctly classify as large a
tical problems. The remainder of this paper is organized as f§Hbset of the training patterns as possible in the limited training
lows: Section Il gives an overview of some elementary cofime allowed. We denote such an algorithmubyin our experi-
cepts and describes the notation used throughout this paper. $e@ats with constructive learning algorithms we usetttegmal
tions Il and IV describe th&/Pyramid-realandMTiling-real ~ Perceptron algorithnto train individual TLU's. The weight up-
constructive learning algorithms respectively and prove thélate equation of ththermal perceptron algorithris
convergence. Section V illustrates the practical applicability of 1
these algorithms and Section VI concludes with a discussion and W — W +n=(C? — OP)XPe~I"I/T
some directions for future research. T

Threshold Logic Units

wheren? is the net input® - X?) andZ is the temperaturé&’
is set to an initial valu€y at the start of learning and gradually

2The framework presented here is more general and can potentially be ap*Although bipolar TLU's whose outputs are one andl are functionally
plied to the entire class of constructive algorithms for pattern classification. Tequivalent tdbinary TLU’s whose outputs are one and zero, empirical evidence
interested reader is referred to [35] for an application of this framework to tiseiggests that networks constructed using bipolar TLU’s are often smaller than
tower, upstart perceptron cascagendsequentialearning algorithms. those constructed using binary neurons for the same task [20].
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annealed to zero as the training progresses. The damping fadtgr ;-
(e~I""1/T) prevents any large weight changes toward the end

of the training thereby avoiding any irreversible deterioration in

the TLU’s classification accuracy. S={X" X}
XP = <Xif’ T Xé”\r>
where X? ¢

I : : R foralliandl < p < |9]
Classification problems involving/ (M > 2) output classes P>
P a7 ( ) outp XP=(1, X7, -, X2)

typically require a layer ofd TLU’s. These TLU's can be <,
trained byindependentraining or as avinner-take-all(WTA) X =

B. Multiclass Discrimination

439

connection weight between
neuron ¢ in layer ! and
neuronj in layeri?;

pattern set;

patternp;

augmented patterp
projected patterp;

group. The former strategy trains the TLU’s independently artd: X15 ;Xﬁm XNg1)
in parallel. However, this does not take into account the fadtni1 = Zf\;l (X7)?
that class assignments are crisp (i.e., a pattern assigned to dlé;ss

1 cannot possibly belong to any other class as well) and thus

net input of neuror; in re-
sponse to patterX?;

potentially results in scenarios where more than one TLU h&% = (CY, C3, ---, C}y), target output for patterX?;
an output of one. The WTA training strategy gears the weight, = 1if X* €

changes so that théh TLU has the highest net input among theclassi andC;’ =

group of M TLU’s in response to a pattern belonging to class 1 otherwise

i. The winner (i.e., the neuron with the highest net input) is a€% = (0, Of,, -+, Of ) layer!’s output in response to

the patternX?;
number of misclassifications
at layerl.

signed an output of one while all other neurons are assigned (ﬂf € {-1, 1} forall:
puts of—1. In the event of a tie for the highest net input all neue;

rons are assigned outputs-ef. If a pattern is misclassified then

the weights of the TLU’s whose output in response to the pattern .
does not match the desired output are updated using the peré&gfine a functionsgn R — {-1, 1} assgn(z) = —1 if

tron rule (or one of its variants). WTA training offers an advant < 0 andsgn(z) = 1if > 0. Note that bipolar TLU’s
tage over independent training in that pattern classes that &@lement thesgn function of their net input. The input layer
only pairwise separable from each other can be correctly clagigurons are designed to allow the patterns to be input to the
fied using WTA training while in independent training only pathetwork and thus simply copy their input to their output.

tern classes that are independently separable from all the other

classes can be correctly classified [20]. L. THE MPYRAMID-REAL ALGORITHM

C. Preprocessing The pyramidalgorithm [19] constructs a layered network of

Most constructive learning algorithms are designed for binafy-U's by successively placing each new TLU above the ex-
(or bipolar) valued inputs. An extension of thestart algo- isting ones. The first neuron receives inputs from Menput
rithm [45] and theperceptron cascadalgorithm [6] proposed heurons. Each succeeding neuron receives inputs fronivthe
a preprocessing technique to handle patterns with real-valiegut neurons and from each of the neurons below itself. Thus,
attributes wherein the patterns are projected on to a parabdfl@ Seécond neuron receives a total’éf+ 1 inputs, the third

surface by appending to each pattedf(= (X7, ..., X¥)) neuron receives a total @f + 2 inputs and so on. Each newly
an additional attribute(%, | = Zﬁ\il (X7)2. With this projec- added neuron takes over the role of the output neuron. The net-

tion itis possible to train a TLU to exclude any one pattern froiyork growth continues until the desired classification accuracy

all others such that the TLU outputs one for the pattern to be dx-achieved. _ _
cluded and-1 for all the others. We use this projection idea to 1he extension of the pyramid algorithm to handle real-valued

demonstrate the convergence of #M@yramid-realalgorithm attributes involves modifying each input pattern by augmenting

on real-valued pattern attributes (see Section I1I-A). an extra attributeX’, ;) as described in Section II-C. The net-
work thus hasV + 1 input neurons. To handle multiple output

D. Notation categories the algorithm usgéf neurons (instead of one) in each
layer of the network. The newly added layer/df neurons be-

_ The foIIowing notation is used in the description of the algg:ymes the network output layer. Each of thieneurons in the
rithms and their convergence proofs: new layer are connected to thé-+ 1 input neurons and to each

N number of inputs; _ of the M neurons in each layer below the current one. This al-
M number of outputs; gorithm is described in Fig. 1 and an example network is shown
I input layer index; in Fig. 2.

1,2,---, L indexes for other layers

(hidden and output); A. Convergence Proof

7] number of neurons in layér
I, la, -+ 1y indexing of neurons in layér Theorem 1: There exists a set of weights for neurons in the
W, = weight vector of neurori in  newly added layet. of the network such that the number of

Wi 0, Wi 1, o0 Wi )
Wi x€R k=0l

layer/; misclassifications is reduced by at least one (V'd.,> 1, ¢, <

er—1)-
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Algorithm: MPyramid-real

Input: A training set §
Output: A trained MPyremid-real network

begin

1)  Set the current output layer index L =0

2) repeat
/] Construct a new output layer and train it
a. L=L+1

b. Add M output neurons to the network at layer L
c. Connect each newly added neuron to all the input neurons and
to each neuron in each of the preceding layers, if there exist any
d. Train the weights of the newly added neurons using the algorithm A
(Note that all other weights of the network remain frozen)
until (current_accuracy > DESIRED_ACCURACY or L > MAX_LAYERS)

end

Fig. 1. MPyramid-realalgorithm.

Output Layer: M neurons

oroRre =

/><: == ~=2> Input Layer Connections
VBV
_,Q _>Q ..... -
W/A S 2% Hidden Layers: M neurons
—>Q *O """ —>Q 'e ——3>Individual connection
between two neurons

9— Group connection -

Full connectivity between
the two blocks connected

Fig. 2. MPyramid-realnetwork.

Proof: Defines = max, , S, (XP X7)2. For each Wi, 1, =2CtXPfori=1---N
patternX”, definee, = (1/2) mingz, EZ_ (XP - XH2 1t Wi, 1y, = — CF
is cIearAthatO < ¢, < k forall patternsX” . Assume that a Wi o =Ofork=2..-L—1, andi=1---M
patternXp is not correctly classified at laydr — 1 (i.e., C? # e

O% _)). Further, let the output vect@¥, _, for the misclassified Wi b1, =8 . o
patternX be such tha®f _, _1and07£ L, =-1 V= Wi, 11, =0fori=1.--M, i #j. @
- M, k # 3;whereas the target outpGY¥ is such that’]f’ = " p ) » ,
1 andC{’ = 1, Vl=1---M,1#~,andy # . For the patternX” the net inputey of neuronL; is
The network adds a new laydr of M neurons. Let the Vil i m
weights of these new neurors;(j = 1---M) be set as s —
follows (see Fig. 3): ’ ”Iij =Wi, 0+ Z Wi, 1. X7 + Z Z Wy 1-1 0Ly,
=1 k=1 =1

N N+1 M
WL ,0 = C <Ii + € — Z (Xf)2> :WLj,O + Z WL].7[7.X§7 + Z WL].7L_17.O]£_17_

i=1 i=1 i=1
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p N P2
€} (x+8y- T (X))

bias

0 0

Connections to

N+1 t--j M

Input Layer Connections  Connections to Layer L-1

Fig.3. Weight setting for the output neurén of theMPyramid-realnetwork.

sinceWry, r—x, =0fork=2,-.., L -1
andi =1, ---, M [see(1)]
N N
=Cf(r+ ey — Y (XD)) +207 Y (XP)?
N = =
_Of Z(Xp) + rO7_ 1;
=1

=CP(r+ep) + liOi_lj. 2

Thus, the netinputs of the output neurdns Lg, andL; where
J=1--M;j#~ j#pare

nfiw =C(r+¢)+ HOi—lv
=€
. =Cg(s + &) + ROT

= — ep
i, =C7(r+ &) + ROy,
= =25k —¢p.

Sincee, > 0, for all p, the net input of neurod., is higher
than that of every other neuron in the layerThus, 0} =1

andO} = -1, Vj # ~ which means that patterX

correctfy cIaSS|f|ed at layef. Even if as a result of a t|e for

the highest net input, the output of each neuron in ldyerl in
response tk” is o _ L, =

in layer L would result i |n a correct classification & .

Layers L-2 ... 1

—1 the weights of the new neurons

a4

.0 @ classl

(0.5,0.5)
A

W class I

A class Il

0,0) (1,0)

Fig. 4. Example dataset to illustrate the convergence proofs.

TABLE |
DESCRIPTION OF THE EXAMPLE
DATASET
Number Input Output [N
2
X111 X2 | Xs= Zﬁ? €1 €2 | C3
i=1
1 0 0 0 1|11 |f0.25
2 0 1 1 -1 1 |-1140.25
3 1 0 1 1] 1 0.25
4 1 1 2 -1]-1 0.25
5 05105 0.5 1 |-1(-140.25
=Cf(r+ep) +rOL_,
N
2 2
— OF Y I(XF)? = 2(XD)(XP) + (X))
i=1

J

=CT(k+ep) + mO%_lj -t

i=1

S e Xf>2]

=Cl(rn+ep—€)+ /«;O%_lj
N
wheree' = > (XF — X1)%; notee’ > ¢,
i=1
:ﬁ’Cf + /iO%_lj wherex +¢, — ¢ = «, i.e.,rk < k.

3

The neurorL., such thaD? 1, = 1 hasthe highest netinput
among all output neurons irrespective of the value assumed by
C?. Thus,07 = O7_, = C?i.e., the classification of previ-
ously correctly classmed patterns remains unchanged. We have
shown the existence of weights that will reduce the number of

Consider the patterX* # X" that is correctly classified at misclassifications whenever a new layer is added to the network.

layerL — 1 (i.e., 0% _, = CY)
N+1 L-1 M

W, =W h 30 Wa X043 Y Wi, 1, 0f
=1 k=1 =1
N+1 M

=W, 0+ Z Wi, 1, qu + Z Wy, L—L-O%_L_
=1 =1
sinceWy, , =0fork=2,.--, L—1
andi =1, ---, M [see(1)]

N N
=7 <fa +ep— (Xf’)2> +207 > (XP)(X])
=1 =1
N
—CF Y (X1 +rO%_ 1

i=1

We rely on the TLU weight training algorithm to find such
weights. Since the training set is finite in size, eventual conver-
gence to zero errors is guaranteed. O

B. Example

The following example illustrates the concepts described in
the above proof. Consider a simple dataset shown in Fig. 4. The
patterns belong to three output classes and are clearly not lin-
early separable. Table | summarizes the dataset.

By definition, s = max,, , ., (X? — X7)2. For the ex-
ample datasek = 2. The first layer of the network (let us des-
ignate it byL?!) is trained using the algorithtd. One possible
set of weights for the neurons is depicted in Fig. 5. The response
of each of the neurons to the patterns in the dataset is summa-
rized in Table 1.



442 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000

o4 R .
The patternX = = (1, 1, 2) is misclassified at layef.*. -0.25
Let X represent the patter&” in the proof. The algorithm , (}7
adds a new layer of neurong?) to the network. Since fof(4 inputs
the neuronl} outputs one whereas the neurbh should have

output one L3, L3, andL? correspond to the neurods,, Lg,
andL;, respectively in the proof. Equation (1) specifies one pa
ticular set of weights for the newly added neurons (as shown
Fig. 5). The response of the neurons/if to each pattern is
given in Table Ill. The net inputs of the neurons, Lg, and
L; inresponse to patterfsf4 areey,, —¢, and—2x — ¢, respec-
tively, as derived in the proof. Further, the classification of a
previously correctly classified patterns suchﬁs XQ, X?’, and
X’ that represent the pattefﬁq in the proof remains unaltered.

inputs

IV. THE MTILING-REAL ALGORITHM Fig. 5. MPyramid-realnetwork for the example dataset.

The tiling algorithm [31] constructs a strictly layered net-
work of threshold neurons. The bottom-most layer receives in-
puts from each of theéV input neurons. The neurons in each

TABLE 1l
RESPONSE OF THELAYER L NEURONS

subsequent layer receive inputs from those in the layer imme- Number Net Input Output

diately below itself. Each layer maintainsreaster neurorand nga [ npg [ np [ops Jop [ op

a set (possibly empty) of ancillary neurons that are added and 1 210120 | 23| 1|11

trained to ensure &aithful representatiorof the training pat- 2 35 | 57 |85 | -1 | 1 f -1

terns. Thefaithfulnesscriterion states that no two training ex- 3 50 | 56 | 51 || -1 1 | -1

amples belonging to different classes should produce identical 4 84193 | 8 3 -1 1 -1

output at any given layer. Faithfulness is clearly a necessary con- 5 47 425140 ) 1 [ 1| -

dition for convergence in strictly layered networks [31].

The proposed extension to multiple output classes involves TABLE Il

constructing layers witl4 master neurons (one for each of the RESPONSE OF THELAYER L2 NEURONS

output classes).Unlike theMPyramid-realalgorithm, it is not

necessary to preprocess the dataset using projection. However, (| Number Net Input Output

it should be noted that such preprocessing will not hamper the nrz | npz | mpe jl oz | op2 | op2

convergence properties of the algorithm. Groups of one or more 1 -2.25-225 (225 || -1 | -1} 1

ancillary neurons are trained at a time in an attempt to make the 2 -3251 075 1075 | -1 { 1 | -1

current layer faithful. The algorithm is described in Fig. 6 and 3 -3.25 | 0.75 | 075 -1 | 1 ¢ -1

an example network is shown in Fig. 7. 4 -4.251-0.251 0.25 || -1 -1} 1
5 0.25 | -3.75 | -0.25 -1 -1

A. Convergence Proof

i i > : o
Each hidden layer containef master neurons ankl (.K —~ Then we prove that with each additional layer the number of
0) ancillary neurons that are trained to achieve a faithful re

resentation of the patterns. L8t be a subset of the trainin Blassification errors is reduced by at least one.
set S such that forpeach z;\tteer belonaing toS the out- 9 Theorem 2: For any finite noncontradictory dataset it is pos-
utsOP OP. ... OP zfre exactly the garﬁe We desi natsible to train a layer of threshold neurons such that the output of
PUISEH, &5, -, MAE » y ' » 9N ese neurons is a faithful representation of the dataset.
this output vectofO7, Oy, -- -, Of, ;) as a prototypdl? = . N
(Al 7l 7 Yol = 41 foralli = 1--- (M + K) Proof: Assume that a layetd(") with A/ master neurons
Mo T2 s MM T = - k ' _istrained on the datasef). Consider a subsét of S such that
If all the patterns c_)fS belong to exactly one cla_lss (|._e., the3{he master neurons give the same output for each patte¥n in
have the same desired output) then the protalpés a faithiul Further assume thatis not faithfully represented by the master
neurons. We demonstrate that it is possible to add ancillary neu-

representation of the patterns $h Otherwise II” is an un-
p
) -rons (with appropriately set weights) to the layerin order to
P OP ... COP 2
(CY,C%, -+, C%)) (i.e., the observed output for the patterns Sbtain a faithful representation SF

faithful representation of. Further, if (x}, 75, .-, 7k} =
:)he sametri\s trlle d$_3|(rjed output) then the patterfisae said to Consider a patterX” belonging to theconvex hull of S. If
eTiogr:IZo);ifh(’:ns’zl clzin.vergence is proved in two parts: first Wi, Is such that for some attribute(i = 1, ---, IV), 7] >
o : ) . N ) for all X? € S andX? # X? then an ancillary neuron
show that it is possible to obtain a faithful representation of the * | < 7 y

training set (with real-valued attributes) at the first layBt) 5The convex hull for a set of point3 is the smallest convex polygdd such
that each point in) lies either on the boundary d? or in its interior. The
interested reader is referred to [8] for a detailed description of convex hulls and

4An earlier version of this algorithm appeared in [51]. related topics in computational geometry.
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Algorithm MTiling-real

Input: A training set §
Output: A trained tiling network

begin
1) Train a single layer network with M output neurons (master neurons) using algorithm A
2) Let L = 1 denote the number of layers in the network
3) while (current.accuracy < DESIRED_ACCURACYand L < MAX_LAY ERS) do
a. while (layer L is not faithful) do
Let Oy, be the set of outputs of layer L for the patterns in S
For each v € Oy, let S, C S be the set of patterns that produced output v
and let C, be the number of output classes to which the patterns in .5, belong
/] If C, > 1 then the output vector v is unfaithful
Randomly pick a v for which C, > 1
Add C), ancillary neurons to the layer L
Train the ancillary neurons using the algorithm A to separate the patterns in 5,
end while
b. Let L = L 4+ 1 and add M master neurons to the new output layer L
c. Connect the neurons in layer L to all neurons in layer L — 1
d. Train the neurons in layer L using the algorithm A
end while
end

Fig. 6. MTiling-real algorithm.

Output Layer: M neurons

Hidden Layer 2:
M + k2 neurons

Hidden Layer 1:
M + kI neurons

Input Layer: N neurons

Q Input / Master neurons CJ Ancillary neurons

Fig. 7. MTiling-real network.

with weightsW = {—(X?)%,0,---, 0, X7, 0, ---, 0} (i.e., After adding an ancillary neuron, the output of the layer

all weights except?y and W; set to zero) will output one for is faithful in response tX?. Note that this output is distinct
X? and —1 for all other patterns. If howeves is such that from the outputs for all the other patterns in the entire training
there is a tie for the highest value of each attrihditeamong setS. In effect, the patterdX? has beermexcludedrom the re-
the patterns then there must exist a patt&fhon the convex maining patterns in the training set. Similarly, using additional
hull of S that dominates all others in the sense that for eadh.U’s (up to|S| TLU’s in all) it can be shown that the outputs
attribute X;, X7 > X7 for all X?in S (note thatX? # X?). of the neurons in the layer provide a faithful representation of
Clearly,X” - X* > X* - X?. An ancillary neuron with weights S. O
W={- Zf\;l (XP)?, X7, .-+, X%} will output one forX? In practice, by training a groups of one or more ancillary neu-
and—1 for all other patterns irf. rons at a time it is possible to attain a faithful representation
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of the input pattern set at the first hidden layer using far fewer »

TLU’s as compared to the total number of training patterns. 2C;
Theorem 3: There exists a set of weights for the master neu- bias ——=

rons of a newly added layek in the network such that the

number of misclassifications is reduced by at least one (i.e.,

VL >1 e < eL—l)-

Proof. Consider a sef5; C S of patterns that belong Cf"f iL-11 cf nfL_“
to the same output class but are not correctly classified
by the master neurons in laydr — 1. Let the prototype 1o i L-11
II* = (a7, w3, ---, why ) represent the output of layer Connections to Layer L-1

L — 1 in response to the patterns ifi;. Since the pat-
terns in S; are not correctly classified at layek — 1, Fig.8. Weight setting for the output neurdry of the MTiling-real network.
(nf, @l ooy £ (O, CF, -, OF)) (the desired

output for the patterns it$;). For the incorrectly classified layer L — 1, IT? is such thatr? = —1foralli = 1--- M, we
prototype II? assume thatr;, = 1,1 < 8 < M and see from (5) that the net input of neurdy is still the largest
Vi =1---M,j # 3, 7r§’ = —1. Clearly, C{; = —1 and among the netinputs of the master neurons in laydr. Thus,
Iy 1<y <M,y # gBsuchthaCh = 1. the patterns ir; would be correctly classified.

The algorithm adds a new layeE) of M master neurons.  Now consider the prototypH? of the set of patterns§, that
The following weights for the master neurdn (j = 1--- M) are correctly classified by the network at layer— 1 (as de-
shown in Fig. 8 results in the correct classification of pascribed earlier). The net input of the master neurons at layer
terns in S;. It also ensures that the output of any othdn response to the prototydad? is
set of pattern552 C S (with corresponding prototype

. |L—1]
11?7 = (7{, 75, -+, 7y, ) @ndS; N S, = ¢) for which the ¢« q
master neurons of layet — 1 produce correct outputs (i.e.,  "Ls =Ww,0+ kZ WL, L-1.7
. =1
(nd, m&, -, 7wy =(Cf, CE, .-, C%,)) remains unchanged 1]
W0 =207 =207 +IL=-1rf+ > Wi oy
Wi, b1, =Clmbfork =1 |L—1], k # j A
Wi, -1, =L -1 4) =20 +|L—1at+ Y CPabal
From (4), the netinput of neurah; in response to the prototype kzllffjll
117 is
=2C7 +|L - 1|n] + C¥ Z mpry — Cfnlnd. (6)
|L—1]| k=1
ﬂp_IWL. + Wr. — 'W?
b 0 ; Tk Sincell? # I, —|L — 1] < Y\ M Cabaf <L - 1] - 2.
|L—1] Consider a neurok — 1, (1 < o < M) such thatr¢ = 1.
=207+ L1zt + Y Clrpal From (6)
k=1, k#j [L—1]
=207 +|L —1nf +(|L - 1] = 1)CF nf =200 +|L -1zl +C% > wlri— Chalrd
=|L—1|x? + (L — 1| + 1)C?. (5) k=1
2208 +|L - 1|(1) = CEIL — 1] = CExg (D).
Thus, .
If C? = 1thenw? = —1 (since the prototypdI” was not
=|L-1|(-1)+ (JL — 1|+ 1)(1) correctly classified). On the other hand(if, = —1 then#Z,
-1 could be either one or 1. In either case, after substituting these
values in the above equation we see thiat > 3. Further for
r _ _ _ _ o
", = L= D)+ (L -1+ 1)(-1) any other neuro. — 1; wherej = 1--- M, j # o, 7] = —1
=—1wherel <3< M,B#~
P |L—1]
ng, =L =10+ (L -1+ 1)(=1) ¢ o ¢ L D ba wpa
= — — — P P PP
2L -1 -1 <207+ |L - 1|(=1) + CB(|L — 1] — 2) — CPxP(-1).
The master neuroh,, has the highest netinput among all mastaf C?’ = 1 thens? = —1 (since the prototyp&I* was not cor-
neurons in layer. WhICh means thaD7 = 1andO} = rectly classified). On the other handGf = —1 thenx? could

-1,Vj=1---M, 7 # yandC? = OI’ Thus the patterns be either one or1. In either case, aftersubst|tut|ng these values
in S1 are now correctly classified. Even if as a result of a tie im the above equation we see thgt < —1. The neuronL,
the value of the highest net input among the master neuronshaf the highest net input among all the master neukgr(g =
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Fig. 9. MTiling-real network for the example dataset.

1---M).ThusOf =1andOf =-1Vj=1---M, j#«, TABLE IV
which means that? = O?. RESPONSE OF THELAYER L' MASTER NEURONS

We have shown that there exists weights for the master neu-

rons of a newly added layer which will reduce the number of Number || Net Input Output

misclassifications by at least one. We rely on the algorithm Ry | Ty [ M| O | OL; | 91
: . . - o 1 6 | 3 | 3 1| -1 -1
to find such weights. Since the training set is finite the algo- 9 o |5 lwll -1l
rithm would eventually converge to zero classification errors 3 5 7 3 a1 ]
after adding a sufficient number of layers. O 4 8 o 1ol 11 -11 1
5 7 6 165 1 |-1]-1

B. Example

The following example illustrates the concepts described in
the above proof. Consider the simple data®sshown in Fig. 4 Shows that the patterns 8 are now correctly classified. Next
The first step in the network construction involves training §onsider a se; = {(1, 0)} with corresponding prototype
layer of M = 3 master neurons. Let us designate this laydd? = (-1, 1, =1, 1,1). S, is correctly classified at layer
by L'. One possible set of weights for the master neuronsfs- The net input of theL? neurons in response M is
depicted in Fig. 9. The response of each of master neurons to 9, —7) and thus the output is-1, 1, —1) which shows

the patterns in the dataset is summarized in Table V. that the classification of patterns ifl, remains unchanged.
The output of the master neurons is unfaithful with respect &milarly, it can be verified that the classification of the patterns
the following two sets of patterns; = {X*, X°} and$, = (1, 1) and{0.5, 0.5) also remains unchanged. Thus, we have

{X?, X*}. Consider the sef. X* has a dominating attribute Shown that the addition of layeE? reduces the number of
X#=1(X%> X2 = 0) thus an ancillary neuron with weightsmisclassifications by at least one.

(—(XP)%, X¢, 0) (i.e., (-1, 1, 0)) makes the layet! faithful

with respect ta5, as per theorem 2. Similarly, a second ancillarf. Pruning Redundant Ancillary Neurons

neuron with weights set t6-0.25, 0.5, 0) (see Fig. 9) makes  Each layer of a network constructed using Miling-real

L faithful with respect toS;. Note that the ancillary NeUrons|earning algorithm comprises af/ master neurons an&’

are added later (to make the layer faithful) and hence they fo(WhereK > 0) ancillary neurons. The latter are trained to
tion as independent TLU’s and not as part of the winner-take-ghlake the layer faithful with respect to the set of training
group formed by the master neurons. The output of the pattefsiterns. During training, if the current layerusfaithful then

in S at layerL! is given in Table V. It can be verified that thisgroups of one or more ancillary neurons are trained for each
output is faithful with respect to all the patternsdnNote that nfaithful classof patterns (i.e., patterns that have exactly the
patternsX ' and X* of the example datasétare misclassified same output at the current layer but belong to different output

at Iayer-Ll. ) ) classes). Ideally, one would expect that each layer contains
Consider a sets; = {{0, 0)} with corresponding pro- a minimal number of ancillary neurons necessary to achieve
totype II? = (1, -1, -1, —1, —1). 5y is misclassified fajthfulness. However, in practice, hidden layers often have

at layer L*. The algorithm adds a new laydi* of master requndant ancillary neurons. This can be attributed to the
neurons. The weights of these neurons as per (4) are shayibwing two reasons: first, owing to the inherent biases of the
in Fig. 9. The net input of thé? neurons in response " Ty weight training algorithmA (used to train the ancillary
is (—1, =11, 1) and thus the output ig—1, —1, 1) which neyrons) and the fact that is allowed only a limited training

6Note that theVITiling-real algorithm does not require patterns to be preprotime (typically 500-1000 iterations over .the training set) more
cessed. than one group of ancillary neurons might be trained before
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TABLE V
RESPONSE OF THELAYER L' MASTER AND ANCILLARY NEURONS

Number Net Input Net Input Output
Master Ancillary
TLL} nL% nLé nLg 7ng OLi OL% Ori OLi OL})
1 6 3 3 -1 | -0.25 1 -1 -1 -1 -1
2 9 5 10 -1 | -0.25 -1 -1 1 -1 -1
3 5 7 3 0 0.25 -1 1 -1 1 1
4 8 9 10 0 0.25 -1 -1 1 1 1
5 7 6 6.5 || -0.5 0 1 -1 -1 -1 1
TABLE VI
EXAMPLE OF PRUNING
Output Class || Master Neurons Ancillary Neurons
cr O, | O, | Oy | Ok, | Ok, | Ok, | Ok,
I -1 -1 1 -1 -1 -1 1
IT -1 -1 1 -1 1 -1 1
I -1 -1 1 -1 -1 1 -1
II 1 -1 -1 1 1 ! 1
I 1 -1 -1 1 1 1 -1

a faithful representation is attained for a particular unfaithfaial (at times as high as 50%) reduction in network size. Below
class. Second, as a result of toeality of training whereby we illustrate pruning with a simple example.

each group of ancillary neurons is trained using only a subset ofConsider a training setS comprising of five patterns
the training patterns, it is possible that not all ancillary neurotelonging to three output classes. Assume that a ldyer
are absolutely necessary for faithfulness. consisting ofM = 3 master neurons (say!;, M, and M3)

We incorporate a local pruning step in thETiling-real al- and KX = 4 ancillary neurons (sayi, K>, K3, and K,) is
gorithm to remove redundant ancillary neurons. This step tigined to achieve a faithful representationfThe outputs
invoked immediately after a layer is made faithful. The chealf the individual neurons in response to the training patterns
for redundant neurons is simple. Each of the ancillary neuroage depicted in Table VI. During the pruning step when the
are systematically dropped (one at a time) and the outputsaofcillary neuronk; is dropped{M;, Ms, M3, K2, K3, K4)
the remaining neurons are checked for faithfulness. If the cus- faithful with respect toS. Thus, K; is redundant and is
rent representation (with an ancillary neuron dropped) is faithfptuned. Next, whetd is dropped M, , Ms, M3, K3, K4) is
then that ancillary neuron is redundant and is pruned. Howeweot faithful. Thus,K> is not redundant and is restored. Next,
if the current representation is not faithful then the ancillaryhen K3 is dropped{M;, M>, M3, K>, K4) (note thatK,
neuron that was dropped is necessary for faithfulness and hehas been restored) is faithful and hed¢gis pruned. Similarly,
is brought back. The search for redundant ancillary neurons ime can see that, is not redundant and the final representation
curs an additional cost. Lét be the number of ancillary neu-of L is (M, Ms, M3, Ko, K4).
rons when the layer is first made faithful afff] be the number
qf training patterns. The anciIIar;_/ neurons are Qroppgd one ata; consSTRUCTIVELEARNING ALGORITHMS IN PRACTICE
time and the outputs of the remaining neurons (includingithe
master neurons) are checked for faithfulness. The faithfulness he preceding discussion focused on the theoretical proofs of
test take)((M + K) - |S|) time and is repeateH times (once convergence of théPyramid-realandMTiling-real construc-
for each ancillary neuron). Thus, the total time complexity of théve learning algorithms. In this section we present results of a
pruning step iS)(K - (M + K) - |S|) = O(K? - |S|). The out- few focused experiments designed to address the following is-
puts of the neurons in response to each training pattern are cG#FS.
pared for equality during the faithfulness test. These outputs arel) The convergence proofs presented above rely on the

computed by theMTiling-real algorithm when the layer is de- ability of the network construction strategy to connect a
termined to be faithful and hence do not have to be recomputed. new neuron to an existing network so as to guarantee the
Further, since each neuron only outputs one band the faith- existence of weights that will enable the added neuron to

fulness test only requires an equality check, the search forredun- improve the resulting network’s classification accuracy
dant neurons can be performed very efficiently. We conducted  and the TLU weight training algorithid’s ability to find

an experimental study of pruning MTiling-real networks (see such a weight setting. Finding an optimal weight setting
[36] for details) and found that the total time spent in searching  for each added neuron such that the classification error
for and pruning redundant neurons is less than 10% of the total is maximally reduced when the data is nonseparable is a
training time. Further, pruning resulted in a moderate to substan-  NP-hard problem [46]. Further, in practice the heuristic



PAREKH et al. CONSTRUCTIVE NEURAL-NETWORK LEARNING ALGORITHMS FOR PATTERN CLASSIFICATION 447

TABLE VI
DATASETS
Dataset Size | Inputs | Outputs | Attributes
3 concentric circles (3-circles) 1800 2 3 real
ionosphere structure (ionosphere) 351 34 2 real, int
pima indians diabetes (pima) 768 8 2 real,int
image segmentation (segmentation) | 2310 19 7 real, int
vehicle silhouette (vehicle) 846 18 4 int
TABLE VIl
CONVERGENCERESULTS
Dataset Performance perceptron || MPyramid-real || MTiling-real
Parameter
Network Size 3.0+ 0.0 6.0 £ 0.0 46.7 £ 3.7
3-circles Train Accuracy % || 44.5 £ 5.5 100.0 £ 0.0 100.0 £ 0.0
Test Accuracy % 41.4 £ 5.4 99.9 + 0.2 97.0 £ 1.2
Network Size 1.0 £ 0.0 50+ 1.3 55+ 2.3
ionosphere | Train Accuracy % || 97.5 + 1.0 100.0 & 0.0 100.0 £ 0.0
Test Accuracy % 85.4 + 6.4 90.6 £ 4.3 86.0 £ 6.2

algorithms such as thibermal perceptron algorithrthat randomly drawn points from the two dimensional Euclidean
are used in constructive learning are only allowed limitespace. These points are labeled as belonging to classes 1, 2,
training time (say 500 or 1000 epochs). This makemnd 3 if their distance from the origin is less than one, between
it important to study the convergence of the proposeazhe and two, and between two and three, respectively. Each of
constructive algorithms in practice. these datasets is nonlinearly separable.

2) The convergence proofs only guarantee the existence of
a set of weights for each newly added neuron (or grol® Experimental Results

of neurons) that will reduce the number of misclassifica- e used the ten-fold cross validation method in our experi-
tions by at least one. A network that recruits one neuron fents. Each dataset was divided into ten equal sized folds and
simply memorize each training example can trivially alen independent runs of each algorithm were conducted for each
tain zero classification errors. A comparison of the actughaset. For théth run, theith fold was designated as the test
size of a trained constructive network with the number &fet and the patterns in the remaining nine folds were used for
patterns in the training set, would at least partially, adraining. At the end of training the network’s generalization was
dress this issue of memorization. ‘measured on the test set. Individual TLU’s were trained using
3) Regardiess of the convergence of the constructiygs thermal perceptron algorithniThe weights of each neuron
learning algorithms to zero classification errors, a quegere initialized at random to a value in the interjall - - - 1],
tion of practical interest is the algorithms’ ability 1Othe jearning rate was held constant at 1.0, and each neuron was
improve generalization on the test set as the netwoflgined for 500 epochs where each epoch involves presenting a
grows in size. One would expeaver-fitting to set in  set of| 5| randomly drawn patterns from the training SefThe
eventually as neurons continue to get added in an atte_rm{im temperaturel, was set to 1.0 and was dynamically up-

to reduce the classification error, but we wish to examingyted at the end of each epoch to match the average net input of
whether the addition of neurons improves generalizatiqRe neuron(s) during the entire epoch [6].

before over-fitting sets in. Table VIII summarizes the results of experiments designed
to test the convergence properties of the constructive learning
A. Datasets algorithms. It lists the mean and standard deviation of the

A cross-section of datasets having real-valued pattern aetwork size (the number of hidden and output neurons), the
tributes and patterns belonging to multiple output classes waaining accuracy, and the test accuracy of kiieyramid-real
selected for the experiments. Table VIl summarizes the characd MTiling-real algorithms on the8-circles andionosphere
teristics of the datasetSizedenotes the number of patterns irdatasets. For comparison we include the results of training a
the dataseinputs indicates the total number of input attributesingle layer network (labeled kyerceptron using thethermal
(of the unmodified datasethutputs represents the numberperceptron algorithmThe training accuracy of theerceptron
of output classes, andttributes describes the type of inputalgorithm on both datasets is less than 100% (which confirms
attributes of the patterns. The real-world datas@t®sphere the nonlinear separability of the datasets). These results show
pima, segmentation andvehicleare available at the UCI Ma- that not only do the constructive algorithms converge to zero
chine Learning Repository [32] while ti&circlesdataset was classification errors on the training set but they also generalize
artificially generated. Th&-circles dataset comprises of 1800fairly well on the unseen test data. Further, a comparison of
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TABLE X
GENERALIZATION RESULTS

Dataset Performance perceptron || MPyramid-real || MTiling-real
Parameter
Network Size 1.0 £ 0.0 6.5 £ 4.8 57+ 149
pima Train Accuracy % || 79.3 £ 0.9 794 £ 1.9 81.0 £ 4.3
Test Accuracy % | 77.5 + 3.4 76.8 £ 3.5 771+ 3.5
Network Size 7.0+ 0.0 119.8 + 34.2 47.1 £ 23.2
segmentation | Train Accuracy % || 96.0 + 0.2 94.2 £ 0.9 99.1 £ 1.5
Test Accuracy % 94.8 + 2.0 93.0 £ 2.7 99.1 £ 1.7
Network Size 4.0+ 0.0 35.2 & 28.7 19.4 + 23.5
vehicle Train Accuracy % || 85.5 £ 0.7 87.8 £ 3.3 87.5+ 44
Test Accuracy % 79.7+ 54 782+ 4.9 77.5 £ 6.2

the network sizes with the total number of patterns in eadly theMTiling-real algorithm are smaller than those generated
dataset (see Table VII) conclusively shows that the constructivg the MPyramid-realalgorithm. This is due to the different
learning algorithms are not simply memorizing the trainingetwork construction schemes adopted by the two algorithms.
patterns by recruiting one neuron per pattern. The MPyramid-realalgorithm uses the entire training set for
Our experiments indicated that the convergence of the algmining each new layer. Thus, on harder training sets it tends to
rithms (particularly theviPyramid-rea) was quite slow on the add several layers of neurons without substantial benefits. On
other three datasets. The slow-down was quite pronouncedttte other hand, thelTiling-real algorithm breaks up the dataset
ward the end of the learning cycle where several new layers wamto smaller subsets (thenfaithful classes Training of the an-
added with minimal increase in classification accuracy. Furtheillary neurons on these smaller datasets is considerably sim-
at this stage we observed that the generalization accuracy (m@er. Further, given a faithful representation of the patterns at
sured on an independent test set) of the network was detegach layer, the master neurons of the succeeding layer are able
rating with the addition of each new layer. This suggests thattio significantly reduce the number of misclassifications. The
an attempt to correctly classify all patterns the algorithms wekéTiling-real algorithm’s focus on smaller subsets for training
over-fitting the training data. In practice we are mostly intemncillary neurons might actually prove to be disadvantageous
ested in the network’s generalization capability. Most backpropn certain datasets (see for example3kerclesin Table VIII)
agation type learning algorithms use a sepdratd-outset (dis- because it might expend considerable effort in making the cur-
tinct from thetest sexto stop training when over-fitting sets in.rent layer faithful.
In our experiments to measure the generalization performancés can be seen from Table IX the test accuracy of the
of the constructive algorithms we used a similar hold-out sampWéPyramid-real and MTiling-real algorithms is almost the
as follows: The ten-fold cross validation was still used but thsame as or even slightly worse than that of the single layer
time during theith run, theith fold was designated as the teshetwork (except in the case of tsegmentationdataset where
set, the: + 1th fold as the independent hold-out set, and theTiling-real performs better). This suggests that in the case of
remaining eight folds formed the training set. During the nethe pima and vehicle datasets the constructive learning algo-
work construction process, the accuracy of the network on thithms do not add much value. It is possible that these datasets
hold-out sample was recorded after each new layer was addedtain irrelevant or noisy attributes that unduly complicate the
and trained. At the end of the training (i.e., when the netwot&arning task. Experiments have shown that using a genetic al-
converged to 100% classification accuracy or the when the ngbrithm based feature selection scheme significantly improves
work size reached the maximum number of layers—25 in otlre generalization performance of tHeistAl constructive
case) we pruned the network up to the layer that had the highlestrning algorithm [50]. In other experiments it has been shown
accuracy on the hold-out sample. For example, if the traindtat the choice of the algorithm for training the individual
network had five layers and the accuracy on the hold-out wakU’s during constructive learning can significantly impact the
recorded as 78, 82, 86, 83, and 81% at each of the five layarsnvergence and generalization properties of the constructive
respectively, then the layers above layer three were pruned frigarning algorithms [35]. It was shown that when thermal
the network. Note that as a result of the pruning the networlk&rceptron algorithmwas replaced by other algorithms such
accuracy on the training set will no longer be 100%. At this poiris barycentric correction procedurer pocket algorithmwith
we measure the accuracy of the network on the test dataset. faighet modificationas the algorithm for training individual
important to keep in mind that since the test data set is indepdi-U’s, the performance of the constructive learning algorithms
dent of the hold-out set and is not used at all during training tloa certain datasets was superior both in terms of convergence
results are not biased or overly optimistic. properties and generalization ability. It is definitely of interest
Table IX lists the mean and standard deviation of the netwottdx further explore the impact of feature subset selection and
size, training accuracy, and test accuracy of¥tieyramid-real the choice of different TLU weight training algorithms on the
and MTiling-real algorithms for thepima, segmentation and performance of the constructive algorithms. Unfortunately,
vehicle datasets. We see that the pruned networks generatieglse issues are beyond the scope of this paper.
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The issue of network training times is critical for very largsense of the term—e.g., so as to yield minimal networks) set of
training sets. Theerceptronalgorithm that trains just a single weights. The design of TLU training algorithms that (with a high
layer of TLU's is clearly faster than th®Pyramid-realand probability) satisfy the requirements imposed.drand are at
MTiling-real algorithms. From our experiments we have oleast approximately optimal remains an open research problem.
served that the constructive learning algorithms take betwe®hese characteristics of the TLU training algorithm often result
1.5 and five times as long as tiperceptronalgorithm to train in the generation of redundant units during network construc-
on the datasets considered in this paper. The constructive altion. We have proposed a local pruning strategy that can be used
rithms typically achieve a reasonably good accuracy relatively eliminate redundant neurons (in thEiling-real networks).
quickly. A significant amount of time is expended in addingxperiments with nonlinearly separable datasets demonstrate
and training units that only marginally improve the training ache practical usefulness of the proposed algorithms. On simpler
curacy. As mentioned earlier, this over-training can potentialtjatasets both thslPyramid-realand MTiling-real algorithms
worsen the network’s generalization performance. In our expee converge to fairly compact networks with zero classifica-
iments we allowed the networks to train until either convergentien errors and good generalizability. However, on more diffi-
to zero training errors was achieved or 25 layers were of TLUClt tasks convergence is slow. Further, the network might end
were added to the network. In order to overcome the problam memorizing the hard to classify examples thereby resulting
of over-fitting, the networks were then pruned back based @mpoor generalization. To address this issue we have used an
their performance on an independent hold-out set. In practicéndependenhold-outset during training to determine the ap-
substantial reduction in training time can be achieved if trainimgopriate final network topology. This technique enhances the
is actually stopped as soon as it is observed that the networg&pability of constructive learning algorithms to generate com-
performance on the hold-out set is not improving significanthpact networks with improved generalization. Although it is hard
This form of early-stopping is commonly used in training backeo determinea priori which of the two constructive learning al-

propagation networks. gorithms would be suitable for a particular problem, we recom-
mend using théTiling-real algorithm first (during the prelim-
VI. CONCLUSIONS inary analysis) as it tends to have better convergence properties

Qan theMPyramid-realalgorithm in practice.

Constructive algorithms offer an attractive approach for tﬁ . . ) .
g PP Some directions for future research include the following.

automated design of neural networks. In particular, they elimi-

nate the need for thad hog and often inappropriate, priori . Evgluating the Performance of Constructive Learning Al-
choice of network architecture, they potentially provide ameans ~ dorithms _ _ . _
of constructing networks whose size (complexity) is commen- A systematic experimental and theoretical comparisons

surate with the complexity of the pattern classification task on ~ ©f constructive algorithms with other neural network as

hand, and they offer natural ways to incorporate prior knowl- ~ Well as other machine learning algorithms for pattern clas-
edge to guide learning and to use constructive learning algo- sification is of interest. Further, a characterization of the

rithms in thelifelong learning framework. We have focused on  inductive and representational biases of the different al-
a family of algorithms that incrementally construct feedforward ~ 9orithms will guide users in selecting algorithms for spe-

networks of threshold neurofsAlthough a number of such cific problems based on easily measurable properties of
algorithms have been proposed in the literature, most of them the datasets. _ _

are limited to 2-category pattern classification tasks with bi- * Hybrid Constructive Learning Algorithms

nary/bipolar valued input attributes. We have presented two con-  In related work it was shown that the choice of the
structive learning algorithmsPyramid-realand MTiling-real specific TLU weight training algorithm can have a signif-
that extend th@yramidand thetiling algorithms, respectively, icant impact on the performance of constructive learning

to handle multicategory classification of patterns that have real- ~ @lgorithms [37]. A study of hybrid network training
valued attributes. For each of these algorithms we have provided Schemes that dynamically select an appropriate network
rigorous proofs of convergence to zero classification errors on ~ construction strategy, an appropriate TLU weight training
finite, noncontradictory training sets. This proof technique is ~ @lgorithm, an appropriate output computation strategy
sufficiently general (see [35] for an application of this technique ~ @nd such to obtain locally optimal performance at each

to several other constructive learning algorithms). step of the classification task is worth pursuing. _
The convergence of the two algorithms was established by * Combining Constructive Learning with Feature Selection
showing that each modification of the network topology guar- The generalization performance of learning algorithms

antees the existence of weights that would reduce the classi- €an be often be improved with the help of suitable fea-
fication error and assuming that there exists a weight modifi-  ture selection techniques. Several feature subset selection
cation algorithm.A that would find such weights. We do not  @lgorithms have been proposed in the pattern recognition
have a rigorous proof that any of the graceful variants of per-  literature [41]. The effectiveness of genetic algorithms for
ceptron learning algorithms can in practice, satisfy the require- feature subset selection in conjunction with BistAl al-

ments imposed ot4, let alone find aroptimal (in a suitable gorithm has been demonstrated in [S0].
« Using Boosting and Error-Correcting Output Codes for
“Constructive algorithms have also been proposed for the incremental con- Improved Generalizatian

struction of recurrent neural networks (RNN’s) that lefinite state automata R d . hi | . h lted i
from labeled examples. The interested reader is referred to [22] and [25] for a ecent advances in machine learning have resulted in

discussion on constructive learning of RNN. the development of techniques suchba®sting[17] and
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error-correcting output code®] for improving the gener-
alization capability of learning algorithms. An application
of these techniques in the constructive learning framework
is clearly of interest. [23]
Knowledge Extraction from Trained Constructive Neural
Networks

Constructive neural-network learning algorithms have[2s]
been successfully used for theory refinement. The avail-
able domain specific knowledge is incorporated into the,g
initial network topology and is refined based on additional
labeled examples using constructive learning [14], [33],
[34], [53]. The question now is whether we can use soméﬂ]
of the existing strategies (see, for example, [9]) or design
suitable new methods for extracting the learned know!{28]
edge from a trained constructive network.

(22]

(24]

[29]
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