
436 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000

Constructive Neural-Network Learning Algorithms
for Pattern Classification

Rajesh Parekh, Member, IEEE, Jihoon Yang, Member, IEEE, and Vasant Honavar, Member, IEEE

Abstract—Constructive learning algorithms offer an attractive
approach for the incremental construction of near-minimal
neural-network architectures for pattern classification. They help
overcome the need forad hocand often inappropriate choices of
network topology in algorithms that search for suitable weights
in a priori fixed network architectures. Several such algorithms
are proposed in the literature and shown to converge to zero
classification errors (under certain assumptions) on tasks that
involve learning a binary to binary mapping (i.e., classification
problems involving binary-valued input attributes and two output
categories). We present two constructive learning algorithms
MPyramid-real and MTiling-real that extend the pyramid and
tiling algorithms, respectively, for learningreal to M-ary mappings
(i.e., classification problems involving real-valued input attributes
and multiple output classes). We prove the convergence of these
algorithms and empirically demonstrate their applicability to
practical pattern classification problems. Additionally, we show
how the incorporation of a local pruning step can eliminate several
redundant neurons from MTiling-real networks.

Index Terms—Artificial neural networks, classification, con-
structive learning algorithms, multicategory, perceptron, pruning,
real-valued pattern.

I. INTRODUCTION

A RTIFICIAL neural networks have been successfully
applied to problems inpattern classification, function

approximation, optimization, pattern matchingandassociative
memories[10], [30]. Multilayer feedforward networks trained
using thebackpropagationlearning algorithm [44] are limited
to searching for a suitable set of weights in ana priori fixed
network topology. This mandates the selection of an appro-
priate network topology for the learning problem on hand.
However, there are no known efficient methods for determining
the optimal network topology for a given problem. Too small
networks are unable to adequately learn the problem well while
overly large networks tend to overfit the training data and con-
sequently result in poor generalization performance (see [12]
for an analogy to thecurve fittingproblem). In practice, a va-
riety of architectures are tried out and the one that appears best
suited to the given problem is picked. Such atrial-and-error

Manuscript received May 6, 1997; revised October 29, 1998 and October
28, 1999. This work was supported in part by the National Science Foundation
Grants IRI-9409580 and IRI-9643299. The work of V. Honavar was funded in
part by grants from the National Science Foundation, the John Deere Founda-
tion, the National Security Agency, and IBM

R. Parekh is with Allstate Research and Planning Center, Menlo Park CA
94025 USA (e-mail: rpare@allstate.com).

J. Yang is with Information Sciences Lab, HRL Laboratories LLC, Malibu
CA 90265 USA (e-mail: yang@wins.hrl.com).

V. Honavar is with the Department of Computer Science, Iowa State Univer-
sity, Ames, IA 50011 USA (e-mail: honavar@cs.iastate.edu).

Publisher Item Identifier S 1045-9227(00)02997-0.

approach is not only computationally expensive but also does
not guarantee that the selected network architecture will be
close to optimal or will generalize well. This suggests the need
for algorithms that learn both the network topology and the
weights.

A. Constructive Neural-Network Learning Algorithms

Constructive(or generative) learning algorithms offer an at-
tractive framework for the incremental construction of near-
minimal neural-network architectures. These algorithms start
with a small network (usually a single neuron) and dynamically
grow the network by adding and training neurons as needed
until a satisfactory solution is found [20], [23]. Some key moti-
vations for studying constructive neural-network learning algo-
rithms are the following.

• Flexibility of Exploring the Space of Neural-Network
Topologies:

Constructive algorithms overcome the limitation of
searching for a solution in the weight space of ana priori
fixed network architecture by extending the search, in a
controlled fashion, to the entire space of neural-network
topologies. Further, it has been shown that at least in
principle, algorithms that are allowed to add neurons and
weights represent a class ofuniversal learners[3].

• Potential for Matching the Intrinsic Complexity of the
Learning Task:

It is desirable that a learning algorithm construct net-
works whose complexity (in terms of relevant criteria such
as number of nodes, number of links, and connectivity)
is commensurate with the intrinsic complexity of the un-
derlying learning task (implicitly specified by the training
data) [26]. Constructive algorithms search for small solu-
tions first and thus offer a potential for discovering a near-
minimal network that suitably matches the complexity of
the learning task. Smaller networks are also preferred be-
cause of their potential for more efficient hardware im-
plementation and greater transparency in extracting the
learned knowledge.

• Estimation of Expected Case Complexity of the Learning
Task:

Most practical learning problems are known to be
computationally hard to solve. However, little is known
about theexpectedcase complexity of problems encoun-
tered and successfully solved by living systems primarily
because it is difficult to mathematically characterize the
properties of such problems. Constructive algorithms, if
successful, can provide useful empirical estimates of the
expected case complexity of practical learning problems.

1045–9227/00$10.00 © 2000 IEEE

PAREKH et al.: CONSTRUCTIVE NEURAL-NETWORK LEARNING ALGORITHMS FOR PATTERN CLASSIFICATION 437

• Tradeoffs Among Performance Measures:
Different constructive learning algorithms allow trading

off certain performance measures (e.g., learning time) for
others (e.g., network size and generalization accuracy)
[47].

• Incorporation of Prior Knowledge:
Constructive algorithms provide a natural framework

for incorporating problem-specific knowledge into initial
network configurations and for modifying this knowledge
using additional training examples [14], [33], [34].

• Lifelong Learning:
Recent research inlifelong learning[48] has proposed

training networks that learn to solve multiple related prob-
lems by applying the knowledge acquired from the simpler
problems to learn the more difficult ones. Constructive
learning algorithms lend themselves well to the lifelong
learning framework. A network that has domain knowl-
edge from the simpler task(s) built into its architecture
(either by explicitly setting the values of the connection
weights or by training them) can form a building block for
a system that constructively learns more difficult tasks.

B. Network Pruning

Network pruningoffers another approach for dynamically de-
termining an appropriate network topology. Pruning techniques
(see [40] for an excellent survey) begin by training a larger
than necessary network and then eliminate weights and neurons
that are deemed redundant. Constructive algorithms offer sev-
eral significant advantages over pruning-based algorithms in-
cluding, the ease of specification of the initial network topology,
better economy in terms of training time and number of training
examples, and potential for converging to a smaller network
with superior generalization [27]. In this paper we will focus
primarily on constructive learning algorithms. In Section IV we
show how a local pruning step can be integrated into the net-
work construction process to obtain more compact networks.

C. Constructive Algorithms for Pattern Classification

Neural-network learning can be specified as afunction ap-
proximationproblem where the goal is to learn an unknown
function (or a good approximation of it) from a
set of input–output pairs . A
variety of constructive neural-network learning algorithms have
been proposed for solving the general function approximation
problem (see [27] for a survey). These algorithms typically use a
greedy strategywherein each new neuron added to the network
is trained to minimize the residual error as much as possible.
Often the unknown target function () is inherently complex
and cannot be closely approximated by a network comprising of
a single hidden layer of neurons implementing simple transfer
functions (e.g.,sigmoid). To overcome this difficulty, some con-
structive algorithms use different transfer functions (e.g., the
Gaussian[21]) while others such as theprojection pursuit re-
gression[18] use a summation of severalnonlinear transfer
functions. Alternatively, algorithms such as thecascade corre-
lation family construct multilayer networks wherein the struc-
tural interconnections among the hidden neurons allow the net-

work to approximate complex functions using relatively simple
neuron transfer functions like the sigmoid [13], [39], [49].

Pattern classificationis a special case of function approxi-
mation where the function’s outputis restricted to one of
() discrete values (or classes) i.e., it involves areal to
M-ary function mapping. A neural network for solving classi-
fication problems typically has input neurons and output
neurons. The th output neuron () is trained to
output one (while all the other output neurons are trained to
output zero) for patterns belonging to theth class.1 Clearly, the
class of constructive algorithms that implement the more gen-
eralreal to real mapping can be adapted to pattern classification
(see [54] for an example). However, a special class of construc-
tive learning algorithms can be designed to closely match the
unique demands of pattern classification. Since it is sufficient
for each output neuron to be binary valued (i.e., output zero or
one), individual neurons can implement the simplethresholdor
hard-limiting activation function (with outputs zero and one)
instead of a continuous activation function like the sigmoid.
Threshold neurons offer the following advantages over their
continuous counterparts: First, they are potentially easier to im-
plement in hardware. Second, theperceptron learning rule[42]
is a simple iterative procedure for training threshold neurons.
The learning rules for sigmoid neurons and the like are more
complicated and thus computationally more expensive. Third,
threshold functions can be clearly described in terms of simple
“ if-then-else” rules. This makes it easier to incorporate domain
expertise (which is usually available in the form of if-then-else
rules) into a network of threshold neurons [14]. Similar argu-
ment suggests that the task of extracting learned knowledge
from a network of threshold neurons would be considerably sim-
pler. In this paper, we will focus on constructive learning of net-
works of threshold neurons for pattern classification.

1) Constructive Learning Using Iterative Weight Update:A
number of algorithms that incrementally construct networks of
threshold neurons for learning thebinary to binary mapping
have been proposed in the literature (for example, thetower,
pyramid [19], tiling [31], upstart [15], oil-spot [29], and
sequential[28] algorithms). These algorithms differ in terms
of their choices regarding: restrictions on input representation
(e.g., binary or bipolar valued inputs); when to add a neuron;
where to add a neuron; connectivity of the added neuron;
weight initialization for the added neuron; how to train the
added neuron (or a subnetwork affected by the addition); and
so on. They can be shown to converge to networks which yield
zero classification errors on any noncontradictory training set
involving two output classes (see [47] for a unifying framework
that explains the convergence properties of these constructive
algorithms). A geometrical analysis of the decision boundaries
of some of these algorithms is presented in [7]. Practical pattern
classification often requires assigning patterns to(where

) categories. Although in principle, the category
classification task can be decomposed into 2-category
classification tasks, this approach does not take into account the
interrelationships between the output categories. Further, the

1A single output neuron suffices in the case of problems that involve two
category classification.

438 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000

algorithms mentioned above have been designed to operate on
binary (or bipolar) valued attributes only. Real-valued attributes
are almost invariably encountered in practical classification
tasks. One work around for this problem is to discretize the
real-valued attributes prior to training [11]. Discretization can
result in a loss of information and also greatly increase the
number of input attributes. Thus, it is of interest to design
algorithms that can directly accept real-valued attributes.
We present constructive neural-network learning algorithms
that are capable of handling multiple output categories and
real-valued pattern attributes.

2) Exploiting Geometric Properties for Constructive
Learning: The class of constructive learning algorithms we
focus on in this paper trains individual neurons using an
iterative weight update strategy (such as theperceptronrule).
Another class of constructive learning algorithms that use a
one-shotlearning strategy deserves mention. These algorithms
exploit the geometric properties of the training patterns to
directly (i.e., in one-shot) determine appropriate weights
for the neurons added to the network. Thegrow and learn
(GAL) algorithm [1] and theDistAl algorithm [52] construct a
single hidden layer network that implements a kind ofnearest
neighbor classificationscheme. Each hidden neuron is an
exemplarrepresenting a group of patterns that belong to the
same class and are close to each other in terms of some suitably
chosen distance metric. Theminimizing resourcesmethod
[43], the multisurfacemethod [4], and theVoronoi diagram
approach [5] are based on the idea ofpartitioning the input
space by constructing linear hyperplanes. Hidden layer neurons
are trained to partition the input space into homogeneous
regions where each region contains patterns belonging to a
single output class. The output layer neurons combine regions
that represent the same output class. The geometric approach
to constructive learning can be applied successfully in solving
small to medium scale problems. However, the global search
strategy employed by these algorithms can pose a limitation
when learning from very large training sets [47]. Further, the
reliance on a suitably chosen distance metric (in the case of
GAL andDistAl) makes it imperative for the user to try out a
variety of distance metrics for each learning problem.

In this paper, we present extensions of thepyramidand the
tiling algorithms to handle multiple output classes and real-
valued pattern attributes.2 We prove the convergence of these
algorithms and demonstrate their applicability on some prac-
tical problems. The remainder of this paper is organized as fol-
lows: Section II gives an overview of some elementary con-
cepts and describes the notation used throughout this paper. Sec-
tions III and IV describe theMPyramid-realandMTiling-real
constructive learning algorithms respectively and prove their
convergence. Section V illustrates the practical applicability of
these algorithms and Section VI concludes with a discussion and
some directions for future research.

2The framework presented here is more general and can potentially be ap-
plied to the entire class of constructive algorithms for pattern classification. The
interested reader is referred to [35] for an application of this framework to the
tower, upstart, perceptron cascade, andsequentiallearning algorithms.

II. PRELIMINARIES

A. Threshold Logic Units

A -input threshold logic unit (TLU, also known
as a perceptron) is an elementary processing unit that
computes the threshold (hard-limiting) function of the
weighted sum of its inputs. The output () of a TLU
with weights (where
the weight is referred to as thethreshold or bias)
in response to a pattern is

if and otherwise .3

For notational convenience, we prefix each pattern with
a 1 (i.e.,) and denote the TLU
output as the hard-limiting function of .

1) Perceptron Learning Rule:An -input TLU implements
an -dimensional hyperplane that partitions the-di-
mensional Euclidean pattern space defined by the coordinates

into two regions (or classes). A TLU can thus
function as a 2-category classifier. Consider a set ofexamples

where and
(is the desired output for the input

pattern and ranges from one to). A TLU can be trained
using theperceptron learning rule[42] (

where is the learning rate) to attempt to find
a weight vector such that , and

, . If such a weight vector () exists
then is said to belinearly separable.

2) Stable Variants of the Perceptron Rule:If the set is not
linearly separable then the perceptron algorithm behaves poorly
in the sense that the classification accuracy on the training set
can fluctuate widely from one training epoch to the next. Sev-
eral modifications to the perceptron algorithm (e.g., thepocket
algorithm with ratchet modification[19], the thermal percep-
tron algorithm[16], the loss minimization algorithm[24], and
thebarycentric correction procedure[38]) are proposed to find
a reasonably good weight vector that correctly classifies a large
fraction of the training set when is not linearly separable
and to converge to zero classification errors whenis linearly
separable. Siuet al. have established the necessary and suffi-
cient conditions for a training set to be nonlinearly separable
[46]. They have also shown that the problem of identifying a
largest linearly separable subset ofis NP-complete. Thus, we
rely on a suitable heuristic algorithm (such as thepocket algo-
rithm with ratchet modification) to correctly classify as large a
subset of the training patterns as possible in the limited training
time allowed. We denote such an algorithm by. In our experi-
ments with constructive learning algorithms we use thethermal
perceptron algorithmto train individual TLU’s. The weight up-
date equation of thethermal perceptron algorithmis

where is the net input () and is the temperature.
is set to an initial value at the start of learning and gradually

3Although bipolar TLU’s whose outputs are one and�1 are functionally
equivalent tobinaryTLU’s whose outputs are one and zero, empirical evidence
suggests that networks constructed using bipolar TLU’s are often smaller than
those constructed using binary neurons for the same task [20].

PAREKH et al.: CONSTRUCTIVE NEURAL-NETWORK LEARNING ALGORITHMS FOR PATTERN CLASSIFICATION 439

annealed to zero as the training progresses. The damping factor
() prevents any large weight changes toward the end
of the training thereby avoiding any irreversible deterioration in
the TLU’s classification accuracy.

B. Multiclass Discrimination

Classification problems involving () output classes
typically require a layer of TLU’s. These TLU’s can be
trained byindependenttraining or as awinner-take-all(WTA)
group. The former strategy trains the TLU’s independently and
in parallel. However, this does not take into account the fact
that class assignments are crisp (i.e., a pattern assigned to class

cannot possibly belong to any other class as well) and thus
potentially results in scenarios where more than one TLU has
an output of one. The WTA training strategy gears the weight
changes so that theth TLU has the highest net input among the
group of TLU’s in response to a pattern belonging to class
. The winner (i.e., the neuron with the highest net input) is as-

signed an output of one while all other neurons are assigned out-
puts of . In the event of a tie for the highest net input all neu-
rons are assigned outputs of . If a pattern is misclassified then
the weights of the TLU’s whose output in response to the pattern
does not match the desired output are updated using the percep-
tron rule (or one of its variants). WTA training offers an advan-
tage over independent training in that pattern classes that are
only pairwise separable from each other can be correctly classi-
fied using WTA training while in independent training only pat-
tern classes that are independently separable from all the other
classes can be correctly classified [20].

C. Preprocessing

Most constructive learning algorithms are designed for binary
(or bipolar) valued inputs. An extension of theupstart algo-
rithm [45] and theperceptron cascadealgorithm [6] proposed
a preprocessing technique to handle patterns with real-valued
attributes wherein the patterns are projected on to a parabolic
surface by appending to each pattern ()
an additional attribute . With this projec-
tion it is possible to train a TLU to exclude any one pattern from
all others such that the TLU outputs one for the pattern to be ex-
cluded and for all the others. We use this projection idea to
demonstrate the convergence of theMPyramid-realalgorithm
on real-valued pattern attributes (see Section III-A).

D. Notation

The following notation is used in the description of the algo-
rithms and their convergence proofs:

number of inputs;
number of outputs;
input layer index;

1, 2, , indexes for other layers
(hidden and output);
number of neurons in layer;
indexing of neurons in layer;

,
weight vector of neuron in
layer ;

connection weight between
neuron in layer and
neuron in layer ;
pattern set;

=
where

for all and

pattern ;

= augmented pattern;
=

,
projected pattern;

net input of neuron in re-
sponse to pattern ;

,
if

class and
otherwise

target output for pattern ;

=
for all

layer ’s output in response to
the pattern ;
number of misclassifications
at layer .
.

Define a function as if
and if . Note that bipolar TLU’s

implement the function of their net input. The input layer
neurons are designed to allow the patterns to be input to the
network and thus simply copy their input to their output.

III. T HE MPYRAMID-REAL ALGORITHM

Thepyramidalgorithm [19] constructs a layered network of
TLU’s by successively placing each new TLU above the ex-
isting ones. The first neuron receives inputs from theinput
neurons. Each succeeding neuron receives inputs from the
input neurons and from each of the neurons below itself. Thus,
the second neuron receives a total of inputs, the third
neuron receives a total of inputs and so on. Each newly
added neuron takes over the role of the output neuron. The net-
work growth continues until the desired classification accuracy
is achieved.

The extension of the pyramid algorithm to handle real-valued
attributes involves modifying each input pattern by augmenting
an extra attribute () as described in Section II-C. The net-
work thus has input neurons. To handle multiple output
categories the algorithm usesneurons (instead of one) in each
layer of the network. The newly added layer of neurons be-
comes the network output layer. Each of theneurons in the
new layer are connected to the input neurons and to each
of the neurons in each layer below the current one. This al-
gorithm is described in Fig. 1 and an example network is shown
in Fig. 2.

A. Convergence Proof

Theorem 1: There exists a set of weights for neurons in the
newly added layer of the network such that the number of
misclassifications is reduced by at least one (i.e.,

).

440 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000

Fig. 1. MPyramid-realalgorithm.

Fig. 2. MPyramid-realnetwork.

Proof: Define . For each
pattern , define . It
is clear that for all patterns . Assume that a
pattern is not correctly classified at layer (i.e.,

). Further, let the output vector for the misclassified
pattern be such that and

; whereas the target output is such that
and , and .
The network adds a new layer of neurons. Let the

weights of these new neurons be set as
follows (see Fig. 3):

for

for and

for (1)

For the pattern the net input of neuron is

PAREKH et al.: CONSTRUCTIVE NEURAL-NETWORK LEARNING ALGORITHMS FOR PATTERN CLASSIFICATION 441

Fig. 3. Weight setting for the output neuronL of theMPyramid-realnetwork.

since for

and see

(2)

Thus, the net inputs of the output neurons, , and where
; are

Since for all , the net input of neuron is higher
than that of every other neuron in the layer. Thus,

and which means that pattern is
correctly classified at layer . Even if as a result of a tie for
the highest net input, the output of each neuron in layer in
response to is the weights of the new neurons

in layer would result in a correct classification of .
Consider the pattern that is correctly classified at

layer (i.e.,)

since for

and see

Fig. 4. Example dataset to illustrate the convergence proofs.

TABLE I
DESCRIPTION OF THE EXAMPLE

DATASET

where note

where i.e.,

(3)

The neuron such that has the highest net input
among all output neurons irrespective of the value assumed by

. Thus, i.e., the classification of previ-
ously correctly classified patterns remains unchanged. We have
shown the existence of weights that will reduce the number of
misclassifications whenever a new layer is added to the network.
We rely on the TLU weight training algorithm to find such
weights. Since the training set is finite in size, eventual conver-
gence to zero errors is guaranteed.

B. Example

The following example illustrates the concepts described in
the above proof. Consider a simple dataset shown in Fig. 4. The
patterns belong to three output classes and are clearly not lin-
early separable. Table I summarizes the dataset.

By definition, . For the ex-
ample dataset, . The first layer of the network (let us des-
ignate it by) is trained using the algorithm. One possible
set of weights for the neurons is depicted in Fig. 5. The response
of each of the neurons to the patterns in the dataset is summa-
rized in Table II.

442 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000

The pattern is misclassified at layer .

Let represent the pattern in the proof. The algorithm
adds a new layer of neurons () to the network. Since for
the neuron outputs one whereas the neuronshould have
output one, , , and correspond to the neurons , ,
and , respectively in the proof. Equation (1) specifies one par-
ticular set of weights for the newly added neurons (as shown in
Fig. 5). The response of the neurons in to each pattern is
given in Table III. The net inputs of the neurons, , and

in response to pattern are , and , respec-
tively, as derived in the proof. Further, the classification of all
previously correctly classified patterns such as, , , and

that represent the pattern in the proof remains unaltered.

IV. THE MTILING-REAL ALGORITHM

The tiling algorithm [31] constructs a strictly layered net-
work of threshold neurons. The bottom-most layer receives in-
puts from each of the input neurons. The neurons in each
subsequent layer receive inputs from those in the layer imme-
diately below itself. Each layer maintains amaster neuronand
a set (possibly empty) of ancillary neurons that are added and
trained to ensure afaithful representationof the training pat-
terns. Thefaithfulnesscriterion states that no two training ex-
amples belonging to different classes should produce identical
output at any given layer. Faithfulness is clearly a necessary con-
dition for convergence in strictly layered networks [31].

The proposed extension to multiple output classes involves
constructing layers with master neurons (one for each of the
output classes).4 Unlike theMPyramid-realalgorithm, it is not
necessary to preprocess the dataset using projection. However,
it should be noted that such preprocessing will not hamper the
convergence properties of the algorithm. Groups of one or more
ancillary neurons are trained at a time in an attempt to make the
current layer faithful. The algorithm is described in Fig. 6 and
an example network is shown in Fig. 7.

A. Convergence Proof

Each hidden layer contains master neurons and (
) ancillary neurons that are trained to achieve a faithful rep-

resentation of the patterns. Let be a subset of the training
set such that for each pattern belonging to the out-
puts are exactly the same. We designate
this output vector as a prototype

, for all .
If all the patterns of belong to exactly one class (i.e., they
have the same desired output) then the prototypeis a faithful
representation of the patterns in. Otherwise, is an un-
faithful representation of . Further, if

(i.e., the observed output for the patterns is
the same as the desired output) then the patterns inare said to
be correctly classified.

The algorithm’s convergence is proved in two parts: first we
show that it is possible to obtain a faithful representation of the
training set (with real-valued attributes) at the first layer ().

4An earlier version of this algorithm appeared in [51].

Fig. 5. MPyramid-realnetwork for the example dataset.

TABLE II
RESPONSE OF THELAYER L NEURONS

TABLE III
RESPONSE OF THELAYER L NEURONS

Then we prove that with each additional layer the number of
classification errors is reduced by at least one.

Theorem 2: For any finite noncontradictory dataset it is pos-
sible to train a layer of threshold neurons such that the output of
these neurons is a faithful representation of the dataset.

Proof: Assume that a layer () with master neurons
is trained on the dataset (). Consider a subset of such that
the master neurons give the same output for each pattern in.
Further assume thatis not faithfully represented by the master
neurons. We demonstrate that it is possible to add ancillary neu-
rons (with appropriately set weights) to the layerin order to
obtain a faithful representation of.

Consider a pattern belonging to theconvex hull5 of . If
is such that for some attribute(),
for all and then an ancillary neuron

5The convex hull for a set of pointsQ is the smallest convex polygonP such
that each point inQ lies either on the boundary ofP or in its interior. The
interested reader is referred to [8] for a detailed description of convex hulls and
related topics in computational geometry.

PAREKH et al.: CONSTRUCTIVE NEURAL-NETWORK LEARNING ALGORITHMS FOR PATTERN CLASSIFICATION 443

Fig. 6. MTiling-real algorithm.

Fig. 7. MTiling-real network.

with weights (i.e.,
all weights except and set to zero) will output one for

and for all other patterns. If however, is such that
there is a tie for the highest value of each attributeamong
the patterns then there must exist a patternon the convex
hull of that dominates all others in the sense that for each
attribute , for all in (note that).
Clearly, . An ancillary neuron with weights

will output one for
and for all other patterns in .

After adding an ancillary neuron, the output of the layer
is faithful in response to . Note that this output is distinct
from the outputs for all the other patterns in the entire training
set . In effect, the pattern has beenexcludedfrom the re-
maining patterns in the training set. Similarly, using additional
TLU’s (up to TLU’s in all) it can be shown that the outputs
of the neurons in the layer provide a faithful representation of

.
In practice, by training a groups of one or more ancillary neu-

rons at a time it is possible to attain a faithful representation

444 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000

of the input pattern set at the first hidden layer using far fewer
TLU’s as compared to the total number of training patterns.

Theorem 3: There exists a set of weights for the master neu-
rons of a newly added layer in the network such that the
number of misclassifications is reduced by at least one (i.e.,

).
Proof: Consider a set of patterns that belong

to the same output class but are not correctly classified
by the master neurons in layer . Let the prototype

represent the output of layer
in response to the patterns in . Since the pat-

terns in are not correctly classified at layer ,
(the desired

output for the patterns in). For the incorrectly classified
prototype assume that and

. Clearly, and
such that .

The algorithm adds a new layer () of master neurons.
The following weights for the master neuron ()
shown in Fig. 8 results in the correct classification of pat-
terns in . It also ensures that the output of any other
set of patterns (with corresponding prototype

and) for which the
master neurons of layer produce correct outputs (i.e.,

) remains unchanged

for

(4)

From (4), the net input of neuron in response to the prototype
is

(5)

Thus,

where

for

The master neuron has the highest net input among all master
neurons in layer which means that and

and . Thus, the patterns
in are now correctly classified. Even if as a result of a tie in
the value of the highest net input among the master neurons of

Fig. 8. Weight setting for the output neuronL of theMTiling-real network.

layer , is such that for all , we
see from (5) that the net input of neuron is still the largest
among the net inputs of the master neurons in layer. Thus,
the patterns in would be correctly classified.

Now consider the prototype of the set of patterns that
are correctly classified by the network at layer (as de-
scribed earlier). The net input of the master neurons at layer
in response to the prototype is

(6)

Since , .
Consider a neuron () such that .
From (6)

If then (since the prototype was not
correctly classified). On the other hand, if then
could be either one or . In either case, after substituting these
values in the above equation we see that . Further for
any other neuron where ,

If then (since the prototype was not cor-
rectly classified). On the other hand, if then could
be either one or . In either case, after substituting these values
in the above equation we see that . The neuron
has the highest net input among all the master neurons(

PAREKH et al.: CONSTRUCTIVE NEURAL-NETWORK LEARNING ALGORITHMS FOR PATTERN CLASSIFICATION 445

Fig. 9. MTiling-real network for the example dataset.

). Thus, and ,
which means that .

We have shown that there exists weights for the master neu-
rons of a newly added layer which will reduce the number of
misclassifications by at least one. We rely on the algorithm
to find such weights. Since the training set is finite the algo-
rithm would eventually converge to zero classification errors
after adding a sufficient number of layers.

B. Example

The following example illustrates the concepts described in
the above proof. Consider the simple datasetshown in Fig. 4.6

The first step in the network construction involves training a
layer of master neurons. Let us designate this layer
by . One possible set of weights for the master neurons is
depicted in Fig. 9. The response of each of master neurons to
the patterns in the dataset is summarized in Table IV.

The output of the master neurons is unfaithful with respect to
the following two sets of patterns: and

. Consider the set . has a dominating attribute
() thus an ancillary neuron with weights

(i.e.,) makes the layer faithful
with respect to as per theorem 2. Similarly, a second ancillary
neuron with weights set to (see Fig. 9) makes

faithful with respect to . Note that the ancillary neurons
are added later (to make the layer faithful) and hence they func-
tion as independent TLU’s and not as part of the winner-take-all
group formed by the master neurons. The output of the patterns
in at layer is given in Table V. It can be verified that this
output is faithful with respect to all the patterns in. Note that
patterns and of the example datasetare misclassified
at layer .

Consider a set with corresponding pro-
totype . is misclassified
at layer . The algorithm adds a new layer of master
neurons. The weights of these neurons as per (4) are shown
in Fig. 9. The net input of the neurons in response to
is and thus the output is which

6Note that theMTiling-real algorithm does not require patterns to be prepro-
cessed.

TABLE IV
RESPONSE OF THELAYER L MASTER NEURONS

shows that the patterns in are now correctly classified. Next
consider a set with corresponding prototype

. is correctly classified at layer
. The net input of the neurons in response to is

and thus the output is which shows
that the classification of patterns in remains unchanged.
Similarly, it can be verified that the classification of the patterns

and also remains unchanged. Thus, we have
shown that the addition of layer reduces the number of
misclassifications by at least one.

C. Pruning Redundant Ancillary Neurons

Each layer of a network constructed using theMTiling-real
learning algorithm comprises of master neurons and
(where) ancillary neurons. The latter are trained to
make the layer faithful with respect to the set of training
patterns. During training, if the current layer isunfaithful then
groups of one or more ancillary neurons are trained for each
unfaithful classof patterns (i.e., patterns that have exactly the
same output at the current layer but belong to different output
classes). Ideally, one would expect that each layer contains
a minimal number of ancillary neurons necessary to achieve
faithfulness. However, in practice, hidden layers often have
redundant ancillary neurons. This can be attributed to the
following two reasons: first, owing to the inherent biases of the
TLU weight training algorithm (used to train the ancillary
neurons) and the fact that is allowed only a limited training
time (typically 500–1000 iterations over the training set) more
than one group of ancillary neurons might be trained before

446 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000

TABLE V
RESPONSE OF THELAYER L MASTER AND ANCILLARY NEURONS

TABLE VI
EXAMPLE OF PRUNING

a faithful representation is attained for a particular unfaithful
class. Second, as a result of thelocality of training, whereby
each group of ancillary neurons is trained using only a subset of
the training patterns, it is possible that not all ancillary neurons
are absolutely necessary for faithfulness.

We incorporate a local pruning step in theMTiling-real al-
gorithm to remove redundant ancillary neurons. This step is
invoked immediately after a layer is made faithful. The check
for redundant neurons is simple. Each of the ancillary neurons
are systematically dropped (one at a time) and the outputs of
the remaining neurons are checked for faithfulness. If the cur-
rent representation (with an ancillary neuron dropped) is faithful
then that ancillary neuron is redundant and is pruned. However,
if the current representation is not faithful then the ancillary
neuron that was dropped is necessary for faithfulness and hence
is brought back. The search for redundant ancillary neurons in-
curs an additional cost. Let be the number of ancillary neu-
rons when the layer is first made faithful and be the number
of training patterns. The ancillary neurons are dropped one at a
time and the outputs of the remaining neurons (including the
master neurons) are checked for faithfulness. The faithfulness
test takes time and is repeated times (once
for each ancillary neuron). Thus, the total time complexity of the
pruning step is . The out-
puts of the neurons in response to each training pattern are com-
pared for equality during the faithfulness test. These outputs are
computed by theMTiling-real algorithm when the layer is de-
termined to be faithful and hence do not have to be recomputed.
Further, since each neuron only outputs one orand the faith-
fulness test only requires an equality check, the search for redun-
dant neurons can be performed very efficiently. We conducted
an experimental study of pruning inMTiling-real networks (see
[36] for details) and found that the total time spent in searching
for and pruning redundant neurons is less than 10% of the total
training time. Further, pruning resulted in a moderate to substan-

tial (at times as high as 50%) reduction in network size. Below
we illustrate pruning with a simple example.

Consider a training set comprising of five patterns
belonging to three output classes. Assume that a layer
consisting of master neurons (say , , and)
and ancillary neurons (say , , , and) is
trained to achieve a faithful representation of. The outputs
of the individual neurons in response to the training patterns
are depicted in Table VI. During the pruning step when the
ancillary neuron is dropped,
is faithful with respect to . Thus, is redundant and is
pruned. Next, when is dropped is
not faithful. Thus, is not redundant and is restored. Next,
when is dropped (note that
has been restored) is faithful and henceis pruned. Similarly,
we can see that is not redundant and the final representation
of is .

V. CONSTRUCTIVELEARNING ALGORITHMS IN PRACTICE

The preceding discussion focused on the theoretical proofs of
convergence of theMPyramid-realandMTiling-real construc-
tive learning algorithms. In this section we present results of a
few focused experiments designed to address the following is-
sues.

1) The convergence proofs presented above rely on the
ability of the network construction strategy to connect a
new neuron to an existing network so as to guarantee the
existence of weights that will enable the added neuron to
improve the resulting network’s classification accuracy
and the TLU weight training algorithm’s ability to find
such a weight setting. Finding an optimal weight setting
for each added neuron such that the classification error
is maximally reduced when the data is nonseparable is a
NP-hard problem [46]. Further, in practice the heuristic

PAREKH et al.: CONSTRUCTIVE NEURAL-NETWORK LEARNING ALGORITHMS FOR PATTERN CLASSIFICATION 447

TABLE VII
DATASETS

TABLE VIII
CONVERGENCERESULTS

algorithms such as thethermal perceptron algorithmthat
are used in constructive learning are only allowed limited
training time (say 500 or 1000 epochs). This makes
it important to study the convergence of the proposed
constructive algorithms in practice.

2) The convergence proofs only guarantee the existence of
a set of weights for each newly added neuron (or group
of neurons) that will reduce the number of misclassifica-
tions by at least one. A network that recruits one neuron to
simply memorize each training example can trivially at-
tain zero classification errors. A comparison of the actual
size of a trained constructive network with the number of
patterns in the training set, would at least partially, ad-
dress this issue of memorization.

3) Regardless of the convergence of the constructive
learning algorithms to zero classification errors, a ques-
tion of practical interest is the algorithms’ ability to
improve generalization on the test set as the network
grows in size. One would expectover-fitting to set in
eventually as neurons continue to get added in an attempt
to reduce the classification error, but we wish to examine
whether the addition of neurons improves generalization
before over-fitting sets in.

A. Datasets

A cross-section of datasets having real-valued pattern at-
tributes and patterns belonging to multiple output classes was
selected for the experiments. Table VII summarizes the charac-
teristics of the datasets.Sizedenotes the number of patterns in
the dataset,inputs indicates the total number of input attributes
(of the unmodified dataset),outputs represents the number
of output classes, andattributes describes the type of input
attributes of the patterns. The real-world datasetsionosphere,
pima, segmentation, andvehicleare available at the UCI Ma-
chine Learning Repository [32] while the3-circlesdataset was
artificially generated. The3-circlesdataset comprises of 1800

randomly drawn points from the two dimensional Euclidean
space. These points are labeled as belonging to classes 1, 2,
and 3 if their distance from the origin is less than one, between
one and two, and between two and three, respectively. Each of
these datasets is nonlinearly separable.

B. Experimental Results

We used the ten-fold cross validation method in our experi-
ments. Each dataset was divided into ten equal sized folds and
ten independent runs of each algorithm were conducted for each
dataset. For theth run, the th fold was designated as the test
set and the patterns in the remaining nine folds were used for
training. At the end of training the network’s generalization was
measured on the test set. Individual TLU’s were trained using
the thermal perceptron algorithm. The weights of each neuron
were initialized at random to a value in the interval ,
the learning rate was held constant at 1.0, and each neuron was
trained for 500 epochs where each epoch involves presenting a
set of randomly drawn patterns from the training set. The
initial temperature was set to 1.0 and was dynamically up-
dated at the end of each epoch to match the average net input of
the neuron(s) during the entire epoch [6].

Table VIII summarizes the results of experiments designed
to test the convergence properties of the constructive learning
algorithms. It lists the mean and standard deviation of the
network size (the number of hidden and output neurons), the
training accuracy, and the test accuracy of theMPyramid-real
andMTiling-real algorithms on the3-circles and ionosphere
datasets. For comparison we include the results of training a
single layer network (labeled byperceptron) using thethermal
perceptron algorithm. The training accuracy of theperceptron
algorithm on both datasets is less than 100% (which confirms
the nonlinear separability of the datasets). These results show
that not only do the constructive algorithms converge to zero
classification errors on the training set but they also generalize
fairly well on the unseen test data. Further, a comparison of

448 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000

TABLE IX
GENERALIZATION RESULTS

the network sizes with the total number of patterns in each
dataset (see Table VII) conclusively shows that the constructive
learning algorithms are not simply memorizing the training
patterns by recruiting one neuron per pattern.

Our experiments indicated that the convergence of the algo-
rithms (particularly theMPyramid-real) was quite slow on the
other three datasets. The slow-down was quite pronounced to-
ward the end of the learning cycle where several new layers were
added with minimal increase in classification accuracy. Further,
at this stage we observed that the generalization accuracy (mea-
sured on an independent test set) of the network was deterio-
rating with the addition of each new layer. This suggests that in
an attempt to correctly classify all patterns the algorithms were
over-fitting the training data. In practice we are mostly inter-
ested in the network’s generalization capability. Most backprop-
agation type learning algorithms use a separatehold-outset (dis-
tinct from thetest set) to stop training when over-fitting sets in.
In our experiments to measure the generalization performance
of the constructive algorithms we used a similar hold-out sample
as follows: The ten-fold cross validation was still used but this
time during the th run, the th fold was designated as the test
set, the th fold as the independent hold-out set, and the
remaining eight folds formed the training set. During the net-
work construction process, the accuracy of the network on the
hold-out sample was recorded after each new layer was added
and trained. At the end of the training (i.e., when the network
converged to 100% classification accuracy or the when the net-
work size reached the maximum number of layers—25 in our
case) we pruned the network up to the layer that had the highest
accuracy on the hold-out sample. For example, if the trained
network had five layers and the accuracy on the hold-out was
recorded as 78, 82, 86, 83, and 81% at each of the five layers,
respectively, then the layers above layer three were pruned from
the network. Note that as a result of the pruning the network’s
accuracy on the training set will no longer be 100%. At this point
we measure the accuracy of the network on the test dataset. It is
important to keep in mind that since the test data set is indepen-
dent of the hold-out set and is not used at all during training the
results are not biased or overly optimistic.

Table IX lists the mean and standard deviation of the network
size, training accuracy, and test accuracy of theMPyramid-real
andMTiling-real algorithms for thepima, segmentation, and
vehicle datasets. We see that the pruned networks generated

by theMTiling-real algorithm are smaller than those generated
by the MPyramid-realalgorithm. This is due to the different
network construction schemes adopted by the two algorithms.
The MPyramid-realalgorithm uses the entire training set for
training each new layer. Thus, on harder training sets it tends to
add several layers of neurons without substantial benefits. On
the other hand, theMTiling-real algorithm breaks up the dataset
into smaller subsets (theunfaithful classes). Training of the an-
cillary neurons on these smaller datasets is considerably sim-
pler. Further, given a faithful representation of the patterns at
each layer, the master neurons of the succeeding layer are able
to significantly reduce the number of misclassifications. The
MTiling-real algorithm’s focus on smaller subsets for training
ancillary neurons might actually prove to be disadvantageous
on certain datasets (see for example the3-circles in Table VIII)
because it might expend considerable effort in making the cur-
rent layer faithful.

As can be seen from Table IX the test accuracy of the
MPyramid-real and MTiling-real algorithms is almost the
same as or even slightly worse than that of the single layer
network (except in the case of thesegmentationdataset where
MTiling-real performs better). This suggests that in the case of
the pima andvehicle datasets the constructive learning algo-
rithms do not add much value. It is possible that these datasets
contain irrelevant or noisy attributes that unduly complicate the
learning task. Experiments have shown that using a genetic al-
gorithm based feature selection scheme significantly improves
the generalization performance of theDistAl constructive
learning algorithm [50]. In other experiments it has been shown
that the choice of the algorithm for training the individual
TLU’s during constructive learning can significantly impact the
convergence and generalization properties of the constructive
learning algorithms [35]. It was shown that when thethermal
perceptron algorithmwas replaced by other algorithms such
asbarycentric correction procedureor pocket algorithmwith
ratchet modificationas the algorithm for training individual
TLU’s, the performance of the constructive learning algorithms
on certain datasets was superior both in terms of convergence
properties and generalization ability. It is definitely of interest
to further explore the impact of feature subset selection and
the choice of different TLU weight training algorithms on the
performance of the constructive algorithms. Unfortunately,
these issues are beyond the scope of this paper.

PAREKH et al.: CONSTRUCTIVE NEURAL-NETWORK LEARNING ALGORITHMS FOR PATTERN CLASSIFICATION 449

The issue of network training times is critical for very large
training sets. Theperceptronalgorithm that trains just a single
layer of TLU’s is clearly faster than theMPyramid-realand
MTiling-real algorithms. From our experiments we have ob-
served that the constructive learning algorithms take between
1.5 and five times as long as theperceptronalgorithm to train
on the datasets considered in this paper. The constructive algo-
rithms typically achieve a reasonably good accuracy relatively
quickly. A significant amount of time is expended in adding
and training units that only marginally improve the training ac-
curacy. As mentioned earlier, this over-training can potentially
worsen the network’s generalization performance. In our exper-
iments we allowed the networks to train until either convergence
to zero training errors was achieved or 25 layers were of TLU’s
were added to the network. In order to overcome the problem
of over-fitting, the networks were then pruned back based on
their performance on an independent hold-out set. In practice, a
substantial reduction in training time can be achieved if training
is actually stopped as soon as it is observed that the network’s
performance on the hold-out set is not improving significantly.
This form of early-stopping is commonly used in training back-
propagation networks.

VI. CONCLUSIONS

Constructive algorithms offer an attractive approach for the
automated design of neural networks. In particular, they elimi-
nate the need for thead hoc, and often inappropriate,a priori
choice of network architecture, they potentially provide a means
of constructing networks whose size (complexity) is commen-
surate with the complexity of the pattern classification task on
hand, and they offer natural ways to incorporate prior knowl-
edge to guide learning and to use constructive learning algo-
rithms in thelifelong learning framework. We have focused on
a family of algorithms that incrementally construct feedforward
networks of threshold neurons.7 Although a number of such
algorithms have been proposed in the literature, most of them
are limited to 2-category pattern classification tasks with bi-
nary/bipolar valued input attributes. We have presented two con-
structive learning algorithmsMPyramid-realandMTiling-real
that extend thepyramidand thetiling algorithms, respectively,
to handle multicategory classification of patterns that have real-
valued attributes. For each of these algorithms we have provided
rigorous proofs of convergence to zero classification errors on
finite, noncontradictory training sets. This proof technique is
sufficiently general (see [35] for an application of this technique
to several other constructive learning algorithms).

The convergence of the two algorithms was established by
showing that each modification of the network topology guar-
antees the existence of weights that would reduce the classi-
fication error and assuming that there exists a weight modifi-
cation algorithm that would find such weights. We do not
have a rigorous proof that any of the graceful variants of per-
ceptron learning algorithms can in practice, satisfy the require-
ments imposed on , let alone find anoptimal (in a suitable

7Constructive algorithms have also been proposed for the incremental con-
struction of recurrent neural networks (RNN’s) that learnfinite state automata
from labeled examples. The interested reader is referred to [22] and [25] for a
discussion on constructive learning of RNN.

sense of the term—e.g., so as to yield minimal networks) set of
weights. The design of TLU training algorithms that (with a high
probability) satisfy the requirements imposed onand are at
least approximately optimal remains an open research problem.
These characteristics of the TLU training algorithm often result
in the generation of redundant units during network construc-
tion. We have proposed a local pruning strategy that can be used
to eliminate redundant neurons (in theMTiling-real networks).
Experiments with nonlinearly separable datasets demonstrate
the practical usefulness of the proposed algorithms. On simpler
datasets both theMPyramid-realandMTiling-real algorithms
do converge to fairly compact networks with zero classifica-
tion errors and good generalizability. However, on more diffi-
cult tasks convergence is slow. Further, the network might end
up memorizing the hard to classify examples thereby resulting
in poor generalization. To address this issue we have used an
independenthold-outset during training to determine the ap-
propriate final network topology. This technique enhances the
capability of constructive learning algorithms to generate com-
pact networks with improved generalization. Although it is hard
to determinea priori which of the two constructive learning al-
gorithms would be suitable for a particular problem, we recom-
mend using theMTiling-real algorithm first (during the prelim-
inary analysis) as it tends to have better convergence properties
than theMPyramid-realalgorithm in practice.

Some directions for future research include the following.

• Evaluating the Performance of Constructive Learning Al-
gorithms:

A systematic experimental and theoretical comparisons
of constructive algorithms with other neural network as
well as other machine learning algorithms for pattern clas-
sification is of interest. Further, a characterization of the
inductive and representational biases of the different al-
gorithms will guide users in selecting algorithms for spe-
cific problems based on easily measurable properties of
the datasets.

• Hybrid Constructive Learning Algorithms:
In related work it was shown that the choice of the

specific TLU weight training algorithm can have a signif-
icant impact on the performance of constructive learning
algorithms [37]. A study of hybrid network training
schemes that dynamically select an appropriate network
construction strategy, an appropriate TLU weight training
algorithm, an appropriate output computation strategy
and such to obtain locally optimal performance at each
step of the classification task is worth pursuing.

• Combining Constructive Learning with Feature Selection:
The generalization performance of learning algorithms

can be often be improved with the help of suitable fea-
ture selection techniques. Several feature subset selection
algorithms have been proposed in the pattern recognition
literature [41]. The effectiveness of genetic algorithms for
feature subset selection in conjunction with theDistAl al-
gorithm has been demonstrated in [50].

• Using Boosting and Error-Correcting Output Codes for
Improved Generalization:

Recent advances in machine learning have resulted in
the development of techniques such asboosting[17] and

450 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000

error-correcting output codes[2] for improving the gener-
alization capability of learning algorithms. An application
of these techniques in the constructive learning framework
is clearly of interest.

• Knowledge Extraction from Trained Constructive Neural
Networks:

Constructive neural-network learning algorithms have
been successfully used for theory refinement. The avail-
able domain specific knowledge is incorporated into the
initial network topology and is refined based on additional
labeled examples using constructive learning [14], [33],
[34], [53]. The question now is whether we can use some
of the existing strategies (see, for example, [9]) or design
suitable new methods for extracting the learned knowl-
edge from a trained constructive network.

REFERENCES

[1] E. Alpaydin, “GAL: Networks that grow when they learn and shrink
when they forget,” Int. Comput. Sci. Inst., Berkeley, CA, Tech. Rep.
TR91-032, 1991.

[2] G. Bakiri and T. Dietterich, “Solving multiclass learning problems
via error-correcting output codes,”J. Artificial Intell. Res., vol. 2, pp.
263–286, 1995.

[3] E. Baum, “A proposal for more powerful learning algorithms,”Neural
Comput., vol. 1, no. 2, pp. 201–207, 1989.

[4] K. Bennett and O. Mangasarian, “Neural-network training via linear pro-
gramming,” Dept. Comput. Sci., Univ. Wisconsin, Madison, Tech. Rep.
948, 1990.

[5] N. Bose and A. Garga, “Neural-network design using Voronoi dia-
grams,”IEEE Trans. Neural Networks, vol. 4, pp. 778–787, 1993.

[6] N. Burgess, “A constructive algorithm that converges for real-valued
input patterns,”Int. J. Neural Syst., vol. 5, no. 1, pp. 59–66, 1994.

[7] C.-H. Chen, R. Parekh, J. Yang, K. Balakrishnan, and V. Honavar, “Anal-
ysis of decision boundaries generated by constructive neural-network
learning algorithms,” inProc. WCNN’95, vol. 1, Washington, D.C., Jul.
17–21, 1995, pp. 628–635.

[8] T. Cormen, C. Leiserson, and R. Rivest,Introduction to Algo-
rithms. Cambridge, MA: MIT Press, 1991.

[9] M. Craven, “Extracting comprehensible models from trained neural
networks,” Ph.D. dissertation, Dept. Comput. Sci., Univ. Wisconsin,
Madison, WI, 1996.

[10] J. Dayhoff, Neural-Network Architectures: An Introduction. New
York: Van Nostrand Reinhold, 1990.

[11] J. Dougherty, R. Kohavi, and M. Sahami, “Supervised and unsupervised
discretization of continuous features,” inProc. 12th Int. Conf. Machine
Learning, San Fransisco, CA, 1995, pp. 194–202.

[12] R. Duda and P. Hart,Pattern Classification and Scene Analysis. New
York: Wiley, 1973.

[13] S. Fahlman and C. Lebiere, “The cascade correlation learning algo-
rithm,” in Neural Inform. Syst. 2, D. Touretzky, Ed. San Mateo, CA:
Morgan-Kauffman, 1990, pp. 524–532.

[14] J. Fletcher and Z. Obradovic´, “Combining prior symbolic knowledge
and constructive neural-network learning,”Connection Sci., vol. 5, no.
3/4, pp. 365–375, 1993.

[15] M. Frean, “The upstart algorithm: A method for constructing and
training feedforward neural networks,”Neural Comput., vol. 4, pp.
198–209, 1990.

[16] , “A thermal perceptron learning rule,”Neural Comput., vol. 4, pp.
946–957, 1992.

[17] Y. Freund and R. Schapire, “A decision-theoretic generalization of
on-line learning algorithms and an application to boosting,”J. Comput.
Syst. Sci., vol. 55, no. 1, pp. 119–139, 1997.

[18] J. Friedman and W. Stuetzle, “Projection pursuit regression,”J. Amer.
Statist. Assoc., vol. 76, no. 376, pp. 817–823, 1981.

[19] S. Gallant, “Perceptron based learning algorithms,”IEEE Trans. Neural
Networks, vol. 1, pp. 179–191, 1990.

[20] , Neural-Network Learning and Expert Systems. Cambridge,
MA: MIT Press, 1993.

[21] S. Geva and J. Sitte, “A constructive method for multivariate function ap-
proximation by multilayer perceptrons,”IEEE Trans. Neural Networks,
vol. 3, pp. 621–624, 1992.

[22] C. Giles, D. Chen, G.-Z. Sun, H.-H. Chen, Y.-C. Lee, and M. Goudreau,
“Constructive learning of recurrent neural networks: Limitations of re-
current cascade correlation and a simple solution,”IEEE Trans. Neural
Networks, vol. 6, pp. 829–836, 1997.

[23] V. Honavar and V. L Uhr, “Generative learning structures for generalized
connectionist networks,”Inform. Sci., vol. 70, no. 1/2, pp. 75–108, 1993.

[24] T. Hrycej,Modular Learning in Neural Networks. New York: Wiley,
1992.

[25] S. Kremer, “Comments on constructive learning of recurrent neural net-
works: Limitations of recurrent cascade correlation and a simple solu-
tion,” IEEE Trans. Neural Networks, vol. 7, pp. 1047–1049, 1996.

[26] T.-Y. Kwok and D.-Y. Yeung, “Objective functions for training new
hidden units in constructive neural networks,”IEEE Trans. Neural
Networks, vol. 8, pp. 1131–1148, 1997.

[27] , “Constructive algorithms for structure learning in feedforward
neural networks for regression problems,” IEEE Trans. Neural Net-
works, to be published.

[28] M. Marchand, M. Golea, and P. Rujan, “A convergence theorem for se-
quential learning in two-layer perceptrons,”Europhys. Lett., vol. 11, no.
6, pp. 487–492, 1990.

[29] F. Mascioli and G. Martinelli, “A constructive algorithm for binary
neural networks: The oil-spot algorithm,”IEEE Trans. Neural Net-
works, vol. 6, pp. 794–797, 1995.

[30] K. Mehrotra, C. Mohan, and S. Ranka,Elements of Artificial Neural
Networks. Cambridge, MA: MIT Press, 1997.

[31] M. Mézard and J. Nadal, “Learning feedforward networks: The tiling
algorithm,”J. Phys. A: Math. Gen., vol. 22, pp. 2191–2203, 1989.

[32] P. Murphy and D. Aha, “Repository of machine learning databases,”
Dept. Inform. Comput. Sci., Univ. California, Irvine, CA,
http://www.ics.uci.edu/AI/ML/MLDBRepository.html, 1994.

[33] D. W. Opitz and J. W. Shavlik, “Dynamically adding symbolically mean-
ingful nodes to knowledge-based neural networks,”Knowledge-Based
Syst., vol. 8, no. 6, pp. 301–311, 1995.

[34] R. Parekh and V. Honavar, “Constructive theory refinement in knowl-
edge-based neural networks,” inProc. Int. Joint Conf. Neural Networks
(IJCNN’98), Anchorage, AK, 1998, pp. 2318–2323.

[35] R. Parekh, J. Yang, and V. Honavar, “Constructive neural-network
learning algorithms for multicategory real-valued pattern classification,”
Dept. Comput. Sci., Iowa State Univ., Tech. Rep. ISU-CS-TR97-06,
1997.

[36] , “Pruning strategies for constructive neural-network learning al-
gorithms,” in Proc. IEEE/INNS Int.Conf. Neural Networks, ICNN’97,
1997, pp. 1960–1965.

[37] , “An empirical comparison of the performance of single-layer
algorithms for training threshold logic units,” Neural, Parallel, Sci.
Comput., 2000, to be published.

[38] H. Poulard, “Barycentric correction procedure: A fast method of
learning threshold units,” inProc. WCNN’95, vol. 1, Washington, D.C.,
July 17–21, 1995, pp. 710–713.

[39] L. Prechelt, “Investigating the cascor family of learning algorithms,”
Neural Networks, vol. 10, no. 5, pp. 885–896, 1997.

[40] R. Reed, “Pruning algorithms—A survey,”IEEE Trans. Neural Net-
works, vol. 4, pp. 740–747, 1993.

[41] B. Ripley,Pattern Recognition and Neural Networks. New York: Cam-
bridge Univ. Press, 1996.

[42] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain,”Psych. Rev., vol. 65, pp. 386–408,
1958.

[43] P. Rujàn and M. Marchand, “Learning by minimizing resources in neural
networks,”Complex Syst., vol. 3, pp. 229–241, 1989.

[44] D. Rumelhart, G. Hinton, and R. Williams, “Learning internal represen-
tations by error propagation,” inParallel Distributed Processing: Explo-
rations into the Microstructure of Cognition. Cambridge, MA: MIT
Press, 1986, vol. 1.

[45] J. Saffery and C. Thornton, “Using stereographic projection as a prepro-
cessing technique for upstart,” inProc. Int. Joint Conf. Neural Networks,
vol. II, July 1991, pp. 441–446.

[46] K.-Y. Siu, V. Roychowdhury, and T. Kailath,Discrete Neural Computa-
tion—A Theoretical Foundation. Englewood Cliffs, NJ: Prentice-Hall,
1995.

[47] F. S̀mieja, “Neural-network constructive algorithms: Trading general-
ization for learning efficiency?,”Circuits, Syst., Signal Processing, vol.
12, no. 2, pp. 331–374, 1993.

[48] S. Thrun, “Lifelong learning: A case study,” Carnegie Mellon Univ.,
Tech. Rep. CMU-CS-95-208, 1995.

[49] J. Yang and V. Honavar, “Experiments with the cascade-correlation al-
gorithm,” Microcomput. Applicat., vol. 17, no. 2, pp. 40–46, 1998.

PAREKH et al.: CONSTRUCTIVE NEURAL-NETWORK LEARNING ALGORITHMS FOR PATTERN CLASSIFICATION 451

[50] , “Feature subset selection using a genetic algorithm,”IEEE Intell.
Syst. (Special Issue on Feature Transformation and Subset Selection),
vol. 13, no. 2, pp. 44–49, 1998.

[51] J. Yang, R. Parekh, and V. Honavar, “MTiling–A constructive neural-
network learning algorithm for multi-category pattern classification,”
in Proc. World Congr. Neural Networks’96, San Diego, CA, 1996, pp.
182–187.

[52] , “DistAl: An inter-pattern distance-based constructive learning al-
gorithm,” Intell. Data Anal., vol. 3, pp. 55–73, 1999.

[53] J. Yang, R. Parekh, V. Honavar, and D. Dobbs, “Data-driven theory
refinement using kBDistal,” inProc. 3rd Symp. Intell. Data Anal.
(IDA’99), Amsterdam, The Netherlands, 1999, pp. 331–342.

[54] D. Yeung, “Constructive neural networks as estimators of bayesian dis-
criminant functions,”Pattern Recognition, vol. 26, no. 1, pp. 189–204,
1993.

Rajesh Parekh (S’89–M’98) received the B.E.
degree in computer technology from VJTI, Bombay,
India, in 1991, and the M.S. and Ph.D. degrees in
computer science with specialization in artificial
intelligence from Iowa State University, Ames, in
1993 and 1997, respectively.

He is currently with the Data Mining Group at
the Allstate Research and Planning Center, Menlo
Park, CA. His research interests include artificial
intelligence, applied machine learning, intelligent
autonomous agents, knowledge discovery and data

mining, neural networks, constructive learning algorithms, computational
learning theory, grammatical inference, and distributed artificial intelligence.

Jihoon Yang (S’98–M’99) received the B.S. degree
in computer science from Sogang University, Seoul,
Korea, in 1987, and the M.S. and Ph.D. degrees in
computer science with specialization in artificial in-
telligence from Iowa State University, Ames, in 1989
and 1999, respectively.

He is currently with the Networking and Informa-
tion Exploitation Department at HRL Laboratories,
LLC, Malibu, CA. His research interests include
information retrieval, knowledge discovery and
data mining, intelligent agents and multiagent

systems, machine learning, neural networks, pattern recognition, evolutionary
computing, bioinformatics, and distributed artificial intelligence.

Vasant Honavar (M’99) received the B.E. degree in
electronics engineering from Bangalore University,
India, the M.S. degree in electrical and computer en-
gineering from Drexel University, Philadelphia, PA,
and the M.S. and Ph.D. degrees in computer science
from the University of Wisconsin, Madison.

He founded and directs the Artificial Intelligence
Research Laboratory in the Department of Computer
Science at Iowa State University, where he is
currently an Associate Professor. His research and
teaching interests include artificial intelligence,

artificial neural networks, machine learning, adaptive systems, bioinformatics
and computational biology, evolutionary computing, grammatical inference,
intelligent agents and multiagent systems, neural and cognitive modeling,
distributed artificial intelligence, data mining and knowledge discovery,
evolutionary robotics, parallel and distributed artificial intelligence, knowledge
based systems, distributed knowledge networks, and applied artificial intelli-
gence. He has published more than 80 research articles in journals, books, and
conferences and has coedited three books.

Dr. Honavar is a coeditor-in-chief of theJournal of Cognitive Systems Re-
search. He is a member of ACM, AAAI, and the New York Academy of Sci-
ences.

