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A Neural-Network Architecture for Syntax Analysis
Chun-Hsien Chen and Vasant Honavar,Member, IEEE

Abstract—Artificial neural networks (ANN’s), due to their
inherent parallelism, offer an attractive paradigm for implemen-
tation of symbol processing systems for applications in computer
science and artificial intelligence. This paper explores systematic
synthesis of modular neural-network architectures for syntax
analysis using a prespecified grammar—a prototypical symbol
processing task which finds applications in programming lan-
guage interpretation, syntax analysis of symbolic expressions,
and high-performance compilers. The proposed architecture is
assembled from ANN components for lexical analysis, stack,
parsing and parse tree construction. Each of these modules
takes advantage of parallel content-based pattern matching us-
ing a neural associative memory. The proposed neural-network
architecture for syntax analysis provides a relatively efficient
and high performance alternative to current computer systems
for applications that involve parsing of LR grammars which
constitute a widely used subset of deterministic context-free
grammars. Comparison of quantitatively estimated performance
of such a system [implemented using current CMOS very large
scale integration (VLSI) technology] with that of conventional
computers demonstrates the benefits of massively parallel neural-
network architectures for symbol processing applications.

Index Terms—Lexical analysis, modular neural networks, neu-
ral associative processing, neural associative processor, neural
parser, neural symbolic processing, parsing, syntax analysis.

I. INTRODUCTION

I T is often suggested that traditionally serial symbol pro-
cessing systems of artificial intelligence (AI) and inherently

massively parallel artificial neural networks (ANN’s) offer two
radically, perhaps even irreconcilably different paradigms for
modeling minds and brains—both artificial as well as natural
[65], [83]. AI has been successful in applications such as
theorem proving, knowledge–based expert systems, mathemat-
ical reasoning, syntax analysis, and related applications which
involve systematic symbol manipulation. On the other hand,
ANN’s have been particularly successful in applications such
as pattern recognition, function approximation, and nonlinear
control [27], 76] which involve primarily numeric computa-
tion. However, as shown by Church, Kleene, McCulloch, Post,
Turing, and others, both AI and ANN represent particular
realizations of a universal (Turing-equivalent) model of com-
putation [99]. Thus, despite assertions by some to the contrary,
any task that can be realized by one can, in principle, be ac-
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complished by the other. However, most AI systems have been
traditionally programmed in languages that were influenced by
Von Neumann’s design of a serial stored program computer.
ANN systems on the other hand, have been inspired by (albeit
overly simplified) models of biological neural networks. They
represent different commitments regarding the architecture
and the primitive building blocks used to implement the
necessary computations. Thus they occupy different regions
characterized by possibly different cost–performance tradeoffs
in a much larger space of potentially interesting designs for
intelligent systems.

Given the reliance of both traditional AI and ANN on essen-
tially equivalent formal models of computation, a central issue
in design and analysis of intelligent systems has to do with the
identification and implementation, under a variety of design,
cost, and performance constraints, of a suitable subset of
Turing-computable functions that adequately model the desired
behaviors. Today’s AI and ANN systems each demonstrate
at least one way of performing a certain task (e.g., logical
inference, pattern recognition, syntax analysis) naturally and
thus pose the interesting problem for the other of doing the
same task, perhaps more elegantly, efficiently, robustly, or
cost-effectively than the other. In this context, it is beneficial
to critically examine the often implicit and unstated assump-
tions on which current AI and ANN systems are based and
to identify alternative (and potentially better) approaches to
designing such systems. Massively parallel symbol processing
architectures for AI systems or highly structured (as opposed to
homogeneous fully connected) ANN’s are just two examples
of a wide range of approaches to designing intelligent systems
[99], [34], [35]. Of particular interest are alternative designs
(including synergistic hybrids of ANN and AI designs) for
intelligent systems [20], [28], [32], [34], [35], [46], [92], [95],
[99]. Examples of such systems include: neural architectures
for database query processing [10], generation of context-free
languages [100], rule-based inference [12], [72], [88], [94],
computer vision [4], [58], natural language processing [6],
[13], learning [19], [31] [89], and knowledge-based systems
[43], [75]. We strongly believe that a judicious and systematic
exploration of the design space of such systems is essential for
understanding the nature of key cost–performance tradeoffs in
the synthesis of intelligent systems.

Against this background, this paper explores the synthesis
of a neural architecture for syntax analysis using prespeci-
fied grammars—a prototypical symbol processing task with
applications in interactive programming environments (using
interpreted languages such as LISP and JAVA), analysis of
symbolic expressions (e.g., in real-time knowledge-based sys-
tems and database query processing), and high-performance
compilers. This paper does not address machine learning of
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unknown grammars (which finds applications in tasks such as
natural language acquisition).

A more general goal of this paper is to explore the design of
massively parallel architectures for symbol processing using
neural associative memories (processors) [9] as key compo-
nents. Information processing often entails a process of pattern
matching and retrieval (pattern-directed associative inference)
which is an essential part of most AI systems [24], [45], [97]
and dominates the computational requirements of many AI
applications [25] [45], [63].

The proposed high-performance neural architecture for syn-
tax analysis is systematically (and provably correctly) synthe-
sized through composition of the necessary symbolic functions
using a set of component symbolic functions each of which
is realized using a neural associative processor. It takes ad-
vantage of massively parallel pattern matching and retrieval
capabilities of neural associative processors to speed up syntax
analysis for real-time applications.

The rest of this paper is organized as follows: The remainder
of Section I reviews related research on neural architectures
for syntax analysis. Section II briefly reviews multilayer Per-
ceptrons, binary mapping Perceptron module which is capable
of arbitrary binary mapping and is used to realize the compo-
nents of the proposed neural network architectures, symbolic
functions realized by binary mappings, and composition of
symbolic functions. Section III briefly reviews deterministic fi-
nite automata (DFA), and neural-network architecture for DFA
(NN DFA). Sections IV, V, and VI, respectively, develop mod-
ular neural-network architectures for stack, lexical analysis,
and parsing. Section VII compares the estimated performance
of the proposed neural architecture for syntax analysis [based
on current CMOS very large scale integration (VLSI) technol-
ogy] with that of commonly used approaches to syntax analysis
in conventional computer systems that rely on inherently
sequential index or matrix structure for pattern matching.
Section VIII concludes with a summary and discussion.

A. Review of Related Research on Neural
Architectures for Syntax Analysis

The capabilities of neural-network models (in particular,
recurrent networks of threshold logic units or McCulloch–Pitts
neurons) in processing and generating sequences (strings de-
fined over some finite alphabet) and hence their formal equiv-
alence with finite state automata or regular language gener-
ators/recognizers have been known for several decades [40],
[52], [56]. More recently, recurrent neural-network realizations
of finite state automata for recognition and learning of finite
state (regular) languages have been explored by numerous au-
thors [3], [8], [14], [16]–[18], [37], [60], [64], [66], [67], [82],
[87], [102]. There has been considerable work on extending the
computational capabilities of recurrent neural-network models
by providing some form of external memory in the form of
a tape [103] or a stack [5], [11], [29], [55], [74], [84], [90],
[93], [105].

To the best of our knowledge, to date, most of the research
on neural architectures for syntax analysis has focused on
the investigation of neural networks that are designed to
learn to parse particular classes of syntactic structures (e.g.,

strings from deterministic context-free languages (DCFL) or
natural language sentences constructed using limited vocab-
ulary). Notable exceptions are: connectionist realizations of
Turing Machines (wherein a stack is simulated using binary
representation of a fractional number) [90], [73]; a few neural
architectures designed for parsing based on a known grammar
[15], [85]; and neural-network realizations of finite state au-
tomata [8], [67]. Nevertheless, it is informative to examine the
various proposals for neural architectures for syntax analysis
(regardless of whether the grammar is preprogrammed or
learned). The remainder of this section explores the proposed
architectures for syntax analysis in terms of how each of them
addresses the key subtasks of syntax analysis.

Reference [15] proposes a neural network to parse input
strings of fixed maximum length for known context-free
grammars (CFG’s). The whole input string is presented at one
time to the neural parser which is a layered network of logical
AND and OR nodes with connections set by an algorithm
based on CYK algorithm [36].

PARSEC [39] is a modular neural parser consisting of six
neural-network modules. It transforms a semantically rich and
therefore fairly complex English sentence into three output
representations produced by its respective output modules.
The three output modules arerole labeler which associates
case-role labels with each phrase block in each clause,inter-
clause labelerwhich indicates subordinate and relative clause
relationships, andmood labelerwhich indicates the overall
sentence mood (declarative or interrogative). Each neural
module is trained individually by a variation of the backprop-
agation algorithm. The input is a sequence of syntactically
as well as semantically tagged words in the form of binary
vectors and is sequentially presented to PARSEC, one word
at a time. PARSEC exploits generalization as well as noise
tolerance capabilities of neural networks to reportedly attain
78% correct labeling on a test set of 117 sentences when
trained with a training set of 240 sentences. Both the test
and training sets were based on conference registration dialogs
from a vocabulary of about 400 words.

SPEC [55] is a modular neural parser which parses variable-
length sentences with embedded clauses and produces case-
role representations as output. SPEC consists of aparser
which is a simple recurrent network, astackwhich is realized
using a recursive autoassociative memory (RAAM) [74], and a
segmenterwhich controls thepush/popoperations of thestack
using a 2-layer perceptron.

RAAM has been used by several researchers to implement
stacks in connectionist designs for parsers [5], [29], [55].
A RAAM is a 2-layer perceptron with recurrent links from
hidden neurons to part of input neurons and from part of output
neurons to hidden neurons. The performance of a RAAM stack
is known to degrade substantially with increase in depth of the
stack, and the number of hidden neurons needed for encoding
a stack of a given depth has to be determined through a process
of trial and error [55]. A RAAM stack has to be trained for
each application. See [93] for a discussion of some of the
drawbacks associated with the use of RAAM as a stack.

Each module of SPEC is trained individually using the
backpropagation algorithm to approximate a mapping function
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as follows: Let be a finite nonempty set ofstates, a
finite nonemptyinput alphabet, a finite nonempty set of
case-role vectors, the set of stack
actions, and the set of compressed stack representations
at the hidden layer of a RAAM. Then the first and second
connection layers of theparser approximate the transition
function of a DFA (see Section III-A) and
a symbolic mapping function respectively;
thesegmenterapproximates a symbolic function

and the first and second connection layers of the RAAM
approximate thepush function
and thepop function of a RAAM
stack, respectively. The input string is sequentially presented
to SPEC and is a sequence of syntactically untagged English
words represented as fixed-length distributive vectors of gray-
scale values between zero and one. The emphasis of SPEC
was on exploring the generalization as well as noise tolerance
capabilities of a neural parser. SPEC uses central control to
integrate its different modules and reportedly achieves 100%
generalization performance on a whole test set of 98 100
English relative clause sentences with up to four clauses.
Since the words (terminals) in the CFG which generates the
test sentences are not pretranslated by a lexical analyzer into
syntactically tagged tokens, the number of production rules
and terminals tend to increase linearly with the size of the
vocabulary in the CFG. Augmenting SPEC with a lexical
analyzer offers a way around this problem.

References [11], [93], [105] propose higher-order recurrent
neural networks equipped with an external stack to learn to
recognize deterministic CFG, i.e., to learn to simulate a deter-
ministic pushdown automata (DPDA). References [11], [93]
use an analog network coupled with acontinuousstack and use
a variant of a real-time recurrent network learning algorithm
to train the network. Reference [105] uses a discrete network
coupled with adiscretestack and employs a pseudo-gradient
learning method to train the network. The input to the network
is a sequentially presented, unary-coded string of variable
length. Let be a finite nonempty set ofstates, a finite
nonemptyinput alphabet, a finite nonemptystack alphabet,

- the set of stack actions,
and Boolean the set These recurrent neural
networks approximate the transition function of a DPDA, i.e.,

The networks are trained
to approximate a language recognizer function

Strings generated from CFG includingbalanced
parenthesis grammar, postfix
grammar, and/orpalindrome grammarwere used to evaluate
the generalization performance of the proposed networks.
Hybrid systems consisting of a recurrent neural network and
a stack have also been used to learn CFL [61].

The proposed neural architecture for syntax analysis is com-
posed of neural-network modules for stack, lexical analysis,
parsing, and parse tree construction. It differs from most
of the neural-network realizations of parsers in that it is
systematically assembled using neural associative processors
(memories) as primary building blocks. It is able to exploit
massively parallel content-based pattern matching and retrieval
capabilities of neural associative processors. This offers an

opportunity to explore the potential benefits of ANN’s mas-
sive parallelism in the design of high-performance computing
systems for real time symbol processing applications.

II. NEURAL ASSOCIATIVE PROCESSORS

AND SYMBOLIC FUNCTIONS

This section reviews the design of a neural associative
processor using a binary mapping perceptron [8], [9] and
the representation of symbolic functions in terms of binary
mapping.

A. Perceptrons

A 1-layer perceptron has input neurons, output neurons
and one layer of connections. The outputof output neuron
, , is given by , where

denotes the weight on the connection from input neuron
to output neuron is the threshold of output neuron

is the value at input neuron, and is binary hardlimiter
function, where

if
otherwise.

It is well known that such a 1-layer perceptron can
implement only linearly separable functions from to

[57]. We can see the connection weight vector
and the node threshold as defining

a linear hyperplane which partitions the -dimensional
pattern space into two half-spaces.

A 2-layer perceptron has one layer ofhidden neurons (and
hence two layers of connections with each hidden neuron being
connected to each of the input as well as output neurons).
In this paper, every hidden neuron and output neuron in
the 2-layer perceptron use binary hardlimiter function as
activation function and produce binary outputs; its weights
are restricted to values from and it uses integer
thresholds. It is known that such a 2-layer perceptron can
realize arbitrary binary mappings [9].

B. Binary Mapping Perceptron Module (BMP)

Let be a set of distinct input binary vectors
of dimension , where ,

Let be a set of
desired output binary vectors of dimension , where

,
Consider a binary mapping functiondefined as follows:

for

for

where is the -dimensional binary space. A BMP module
[8] for the desired binary mapping functioncan be synthe-
sized using a 2-layer perceptron as follows: The BMP module
(see Fig. 1) has input, hidden and output neurons. For
each binary mapping ordered pair where
we create a hidden neuron with threshold
The connection weight from input neuronto this hidden
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Fig. 1. The settings of connection weights and hidden node threshold in
the proposed BMP module for an associated binary mapping ordered pair
(uh; vh): The threshold for each of the output neurons is set to zero. The
activation function at hidden and output neurons is hardlimiter function.

neuron is where ; and
that from this hidden neuron to output neuronis , where

The threshold for each of the output neurons is set
to zero. Note that identity function, i.e., , can be
used as activation function at output neuron for more efficient
hardware implementation.

Note that for the input binary vector , only the hidden
neuron outputs a one, and the rest of the hidden neurons
output zero. Thus the output of theth output neuron is ,
and so the binary output vector is While
for an input vector , no hidden neuron is activated and
the output is

The computation of a mapping in a BMP module can
be viewed as a two-stage associative process:identification
and recall. Since input is binary, the weights in the first-
layer connections of a BMP module are either one or
During identification, a bit of an input pattern that is wrongly
on (with respect to a stored pattern), contributes to the
activation of the corresponding hidden neuron and a bit of
an input pattern that is rightly on (with respect to a stored
pattern) contributes to the activation of the corresponding
hidden neuron. A bit of an input pattern that is (rightly or
wrongly) off (with respect to a stored pattern) contributes
zero to the activation of the corresponding hidden neuron.
Each hidden neuron sums up the contributions to its activation
from its first-layer connections, compares the result with its
threshold (which equals the number of “1’s” in the stored
memory pattern minus one), and produces output value one
if its activation exceeds its threshold. If one of the hidden
neurons is turned on, one of the stored memory patterns will
be recalled by that hidden neuron. Note that an input pattern
is matched against all the stored memory patternsin parallel.
If the time delay for computing the activation at a neuron is
fixed, the time complexity for such a pattern matching process
is Note that this is attained at the cost of a hidden neuron
(and its connections) for each stored association.

C. Binary Mapping and Symbolic Functions

In general, most of simple, nonrecursive symbolic functions
and table lookup functions can be viewed in terms of a binary
random mapping which is defined as follows: Let be a
set of distinct binary input vectors of dimension

; and be a set of binary output vectors of
dimension Then

for

Let denote the cardinality of set The binary vector
, where , represents an ordered set ofbinary-

coded symbols from symbol sets respectively,
(i.e.,
where denotes the concatenation of two binary codes). The
binary vector , where represents an ordered set
of symbols from symbol sets respectively,
and defines a symbolic function

such that

In this case, the mapping operations of can be viewed in
terms of the operations of on its associated symbols.

Neural-network modules for symbol processing can be
synthesized through acompositionof appropriate primitive
symbolic functions which are directly realized by suitable
BMP modules. There are two of basic ways of recursively
composing composite symbolic functions from component
symbolic functions (which may themselves be composite
functions or primitive functions). Suppose is a symbolic
function defined as follows:

The composition of and is denoted by such that

and for every in

Suppose is a symbolic function such that

for

The composition of symbolic functions is
defined as

and for every in

The processing of input strings of variable length (of the
sort needed in lexical analysis and parsing) can be handled
by composite functions , ,
and in the proposed modular neural
architecture, where denotes the set of all strings over
the alphabet Here, function denotes the processing
of input strings of variable length by a parser or a lexical
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analyzer; function denotes the recursive evaluation of input
strings of variable length by the extended transition function
of a DFA; and function denotes the recursive parsing of
syntactically tagged input tokens by the extended transition
function of an LR(1) parser. The functions and that
process input strings of variable length can be composed using
symbolic functions output selector function, and string
concatenation function by recursion on the length of the input
string (see Section III-A for an example). Other recursive
symbolic functions can also be composed using composition
and recursion. We do not delve into recursion any further. The
interested reader is referred to [71], [80], and [104] for details.

The operation of a desired composite function on its sym-
bolic input (string) is fully characterized analytically in terms
of its component symbolic functions on their respective sym-
bolic inputs and outputs. The component symbolic functions
are either composite functions of other symbolic functions or
primitive symbolic functions which are realized directly by
BMP modules. This makes it possible to systematically (and
probably correctly) synthesize any desired symbolic function
using BMP modules. (Such designs often require recurrent
links for realizing recursive functions such as the extended
transition function of a DFA or a more complex recursive
function for the LR parser as we shall see later).

III. N EURAL-NETWORK AUTOMATA

This section reviews the synthesis of a neural-network
architecture for a finite state machine [8].

A. Deterministic Finite Automata (DFA)

A deterministic finite automaton(finite-state machine) is a
5-tuple [36], where is a finite
nonempty set ofstates, is a finite nonemptyinput alphabet,

is the initial state, is the set offinal or
accepting states, and is the transition function.
A finite automaton is deterministic if there is at most one
transition that is applicable for each pair of state and input
symbol.

The extended transition functionof a DFA with transition
function is a mapping from to defined by recursion
on the length of the input string as follows.

• Basis: where is empty string.
• Recursive step: for all input

symbols and strings

The computation of the machine in state with
string halts in state The evaluation of the function

simulates the repeated application of the transition
function required to process the stringfrom initial state
A string is accepted by if ; otherwise
it is rejected. The set of strings accepted by is denoted
as , called the languageof

A Mealy machineis a DFA augmented with an output func-
tion. It is defined by a 6-tuple
[36], where and are as in the DFA is
a finite nonemptyoutput alphabet, and is output function
mapping from to is the output associated with

the transition from state on input symbol The output of
responding to input string is output string

where is the
sequence of states such that for

B. NN Deterministic Finite Automata (NN DFA)

A partially recurrent neural-network architecture can be
used to realize a DFA as shown in [8]. It uses a BMP module
to implement the transition function of a DFA.

• In the BMP module, the input neurons are divided into
two sets. One set of input neurons has no recurrent
connections and receives the binary coded current input
symbol. There are such input neurons.
(Here denotes the integer ceiling of a real value).
The second set has input neurons
and holds the current state (coded in binary). Each input
neuron in this set has a recurrent connection from the
corresponding output neuron.

• The output neurons together hold the next state (coded in
binary). There are output neurons.

• Every transition is represented as an ordered pair of
binary codes. For each such ordered pair, a hidden
neuron is used to realize the ordered pair in terms of
binary mapping. Thus the number of required hidden
neurons equals the number of valid transitions in the
transition function. For example, suppose

is a valid transition, and as well as are
encoded as binary codes such that

and where
for and Then the

transition is represented as a binary mapping
ordered pair im-
plemented by a BMP module (See Section II-B for de-
tails).

• An explicit synchronization mechanism is used to sup-
port the recursive evaluation of the extended transition
function on input string of variable length. Note that
maps from to

The transitions of a DFA can be represented as a two-
dimensional table with current state and current input symbol
as indexes. The operation of such a DFA involves repetitive
lookup of the next state from the table using current state
and current input symbol at each move until an error state
or an accepting state is reached. Such a repetitive table
lookup process involves content-based pattern matching and
retrieval wherein the indexes of the table are used as input
patterns to retrieve the next state. This process can exploit
the massively parallel associative processing capabilities of a
neural associative memory.

IV. NEURAL-NETWORK DESIGN FOR A STACK (NNStack)

The capability of DFA is limited to recognition and pro-
duction of the set of regular languages, the simplest class of
languages in Chomsky hierarchy [36]. The capability of DFA
can be extended by adding astack. The resulting automata can
recognize the set of DCFL, a more complex and widely used
class of languages in Chomsky hierarchy [36]. A stack can be
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coded as a string over a stack alphabet, with its top element at
one end of the string and its bottom element at the other end.

and are the main actions of a stack. These actions
can be performed by a DFA which is augmented with memory
to store stack symbols which are accessed sequentially using
a stack top pointer(SP) which points to the top symbol of a
stack. The stack top pointer is maintained by the current state
of the DFA, and the current action of the stack by the input
to the DFA.

A. Symbolic Representation of Stack

Let be the set of possible
stack actions, the set of possible stack configurations
(contents), the set of stack symbols,
the set of possible positions of stack top pointer, andthe
maximal depth (capacity) of a given stack. Let be stack
bottom symbol and denote the stack configuration after
a stack symbol is pushed onto a stack which has the
configuration An empty stack only contains the stack bottom
symbol Note that and ,
where denotes the number of stack symbols in the stack
configuration and denotes the concatenation of two symbol
strings. Assume that the value of stack top pointer does not
change on a action, and it is incremented on a

action and decremented on a action. The operation of
a stack can be characterized by the symbolic function ,
where

defined by

if and
and

otherwise

if and for
some and some
and and

otherwise

if and
otherwise

where stands for a Suppose
Then, and

The retrieval of stack
top symbol can be characterized by the symbolic function

where

defined by

if and
if and

for some
and some ; and

and
otherwise.

For example, and

Fig. 2. A neural-network architecture for stack mechanism. The dotted box
labeled withpointer(t + 1) exists only logically but not physically. Apush
stack action enables thewrite control moduleto write stack symbol into the
stack memory module.

B. Architecture of NNStack

This section discusses the neural-network realization of a
stack in terms of symbolic functions and A design
for NNStack obtained by adding awrite control moduleto
an NN DFA is shown in Fig. 2. (The use of such a circuit
might be considered by some to be somewhat unconventional
given the implicit assumption of lack of explicit control in
many neural-network models. However, the operation of most
existing neural networks implicitly assumes at least some
form of control. Given the rich panoply of controls found in
biological neural networks, there is no reason not to build
in a variety of control and coordination structures into neural
networks whenever it is beneficial to do so [33]). NNStack has
an -bit binary output corresponding to the element popped
from the stack, and four sets of binary inputs:

• Resetwhich is a 1-bit signal which resets (t)
(current SP) to point to the bottom of the stack at the
beginning.

• Synchronization controlwhich is a 1-bit signal that syn-
chronizes NNStack with the discrete-time line, denoted
by

• Action code which is a 2-bit binary code so that

a) 01 denotespush .
b) 10 denotespop .
c) 00 denotesno action .

• Stack symbolwhich is an -bit binary code for the symbol
to be pushed onto or popped off a stack during a stack
operation.

NNStack consists of apointer control module, a stack
memory module, a write control moduleand twobuffers. The
first buffer stores current SP value ( (t)) and the second
stores the current stack action ( ). In Fig. 2, the dotted
box labeled with (t 1) exists only logically but not
physically, and (t) and (t 1), respectively,
denote SP before and after a stack action. SP is coded into an

-bit binary number.
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Pointer Control Module: The pointer control module
(BMP 1) realizes a symbolic function
and controls the movement of SP which is incremented
on a push and decremented on apop . For example,

and The
pointer control module uses input, hidden,
and output neurons. of the input neurons represent

(current SP value), and the remaining two input
neurons encodes the stack action. There arepossible SP
values. The output neurons represent (t 1) (the
SP value after a stack action). Each change in SP value can
be realized by a binary mapping (with one hidden neuron per
change). Since “no action ” is one of legal stack actions,

hidden neurons are used in the pointer control module.
Stack Memory Module:The stack memory module (BMP

2) realizes the symbolic function It uses input neu-
rons, output neurons, and hidden neurons which together
allow storage of stack symbols at SP positions. The
stack symbols stored in stack memory module are accessed
through (t 1) (the output of the pointer control
module). Note that the BMP 2 module uses its second-layer
connections associated with a hidden neuron to store a symbol
[8], [9].

Write Control Module: The write control module (plus
BMP 2) realizes a symbolic function

An example for the computation of
is Physically, it receives

binary inputs from the buffer labeled with (t)
(denoting current SP), 1 binary input from the second output
line of the buffer labeled withpush/pop (denoting current
stack action), and binary inputs (denoting the stack symbol
to be pushed onto the stack) from environment. BMP 2 (stack
memory module) is used to store current stack configuration.
The module does nothing when apop is performed. The
dotted output lines from the write control module write the

-bit binary-coded stack symbol into of the second-layer
connections associated with a corresponding hidden neuron in
the stack memory module when apush is performed. The
hidden neuron and its associated second-layer connections
are located by using current SP value (t)). (The
processing of stackoverflow and underflow is not discussed
here. It has to be taken care of by appropriate error handling
mechanisms).

Timing Considerations:The proposed design for NNStack
shown in Fig. 2 is based on the assumption that the write
control module finishes updating the second-layer connection
weights associated with a hidden neuron of BMP 2 before the
signals from BMP 1 are passed to BMP 2 during apush stack
action. If this assumption fails to hold, the original design
needs to be modified by adding: links from input stack
symbol (buffer) to output stack symbol (buffer); an inhibition
latch, which is activated by the leftmost output line of the
push/pop buffer, on the links to inhibit signal passing from
input stack symbol (buffer) to output stack symbol (buffer) at
a pop operation; a second inhibition latch, which is activated
by the rightmost output line of thepush/pop buffer, between
BMP 1 and BMP 2 to inhibit signal transmission between these
two modules at apush operation.

Fig. 3. The inputs and outputs of the neural modules in the NN Stack which
computesfStack( ; ;? ; 2) = (? ; 3) andfTop(? ; 3) = :

C. NNStack in Action

This section symbolically illustrates how the modules of
NNStack together realize a stack by considering several suc-
cessive stack actions. The Appendix shows how the modules
realize a stack in terms of binary codings. Symbolic function

is a composition of symbolic functions and
s.t.

Fig. 3 shows the inputs
and outputs of the neural modules in an NN Stack which com-
putes and aba ,
3) a. Consider the following sequence of stack operations:

1) At time suppose the value of stack top pointer
(current SP value) is four and the stack action to be
performed is apush on a stack symbola. Let
be current stack configuration. Then, the new stack
configuration after thispush action is , and
the new stack top symbol isa. At this time step,
NNStack computes
and i.e., we have the following.

2) The pointer control module computes

3) The write control module (plus stack memory module)
computes

4) The stack memory module computes
5) At time , suppose the stack action to be

performed is apush on a stack symbolb. Then, the new
stack configuration after thispush action is
and the new stack top symbol is At this time step,
NNStack computes

and i.e.,

A) the pointer control module computes

B) the write control module (plus stack memory
module) computes

, and
C) the stack memory module computes
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Fig. 4. The simplified state diagram of a DFA which recognizes keywords:
begin, end, if, then , and else .

6) At time , suppose the stack action to be
performed is apop . Then, the new stack configuration
after this pop action is , and the new stack
top symbol isa. At this time step, NNStack computes

and
i.e., we have the following.

A) the pointer control module computes
.

B) the write control module does nothing.
C) the stack memory module computes

V. NEURAL-NETWORK DESIGN FOR

A LEXICAL ANALYZER (NNLexAn)

A lexical analyzer carves a string of characters into a string
of words and translates the words into syntactically tagged
lexical tokens. The computation of a lexical analyzer can be
defined by a recursive symbolic function

is the input alphabet, $ is a special symbol denoting
“end of input,” and is the set of lexical tokens. (or

denote the set of strings obtained by adding the suffix
$ to each of the strings over the alphabets(or The
syntactically tagged tokens are to be used as single logical
units in parsing. Typically, the tokens are of fixed length
to simplify the implementation of parsing algorithms and to
enhance the performance of the implemented parsers. The
conventional approach to implementing a lexical analyzer
using a DFA (in particular, a Mealy machine) can be realized
quite simply using an NN DFA [8].

However, a major drawback of this approach is that all legal
transitions have to be exhaustively specified in the DFA. For
example, Fig. 4 shows a simplified state diagram without all
legal transitions specified for a lexical analyzer which recog-
nizes keywords of a programming language:begin, end,
if, then , andelse . Suppose the lexical analyzer is in a
state that corresponds to the end of a keyword. Then its current
state would be state7, 11, 15, 18, or 23. If the next input
character isb, there should be legal transitions defined from
those states to state2. That is the same for states8, 16and19 in
order to handle the next input characters and Thus, this
extremely simple lexical analyzer with 22 explicitly defined

Fig. 5. The state diagram of a DFA which simulates a simple word segmenter
carving continuous input stream of characters into words including integer
constants, keywords and identifiers. Both the keywords and identifiers are
strings of English characters.

legal transitions has 20 unspecified transitions. The realization
of such a simple five-word (23-state) lexical analyzer by an
NN DFA requires hidden neurons. Additional
transitions have to be defined in order to allow multiple blanks
between two consecutive words in the input stream, and for
error handling. These drawbacks are further exacerbated in
applications involving languages with large vocabularies.

A better alternative is to use a dictionary (or a database) to
serve as a lexicon. The proposed design for NNLexAn consists
of a word segmenterfor carving an input stream of characters
into a stream of words, and aword lookup tablefor translating
the carved words of variable length into syntactically tagged
tokens of fixed length. Such a translation can be realized
by a simple query to a database using a key. Such database
query processing can be efficiently implemented using neural
associative memories [10].

A. Neural-Network Design for a Word Segmenter (NNSeg)

In program translation, the primary function of a word
segmenter is to identifyillegal wordsand to group input stream
into legal words including keywords, identifiers, constants,
operators, and punctuation symbols. A word segmenter can be
defined by a recursive symbolic function

where is the input alphabet, $ is a special symbol
denoting “end of input,” and is the set of legal words.
(or denotes the set of strings obtained by adding the
suffix $ to each of the strings over the alphabets(or

Fig. 5 shows the state diagram of a DFA simulating a
simple word segmenter which carves continuous input stream
of characters into integer constants, keywords, and identifiers.
Both the keywords and identifiers are defined as strings of
English characters. For simplicity, the handling ofend-of-input
is not shown in the figure. The word segmenter terminates
processing upon encountering the end-of-input symbol. Each
time when the word segmenter goes into an accepting state, it
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instructs the word lookup table to look up a word that has been
extracted from the input stream and stored in a buffer. Any
unspecified transition goes to statewhich identifies illegal
words. State 1 is initial state. The state 2 in dotted circle is
identical to state 2 in solid-line circle and that is same for state
4 (it is drawn in this way to avoid clutter).

Since syntax error handling is not discussed here, it may
be assumed that any illegal word is discarded by the word
segmenter and is also discarded from the buffer which tem-
porarily stores the illegal word being extracted from the input
stream. Such a word segmenter can also be realized by an
NN DFA. Since any undefined (unimplemented) transition
moves into a binary-coded state of all zeros automatically in
an NN DFA, it would be expedient to encode the garbage
state (state G in Fig. 5) using a string of all zeros. Although
the most straightforward implementation of NN DFA [8] (also
see Section III-B) uses one hidden neuron per transition, one
can do better. In Fig. 5 the ten transitions from state 4 on
ASCII-coded input symbols can be realized by
only two hidden neurons in an NN DFA usingpartial pat-
tern recognition[9], [10]. Other transitions on input symbols

and A, B, , Z can be handled in a
similar fashion.

B. Neural-Network Design for a Word Lookup Table (NNLTab)

During lexical analysis in program compilation or similar
applications, each word of variable length (extracted by the
word segmenter) is translated into atoken of fixed length.
Each such token is treated as a single logical entity: an
identifier, a keyword, a constant, an operator or a punctuation
symbol. Such a translation can be defined by a simple
symbolic function
Here, and denote the same entities as in the
definition of and above. For example,

where and
keyword-token Note that the function
can be realized by a BMP module by way of exact match
and partial match [9]. In other lexical analysis applications,
a word may be translated into a token having two subparts:
category code denoting the syntactic category of a word and
feature code denoting the syntactic features of a word.

Conventional approach to doing such translation (dictionary
lookup) is to perform a simple query on a suitably organized
database (with the segmented word being used as the key).
This content-based pattern matching and retrieval process can
be efficiently and effectively realized by neural associative
memories. Database query processing using neural associative
memories is discussed in detail in [10] and is summarized
briefly in what follows. Each word and its corresponding token
are stored as an association pair in a neural associative mem-
ory. Each such association is implemented by a hidden neuron
and its associated connections. A query is processed in two
steps:identificationand recall. During the identification step,
a given word is compared to all stored words in parallel by the
hidden neurons and their associated first-layer connections in
the memory. Once a match is found, one of the hidden neurons
is activated to recall the corresponding token using the second-
layer connections associated with the activated hidden neuron.

Fig. 6. Neural networks for LR(1) parser. The dotted boxeslength, state,
action, rule, andstate(t+ 1) exist only logically but not physically. See text
for further explanation.

The time required for processing such a query is of the order of
20 ns (at best) to 100 ns (at worst) given the current CMOS
technology for implementation of artificial neural networks.
(The interested reader is referred to [10] for details).

VI. A M ODULAR NEURAL ARCHITECTURE

FOR LR PARSER (NNLR PARSER)

LR grammars generate the so-called deterministic
context-free languages which can be accepted by deterministic
push-down automata [36]. Such grammars find extensive
applications in programming languages and compilers. LR
parsing is a linear time table-driven algorithm which is widely
used for syntax analysis of computer programs [1], [7], [91].
This algorithm involves extensive pattern matching which
suggests the consideration of a neural-network implementation
using associative memories. This section proposes a modular
neural-network architecture (Fig. 6) for parsing LR(1)
grammars. LR parsers scan input from left to right and
produce a rightmost derivation tree by using lookahead of
unscanned input symbols. Since any LR(k) grammar for k

can be transformed into an LR(1) grammar [91], LR(1)
parsers are sufficient for practical applications [36].

An LR(1) grammar can be defined as
[36], where and are finite sets of variables

(nonterminals) and terminals respectively, is a finite set
of production rules, and is a special variable called
the start symbol. and are disjoint. Each production rule
is of the form where and
An LR(1) parser can be defined by a recursive symbolic
function , where in the
context), $ and are as in and denotes the set
of all sequences of production rules over the rule alphabet

Although corresponds in form to the recursive
symbolic function in Section V, it can not be realized
simply by a Mealy machine which implements This
is due to the fact that the one-to-one mapping relationship
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TABLE I
THE PARSE TABLE OF THE LR(1) PARSER FORGRAMMAR G1: THE SYMBOLS IN THE TOP ROW

ARE GRAMMAR SYMBOLS. THE SYMBOL � DENOTES A don’t care

between every input symbol of the input string and the output
symbol of the output string at corresponding position in a
Mealy machine does not hold for A stack is
required to store intermediate results of the parsing process
in order to realize an LR(1) parser which is characterized
by

A. Representation of Parse Table

Logically, an LR parser consists of two parts: a driver
routine which is the same for all LR parsers and a parse
table which is grammar-dependent [1]. LR parsing algorithm
precompiles an LR grammar into a parse table which is
referred by the driver routine for deterministically parsing
input string of lexical tokens byshift/reduce moves [1],
[7]. Such a parsing mechanism can be simulated by a DPDA
(deterministic pushdown automata) with-moves [36]. An -
move does not consume the input symbol, and the input head
is not advanced after the move. This enables a DPDA to
manipulate a stack without reading input symbols. The neural-
network architecture for DPDA (NN DPDA) proposed in [8],
augmented with an NNStack (see Section IV above), is able to
parse DCFL. However, the proposed NN DPDA architecture
cannot efficiently handle-moves because of the need to check
for the possibility of an -move at every state. Therefore, a
modified design for LR(1) parsing is discussed below.

Parse table and stack are the two main components of an
LR(1) parser. Parse table access can be defined by the symbolic
function

in terms of binary mapping.
Here, is the finite set of states; and have the
same meaning as in the definition of and
given above; is the set of parsing

actions; denotes adon’t care ; is the set of natural
numbers; and is the
set of possible parsing status values. Table I in Section VI-D
is such an example for a parse table.

A parse table can be realized using a BMP module as de-
scribed in Sections II-B and II-C in terms of binary mapping.
The next move of the parsing automaton is determined by
current input symbol and the state that is stored at the top of
the stack. It is given by the parse table entry corresponding to

Each such two-dimensional parse table entryaction
is implemented as a 6-tuple binary codeaction, state, rule,
length, lhs, statusin the BMP for parse table where

• action is a 2-bit binary code denoting one of two possible
actions, 01 (shift ) or 10 (reduce );

• stateis an -bit binary number denoting “the next state;”
• rule is an -bit binary number denoting the grammar

production rule to be applied if the consultedaction is
a reduce ;

• length is an -bit binary number denoting the length of
the right-hand side of the grammar production ruleto
be applied if the consultedaction is a reduce ;

• lhs is an -bit binary code encoding the grammar non-
terminal symbol at the left-hand side of the grammar
production rule to be applied if the consultedaction
is a reduce and

• statusis a 2-bit binary code denoting one of three possible
parsing statuscodes, 00:error, 01: in progress , or
10: accept (used by higher-level control to acknowl-
edge the success or failure of a parsing).

Note that the order of the tuple’s elements arranged in Fig. 6
is different from above. A canonical LR(1) parse table is rel-
atively large and would typically have several thousand states
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for a programming language like C. SLR(1) and LALR(1)
tables, which are far smaller than LR(1) table, typically have
several hundreds of states for the same size of language,
and they always have the same number of states for a given
grammar [1]. (The interested readers are referred to [7] for a
discussion of differences among LR, SLR, and LALR parsers).
The number of states in the parse table of LALR(1) parsers
for most programming languages is between about 200 and
450, and the number of symbols (lexical tokens) is around 50
[7], i.e., the number of table entries is between about 10 000
and 22 500.

Typically a parse table is realized as a two-dimensional array
in current computer systems. Memory is allocated for every
entry of the parse table, and the access of an entry is via its
offset in the memory, which is computed efficiently by the size
of the fixed memory space for each entry and the indexes of an
entry in the array. However, it is much more natural to retrieve
an entry in a table using content-based pattern matching on
the indexes of the entry. As described in Sections II-B and II-
C a BMP module can effectively and efficiently realize such
content-based table lookup.

LR grammars used in practical applications typically pro-
duce parse tables with between 80 and 95% undefined error
entries [7]. The size of the table is reduced by using lists
which can result in a significant performance penalty. The
use of a BMP module for such table lookup help overcome
this problem since undefined mappings are naturally realized
by a BMP module without the need for extra space and
without incurring any performance penalties. Thus, LALR(1)
parsing (which is generally the technique of choice for parsing
computer programs) table can be realized using at most about

hidden neurons.

B. Representation of Parse Tree and Parsing Moves

An LR parser scans input string from left to right and
performs bottom-up parsing resulting in a rightmost derivation
tree in reverse. Thus, a stack can be used to store theparse tree
(derivation tree) which is a sequence of grammar production
rules (in reverse order) applied in the derivation of the scanned
input string. The rule on top of the final stack which stores
a successfully parsed derivation tree is a grammar production
rule with thestart symbolof an LR grammar at its left-hand
side. Note that each rule is represented by an-bit binary
number and the mapping from a binary-coded rule to the rule
itself can be realized by a BMP module.

A configuration of an LR parser is an ordered pair
whose first component corresponds to the stack contents
and whose second component is the part of the input that
remains to be parsed. A configuration can be denoted by

where is the state on top of
the stack (current state), is the stack bottom symbol,
is current input symbol, and $ is a special symbol denoting
“end of input.” The initial configuration is
In the following, we use the example grammar and the
input lexical token string I I I $ in Section VI-
D for illustration, and binary and symbolic codes are used
interchangeably. Then, the initial configuration for the input
lexical string is I I I $). Let be a -bit binary

number (code) of all zeros denoting a value ofdon’t care
for In the proposed NNLR Parser, the configurations
resulting from one of four types ofmoveson parsing an input
lexical token are as follows.

• If action the parser
performs ashift move and enters the configuration

For example, for the parser
of with a current configuration I I I $), the
next configuration is ( I I $) sinceaction [ , I]

according to ’s parse table (Table I
in Section VI-D), where s denotesshift (coded as 01)
and i denotesin progress (coded as 01). Such a
shift move is realized in one cycle in the proposed
NNLR Parser.

• If action the parser performs
a reduce by producing a binary number (which
denotes a grammar production rule being applied,
where the grammar nonterminal is denoted by the
binary code , and is the number of nonempty grammar
symbols in as part of the parse tree, poppingsymbols
off the stack, consulting parse table entry and en-
tering the configuration where
action For example, for
the parser of with a current configuration
I I $), the parser first consults ’s parse table for
action where r denotesre-
duce (coded as 10). Then, the parser performs areduce
move, pushes production rule onto the stack which
stores parse tree, pops one state (which is off the
stack which stores states, and consults the parse table for
action where F is the left-hand side of production
rule Then, sinceaction the
parser performs ashift move and enters the new
configuration I I $). Such areduce move is
realized in two cycles in the proposed NNLR Parser since
the parse table is consulted twice for simulating the move.

• If action parsing is
completed.

• If action an error is
discovered and the parser stops. Note that such an entry
is a binary code of all zeros. (We do not discuss error
handling any further in this paper).

C. Architecture of an NNLR Parser

Fig. 6 shows the architecture of a modular neural-network
design for an LR(1) parser which takes advantage of the
efficient shift/reduce technique. The NNLR Parser uses
an optional queue handler module and an NN stack which
stores the parse tree (derivation tree). The queue handler
stores lexical tokens extracted by the NN lexical analyzer
and facilitates the operation of lexical analyzer and parser in
parallel. To extract the binary-coded grammar production rules
in derivation order sequentially out of the NN stack which
stores parse tree, the next processing unit connected to the
NN stack sends binary-coded stackpop actions to the stack
in an appropriate order.

Modules of the NNLR ParserThe proposed NNLR Parser
consists of a BMP module implementing the parse ta-
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ble, an NN shift/reduce stack storing states during
shift/reduce simulation, a buffer (state ) storing the
current state (from the top of the NNshift/reduce stack),
and a buffer (input(t) ) storing either current input lexical
token or a grammar nonterminal symbol produced by last
consulted parsing action which is areduce . When the last
consulted parsing action is areduce encoded as 10; the
grammar production rule to be reduced is pushed onto the
stack for parse tree, the transmission ofinput(t) is from
the latched bufferlhs, and the input from the queue mechanism
is inhibited by the leftmost bit of the binary-codedreduce
action. When the last consulted parsing action is ashift en-
coded as 01, the transmission ofinput(t) is from the queue
mechanism and the input from the latched bufferlhs is inhib-
ited by the rightmost bit of the binary-codedshift action.

Parsing is initiated by reset signals to the NN
shift/reduce stack and the NN stack storing parse
tree. The signals reset the SP’s of these two stacks to stack
bottom and hencestate(t) is reset to initial state. To
avoid clutter, the reset signal lines are not shown in Fig. 6.
The current state bufferstate(t) and the current input
buffer input(t) need to be synchronized but the necessary
synchronization circuit is omitted from Fig. 6.

The working of an LR parser can be viewed in terms of a
sequence of transitions from an initial configuration to a final
configuration. The transition from one configuration to another
can be divided into two steps: the first involves consulting the
parse table for next action using current input symbol and
current state on top of the stack; the second step involves
execution of the action—either ashift or a reduce —as
specified by the parse table. In the NNLR Parser, the first step
is realized by a BMP module which implements the parse table
lookup; and the second step is executed by a combination of
an NNshift/reduce stack which stores states, and an NN
stack which stores the parse tree (and a BMP module when
the next action is areduce ).

Complexity of the BMP Module for Parse Table:Let be
the number of definedaction entries in the parse table. All
grammar symbols are encoded into-bit binary codes. The
BMP module for parse table uses input neurons,
hidden neurons, and output neurons.
Note that the BMP module produces a binary output of all
zeros, denoting a parsing error (see previous description of
status code in anaction entry of the parse table), for any
undefinedaction entry in the parse table. The-bit binary-
coded grammar production rule is used as the stack symbol
for the NN stack which stores the parse tree.

Complexity of the NN Stack for Parse Tree:Assume the
pointer control module of the NN stack for parse tree use
bits to encode its SP values. Then the pointer control module
of the NN stack for parse tree uses input neurons,

hidden neurons, and output neurons. The stack
memory module uses input neurons, hidden neurons,
and output neurons. The write control module receives

binary inputs (the stack pointer +push/pop signal),
and binary inputs (the grammar production rule).

Complexity of the Shift/Reduce NN Stack:To efficiently
implement the reduce action in LR parsing, the NN

shift/reduce stack can be slightly modified from the NN
stack described in Section IV to allow multiple stackpops in
one operation cycle of the NNLR Parser. The number ofpops
is coded as an -bit binary number and equals the number
of nonempty grammar symbols at the right-hand side of the
grammar production rule being reduced. It is used as input to
the pointer control module and write control module in the
NN shift/reduce stack. Thus, the pointer control module
uses additional input neurons in the NNshift/reduce
stack as compared to the NNstack proposed in Section IV.
The -bit output from the NN parse table, namely, the-
bit binary code for state, is used as the stack symbol to the
NN shift/reduce stack. Let the maximum number of
nonempty grammar symbols that appear in the right-hand
side of a production rule in the LR grammar being parsed
be Then multiple pops are implemented in the NN
shift/reduce stack in a manner similar to a singlepop in
the NN stack proposed in Section IV except that the SP value
is decreased by instead of 1, where Hence for
each SP value, additional hidden neurons are required
to allow multiplepops in the pointer control module.

D. NNLR Parser in Action

This section illustrates the operation of the proposed NNLR
Parser to parse a given LR(1) grammar.

The Example Grammar:The example of LR(1) grammar
used here is taken from [1]. The BNF (Backus–Naur

Form) description of the grammar is as follows:

Using E, T, F, and I to denote expression, term, factor, and
identifier (respectively), these rules can be rewritten in the
form of production rules through

Production rule

Production rule

Production rule

Production rule

Production rule

Production rule

Then is the set of terminals (i.e., the set of
possible lexical tokens from the lexical analyzer),E, T, F
is the set of nonterminals, is the set of
production rules, and E is the start symbol of the grammar

The operation of the parser is shown in terms of symbolic
codes (instead of the binary codes used by the NN implemen-
tation) to make it easy to understand. Note however that the
transformation of symbolic codes into binary form used by
NNLR Parser is rather straightforward and has been explained
in the preceding sections.

The Example Parse Table:Let s and r denote the parsing
actionsshift andreduce and a, e, and i the parsing status
valuesaccept , error , and in progress , respectively.
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Fig. 7. The state diagram of the DFAML for the lexical analyzerL1:
When the DFA receives a $, it stops the processing of the input string.

The parse table of the LR(1) parser (more specifically, SLR(1)
parser) for grammar is shown in Table I.

The implementation and operations of the NN
shift/reduce stack and the NN stack for parse tree
follow the discussion and examples in Section IV and they
are not discussed here. The parse table can be represented
by a binary mapping which in turn can be easily realized
by a neural associative processor (see Section II for details).
Following the notation introduced in Section VI for the NN
realization of the parse table, we have: since there
are 45 defined entries in the parse table;
since there are 12 states; since there
are 8 grammar symbols plus anull symbol and an additional
end-of-inputsymbol $; since there are 6
production rules; and since the maximum
number of nonempty grammar symbols that appear in the
right-hand side of a production rule in the LR grammar is
3. Therefore, the BMP for parse table of has
input, 45 hidden, and output neurons.

The Example Lexical Analyzer:Assume every identifier I
is translated from a string of lower case English characters.
The lexical analyzer which translates input strings of

blank, and lower case English characters into
strings of lexical tokens can be realized by an NN DFA. Fig. 7
shows the simplified state diagram of the DFA for
Note that additional machinery needed for error handling is
not included in the DFA and when the DFA sees a $,
it stops the processing of the input string and appends a $ at
the end of the output string. The state 0 in the dotted circle is
identical to the state 0 in solid circle. To avoid clutter, some
transitions are not shown in the figure. For example, there are
transition from states 2, 4, 6, 8, and 10 to state 1 on current
input symbols a, b, z. Similarly, transitions from states 2,

TABLE II
THE TRANSITION FUNCTION �L OF THE DFA ML : THE ENTRIES THAT ARE

LEFT BLANK ARE UNDEFINED. THESE CORRESPOND TO THEERROR STATE

4, 6, 8, and 10 to state 3 (on state 5 (on state 7 (on
‘(’) and state 9 (on ‘)’) are not shown in the figure.

The transition function of the DFA is shown in
Table II. This function can be expressed as a binary mapping
which in turn can be easily realized by a neural associative
processor (see Section II for details). In the NN DFA, BMP
module 1 realizes the transition function and
BMP module 2 realizes a translation function s.t.

and (null symbol, which is discarded) for other
where is

the set of states, blank is the
input alphabet, and is the output alphabet
(i.e., the set of lexical tokens). The symbolic functions and

can be expressed as binary mappings which in turn can be
realized by neural associative processors (see Section II for
details).

The Operations of the Example NNLR Parser:Let us now
consider the operation of the LR(1) parser when it is presented
with the input string This string is first
translated by the lexical analyzer into a string of lexical
tokens I I I $ which is then provided to the LR(1)
parser. This translation is quite straightforward, given the state
diagram and transition function (Table II) of and its
translation function Note that there is aspace between
each pair of consecutive words in the character string, and
there is nospace token between each pair of consecutive
lexical tokens in the string of lexical tokens.

The string of lexical tokens is parsed by the LR(1) parser
whose moves are shown in Fig. 8. At step 1, the parse table
entry corresponding to I) is consulted. Its value is (s,

i). This results in shifting I and pushing state
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Fig. 8. Moves of the LR(1) parser for grammarG1 on input string I� I +
I. Note that the parse table is accessed twice for eachreduce action.

onto the shift/reduce stack. At step 2, the table
entry corresponding to is consulted first. Its value
is which indicates areduce on production
rule Therefore, production rule is pushed onto the
stack which stores parse tree, stateis popped off the stack
which stores states, and table entry corresponding toF)
is consulted next. The entry is which means
shifting F and pushing state onto the stack. Fig. 9 shows the
inputs and outputs of the neural modules in the NNLR Parser
when the NNLR Parser sees an input lexical tokenat state

The remaining steps are executed in a similar fashion. At
the end of the moves (step 14), the sequence of production
rules stored on the stack for parse tree can be applied in
reverse order to derive the string I I I from grammar
start symbol E.

VII. PERFORMANCE ANALYSIS

This section explores the performance advantages of the
proposed neural-network architecture for syntax analysis in
comparison with that of current computer systems that employ
inherently sequential index or matrix structure for pattern
matching. The performance estimates for the NNLR Parser
assume hardware realization based on current CMOS VLSI
technology. In the analysis that follows, it is assumed that the
two systems have comparable input–output (I/O) performance
and error handling capabilities.

A. Performance of Hardware Realization of the NNLR Parser

Electronic hardware realizations of ANN have been ex-
plored by several authors [22], [23], [26], [47], [0], [51],
[59], [78], [98], [101]. Such implementations typically employ

CMOS analog, digital, or hybrid (analog/digital) electronic
circuits. Analog circuits typically consist of processing ele-
ments for multiplication, summation and thresholding. Analog
CMOS technology is attractive for realization of ANN because
it can yield compact circuits that are capable of high-speed
asynchronous operation [21]. Reference [98] reports a mea-
sured propagation delay of 104 ns in a digital circuit with each
synapse containing an 8-bit memory, an 8-bit subtractor, and
an 8-bit adder. Reference [98] reports throughput at the rate
of 10MHz (or equivalently, delay of 100ns) in a Hamming
Net pattern classifier using analog circuits. Reference [23]
describes a hybrid analog-digital design with 5-bit (4 bits

sign) binary synapse weight values and current-summing
circuits that is used to realize a 2-layer feedforward ANN with
a network computation delay of less than 20 ns.

The first- and second-layer subnetworks of the proposed
BMP neural architecture are very similar to the first-layer
subnetwork of a Hamming Net. BMP architecture with two
layers of connection weights is same as that implemented
by [50] except that the latter uses integer input values, 5-
bit synaptic weights, one output neuron, and sigmoid-like
activation function whereas BMP uses binary input values,
synaptic weights from multiple output neurons,
and binary hardlimiter as activation function. Hence the com-
putation delay of BMP module implemented using current
CMOS technology can be expected to be at best of the order
of 20 ns. It is worth noting that development of specialized
hardware for implementation of ANN is still in its infancy.
Conventional CMOS technology which is probably the most
common choice for VLSI implementation of ANN at present,
is very likely to be improved by newer technologies such as
BiCMOS, NCMOS [42], pseudo-NMOS logic, standard N-P
domino logic, and quasi N-P domino logic [48].

B. Performance of Syntax Analysis Using
Conventional Computers

To simplify the comparison, it is assumed that each instruc-
tion on a conventional computer takesns on an average. For
instance, on a relatively cost-effective 100 MIPS processor, a
typical instruction would take 10 ns to complete. (The MIPS
measure for speed combines clock speed, effect of caching,
pipelining and superscalar design into a single figure for speed
of a microprocessor). Similarly, we will assume that a single
identification and recall operation by a neural associative
memory takes ns. Assuming hardware implementation based
on current CMOS VLSI technology, ns.

Syntax analysis in a conventional computer typically in-
volves: lexical analysis, grammar parsing, parse tree construc-
tion and error handling. These four processes are generally
coded into two modules [1]. Error handling is usually em-
bedded in grammar parsing and lexical analysis respectively,
and parse tree construction is often embedded in grammar
parsing. The procedure for grammar parsing is the main
module. In single-CPU computer systems, even assuming
negligible overhead for parameter passing, a procedure call
entails, at the very minimum, (1) saving the context of
the caller procedure and activation of the callee procedure
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Fig. 9. The inputs and outputs of the neural modules in the NNLR Parser when the NNLR Parser sees an input lexical token� at stateq5:

which typically requires six instructions [49]; and (2) context
restoration and resumption of caller procedure upon the return
(exit) of the callee procedure, which typically requires at least
three instructions [49]). Thus, a procedure call entails a penalty
of nine instructions or about ns.

Performance Analysis of Lexical Analyzer:Lexical analy-
sis can be performed by a DFA whose transitions can be
represented as a two-dimensional table with current state and
current input symbol as indexes. The continuous transition
moves of such a DFA involve repetitive lookup of the next
state from the table using current state and current input
symbol at each move until an error state or an accepting state
is reached. Such a repetitive table lookup involves content-
based pattern matching and retrieval which can be performed
more efficiently by neural memories.

Each entry of the DFA transition table implemented on
conventional computers contains three parts: the next state;
a code which tells whether the next state is an accepting state,
an error state, or neither; and the lexical token to use if the next
state is an accepting state. Implementing such a repetitive table
lookup on conventional computers requires, at a minimum, six
instructions: one (or two) multiplication and one addition to
compute the offset in the transition table (to access the location
where next state is stored), one memory access to fetch the
next state from the table, one addition to compute the offset
of the second part in the transition table (based on the known
offset of the first part), one memory access to fetch the second
part from the table, and one branch-on-comparison instruction
to jump back to the first instruction of the loop if the next
state is neither an error state nor an accepting state. (Note that
this analysis ignores I/O processing requirements). Thus, each
state transition takes six instructions or ns.

In contrast, the proposed NN architecture for lexi-
cal analyzer computes the next state using associative

(content-addressed) patternmatching-and-retrievalin a single
identification-and-recallstep of a BMP module. In the two-
dimensional table, the values of the two indexes for an entry
provide a unique pattern—theindex pattern, for accessing
the table entry. In the BMP module, each index pattern and
the corresponding entry are stored as an association pair by
a hidden neuron and its associated connections. The BMP
module performs a table lookup in two steps:identification
and recall. In the identification step, a given index pattern is
compared to all stored index patterns in parallel by the hidden
neurons and their associated first-layer connections. Once a
match is found, one of the hidden neurons will be activated
to recall the associated entry value using the second-layer
connections associated with the activated hidden neuron.

In program compilation, a segmented word is translated into
a syntactically tagged token when the DFA for lexical analysis
enters an accepting state. On conventional computers, this
translation step costs, at the very minimum, three instructions
(or ns): one addition to compute the offset of the third
part in the transition table (based on the known offset of the
first part), one memory access to fetch the lexical token from
the table, and one branch instruction to jump back to the first
instruction of the loop for carving next word.

In other syntax analysis applications that involve large
vocabularies, a database lookup is typically used to translate a
word into a syntactically tagged token. In this case, depending
on the size of the vocabulary and the organization of the
database, it would generally take more than several hundred
nanoseconds (ns) to perform this translation. (The interested
reader is referred to [8] for a comparison of database query
processing using neural associative memories as opposed to
conventional computers).

A BMP module is capable of translating a carved word
into a token as described in Section II-B in a single cycle of
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identification-and-recallwith a time delay of ns. Note that
this step can be pipelined (see the NNLR Parser in action in
Section VI-D).

In summary, if we assume the average length of words
in input string being symbols and we ignore I/O, error
handling and the overhead associated with procedure calls,
it would take ns on average to perform lexical
analysis of a word on a conventional computer. In contrast,
it would take ns using the proposed NN lexical
analyzer. This analysis ignores I/O and error handling. For
example, assuming a 100 MIPS conventional computer

ns), and current CMOS VLSI implementation of neural
associative memories ns), with , then the
former takes 330 ns and the latter 120 ns.

Performance Analysis of LR Parser:LR parsing also in-
volves repetitive table lookup which can be performed effi-
ciently by neural associative memories. LR parser is driven
by a two-dimensional table (parse table) with current state
and current input symbol as indexes. Once a next state is
retrieved, it is stored on a stack and is used as the current state
for the next move. Parsing involves repetitive application of
a sequence ofshift and reduce moves. Ashift move
would take at least six instructions, or equivalently ns on
a conventional computer. This includes three instructions to
consult the parse table, one instruction to push the next state
onto the stack, one instruction to increment the stack pointer,
and one instruction to go back to the first instruction of the
repetitive loop for next move. Areduce move involves a
parse table lookup, apop of the state stack, apush to store
a rule onto the stack for parse tree, and ashift move. Thus,
a reduce would take at least instructions,
or equivalently ns, on a conventional computer.

In the proposed NNLR Parser, the computation delay con-
sists of the delays contributed by the operation of the two
NNStacks and the BMP module which stores the parse table.
An NNStack consists of two BMP modules, one of which is
augmented with a write control module. Assuming that the
computation delay of an NN stack is roughly equal to that
of two sequentially linked BMP modules ( ns), ashift
move (which takes one operation cycle of the NNLR Parser)
and areduce move (which takes two operation cycles of the
NNLR Parser) would consume ns and ns, respectively.
(This analysis ignores the effect of queuing between the NNLR
Parser and the NN lexical analyzer).

Assuming that the average length of words in input string be
symbols, and ignoring I/O, error handling and the overhead

associated with procedure calls, parsing a word (a word has
to be translated into a lexical token by lexical analysis first)
by shift andreduce moves would take ns and

ns, respectively, on a conventional computer.
In contrast, because the NNLR Parser and NN lexical

analyzer can operate in parallel,shift and reduce moves
take ns or ns (whichever is larger) and ns or

ns (whichever is larger) respectively on the NNLR
Parser.

Thus, as shown in Table III, for typical values of and
the proposed NNLR Parser offers a potentially attractive

alternative to conventional computers for syntax analysis.

TABLE III
A COMPARISON OF THEESTIMATED PERFORMANCE OF THEPROPOSEDNNLR

PARSER WITH THAT OF CONVENTIONAL COMPUTER SYSTEMS FORSYNTAX

ANALYSIS. W IS THE AVERAGE NUMBER OF SYMBOLS IN A WORD, � IS THE

COMPUTATION DELAY OF A BMP MODULE, AND � IS THE AVERAGE TIME DELAY

FOR EXECUTION OF AN INSTRUCTION IN CONVENTIONAL COMPUTER SYSTEMS

It should be noted that the preceding performance compar-
ison has not considered alternative hardware realizations of
syntax analyzers. These include hardware implementations of
parsers using conventional building blocks used for building
today’s serial computers. We are not aware of any such imple-
mentations although clearly, they can be built. In this context it
is worth noting that the neural architecture for syntax analysis
proposed in this paper makes extensive use of massively
parallel processing capabilities of neural associative processors
(memories). It is quite possible that other parallel (possibly
nonneural-network) hardware realizations of syntax analyzers
offer performance that compares favorably with that of the
proposed neural-network realization. We can only speculate
as to why there appears to have been little research on parallel
architectures for syntax analysis. Conventional computer sys-
tems employ inherently sequential indexes or matrix structures
for the purpose of table lookup during syntax analysis. A possi-
ble hardware implementation of syntax analyzers which avoids
the burden of using sequential indexes and matrix structures
for table lookup would be to use content-addressable memories
for table lookup. Such an implementation would be similar to
the proposed neural architecture which is synthesized from
neural associative memories. Historically, research in high
performance computing has focused primarily on speeding up
the execution of numeric computations, typically performed
by programs written in compiled languages such as C and
FORTRAN. In such applications, syntax analysis is done
during program compilation which is relatively infrequently
compared to program execution. The situation is quite different
in symbol processing (e.g., knowledge based systems of AI,
analysis of mathematical expressions in software designed
for symbolic integration, algebraic simplification, theorem
proving) and interactive programming environments based on
interpreted programming languages (e.g., LISP, JAVA). Mas-
sively parallel architectures for such tasks are only beginning
to be explored.

VIII. SUMMARY AND DISCUSSION

Traditional AI and ANN’s offer two apparently disparate
approaches to modeling and synthesis of intelligent systems.
Each provides natural ways of performing certain tasks (e.g.,
logical inference in the case of AI systems, pattern recognition
in the case of ANN) and thus poses a challenge for the other
of doing the same task perhaps more efficiently, elegantly,
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robustly, or cost-effectively than the other. Each of them relies
on essentially equivalent formal models of computation. They
differ from each other in terms of their (implicit and often
unstated) assumptions regarding the computational architec-
ture and the primitive building blocks used to realize the
desired behaviors. This places the two approaches in different
regions of a vast (and as yet, unexplored) space of possible
designs for intelligent systems. We believe that a judicious and
systematic exploration of this design space, by (among other
things) examining alternative designs for specific tasks (e.g.,
inference, syntax analysis, pattern recognition) is central to the
enterprise of analysis and synthesis of intelligent systems.

Against this background, this paper explores the design of
a neural architecture for syntax analysis of languages with
known (a priori specified) grammars. Syntax analysis is a
prototypical symbol processing task with a diverse range of
applications in artificial intelligence, cognitive modeling, and
computer science. Examples of such applications include:
language interpreters for interactive programming environ-
ments using interpreted languages (e.g., LISP, JAVA), parsing
of symbolic expressions (e.g., in real-time knowledge based
systems, database query processing, and mathematical problem
solving environments), syntactic or structural analysis of large
collections of data (e.g., molecular structures, engineering
drawings, etc.), and high-performance compilers for program
compilation and behavior-based robotics. Indeed, one would
be hard-pressed to find a computing application that does
not rely on syntax analysis at some level. The need for
syntax analysis in real time calls for novel solutions that can
deliver the desired performance at an affordable cost. Artificial
neural networks, due to their potential advantages for real-
time applications on account of their inherent parallelism [81],
offer an attractive approach to the design of high performance
syntax analyzers.

The proposed neural architecture for syntax analysis is
obtained through systematic and provably correct composition
of a suitable set of component symbolic functions which are
ultimately realized using neural associative processor mod-
ules. The neural associative processor is essentially a 2-
layer perceptron which can store and retrieve arbitrary binary
pattern associations [9]. Since each component in the proposed
neural architecture computes a well-defined symbolic function,
it facilitates the systematic synthesis as well as analysis
of the desired computation at a fairly abstract (symbolic)
level. Realization of the component symbolic functions using
neural associative processors allows one to exploit massive
parallelism to support applications that require syntax analysis
to be performed in real time.

The proposed neural network for syntax analysis is capable
of handling sequentially presented character strings of variable
length, and it is assembled from neural-network modules
for lexical analysis, stack processing, parsing, and parse tree
construction. The neural-network stack can realize stacks of
arbitrary depths (limited only by the number of neurons avail-
able). The parser outputs the parse tree resulting from syntax
analysis of strings from widely used subsets of deterministic
context-free languages (i.e., those generated by LR grammars).
Since logically an LR parser consists of two parts: a driver

routine which is the same for all LR parsers, and a parse
table which varies from one application to the next [2], the
proposed NNLR Parser can be used as a general-purpose
neural architecture for LR parsing.

It should be noted that the paper’s primary focus was
on taking advantage of massive parallelism and associative
pattern storage, matching, and recall properties of a particular
class of neural associative memories in designing high per-
formance syntax analyzers fora priori specified grammars.
Consequently, it has not addressed several other potential
advantages of neural-network architectures for intelligent sys-
tems. Notable among these are inductive learning and fault
tolerance.

Machine learning of grammars or grammar inference is a
major research topic which has been, and continues to be,
the subject of investigation by a large number of researchers
in artificial intelligence, machine learning, syntactic pattern
recognition, neural networks, computational learning theory,
natural language processing, and related areas. The interested
reader is referred to [34], [44], [54], and [70] for surveys of
grammar inference in general and to [3], [5], [11], [16], [18],
[17], [29], [37], [39], [55], [60], [61], [64], [66], [82], [84],
[87], [93], and [102]–[104] for recent results on grammar infer-
ence using neural networks. The neural architecture for syntax
analysis that is proposed in this paper does not appear to lend
itself to use in grammar inference using conventional neural-
network learning algorithms. However, its use in efficient
parallel implementations of recently developed symbol pro-
cessing algorithms for regular grammar inference and related
problems [68], [69] is currently under investigation.

Fault tolerance capabilities of neural architectures under
different fault models (neuron faults, connection faults, etc)
have been the topic of considerable research [9], [86], [96] and
are beyond the scope of this paper. However, it is worth noting
that the proposed neural-network design for syntax analysis
inherits some of the fault tolerance capabilities of its primary
building block, the neural associative processor. The interested
reader is referred to [9] for details.

It is relatively straightforward to estimate the cost and
performance of the proposed neural architecture for syntax
analysis based on the known computation delays associated
with the component modules (using known facts or a suitable
set of assumptions regarding current VLSI technology for
implementing the component modules). Our estimates suggest
that the proposed system offers a systematic and provably
correct approach to designing cost-effective high-performance
syntax analyzers for real-time syntax analysis using known (a
priori specified) grammars.

The choice of the neural associative processors as the
primary building blocks for the synthesis of the proposed
neural architecture for syntax analysis was influenced, among
other things, by the fact that they find use in a wide range of
systems in computer science, artificial intelligence, and cog-
nitive modeling. This is because associative pattern matching
and recall is central to pattern-directed processing which is
at the heart of many problem solving paradigms in AI (e.g.,
knowledge-based expert systems, case based reasoning) as
well as computer science (e.g., database query processing, in-
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formation retrieval). As a result, design, VLSI implementation,
and applications of associative processors have been studied
extensively in the literature [9], [10], [30], [38], [41], [45],
[53], [62], [63], [77], [79]. Conventional computer systems
employ inherently sequential index or matrix structure for
the purpose of table lookup which entails a process pattern
matching. The proposed neural associative memory [9] can
compare a given input pattern with all stored memory patterns
in parallel. Therefore, it can serve as a cost-effective SIMD
(single instruction, multiple data) computer system which is
dedicated to massively parallel pattern matching and retrieval.
The neural-network architecture for syntax analysis proposed
in this paper demonstrates the versatility of neural associative
processors (memories) as generic building blocks for sys-
tematic synthesis of modular massively parallel architectures
for symbol processing applications which involves extensive
table lookup. A more general goal of this paper is to explore
the design of massively parallel architectures for symbol
processing using neural associative memories (processors) as
key components. This paper takes a small step in this direction
and adds to the growing body of literature [20], [34], [46], [95]
that demonstrates the potential benefits of integrated neural-
symbolic architectures that overcome some of the limitations
of today’s ANN and AI systems.

APPENDIX

This Appendix illustrates how the modules of an NNStack
together realize a stack by considering several successive stack
actions in terms of binary codings. The notations used here
follow Section IV. Let and stack symbols be encoded
into 8-bit ASCII codes. Then there are 64 possible SP values
and Let and , respectively, denote the first-layer
connection weight from input neuronto hidden neuron and
the second-layer connection weight from hidden neuronto
output neuron in the pointer control module. Then

and Let and , respectively,
denote the first-layer connection weight from input neuron
to hidden neuron and the second-layer connection weight
from hidden neuron to output neuron in the stack memory
module. Then , and Let

denote SP value at time

1) At time suppose
and the stack action to be performed is apush on
a stack symbol Let

be the 8-bit binary code denoting
the current stack symbol to be pushed. Then

and other ’s are 0. Let be the stack
configuration at time This time step computes a stack
push action with
and Before the execution of the
push action (encoded as ,

; and after thepush action,

a) Symbolically, the pointer control module com-
putes In the pointer
control module, the mapping from binary input

to binary output is done

by the 13th ( 4) hidden neuron
and its associated connections. Note that the two
rightmost bits of the binary input together denote a
stack actionpush , the six leftmost bits together
denote an SP value 4, three hidden neurons are
used for three legal stack actions at each SP value,
and the first of the three neurons is reserved for
push action.

b) Symbolically, the write control module
(plus stack memory module) computes

The write
control module uses binary input
to locate the sixth hidden neuron
of the stack memory module and to update the
weights of the eight second-layer connections
associated with the sixth hidden neuron according
to expression Note that the
leftmost bit of the binary input denotes a stack
action push and the six rightmost bits together
denote an SP value 4.

c) Symbolically, the stack memory module com-
putes When

is passed to the stack
memory module, its sixth hidden
neuron is turned on to recall the stack symbol

which is stored by the second-
layer connections associated with the sixth hidden
neuron. Note that in the stack memory module
the first hidden neuron and its associated second-
layer connections are used to store thestack start
symbol (stack bottom) which is pointed by SP

2) At time and
the stack action to be performed is apush on a stack
symbol Then

and other ’s are zero. Symbolically, this time step
computes a stackpush action with

and
Before the execution of thepush action,

and
after thepush action.

a. Symbolically, the pointer control module com-
putes In the pointer
control module, the mapping from binary input

to binary output is done
by the 16th hidden neuron and
its associated connections.

b. Symbolically, the write control module (plus stack
memory module) computes

The write control module uses
binary input to locate the seventh

hidden neuron in the stack memory module
and to update the weights of the second-layer
connections associated with the seventh hidden
neuron using current as before.

c. Symbolically, the stack memory module computes
When
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is passed to the stack memory
module, its seventh hidden neuron
is turned on to recall the stack symbol

which is stored by the second-layer
connections associated with the seventh hidden
neuron.

3) At time and
the stack action to be performed is apop . Symboli-
cally, this time step computes a stackpop action with

and
Before the execution of thepop action

(encoded as and
after thepop action,

a) Symbolically, the pointer control module com-
putes In the pointer
control module, the mapping from binary input

to binary output is done
by the 20th hidden neuron and
its associated connections. Note that three hidden
neurons are used for three legal stack actions
respectively at every SP value, and the second of
the three neurons is used forpop action.

b) Symbolically, the stack memory module computes
When

is passed to the stack memory
module, its sixth hidden neuron is turned on to
recall the stack symbol which is
stored by the second-layer connections associated
with the sixth hidden neuron.
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[86] C. H. Séquin and R. D. Clay, “Fault tolerance in artificial neural
networks,” inProc. IJCNN, San Diego, CA, vol. 1, pp. 703–708, 1990.

[87] D. Servan-Schreiber, A. Cleeremans, and J. L. McClelland, “Graded
state machines: The representation of temporal contingencies in simple
recurrent neural networks,” inArtificial Intell. Neural Networks: Steps
Toward Principled Integration, V. Honavar and L. Uhr, Eds. San
Diego, CA: Academic., 1994, pp. 241–269.

[88] L. Shastri and V. Ajjanagadde, “Connectionist system for rule based
reasoning with multiplace predicates and variables,” Comput. Inform.



114 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 1, JANUARY 1999

Sci. Dept., Univ. Pennsylvania, Philadelphia, PA, Tech. Rep. MS-CIS-
8906, 1989.

[89] J. W. Shavlik, “A framework for combining symbolic and neural
learning,” in Artificial Intelligence and Neural Networks: Steps Toward
Principled Integration, V. Honavar and L. Uhr, Eds. San Diego, CA:
Academic, 1994, pp. 561–580.

[90] H. T. Siegelman and E. D. Sontag, “Turing-computability with neural
nets,” Appl. Math. Lett., vol. 4, no. 6, pp. 77–80, 1991.

[91] S. Sippu and E. Soisalon-Soininen, “Parsing theory, vol. II: LR(k) nad
LL(k) parsing.” Berlin, Germany: Springer-Verlag, 1990.
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