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A Neural-Network Architecture for Syntax Analysis

Chun-Hsien Chen and Vasant Honavistember, IEEE

Abstract—Artificial neural networks (ANN's), due to their =~ complished by the other. However, most Al systems have been
inherent parallelism, offer an attractive paradigm for implemen-  traditionally programmed in languages that were influenced by
tation of symbol processing systems for applications in computer Von Neumann’s design of a serial stored program computer.

science and artificial intelligence. This paper explores systematic . . .
synthesis of modular neural-network architectures for syntax ANN systems on the other hand, have been inspired by (albeit

analysis using a prespecified grammar—a prototypical symbol overly simplified) models of biological neural networks. They
processing task which finds applications in programming lan- represent different commitments regarding the architecture
guage irr:terpfretation. syntaX_Ianah%Srils of symbglic ixtpretssior)sv and the primitive building blocks used to implement the
and high-performance compilers. The proposed architecture is . ; :
assembled from ANN components for lexical analysis, stack, necessary computathns. Thus they occupy different regions
parsing and parse tree construction. Each of these modules characterized by possibly different cost—performance tradeoffs
takes advantage of parallel content-based pattern matching us- in @ much larger space of potentially interesting designs for
ing a neural associative memory. The proposed neural-network intelligent systems.

architecture for syntax analysis provides a relatively efficient Given the reliance of both traditional Al and ANN on essen-

and high performance alternative to current computer systems . . . .
for applications that involve parsing of LR grammars which tially equivalent formal models of computation, a central issue

constitute a widely used subset of deterministic context-free in design and analysis of intelligent systems has to do with the
grammars. Comparison of quantitatively estimated performance identification and implementation, under a variety of design,
of such a system [implemented using current CMOS very large cost, and performance constraints, of a suitable subset of
scale integration (VLSI) technology] with that of conventional g computable functions that adequately model the desired
computers de_monstrates the benefits of m_asswely_ pa_raIIeI neural- behavi Todav's Al and ANN t h d trat
network architectures for symbol processing applications. ehaviors. loday's an ' Sys ems each demons .ra €
at least one way of performing a certain task (e.g., logical
inference, pattern recognition, syntax analysis) naturally and
thus pose the interesting problem for the other of doing the
same task, perhaps more elegantly, efficiently, robustly, or
cost-effectively than the other. In this context, it is beneficial
.- INTRODUCTION to critically examine the often implicit and unstated assump-
T is often suggested that traditionally serial symbol prdions on which current Al and ANN systems are based and
cessing systems of artificial intelligence (Al) and inherentlio identify alternative (and potentially better) approaches to
massively parallel artificial neural networks (ANN’s) offer twadesigning such systems. Massively parallel symbol processing
radically, perhaps even irreconcilably different paradigms farchitectures for Al systems or highly structured (as opposed to
modeling minds and brains—both artificial as well as naturhbmogeneous fully connected) ANN's are just two examples
[65], [83]. Al has been successful in applications such ad a wide range of approaches to designing intelligent systems
theorem proving, knowledge—based expert systems, matheni@®], [34], [35]. Of particular interest are alternative designs
ical reasoning, syntax analysis, and related applications whighcluding synergistic hybrids of ANN and Al designs) for
involve systematic symbol manipulation. On the other hanihtelligent systems [20], [28], [32], [34], [35], [46], [92], [95],
ANN'’s have been particularly successful in applications su¢@9]. Examples of such systems include: neural architectures
as pattern recognition, function approximation, and nonlinefor database query processing [10], generation of context-free
control [27], 76] which involve primarily numeric computa-languages [100], rule-based inference [12], [72], [88], [94],
tion. However, as shown by Church, Kleene, McCulloch, Postomputer vision [4], [58], natural language processing [6],
Turing, and others, both Al and ANN represent particulgn3], learning [19], [31] [89], and knowledge-based systems
realizations of a universal (Turing-equivalent) model of conf43], [75]. We strongly believe that a judicious and systematic
putation [99]. Thus, despite assertions by some to the contragyploration of the design space of such systems is essential for
any task that can be realized by one can, in principle, be amderstanding the nature of key cost—performance tradeoffs in
] ) ] the synthesis of intelligent systems.
Manuscript received August 18, 1995; revised July 12, 1996, Februry ZO'Against this background, this paper explores the synthesis

1997, and October 5, 1998. The work of V. Honavar was supported in part . . . .
by the National Science Foundation under Grant IRI-9409580 and the Jdbh @ neural architecture for syntax analysis using prespeci-

Deere Foundation. This work was performed when C.-H. Chen was a doctdfjgld grammars—a prototypical symbol processing task with

student at lowa State University. S . . . . .
C.-H. Chen is with the Advanced Technology Center, Computer and Corﬂppllcaﬂons in interactive programming environments (using

munication Laboratories, Industrial Technology Research Institute, Chutuigterpreted languages such as LISP and JAVA), analysis of

Index Terms—Ltexical analysis, modular neural networks, neu-
ral associative processing, neural associative processor, neural
parser, neural symbolic processing, parsing, syntax analysis.

Hsinchu, Taiwan, R.O.C. ~ _ symbolic expressions (e.g., in real-time knowledge-based sys-
V. Honavar is with the Artificial Intelligence Research Group, Departmel%t dd b . d high f

of Computer Science, lowa State University, Ames, IA 50011 USA. ems _an at_a ase query processing), an Ig -per ormance
Publisher Item Identifier S 1045-9227(99)00621-9. compilers. This paper does not address machine learning of

1045-9227/99%$10.001 1999 IEEE



CHEN AND HONAVAR: NEURAL-NETWORK ARCHITECTURE FOR SYNTAX ANALYSIS 95

unknown grammars (which finds applications in tasks such sisings from deterministic context-free languages (DCFL) or
natural language acquisition). natural language sentences constructed using limited vocab-
A more general goal of this paper is to explore the design ofary). Notable exceptions are: connectionist realizations of
massively parallel architectures for symbol processing usifigring Machines (wherein a stack is simulated using binary
neural associative memories (processors) [9] as key compepresentation of a fractional number) [90], [73]; a few neural
nents. Information processing often entails a process of pattanchitectures designed for parsing based on a known grammar
matching and retrieval (pattern-directed associative inferengg¥], [85]; and neural-network realizations of finite state au-
which is an essential part of most Al systems [24], [45], [97%bmata [8], [67]. Nevertheless, it is informative to examine the
and dominates the computational requirements of many #arious proposals for neural architectures for syntax analysis
applications [25] [45], [63]. (regardless of whether the grammar is preprogrammed or
The proposed high-performance neural architecture for syearned). The remainder of this section explores the proposed
tax analysis is systematically (and provably correctly) syntharchitectures for syntax analysis in terms of how each of them
sized through composition of the necessary symbolic functioaddresses the key subtasks of syntax analysis.
using a set of component symbolic functions each of which Reference [15] proposes a neural network to parse input
is realized using a neural associative processor. It takes atfings of fixed maximum length for known context-free
vantage of massively parallel pattern matching and retrievgdammars (CFG'’s). The whole input string is presented at one
capabilities of neural associative processors to speed up syritee to the neural parser which is a layered network of logical
analysis for real-time applications. AND and OR nodes with connections set by an algorithm
The rest of this paper is organized as follows: The remaindeaised on CYK algorithm [36].
of Section | reviews related research on neural architecturePARSEC [39] is a modular neural parser consisting of six
for syntax analysis. Section Il briefly reviews multilayer Pemeural-network modules. It transforms a semantically rich and
ceptrons, binary mapping Perceptron module which is capaliherefore fairly complex English sentence into three output
of arbitrary binary mapping and is used to realize the comprepresentations produced by its respective output modules.
nents of the proposed neural network architectures, symbdline three output modules arele labeler which associates
functions realized by binary mappings, and composition ahse-role labels with each phrase block in each clanser:
symbolic functions. Section Il briefly reviews deterministic ficlause labelewhich indicates subordinate and relative clause
nite automata (DFA), and neural-network architecture for DFfelationships, andnood labelerwhich indicates the overall
(NN DFA). Sections IV, V, and VI, respectively, develop modsentence mood (declarative or interrogative). Each neural
ular neural-network architectures for stack, lexical analysimiodule is trained individually by a variation of the backprop-
and parsing. Section VII compares the estimated performaramgation algorithm. The input is a sequence of syntactically
of the proposed neural architecture for syntax analysis [basgsl well as semantically tagged words in the form of binary
on current CMOS very large scale integration (VLSI) technolrectors and is sequentially presented to PARSEC, one word
ogy] with that of commonly used approaches to syntax analysis a time. PARSEC exploits generalization as well as noise
in conventional computer systems that rely on inherenttglerance capabilities of neural networks to reportedly attain
sequential index or matrix structure for pattern matching8% correct labeling on a test set of 117 sentences when
Section VIII concludes with a summary and discussion.  trained with a training set of 240 sentences. Both the test
and training sets were based on conference registration dialogs
from a vocabulary of about 400 words.
SPEC [55] is a modular neural parser which parses variable-
The capabilities of neural-network models (in particulatength sentences with embedded clauses and produces case-
recurrent networks of threshold logic units or McCulloch—Pittole representations as output. SPEC consists gfaeser
neurons) in processing and generating sequences (stringsvdaich is a simple recurrent network séackwhich is realized
fined over some finite alphabet) and hence their formal equivsing a recursive autoassociative memory (RAAM) [74], and a
alence with finite state automata or regular language gensegmentewhich controls thgush/popoperations of thetack
ators/recognizers have been known for several decades [4Gjng a 2-layer perceptron.
[52], [56]. More recently, recurrent neural-network realizations RAAM has been used by several researchers to implement
of finite state automata for recognition and learning of finitstacks in connectionist designs for parsers [5], [29], [55].
state (regular) languages have been explored by numerousAWRAAM is a 2-layer perceptron with recurrent links from
thors [3], [8], [14], [16]-[18], [37], [60], [64], [66], [67], [82], hidden neurons to part of input neurons and from part of output
[87], [102]. There has been considerable work on extending theurons to hidden neurons. The performance of a RAAM stack
computational capabilities of recurrent neural-network modédksknown to degrade substantially with increase in depth of the
by providing some form of external memory in the form oftack, and the number of hidden neurons needed for encoding
a tape [103] or a stack [5], [11], [29], [55], [74], [84], [90], a stack of a given depth has to be determined through a process
[93], [105]. of trial and error [55]. A RAAM stack has to be trained for
To the best of our knowledge, to date, most of the researehch application. See [93] for a discussion of some of the
on neural architectures for syntax analysis has focused d@mawbacks associated with the use of RAAM as a stack.
the investigation of neural networks that are designed toEach module of SPEC is trained individually using the
learn to parse particular classes of syntactic structures (e.gackpropagation algorithm to approximate a mapping function

A. Review of Related Research on Neural
Architectures for Syntax Analysis
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as follows: Let@ be a finite nonempty set oftates I' a opportunity to explore the potential benefits of ANN’s mas-
finite nonemptyinput alphabetV gy a finite nonempty set of sive parallelism in the design of high-performance computing
case-role vectorsd = {output, push, pop} the set of stack systems for real time symbol processing applications.
actions, and/,,.x the set of compressed stack representations
at the hidden layer of a RAAM. Then the first and second II. NEURAL ASSOCIATIVE PROCESSORS
connection layers of thearser approximate the transition AND SYMBOLIC FUNCTIONS
function of a DFA (see Section llI-A¥p: I' x Q@ — @ and
a symbolic mapping functiorfps: @ — Veogy, respectively;
the segmenteapproximates a symbolic functiofy: I' x @ —
Qx A; and the first and second connection layers of the RAA
approximate thepushfunction f,usn: Vistack X @ — Vitack
and thepop function fp.p: Vstack — Vstack % @ Of 2 RAAM
stack, respectively. The input string is sequentially presenté‘d
to SPEC and is a sequence of syntactically untagged EnglistA 1-layer perceptron has input neuronsy output neurons
words represented as fixed-length distributive vectors of gragnd one layer of connections. The outgytof output neuron
scale values between zero and one. The emphasis of SREC < i < n, is given byy; = fu(¥7,w;;z; — 6;), where
was on exploring the generalization as well as noise tolerancg denotes the weight on the connection from input neuron
capabilities of a neural parser. SPEC uses central controljtto output neuror, 6; is the threshold of output neuranz;
integrate its different modules and reportedly achieves 100%the value at input neurog, and f;; is binary hardlimiter
generalization performance on a whole test set of 98 1fdction, where
English relative clause sentences with up to four clauses.
Since the words (terminals) in the CFG which generates the Ju(r) = {
test sentences are not pretranslated by a lexical analyzer into
syntactically tagged tokens, the number of production ruleslt is well known that such a 1-layer perceptron can
and terminals tend to increase linearly with the size of thigplement only linearly separablefunctions from R™ to
vocabulary in the CFG. Augmenting SPEC with a lexicaf0,1}" [57]. We can see the connection weight vector
analyzer offers a way around this problem. w; = {w;1,- -+, W,y and the node threshol@, as defining
References [11], [93], [105] propose higher-order recurreatlinear hyperplangd; which partitions them-dimensional
neural networks equipped with an external stack to learn pattern space into two half-spaces.
recognize deterministic CFG, i.e., to learn to simulate a deter-A 2-layer perceptron has one layer/ohidden neurons (and
ministic pushdown automata (DPDA). References [11], [93lence two layers of connections with each hidden neuron being
use an analog network coupled witle@ntinuousstack and use connected to each of the input as well as output neurons).
a variant of a real-time recurrent network learning algorithim this paper, every hidden neuron and output neuron in
to train the network. Reference [105] uses a discrete netwdfie 2-layer perceptron use binary hardlimiter functitp as
coupled with adiscretestack and employs a pseudo-gradierfictivation function and produce binary outputs; its weights
learning method to train the network. The input to the netwogke restricted to values froi—1,0,1}; and it uses integer
is a sequentially presented, unary-coded string of variadlgesholds. It is known that such a 2-layer perceptron can
length. LetQ be a finite nonempty set cftates I' a finite realize arbitrary binary mappings [9].
nonemptyinput alphabet A a finite nonemptystack alphabet
A = push, pop, no-operation} the set of stack actions, B. Binary Mapping Perceptron Module (BMP)
and Booleanthe _set{false, tru_e_}. These_ recurrent neur_al Let U be a set of distinct input binary vectors,, - - -, uy,
networks approximate the transition function of a DPDA, .80t dimensionm, wherews, = (un1, -+ -, unm), uni € 10,1},
foppa: @ X I'x A — Q x A x A The networks are trained ; h< k&1 <4< m Let V be a set of

to approximate a language recognizer functibn 1™ —  gegjred output binary vectors, - - -, vy, of dimensionz, where
Boolean. Strings generated from CFG includingalanced vn = Uty ) v € 0,11, 1< h<k&1<j<n
v T vl ? /o (¥] Rl B g g —J = M

parenthesis grammar"b", ™ Tb™ ", amb"cb™a™, postliX - consider a binary mapping functigndefined as follows:
grammar and/orpalindrome grammasvere used to evaluate

This section reviews the design of a neural associative
processor using a binary mapping perceptron [8], [9] and
me representation of symbolic functions in terms of binary

mapping.

Perceptrons

1, ifz>0
0, otherwise.

the generalization performance of the proposed networks. g:B™ — (V. u{{0M})
Hybrid systems consisting of a recurrent neural network and glu) =wv, for 1<h<k
a stack have also been used to learn CFL [61]. g(z) = (0", for we (B™-U)

The proposed neural architecture for syntax analysis is com-
posed of neural-network modules for stack, lexical analysiwhereB™ is them-dimensional binary space. A BMP module
parsing, and parse tree construction. It differs from mofg] for the desired binary mapping functigncan be synthe-
of the neural-network realizations of parsers in that it isized using a 2-layer perceptron as follows: The BMP module
systematically assembled using neural associative procesgee® Fig. 1) hasn input, £ hidden and» output neurons. For
(memories) as primary building blocks. It is able to exploiéach binary mapping ordered péir;,, v;,), wherel < h < k,
massively parallel content-based pattern matching and retriewad create a hidden neurdn with threshold®¥?, w;; — 1.
capabilities of neural associative processors. This offers @he connection weight from input neuranto this hidden
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C. Binary Mapping and Symbolic Functions

In general, most of simple, nonrecursive symbolic functions
and table lookup functions can be viewed in terms of a binary
random mapping’s which is defined as follows: Ldl/ be a
set of k distinct binary input vectors, - - -, u; of dimension
m; and V' be a set ofk binary output vectors, - - -, v, of
dimensionn. Then

fB: U—-V
fB(U,Z) =, for 1<i<k.

output layer

hidden layer

Let |Z| denote the cardinality of seét. The binary vector
u;, wherel < i < k, represents an ordered setsobinary-
coded symbols from symbol seffg,I's, - - -, I',., respectively,
. (i.e., Jday € 'y, € Ty st w; = g -cn - -+ -
input layer where- denotes the concatenation of two binary codes). The
binary vectory;, wherel < ¢ < k represents an ordered set
X i m of s symbols from symbol seta;, Aq, ---, A,, respectively,

_ _ _ _ _ and |U| = |I'||T2]---|T|. fz defines a symbolic function
Fig. 1. The settings of connection weights and hidden node threshold h that
the proposed BMP module for an associated binary mapping ordered irsuc a
(un, vy ). The threshold for each of the output neurons is set to zero. The
activation function at hidden and output neurons is hardlimiter function. Jrlyx o x I = Ay x-o o XAy

Neuron isuy,; — iy = 2un; — 1 wherel < i < m: and In this case, the mapping operations ff can be viewed in

that from this hidden neuron to output neurpis v,;, where €rMs of the operations of on its associated symbols.
1< j < n. The threshold for each of the output neurons is set Néural-network modules for symbol processing can be
to zero. Note that identity functiod, i.e., I(x) = «, can be synthesized through aompositionof appropriate primitive

used as activation function at output neuron for more efficiefyMPolic functions which are directly realized by suitable
hardware implementation. BMP modules. There are two of basic ways of recursively

Note that for the input binary vectar,, only the hidden composing composite symbolic functions from component

neuron’ outputs a one, and the rest of the hidden neurof¥MPolic functions (which may themselves be composite
output zero. Thus the output of thiéh output neuron is,;, funct!ons or primitive functions). Supposg is a symbolic
and so the binary output vector 8.1, - - - , v.) = vs. While Tunction defined as follows:
for an input vector: ¢ [/, no hidden neuron is activated and GALX XAy — A XX Ay
the output is{0™).

The computation of a mapping in a BMP module cahhe composition off andg is denoted by; o f such that
be viewed as a two-stage associative procetemntification

- . . . . . . :T ex I — A e X A
and recall. Since input is binary, the weights in the first- go Sl = Aoy

layer connections of a BMP module are either one-dr.  and for every(a, -+, ,.) in 'y x --- x I,
During identification, a bit of an input pattern that is wrongly
on (with respect to a stored pattern), contributek to the go flaw, - ar) = g(flon,---, ).

activation of the corresponding hidden neuron and a bit gfupposefi is a symbolic function such that
an input pattern that is rightly on (with respect to a stored
pattern) contributes-1 to the activation of the corresponding Ty x-ox T — Ay for 1<4<s.

hidden neuron. A bit of an input pattern that is (rightly o h i f bolic functi .
wrongly) off (with respect to a stored pattern) contribute% ¢ compositione of symbolic func ons g, fi, -+, fs 18
zero to the activation of the corresponding hidden neuro gfmed as

Each hidden neuron sums up the contributions to its activation Dy X XD = AL X oo X Ay

from its first-layer connections, compares the result with its

threshold (which equals the number of “1's” in the store@nd for every(ay,- -, a;) in I'y x --- x I,

memory pattern minus one), and produces output value OneC(al,---,ar) = g(filar, - ), folan, - an)).

if its activation exceeds its threshold. If one of the hidden

neurons is turned on, one of the stored memory patterns willThe processing of input strings of variable length (of the
be recalled by that hidden neuron. Note that an input pattersort needed in lexical analysis and parsing) can be handled
is matched against all the stored memory pattémrzarallel. by composite functionsf: I'™* — A*, g: A x I' — A,

If the time delay for computing the activation at a neuron iand ¢: A x I'* — A x A* in the proposed modular neural
fixed, the time complexity for such a pattern matching proceaschitecture, wher&™ (A*) denotes the set of all strings over

is O(1). Note that this is attained at the cost of a hidden neurdhe alphabel” (A). Here, functionf denotes the processing
(and its connections) for each stored association. of input strings of variable length by a parser or a lexical
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analyzer; functior; denotes the recursive evaluation of inputhe transition from state on input symbola. The output of
strings of variable length by the extended transition functiol ., responding to input string; s - - - a,, is output string

of a DFA; and functioné denotes the recursive parsing of\(qo, a1)A(g1,a2) - - A(gn—1, an), Wherego, q1, - - -

,qn IS the

syntactically tagged input tokens by the extended transitisequence of states such tlég;, _1,a;) = ¢; for 1 <i <n.

function of an LR(1) parser. The functions g, and ¢ that

process input strings of variable length can be composed usBigNN Deterministic Finite Automata (NN DFA)
symbolic functionsf, g, ¢, output selector function, and string A artially recurrent neural-network architecture can be

concatenation function by recursion on the length of the i”pHEed to realize a DFA as shown in [8]. It uses a BMP module

string (see Section IlI-A for an example). Other recursiv%
symbolic functions can also be composed using composition,
and recursion. We do not delve into recursion any further. The
interested reader is referred to [71], [80], and [104] for details.

The operation of a desired composite function on its sym-
bolic input (string) is fully characterized analytically in terms
of its component symbolic functions on their respective sym-
bolic inputs and outputs. The component symbolic functions
are either composite functions of other symbolic functions or
primitive symbolic functions which are realized directly by
BMP modules. This makes it possible to systematically (and
probably correctly) synthesize any desired symbolic function '
using BMP modules. (Such designs often require recurrent
links for realizing recursive functions such as the extended”
transition functions of a DFA or a more complex recursive
function for the LR parser as we shall see later).

This section reviews the synthesis of a neural-network
architecture for a finite state machine [8].

N EURAL-NETWORK AUTOMATA

A. Deterministic Finite Automata (DFA)

A deterministic finite automato(finite-state machine) is a
5-tuple Mpra = (Q,T,6,q0, F) [36], where@ is a finite
nonempty set oftates I is a finite nonemptynput alphabet
g0 € @ is theinitial state F' C @ is the set offinal or
accepting statesandé: @ x I' — @ is thetransition function *
A finite automaton is deterministic if there is at most one
transition that is applicable for each pair of state and input
symbol. X

The extended transition functighof a DFA with transition

implement the transition function of a DFA.

In the BMP module, the input neurons are divided into
two sets. One set of input neurons has no recurrent
connections and receives the binary coded current input
symbol. There are» = [log, |['|] such input neurons.
(Here [-] denotes the integer ceiling of a real value).
The second set has = [log,(|Q| + 1)] input neurons
and holds the current state (coded in binary). Each input
neuron in this set has a recurrent connection from the
corresponding output neuron.

The output neurons together hold the next state (coded in
binary). There aren = [log,(|@| + 1)] output neurons.
Every transition is represented as an ordered pair of
binary codes. For each such ordered pair, a hidden
neuron is used to realize the ordered pair in terms of
binary mapping. Thus the number of required hidden
neurons equals the number of valid transitions in the
transition function. For example, suppogg; € Q,a €

I, 6(p,a) = ¢is avalid transition, ang, ¢ as well as: are
encoded as binary codes such that (p1,- - .,pm),q =

(g1, -, gm) and a = {(a1,---,a,) Wherep;,q,a; €
{0,1} for 1 < ¢« < mandl < j < n. Then the
transitioné(p, o) = ¢ is represented as a binary mapping
ordered pail(<p17 s Pmy 01,0, an>7 <QI7 T qm>) im-
plemented by a BMP module (See Section II-B for de-
tails).

An explicit synchronization mechanism is used to sup-
port the recursive evaluation of the extended transition
function & on input string of variable length. Note that
maps from@ x I'* to Q.

The transitions of a DFA can be represented as a two-

functioné is a mapping from x I'* to  defined by recursion dimensional table with current state and current input symbol
on the length of the input string as follows. as indexes. The operation of such a DFA involves repetitive
« Basis &(q;,¢) = ¢, wheree is empty string. lookup of the next state from the table using current state

« Recursive step &(g;,ua) = §(8(g,u),a) for all input and current input symbol at each move until an error state
symbolsa € I and stringsu € I'*. or an accepting state is reached. Such a repetitive table
The computation of the machindfpy. in stateg; with Iool_<up process mvolvgs content-based pattern matchmg and
string w halts in state?(qi,w). The evaluation of the function retrieval wherelp the indexes of the taple are used as |npu.t
2 tterns to retrieve the next state. This process can exploit

8(qo,w) simulates the repeated application of the transitit el el i ; bilit ¢
functioné required to process the stringfrom initial stategy. € massively paraliel associative processing capabiliies ot a
neural associative memory.

A string w is accepted by pg 4 if S(qo,w) € F; otherwise
itis rejected. The set of strings acceptedMy 4 is denoted
as L(Mpra) = {w|é(qo,w) € F}, calledthe languageof
Mpra. The capability of DFA is limited to recognition and pro-
A Mealy machindgs a DFA augmented with an output func-duction of the set of regular languages, the simplest class of
tion. It is defined by a 6-tuplé/yscary = (@,1, A, 6,A,90) languages in Chomsky hierarchy [36]. The capability of DFA
[36], where@,T',6, and gy are as in the DFAMpr4,A is can be extended by addingstack The resulting automata can
a finite nonemptyoutput alphabetand X is output function recognize the set of DCFL, a more complex and widely used
mapping from@ xI" to A. A(g, @) is the output associated withclass of languages in Chomsky hierarchy [36]. A stack can be

IV. NEURAL-NETWORK DESIGN FOR ASTACK (NNStack)
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coded as a string over a stack alphabet, with its top element at
one end of the string and its bottom element at the other end.

Pop and push are the main actions of a stack. These actions
can be performed by a DFA which is augmented with memory

stack top symbol

to store stack symbols which are accessed sequentially usin
a stack top pointe(SP) which points to the top symbol of a
stack. The stack top pointer is maintained by the current stafte
of the DFA, and the current action of the stack by the input
to the DFA. '

A. Symbolic Representation of Stack

Let A = {pop, push, no — action} be the set of possible
stack actions,C the set of possible stack configurations
(contents),S the set of stack symbold? = {0,1,2,---,n}

_______

1
'
|
I
|
I
|
|
1
|
|
I
|
|

BMP 1 write control |~ input
pointer control module module : stack
[—— symbol

_HT

synchronization
control

'
'
'
)
'
]
1
1
|
1
d
1
!
]
I

the set of possible positions of stack top pointer, anthe '---

maximal depth (capacity) of a given stack. Létbe stack

[

1

1

1

1

:

| pointer(t) Ipush/pop | 1
I y —l :
[

1

reset action

bottom symbol anq? - s denote the stack Conﬁgl_”ation aftelig 2. A neural-network architecture for stack mechanism. The dotted box
a stack symbols is pushed onto a stack which has thébeled withpointer(t + 1) exists only logically but not physically. Aush
configurationc. An empty stack only contains the stack bottorﬁtack action enables therite control moduleto write stack symbol into the

symbol L. Note thatC = {aja € L - 5% and |o| < n},
where|«| denotes the number of stack symbols in the stack

stack memory module.

configuratione and- denotes the concatenation of two symbdp- Architecture of NNStack

strings. Assume that the value of stack top pointer does notThis section discusses the neural-network realization of a
change on awo — action action, and it is incremented on astack in terms of symbolic function;;q.x and fr,,. A design
push action and decremented opap action. The operation of for NNStack obtained by adding warite control moduleto

a stack can be characterized by the symbolic funcfien.x,
where

fstack: Ax S x C x P— C x P, defined by

fStack (PUShv 5, G, p)
(c-s,p+1), if seS;ceC;and
= pePandp<n-—1
error, otherwise

fStack(Popa *, C,p)
(d,p—1), ifceCandc=< -sfor
somes € S and some’ € C
andp e Pandp > 1
error, otherwise

fstack (no — action, *, c7p)
— (Cvp)v if CecaﬂdpEP
o error, Otherwise

where + stands for adon’t care. SupposeS = {a, b}.
Then, fstaer, (push,a, Ll ab,2) = (L aba,3), and
fstack (pop,*, L aba,3) = (L ab,2). The retrieval of stack

top symbol can be characterized by the symbolic function

frop, Where
frop: Cx P — S U{L}, defined by

L if c=Landp=20
s if ce Candc=¢
-s for somes € S
and someZ € C; and
p € Pand|c|=p
error otherwise.
For example fr., (Lab,2) =b, and fr,, (L,0) = L.

fTop(cvp) =

an NN DFA is shown in Fig. 2. (The use of such a circuit
might be considered by some to be somewhat unconventional
given the implicit assumption of lack of explicit control in
many neural-network models. However, the operation of most
existing neural networks implicitly assumes at least some
form of control. Given the rich panoply of controls found in
biological neural networks, there is no reason not to build
in a variety of control and coordination structures into neural
networks whenever it is beneficial to do so [33]). NNStack has
an n-bit binary output corresponding to the element popped
from the stack, and four sets of binary inputs:

¢ Resetwhich is a 1-bit signal which resetgointer(t)

(current SP) to point to the bottom of the stack at the
beginning.

< Synchronization controlvhich is a 1-bit signal that syn-

chronizes NNStack with the discrete-time line, denoted
by 0,1, --,t,t+1,---.

« Action code which is a 2-bit binary code so that

a) 01 denotegpush .

b) 10 denotegop.

c) 00 denotesio action
Stack symbalvhich is ann-bit binary code for the symbol
to be pushed onto or popped off a stack during a stack
operation.

NNStack consists of gointer control modulg a stack
memory modulea write control moduleand twobuffers The
first buffer stores current SP valugognter(t)) and the second
stores the current stack actigrugh /pop). In Fig. 2, the dotted
box labeled withpointer (t+ 1) exists only logically but not
physically, andpointer(t) and pointer(t + 1), respectively,
denote SP before and after a stack action. SP is coded into an
m-bit binary number.
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Pointer Control Module: The pointer control module a
(BMP 1) realizes a symbolic functiofipcontror:A x P— P 4 -
and controls the movement of SP which is incremented [l ---
on a push and decremented on @op. For example,
fPControl(P0P72) = 17 and fPControl(PuSh7 2) = 3. The :
pointer control module uses: + 2 input, 3 x 2™ hidden,
and m output neuronssm of the input neurons represent: -
pointer(t) (current SP value), and the remaining two input YR

neurons encodes the stack action. There2&tepossible SP ' BMP 1 write control

values. Them output neurons represepbinter(t + 1) (the pointer control module module ?

SP value after a stack action). Each change in SP value can - T

be realized by a binary mapping (with one hidden neuron pt:er synchronization

control

change). Sincerfo action " is one of legal stack actions, ! 2 Wl push 11
3 x 2™ hidden neurons are used in the pointer control module. L Tl

Stack Memory ModuleThe stack memory module (BMP - ~--- - --------l_- R |
2) realizes the symbolic functiofir,,. It usesm input neu-
rons,n output neurons, ang2™ hidden neurons which together _ ' '
allow storage of2™ stack symbols az™ SP positions. The . sute;r,::c‘f;‘;i :}:‘i?’ﬁ’g%og?iggg;'Qgg‘ﬁfos]'?ﬂga't‘y)s‘:ta;k which
stack symbols stored in stack memory module are accessed !
through pointer(t + 1) (the output of the pointer control . .
module). Note that the BMP 2 module uses its second-lay%r NNStack in Action
connections associated with a hidden neuron to store a symbolhis section symbolically illustrates how the modules of
[8], [9]. NNStack together realize a stack by considering several suc-

Write Control Module: The write control module (plus cessive stack actions. The Appendix shows how the modules
BMP 2) realizes a symbolic functiorfsy,+.: A x S x realize a stack in terms of binary codings. Symbolic function
C x P — C. An example for the computation ofsyy,ize  JfStack iS @ composition of symbolic functionfpconror @and
iS fswrite (push,a, Lab,2) = Laba. Physically, it receives fswrite S:t.¥(a,s,¢,p) € AX S X CX P, fsiack(a,s,¢,p) =
m binary inputs from the buffer labeled witpointer(t) (fswrite(a,s,e,p), frcontrot(a, p)). Fig. 3 shows the inputs
(denoting current SP), 1 binary input from the second outp@fd outputs of the neural modules in an NN Stack which com-
line of the buffer labeled wittpush/pop (denoting current PUteSfsiacr (push, a, Lab,2) = (Laba,3) and fr,, (Laba,
stack action), ane binary inputs (denoting the stack symboB) = a. Consider the following sequence of stack operations:
to be pushed onto the stack) from environment. BMP 2 (stackl) At time = ¢;, suppose the value of stack top pointer

memory module) is used to store current stack configuration.
The module does nothing whenpap is performed. The:
dotted output lines from the write control module write the
n-bit binary-coded stack symbol into of the second-layer
connections associated with a corresponding hidden neuron in
the stack memory module whenpush is performed. The
hidden neuron and itsa associated second-layer connections

are located by using current SP valggointer(t)). (The 2)

processing of stackverflowand underflowis not discussed

(current SP value) is four and the stack action to be
performed is apush on a stack symboh. Let ¢,

be current stack configuration. Then, the new stack
configuration after thispush action is ¢, - a, and
the new stack top symbol iq. At this time step,
NNStack computeSsiocr(push, a, ¢y, ,4) = (¢, - a,d)

and frop(cy, - a,5) = a, i.e., we have the following.

The pointer control module computes
fPControl(PuSh; 4) = 5.

here. It has to be taken care of by appropriate error handling3)
mechanisms).

Timing Considerations:The proposed design for NNStack 4)
shown in Fig. 2 is based on the assumption that the writeb)

The write control module (plus stack memory module)
computesfswite(push, a, ¢;,,4) = ¢, - a.

The stack memory module computgs,,(c, -a, 5) = a.

At time = #; + 1, suppose the stack action to be

control module finishes updating the second-layer connection
weights associated with a hidden neuron of BMP 2 before the
signals from BMP 1 are passed to BMP 2 duringush stack
action. If this assumption fails to hold, the original design
needs to be modified by adding: links from input stack
symbol (buffer) to output stack symbol (buffer); an inhibition
latch, which is activated by the leftmost output line of the
push/pop buffer, on the links to inhibit signal passing from
input stack symbol (buffer) to output stack symbol (buffer) at
a pop operation; a second inhibition latch, which is activated
by the rightmost output line of theush/pop buffer, between
BMP 1 and BMP 2 to inhibit signal transmission between these
two modules at gush operation.

performed is @ush on a stack symbdj. Then, the new
stack configuration after thisush action isc¢;, -a- b,
and the new stack top symbol s At this time step,
NNStack computegs;qcr(push, b, ¢y, -a,5) = (¢, -a-
b,6) and fr,,(c, -a-b,6) = b, i.e,

A) the pointer  control
fPControl(PuShv 5) = 67

B) the write control module (plus stack memory
module) computessw.;tc(push, b, ¢y, - a,5) =
¢, -a-b, and

C) the stack memory module computgs,,(c:, -a -
b,6) = b.

module  computes
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1~-9

4 @ blank @3 avn Az
~Z
@ @ blank blank

b e g inblank ::;
4 .

h blank
@ @ : @ : @ = blank

Fig. 4. The simplified state diagram of a DFA which recognizes keywords:

begin, end, if, then , andelse . f\ blank
2 a~z @/\_/@ 0~9

6) At time = ¢; + 2, suppose the stack action to be A~Z 1~-9

performed is gop. Then, the new stack configuration

after this pop action is ¢;, - a, and the new stack F|g._5. The_statedl_agram of a DFA which 5|mula}tesasmplgword_segmenter
L carving continuous input stream of characters into words including integer

top symbol isa. At this time step, NNStack computesconstants, keywords and identifiers. Both the keywords and identifiers are
fStack(P0P7 *,¢py ca- b, 6) = (ct1 - a, 5) and fTop(ct1 . strings of English characters.
a,b) = a, i.e., we have the following.

A) the pointer control module computeslegal transitions has 20 unspecified transitions. The realization

frcontrot(pop,6) = b. of such a simple five-word (23-state) lexical analyzer by an
B) the write control module does nothing. NN DFA requires20 + 22 = 42 hidden neurons. Additional
C) the stack memory module computgs,,(c;, - transitions have to be defined in order to allow multiple blanks
a,b) = a. between two consecutive words in the input stream, and for
error handling. These drawbacks are further exacerbated in
V. NEURAL-NETWORK DESIGN FOR applications involving languages with large vocabularies.
A LEXICAL ANALYZER (NNLexAn) A better alternative is to use a dictionary (or a database) to

rve as a lexicon. The proposed design for NNLexAn consists
aword segmentefor carving an input stream of characters
to a stream of words, andveord lookup tabldor translating

A lexical analyzer carves a string of characters into a strirk
of words and translates the words into syntactically tagg(_Q

lexical tokens. The computation of a lexical analyzer can X , §
defined by a recursive symbolic functiofycsa,: IS — the carved words of variable length into syntactically tagged
erAn-

A*$. T is the input alphabet, $ is a special symbol denotintﬁke”S, of fixed length. Such a trar_lslation can be realized
“end of inpuf’ and A is the set of lexical tokend™*$ (or by a simple query to a datgb_ase using a key. Such database
A*$) denote the set of strings obtained by adding the suffiery processing can be efficiently implemented using neural
$ to each of the strings over the alphabétor A). The @associative memories [10].
syrltac?tically t_agged tpkens are fo be used as _single logi 6.“ Neural-Network Design for a Word Segmenter (NNSeg)
units in parsing. Typically, the tokens are of fixed lengt
to simplify the implementation of parsing algorithms and to In program translation, the primary function of a word
enhance the performance of the implemented parsers. H§gmenter is to identifffegal wordsand to group input stream
conventional approach to implementing a lexical analyz&#o legal wordsincluding keywords, identifiers, constants,
using a DFA (in particular, a Mealy machine) can be realizeaperators, and punctuation symbols. A word segmenter can be
quite simply using an NN DFA [8]. defined by a recursive symbolic functiofiy,raseg: 1*8 —
However, a major drawback of this approach is that all legal*$, where I' is the input alphabet, $ is a special symbol
transitions have to be exhaustively specified in the DFA. F@enoting end of input’ and A is the set of legal wordd™3
example, Fig. 4 shows a simplified state diagram without dPr A*$) denotes the set of strings obtained by adding the
legal transitions specified for a lexical analyzer which recoguffix $ to each of the strings over the alphabigtgor A).
nizes keywords of a programming languagegin, end, Fig. 5 shows the state diagram of a DFA simulating a
if, then , andelse . Suppose the lexical analyzer is in ssimple word segmenter which carves continuous input stream
state that corresponds to the end of a keyword. Then its curreficharacters into integer constants, keywords, and identifiers.
state would be stat&, 11, 15, 18 or 23. If the next input Both the keywords and identifiers are defined as strings of
character ish, there should be legal transitions defined frorknglish characters. For simplicity, the handlingeoid-of-input
those states to stafe That is the same for stat8s16and19in is not shown in the figure. The word segmenter terminates
order to handle the next input characters, and¢. Thus, this processing upon encountering the end-of-input symbol. Each
extremely simple lexical analyzer with 22 explicitly definedime when the word segmenter goes into an accepting state, it
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instructs the word lookup table to look up aword thathasbeen.... ... :

extracted from the input stream and stored in a buffer. Any ... NNLR() Parser o

unspecified transition goes to stafewhich identifies illegal : | state(t+1) | ‘ [ﬁ l

words. State 1 is initial state. The state 2 in dotted circle is f -

identical to state 2 in solid-line circle and that is same for state NN shiftreducestack | | NN stack : e
for state or parse tree | processing unit

4 (it is drawn in this way to avoid clutter). 1 T f T ! ” T

Since syntax error handling is not discussed here, it ma
be assumed that any illegal word is discarded by the wor
segmenter and is also discarded from the buffer which tem

L1—‘<

length | state {1 sction | | e |
i iRt

BMP (Binary Mapping Perccptron)

porarily stores the illegal word being extracted from the input (Parsing tablc) status

stream. Such a word segmenter can also be realized by ‘an b4 {4

NN DFA. Since any undefined (unimplemented) transitiof] | [ sae® | [ inputy |

moves into a binary-coded state of all zeros automatically in L4 --- T | T na—— |

an NN DFA, it would be expedient to encode the garbage 'qum' ~— inhibited by 4 reduce action

state (state G in Fig. 5) using a string of all zeros. Although chaisi Hareerun B

the most straightforward implementation of NN DFA [8] (also (optional) : S| texical |t ‘s'(‘:;‘:m
see Section 11I-B) uses one hidden neuron per transition, one Texicaltoken 1" |=—

can do better. In Fig. 5 the ten transitions from state 4 on T

ASClI-coded input symbold),1,---,9 can be realized by Fig. 6. Neural networks for LR(1) parser. The dotted bolewgth, state,

action, rule andstatét + 1) exist only logically but not physically. See text

only two hidden neurons in an NN DFA usingartial pat- ¢ " oo explanation.

tern recognition[9], [10]. Other transitions on input symbols

0,1,---,9,a,b,---,2, and A, B,---, Z can be handled in a i i ) .
similar fashion. The time required for processing such a query is of the order of

20 ns (at best) to 100 ns (at worst) given the current CMOS
B. Neural-Network Design for a Word Lookup Table (NNLTalsgchnology for implementation of artificial neural networks.

During lexical analysis in program compilation or similal(The interested reader is referred to [10] for details).

applications, each word of variable length (extracted by the
word segmenter) is translated intotaken of fixed length. VI.-A M ODULAR NEURAL ARCHITECTURE
Each such token is treated as a single logical entity: an FOR LR PARSER (NNLR PARSER)
identifier, a keyword, a constant, an operator or a punctuationLR(k) grammars generate the so-called deterministic
symbol. Such a translation can be defined by a simptentext-free languages which can be accepted by deterministic
symbolic function fworarran: A U {8} — A U {$}. push-down automata [36]. Such grammars find extensive
Here, A,$, and A denote the same entities as in thapplications in programming languages and compilers. LR
definition of fWo,,dseg and fLemAn above. For example, parsing is a linear time table-driven algorithm which is widely
fwordrran (£) = keyword — token, where if € A and used for syntax analysis of computer programs [1], [7], [91].
keyword-token € A. Note that the functionfw.,.qrrern  This algorithm involves extensive pattern matching which
can be realized by a BMP module by way of exact matcuggests the consideration of a neural-network implementation
and partial match [9]. In other lexical analysis applicationsising associative memories. This section proposes a modular
a word may be translated into a token having two subpartssural-network architecture (Fig. 6) for parsing LR(1)
category code denoting the syntactic category of a word agchmmars. LRE) parsers scan input from left to right and
feature code denoting the syntactic features of a word.  produce a rightmost derivation tree by using lookahead of
Conventional approach to doing such translation (dictionamnscanned input symbols. Since any LR(k) grammar for k
lookup) is to perform a simple query on a suitably organized 1 can be transformed into an LR(1) grammar [91], LR(1)
database (with the segmented word being used as the kegrsers are sufficient for practical applications [36].
This content-based pattern matching and retrieval process caAn LR(1) grammar can be defined a&'rry)y =
be efficiently and effectively realized by neural associativd’,7’, T, ©) [36], whereV andT are finite sets of variables
memories. Database query processing using neural associafhamterminals) and terminals respectively, is a finite set
memories is discussed in detail in [10] and is summarized production rules, ane® € V is a special variable called
briefly in what follows. Each word and its corresponding tokethe start symbal V' and 7" are disjoint. Each production rule
are stored as an association pair in a neural associative mésef the formA — «, whereA € V anda € (V. U T)*.
ory. Each such association is implemented by a hidden neussm LR(1) parser can be defined by a recursive symbolic
and its associated connections. A query is processed in tiuaction frrperser: A*$ — T*, where A (A = T in the
steps:identificationandrecall. During the identification step, context), $ andA* are as inf,mAn, and T* denotes the set
a given word is compared to all stored words in parallel by the all sequences of production rules over the rule alphabet
hidden neurons and their associated first-layer connectionsYin Although fLRp,,,se,, corresponds in form to the recursive
the memory. Once a match is found, one of the hidden neura@ysnbolic functionf,mAn in Section V, it can not be realized
is activated to recall the corresponding token using the secosdnply by a Mealy machine which implemenfgemn. This
layer connections associated with the activated hidden neuriandue to the fact that the one-to-one mapping relationship
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TABLE |
THE PARSE TABLE OF THE LR(1) PARSER FORGRAMMAR G'i. THE SymBoOLS IN THE Tor Row
ARE GRAMMAR SymBoLs. THE SvmsoL * DENOTES A don’t care

State $ E T F

o (s,gua%,%,%,0)  (5,g2,%%,%,1)  (8,q3,%,%,%,1)
@ (%,%,% % a)

q2 (r,%,p2,1,E,1)

q3 (r,%,p4,1,T,1)

41 (3,g8,%,%,%,)  (8,q2,%,%,%,1)  (8,q3,%y%,%,1)
qs (r.%,ps,1,F,1)

g6 (8,q9,%,%,%,1)  (5,43,%,%,%,1)
q7 (8,G10,% %, %,1)
qs

go (r.x,p1,3,E,1)

q10 (r,%,p3,3,T.1)

11 (r.*,p5,3,F,1)

between every input symbol of the input string and the outpattions;* denotes adon’t care ; N is the set of natural
symbol of the output string at corresponding position in aumbers; andZ = {error, in — progress, accept} is the
Mealy machine does not hold fofLRpa,,Se,,. A stack is set of possible parsing status values. Table | in Section VI-D
required to store intermediate results of the parsing procésssuch an example for a parse table.

in order to realize an LR(1) parser which is characterized A parse table can be realized using a BMP module as de-

by frrParser- scribed in Sections 1I-B and 1I-C in terms of binary mapping.
_ The next move of the parsing automaton is determined by
A. Representation of Parse Table current input symbak and the state that is stored at the top of

Logically, an LR parser consists of two parts: a drivelhe stack. It is given by the parse table entry corresponding to
routine which is the same for all LR parsers and a par$e a]. Each such two-dimensional parse table eationg, a|
table which is grammar-dependent [1]. LR parsing algorithii implemented as a 6-tuple binary cogsction, state, rule,
precompiles an LR grammar into a parse table which kength, Ihs, statusin the BMP for parse table where
referred by the driver routine for deterministically parsing ¢ actionis a 2-bit binary code denoting one of two possible

input string of lexical tokens bghift/reduce moves [1], actions, 01 ghift ) or 10 (educe );
[7]. Such a parsing mechanism can be simulated by a DPDAe stateis an.S-bit binary number denotingthe next statg
(deterministic pushdown automata) wit¢hmoves [36]. Ane- * rule is an R-bit binary number denoting the grammar

move does not consume the input symbol, and the input head production rulep to be applied if the consulteaction is
is not advanced after the move. This enables a DPDA to a reduce ;
manipulate a stack without reading input symbols. The neural-+ lengthis an L-bit binary number denoting the length of
network architecture for DPDA (NN DPDA) proposed in [8],  the right-hand side of the grammar production rpléo
augmented with an NNStack (see Section IV above), is able to be applied if the consultedction is areduce ;
parse DCFL. However, the proposed NN DPDA architecture* Ihs is an H-bit binary code encoding the grammar non-
cannot efficiently handle-moves because of the need to check  terminal symbol at the left-hand side of the grammar
for the possibility of anc-move at every state. Therefore, a  production rulep to be applied if the consulteection
modified design for LR(1) parsing is discussed below. is areduce and

Parse table and stack are the two main components of an statusis a 2-bit binary code denoting one of three possible
LR(1) parser. Parse table access can be defined by the symbolic parsing statuscodes, 00error, 01:in progress , or
function fparseraste: @ X (A U V U{$}) - Ax Q U{x} x 10: accept (used by higher-level control to acknowl-
T U{s} x N U{x}xV U{x} x Z in terms of binary mapping. ~ edge the success or failure of a parsing).
Here, @ is the finite set of states\,V,$, and T have the Note that the order of the tuple’s elements arranged in Fig. 6
same meaning as in the definition 6%,z and fLRpa,,Se,, is different from above. A canonical LR(1) parse table is rel-
given above;A = shift,reduce} is the set of parsing atively large and would typically have several thousand states



104

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 1, JANUARY 1999

for a programming language like C. SLR(1) and LALR(1humber (code) of all zeros denoting a valuedoh’t care
tables, which are far smaller than LR(1) table, typically haver & > 1. In the proposed NNLR Parser, the configurations
several hundreds of states for the same size of languagssulting from one of four types afoveson parsing an input
and they always have the same number of states for a gilerical token are as follows.

grammar [1]. (The interested readers are referred to [7] for ae
discussion of differences among LR, SLR, and LALR parsers).

The number of states in the parse table of LALR(1) parsers

for most programming languages is between about 200 and
450, and the number of symbols (lexical tokens) is around 50
[7], i.e., the number of table entries is between about 10000
and 22500.

Typically a parse table is realized as a two-dimensional array
in current computer systems. Memory is allocated for every
entry of the parse table, and the access of an entry is via its
offset in the memory, which is computed efficiently by the size «
of the fixed memory space for each entry and the indexes of an
entry in the array. However, it is much more natural to retrieve
an entry in a table using content-based pattern matching on
the indexes of the entry. As described in Sections 1I-B and II-
C a BMP module can effectively and efficiently realize such
content-based table lookup.

LR grammars used in practical applications typically pro-
duce parse tables with between 80 and 95% undefined error
entries [7]. The size of the table is reduced by using lists
which can result in a significant performance penalty. The
use of a BMP module for such table lookup help overcome
this problem since undefined mappings are naturally realized
by a BMP module without the need for extra space and
without incurring any performance penalties. Thus, LALR(1)
parsing (which is generally the technique of choice for parsing
computer programs) table can be realized using at most about
22500 x 20% = 4500 hidden neurons.

B. Representation of Parse Tree and Parsing Moves

An LR parser scans input string from left to right and
performs bottom-up parsing resulting in a rightmost derivation
tree in reverse. Thus, a stack can be used to stongelitse tree  »
(derivation tree) which is a sequence of grammar production
rules (in reverse order) applied in the derivation of the scannede
input string. The rule on top of the final stack which stores
a successfully parsed derivation tree is a grammar production
rule with thestart symbolof an LR grammar at its left-hand
side. Note that each rule is represented byFabit binary

If actiong;,a;] = (01,q,0% 0% 0%,01), the parser
performs ashift ~move and enters the configuration
(goq1 - - 9iq, @41 - - - a,$). For example, for the parser
of G1 with a current configuratiofge, | x | + 1 $), the
next configuration is¢pqs, x |1 + | $) sinceaction[qo, ]

= (s, 5, *, %, %,1) according toZ;'s parse table (Table |

in Section VI-D), where s denoteshift (coded as 01)
and i denotesn progress (coded as 01). Such a
shift  move is realized in one cycle in the proposed
NNLR Parser.

If actionq;, a;] = (10,0, p,1, h, 01), the parser performs

a reduce by producing a binary numbep (which
denotes a grammar production rule— 3 being applied,
where the grammar nonterminal is denoted by the
binary codeh, and! is the number of nonempty grammar
symbols in3) as part of the parse tree, poppihgymbols

off the stack, consulting parse table enfigy_;, h] and en-
tering the configuratiofigog: - - - gi—iq, a; - - - a,$) where
actiong;_;, h] = (01, ¢, 0%,0%,0% 01). For example, for
the parser ofG; with a current configuration{gogs, %

| + | $), the parser first consult&;’s parse table for
actiongs, x| = (r,*,ps,1,F,1), where r denotese-
duce (coded as 10). Then, the parser performeduce
move, pushes production rulg onto the stack which
stores parse tree, pops one state (whichysis off the
stack which stores states, and consults the parse table for
actiongo, I], where F is the left-hand side of production
rule pg. Then, sinceactiongo, FF] = (s, g3, *, *, *,1), the
parser performs ahift ~move and enters the new
configuration(gogs, x | + | $). Such areduce move is
realized in two cycles in the proposed NNLR Parser since
the parse table is consulted twice for simulating the move.
If actiong;,a;] = (0% 0°,0% 0% 0%,10), parsing is
completed.

If actiong;,a;] = (0%,0°,0%,0%, 0%,00), an error is
discovered and the parser stops. Note that such an entry
is a binary code of all zeros. (We do not discuss error
handling any further in this paper).

number and the mapping from a binary-coded rule to the rdfe Architecture of an NNLR Parser

itself can be realized by a BMP module.

Fig. 6 shows the architecture of a modular neural-network

A configuration of an LR parser is an ordered pairdesign for an LR(1) parser which takes advantage of the

whose first component corresponds to the stack contesfficient shift/reduce

technique. The NNLR Parser uses

and whose second component is the part of the input theat optional queue handler module and an NN stack which
remains to be parsed. A configuration can be denoted bipres the parse tree (derivation tree). The queue handler
(goqr - - @i, aja;41 - - - an$), Whereg; is the state on top of stores lexical tokens extracted by the NN lexical analyzer
the stack (current statey, is the stack bottom symbol; and facilitates the operation of lexical analyzer and parser in
is current input symbol, and $ is a special symbol denotirgarallel. To extract the binary-coded grammar production rules
“end of input’ The initial configuration is(qo, a1az - - - a,8$). in derivation order sequentially out of the NN stack which
In the following, we use the example gramm@; and the stores parse tree, the next processing unit connected to the
input lexical token string IxlI + 1 $ (= S1) in Section VI- NN stack sends binary-coded stag&p actions to the stack

D for illustration, and binary and symbolic codes are usead an appropriate order.

interchangeably. Then, the initial configuration for the input Modules of the NNLR ParseThe proposed NNLR Parser
lexical string Sy is (qo, | x | +1$). Let0* be ak-bit binary consists of a BMP module implementing the parse ta-
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ble, an NN shift/reduce stack storing states duringshift/reduce stack can be slightly modified from the NN
shift/reduce simulation, a buffer gtate ) storing the stack described in Section IV to allow multiple stgodps in
current state (from the top of the Néhift/reduce stack), one operation cycle of the NNLR Parser. The numbegrag s
and a buffer iqput(t) ) storing either current input lexical is coded as ar.-bit binary number and equals the number
token or a grammar nonterminal symbol produced by last nonempty grammar symbols at the right-hand side of the
consulted parsing action which israduce . When the last grammar production rule being reduced. It is used as input to
consulted parsing action is @duce encoded as 10; thethe pointer control module and write control module in the
grammar production rule to be reduced is pushed onto tN& shift/reduce stack. Thus, the pointer control module
stack for parse tree, the transmissionirgut(t) is from usesL additional input neurons in the Nkhift/reduce
the latched buffeths, and the input from the queue mechanismtack as compared to the NNstack proposed in Section IV.
is inhibited by the leftmost bit of the binary-codedduce  The S-bit output from the NN parse table, namely, tie
action. When the last consulted parsing action &hift en- bit binary code for state, is used as the stack symbol to the
coded as 01, the transmissionimput(t) is from the queue NN shift/reduce stack. Let the maximum number of
mechanism and the input from the latched bufferis inhib- nonempty grammar symbols that appear in the right-hand
ited by the rightmost bit of the binary-codetiift action. side of a production rule in the LR grammar being parsed
Parsing is initiated by reset signals to the NNve L,,. Then % multiple pops are implemented in the NN

shift/reduce stack and the NN stack storing parsehift/reduce stack in a manner similar to a singlep in
tree. The signals reset the SP’s of these two stacks to stéiok NN stack proposed in Section IV except that the SP value
bottom and hencestate(t) is reset to initial state. To is decreased by instead of 1, wheré < k < L,,. Hence for

avoid clutter, the reset signal lines are not shown in Fig. 8ach SP valuel.,,, — 1 additional hidden neurons are required
The current state buffestate(t) and the current input to allow multiple pops in the pointer control module.

buffer input(t) need to be synchronized but the necessary

synchronization circuit is omitted from Fig. 6. D. NNLR Parser in Action

The working of an LR parser can be weyved In terms (?f 8 This section illustrates the operation of the proposed NNLR
sequence of transitions from an initial configuration to a f'”@arser to parse a given LR(1) grammar

confEu:ja}u%n.dT_h(ta trtansmton fr.ot? ofnetc_onfl?uranon to lz:not?er The Example GrammarThe example of LR(1) grammar
can be divided into two steps: the first involves consulting 1) used here is taken from [1]. The BNF (Backus—Naur

parse table for next action using current input sympol a rm) description of the gramma; is as follows:
current state on top of the stack; the second step involves

execution of the action—either shift or areduce —as expression — expression + term|term
specified by the parse table. In the NNLR Parser, the first step
is realized by a BMP module which implements the parse table
lookup; and the second step is executed by a combination of
an NN shift/reduce stack which stores states, and an NN Using E, T, F, and | to denote expression, term, factor, and

stack which stores the parse tree (and a BMP module WhgRniifier (respectively), these rules can be rewritten in the

the next action is aeduce ). form of production rules; through pg
Complexity of the BMP Module for Parse Tableet M be

the number of definedction entries in the parse table. All Production rulep;: E —- E+T
grammar symbols are encoded intb-bit binary codes. The Production rulep.: E — T
BMP module for parse table usés+ H input neuronsi
hidden neurons, and + S + R + L + H output neurons.

term — term X factor|factor

factor — (expression)|identifier.

Production ruleps: T — T x F

Note that the BMP module produces a binary output of all Production rulepy: T — F
zeros, denoting a parsing error (see previous description of Production rulev;: F — (E)
status code in anaction entry of the parse table), for any Production rulgrg: F — L.

undefinedaction entry in the parse table. ThE-bit binary-

coded grammar production rule is used as the stack symflen {I,+, x,(,)} is the set of terminals (i.e., the set of

for the NN stack which stores the parse tree. possible lexical tokens from the lexical analyzelfs, T, F}
Complexity of the NN Stack for Parse TreAssume  the is the set of nonterminaldp:,p2, ps3, pa, ps, pe} is the set of

pointer control module of the NN stack for parse tree wge production rules, and E is the start symbol of the graméar

bits to encode its SP values. Then the pointer control moduleThe operation of the parser is shown in terms of symbolic

of the NN stack for parse tree uses, + 2 input neurons, codes (instead of the binary codes used by the NN implemen-

3 x 2™» hidden neurons, angh, output neurons. The stacktation) to make it easy to understand. Note however that the

memory module uses:, input neurons2™» hidden neurons, transformation of symbolic codes into binary form used by

and R output neurons. The write control module receiveNNLR Parser is rather straightforward and has been explained

my, + 1 binary inputs (the stack pointerpush/pop signal), in the preceding sections.

and R binary inputs (the grammar production rule). The Example Parse Tabld:-et s and r denote the parsing
Complexity of the Shift/Reduce NN Stadko  efficiently actionsshift andreduce and a, e, and i the parsing status

implement thereduce action in LR parsing, the NN valuesaccept , error , andin progress , respectively.
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TABLE I
O THE TRANSITION FUNCTION ér,, OF THE DFA M7, . THE ENTRIES THAT ARE
a~z LEFT BLANK ARE UNDEFINED. THESE CORRESPOND TO THEERROR STATE

State a,b,..,z + x ( ) blank $§

] q1 9 95 g7 9o qo ]

q1 q1 q2 q2

qz q1 93 g5 47 Qo ] (]

q3 q4 q4

g4 1 93 95 g7 4s 9o do

s ds de

ds q1 g3 g5 497 9o do0 90

qr qs gs

qs T 93 45 47 4o 9o o
Fig. 7. The state diagram of the DFA{;,, for the lexical analyzer,.
When the DFA receives a $, it stops the processing of the input string. 99 910 910

q10 q1 93 g5 47 Q9 9o Jo0
The parse table of the LR(1) parser (more specifically, SLR(1)
parser) for grammaé, is shown in Table I. 4, 6, 8, and 10 to state 3 (o), state 5 (onx), state 7 (on

The implementation and operations of the NNy and state 9 (on *)’) are not shown in the figure.

shift/reduce stack and the NN stack for parse tree Tne transition functiors;, of the DFA M, is shown in

follow the discussion and examples in Section IV and thegaple 11. This function can be expressed as a binary mapping
are not discussed here. The parse table can be represefggh in turn can be easily realized by a neural associative
by a binary mapping which in turn can be easily realizegrocessor (see Section Il for details). In the NN DFA, BMP

by a neural associative processor (see Section Il for detail§odule 1 realizes the transition functiép,: @ xI' — Q and
Following the notation introduced in Section VI for the NNBMP module 2 realizes a translation functiah Q@ — A s.t.

realization of the parse table, we have: = 45 since there M) = LN (q) =+, N(ge) = %, N(gs) = (,N(qu0) =),
are 45 defined entries in the parse talfle= [log212] =4  and N(q) = e (nhull symbol, which is discarded) for other
since there are 12 stateH, = [log2(8 + 2)] = 4 since there ; ¢ (), where = {0+ 0102, 43+ Qas G5, Q6+ 07+ Q8. Qo> Q10+ 1S
are 8 grammar symbols plusnall symbole and an additional the set of stated” = {a,b,---, 2,4+, %,(,)$, blank} is the
end-of-inputsymbol $; R = [log.6] = 3 since there are 6 input alphabet, and\ = {I, +, x, (,)} is the output alphabet
production rules; and. = [log23] = 2 since the maximum (j.e,, the set of lexical tokens). The symbolic functiéias and
number of nonempty grammar symbols that appear in the can be expressed as binary mappings which in turn can be
right-hand side of a production rule in the LR gramnGaris realized by neural associative processors (see Section Il for
3. Therefore, the BMP for parse table 6§ hasS + H =8 (etails).
input, 45 hidden, and+S + R+ L+ H = 17 output neurons.  The Operations of the Example NNLR Parséet us now

The Example Lexical AnalyzerAssume every identifier | consider the operation of the LR(1) parser when it is presented
is translated from a string of lower case English charactegith the input stringaa x bbb + ccec$. This string is first
The lexical analyzerL; which translates input strings oftranslated by the lexical analyzér, into a string of lexical
+,%,(,),$, blank and lower case English characters int@okens | x | 4+ | $ which is then provided to the LR(1)
strings of lexical tokens can be realized by an NN DFA. Fig. garser. This translation is quite straightforward, given the state
shows the simplified state diagram of the DR4;, for L;. diagram and transition functiofy,, (Table Il) of M, and its
Note that additional machinery needed for error handling iganslation function\’. Note that there is @pace between
not included in the DFAM, ; and when the DFA sees a $,each pair of consecutive words in the character string, and
it stops the processing of the input string and appends a $fa¢re is nospace token between each pair of consecutive
the end of the output string. The state 0 in the dotted circlelixical tokens in the string of lexical tokens.
identical to the state O in solid circle. To avoid clutter, some The string of lexical tokens is parsed by the LR(1) parser
transitions are not shown in the figure. For example, there avhose moves are shown in Fig. 8. At step 1, the parse table
transition from states 2, 4, 6, 8, and 10 to state 1 on curreitry corresponding tdqo, I) is consulted. Its value is (s,
input symbols a, b;- -, z. Similarly, transitions from states 2,q;, *, %, %, i). This results in shifting | and pushing state
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CMOS analog, digital, or hybrid (analog/digital) electronic
Step Content of  Remaining Referred entries Content of circuits. Analog circuits typlca”y consist of proceSSing ele-
ments for multiplication, summation and thresholding. Analog

shift /reduce input of parse tree
CMOS technology is attractive for realization of ANN because
stack parse table stack . . . . .
it can yield compact circuits that are capable of high-speed
) IxI+I$  (go,1) 1 asynchronous operation [21]. Reference [98] reports a mea-
2} gogs xI4+1$  (gs5,%), (g0, F) L sured propagation delay of 104 ns in a digital circuit with each

F
43,%), {0, T)  Lps synapse containing an 8-bit memory, an 8-bit subtractor, and

3 3 x I+1$

) : an 8-bit adder. Reference [98] reports throughput at the rate

D og XIS (g2,%) Lpops of 10MHz (or equivalently, delay of 100ns) in a Hamming
g7,1) Lpeps Net pattern classifier using analog circuits. Reference [23]

6) dog:qras 415 (gsi4), (g F)  Lpeps describes a hybrid analog-digital design with 5-bit (4 bits

(

(

(

(

(5)  qog297 I+1%
(

( + sign) binary synapse weight values and current-summing
(

(

(

(

(

(

(

(
(q10:), (90, T)  Lpepaps
(q2,4)
(

(

(

(

(

(

") wosaaro e circuits that is used to realize a 2-layer feedforward ANN with

8) qoa +8 (g2,1), (40E)  Lpspapops a network computation delay of less than 20 ns.

9 qa +18 (q1,+) L pspapspap2 The first- and second-layer subnetworks of the proposed
(10)  qoq16s 15 (go]) 1 pepapepspa BMP neural architecture are very similar to the first-layer
(1D qogsasgs S (05). (F)  Lpopepepops subnetwork of a Hammlqg Ne?. BMP archltectur'e with two

R layers of connection weights is same as that implemented
(12) 0919895 5 (g3,8), (g5 T)  LpoPapspspaps by [50] except that the latter uses integer input values, 5-
(13) 091967 8 (¢9:9), (90.E)  Lpspapepspzpeps bit synaptic weights, one output neuron, and sigmoid-like

' activation function whereas BMP uses binary input values,
(14)  qoq 3 (918) L pspapspspapspap1

synaptic weights from{—1,0,1}, multiple output neurons,
Fig. 8. Moves of the LR(1) parser for grammef on input string Ix | + and pmary hardlimiter as act|vat|o_n function. Henge the com-
I. Note that the parse table is accessed twice for eadhce action. putation delay of BMP module implemented using current
CMOS technology can be expected to be at best of the order
of 20 ns. It is worth noting that development of specialized
entry corresponding tdgs, x) is consulted first. Its value hardwarg for implementation of ANN is still in its infancy.
Conventional CMOS technology which is probably the most

is (r,*,pg, 1,F,1) which indicates aeduce on production ) . X
rule pg. Therefore, production rulgs is pushed onto the common choice for VLSI implementation of ANN at present,

stack which stores parse tree, stages popped off the stack is very likely to be improved by newer tech_nologies such as
which stores states, and table entry correspondinggoF) BICMOS, NCMOS [42], pseudo-NMOS logic, standard N-P
is consulted next. The entry i&, gs, +, *, +i) which means d0Mino logic, and quasi N-P domino logic [48].

shifting F and pushing statg onto the stack. Fig. 9 shows the
inputs and outputs of the neural modules in the NNLR Pars§r
when the NNLR Parser sees an input lexical tokeat state -’
¢s. The remaining steps are executed in a similar fashion.
the end of the moves (step 14), the sequence of production'© simplify the comparison, it is assumed that each instruc-

rules stored on the stack for parse tree can be appliedlipn on a conventional computer takesis on an average. For
reverse order to derive the stringxd | + | from grammar instance, on a relatively cost-effective 100 MIPS processor, a

start symbol E. typical instruction would take 10 ns to complete. (The MIPS
measure for speed combines clock speed, effect of caching,
pipelining and superscalar design into a single figure for speed

hi i | h ; ¢ of a microprocessor). Similarly, we will assume that a single
This section explores the performance advantages of {i@nification and recall operation by a neural associative

proposed neural-network architecture for syntax analysis i ory takes: ns. Assuming hardware implementation based
comparison with that of current computer systems that empIBK current CMOS VLS| technologyy = 20 ns

inherently sequential index or matrix structure for pattern Syntax analysis in a conventional computer typically in-

matchlngh The perforr?ange estimates for the NNLR Parsilives: lexical analysis, grammar parsing, parse tree construc-
assume hardware realization based on current CMOS VLgJy 504 error handling. These four processes are generally
technology. In the analysis that follows, it is assumed that tl&%ded into two modules [1]. Error handling is usually em-

two systems have comparable input-output (I/O) performangg ey in grammar parsing and lexical analysis respectively,

and error handling capabilities. and parse tree construction is often embedded in grammar
o parsing. The procedure for grammar parsing is the main

A. Performance of Hardware Realization of the NNLR Parsefoqule. In single-CPU computer systems, even assuming

Electronic hardware realizations of ANN have been exiegligible overhead for parameter passing, a procedure call
plored by several authors [22], [23], [26], [47], [O], [51],entails, at the very minimum, (1) saving the context of
[59], [78], [98], [101]. Such implementations typically employthe caller procedure and activation of the callee procedure

¢s onto the shift/reduce stack. At step 2, the table

Performance of Syntax Analysis Using
Xtonventional Computers

VIl. PERFORMANCE ANALYSIS
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NNLR()P
— OPaser
L :
NN shift/reduce stack NN stack next
for state for parse tree | processing unit
AEIEII NI

BMP (Binary Mapping Perceptron)

(Parsing table)

45 I ’ X l
queue ~+— inhibited by a? reduce action
mechanism : — NNfor [=— input
lexical token :

Fig. 9. The inputs and outputs of the neural modules in the NNLR Parser when the NNLR Parser sees an input lexicaktosigtes .

which typically requires six instructions [49]; and (2) contexfcontent-addressed) pattamatching-and-retrievain a single
restoration and resumption of caller procedure upon the retudentification-and-recallstep of a BMP module. In the two-
(exit) of the callee procedure, which typically requires at leadtmensional table, the values of the two indexes for an entry
three instructions [49]). Thus, a procedure call entails a penaftsovide a unique pattern—thimdex pattern for accessing
of nine instructions or abour ns. the table entry. In the BMP module, each index pattern and

Performance Analysis of Lexical Analyzelcexical analy- the corresponding entry are stored as an association pair by
sis can be performed by a DFA whose transitions can behidden neuron and its associated connections. The BMP
represented as a two-dimensional table with current state anddule performs a table lookup in two stepdentification
current input symbol as indexes. The continuous transitiamd recall. In the identification step, a given index pattern is
moves of such a DFA involve repetitive lookup of the nextompared to all stored index patterns in parallel by the hidden
state from the table using current state and current inputurons and their associated first-layer connections. Once a
symbol at each move until an error state or an accepting statatch is found, one of the hidden neurons will be activated
is reached. Such a repetitive table lookup involves contemd- recall the associated entry value using the second-layer
based pattern matching and retrieval which can be performashnections associated with the activated hidden neuron.
more efficiently by neural memories. In program compilation, a segmented word is translated into

Each entry of the DFA transition table implemented oa syntactically tagged token when the DFA for lexical analysis
conventional computers contains three parts: the next staafers an accepting state. On conventional computers, this
a code which tells whether the next state is an accepting stdtanslation step costs, at the very minimum, three instructions
an error state, or neither; and the lexical token to use if the négt 37 ns): one addition to compute the offset of the third
state is an accepting state. Implementing such a repetitive tabdet in the transition table (based on the known offset of the
lookup on conventional computers requires, at a minimum, dixst part), one memory access to fetch the lexical token from
instructions: one (or two) multiplication and one addition téhe table, and one branch instruction to jump back to the first
compute the offset in the transition table (to access the locatimstruction of the loop for carving next word.
where next state is stored), one memory access to fetch thén other syntax analysis applications that involve large
next state from the table, one addition to compute the offsaicabularies, a database lookup is typically used to translate a
of the second part in the transition table (based on the knoword into a syntactically tagged token. In this case, depending
offset of the first part), one memory access to fetch the secaml the size of the vocabulary and the organization of the
part from the table, and one branch-on-comparison instructidatabase, it would generally take more than several hundred
to jump back to the first instruction of the loop if the nexhanoseconds (ns) to perform this translation. (The interested
state is neither an error state nor an accepting state. (Note tieatder is referred to [8] for a comparison of database query
this analysis ignores I/O processing requirements). Thus, egecbcessing using neural associative memories as opposed to
state transition takes six instructions ®r ns. conventional computers).

In contrast, the proposed NN architecture for lexi- A BMP module is capable of translating a carved word
cal analyzer computes the next state using associatinéo a token as described in Section II-B in a single cycle of
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identification-and-recallwith a time delay ofa ns. Note that TABLE Il

this step can be pipelined (see the NNLR Parser in action it COMPARISON OF THEESTIMATED PERFORMANCE OF THEPROPOSEDNNLR
Section VI-D) PARSER WITH THAT OF CONVENTIONAL COMPUTER SYSTEMS FOR SYNTAX

) ANALYSIS. W |s THE AVERAGE NUMBER OF SYMBOLS IN A WORD, « IS THE
In summary, if we assume the average Iength of word®wmputation DeLAY OF A BMP MODULE, AND 7 IS THE AVERAGE TIME DELAY

in input string beingiW’ symbols and we ignore 1/0, error FOR EXECUTION OF AN INSTRUCTION IN CONVENTIONAL COMPUTER SYSTEMS
handling and the overhead associated with procedure calts;
it would take (6W + 3)7 ns on average to perform lexical
analysis of a word on a conventional computer. In contrasgt computers
it would take (W + 1)06 ns using the proposed NN lexical | time for lexical analysis of a word (W+ Da (6W +3)r
analyzer. This analysis ignores 1/O and error handling. For
example, assuming a 100 MIPS conventional comp(ites
10 ns), and current CMOS VLS| implementation of neural time for a reduce move of parsing | max [6e, (W +1)a] | (6W +15)7
associative memorieéx = 20 ns), with W = 5, then the

former takes 330 ns and the latter 120 ns. )

Performance Analysis of LR Parset:R parsing also in- It should be noted that the preceding performance compar-
volves repetitive table lookup which can be performed effison has not considered alternative hardware realizations of
ciently by neural associative memories. LR parser is drivéntax analyzers. These include hardware implementations of
by a two-dimensional table (parse table) with current staB@'Sers using conventional building blocks used for bu_lldlng
and current input symbol as indexes. Once a next state!3day’s serial computers. We are not aware of any such imple-
retrieved, it is stored on a stack and is used as the current sfagtations although clearly, they can be built. In this context it

for the next move. Parsing involves repetitive application &% worth noting that the neural architecture for syntax analysis
a sequence oshift andreduce moves. Ashift move proposed in this paper makes extensive use of massively
would take at least six instructions, or equivaler@ily ns on parallel processing capabilities of neural associative processors

a conventional computer. This includes three instructions {@1€mories). It is quite possible that other parallel (possibly
consult the parse table, one instruction to push the next stgineural-network) hardware realizations of syntax analyzers

onto the stack, one instruction to increment the stack point@fi€r Performance that compares favorably with that of the
and one instruction to go back to the first instruction of thef0Poseéd neural-network realization. We can only speculate

repetitive loop for next move. Aeduce move involves a 25 to why there appears to have been little research on parallel
parse table lookup, pop of the state stack, push to store architectures for syntax analysis. Conventional computer sys-
a rule onto the sta(;k for parse tree am;hiit, move. Thus. tems employ inherently sequential indexes or matrix structures

areduce would take at least+ 1+2+6 = 12 instructions, for the purpose of table lookup during syntax analysis. A possi-
or equivalentlyl2r ns, on a conventional computer ble hardware implementation of syntax analyzers which avoids

In the proposed NNLR Parser, the computation delay coW—e burden of using sequential indexes and matrix structures
’ r table lookup would be to use content-addressable memories

sists of the delays contributed by the operation of the thB

NNStacks and the BMP module which stores the parse tapf@’ t2ble lookup. Such an implementation would be similar to
An NNStack consists of two BMP modules, one of which ighe proposed neural architecture which is synthesized from
augmented with a write control module. Assuming that th%eural associative memories. Historically, research in high

computation delay of an NN stack is roughly equal to th&)[erformanqe computing _has focuseq primaril_y on speeding up
of two sequentially linked BMP module2d ns), ashift the execution of numeric computatlons, typically performed
move (which takes one operation cycle of the NNLR Parsep programs written in Cqmp'lled languages such as C and
and areduce move (which takes two operation cycles of th ORTRAN' In such gppllcatlor_ls, _syntax_analy&s is done
NNLR Parser) would consunfey ns andéa ns, respectively. during program compilation which is relatively infrequently

(This analysis ignores the effect of queuing between the NNL(;Qmpared to program execution. The situation is quite different
Parser and the NN lexical analyzer) in symbol processing (e.g., knowledge based systems of Al,

Assuming that the average length of words in input string alysis of mathematical expressions in software designed

W symbols, and ignoring /0, error handling and the overhe ar symbolic integration, algebraic simplification, theorem

associated with procedure calls, parsing a word (a word h%rgving) a:jnd interactiye plrogramming env"ﬁggegfviasif on
to be translated into a lexical token by lexical analysis firs§terprete programming languages (e.g., ' ). Mas-

by shift andreduce moves would také6W +9)r ns and ively parallel architectures for such tasks are only beginning

(6W + 15)7 ns, respectively, on a conventional computer. to be explored.
In contrast, because the NNLR Parser and NN lexical
analyzer can operate in parallshift andreduce moves
take3a ns or(W + 1)« ns (whichever is larger) angty ns or Traditional Al and ANN's offer two apparently disparate
(W 4+ 1)« ns (whichever is larger) respectively on the NNLRapproaches to modeling and synthesis of intelligent systems.
Parser. Each provides natural ways of performing certain tasks (e.qg.,
Thus, as shown in Table IIl, for typical values @fr, and logical inference in the case of Al systems, pattern recognition
W, the proposed NNLR Parser offers a potentially attractivia the case of ANN) and thus poses a challenge for the other
alternative to conventional computers for syntax analysis. of doing the same task perhaps more efficiently, elegantly,

NN LR Parser Conventional

time for a shift move of parsing | max [3a, (W +1)a] | (6W 4 9)7

VIIl. SUMMARY AND DISCUSSION
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robustly, or cost-effectively than the other. Each of them reli@sutine which is the same for all LR parsers, and a parse
on essentially equivalent formal models of computation. Thegble which varies from one application to the next [2], the
differ from each other in terms of their (implicit and ofterproposed NNLR Parser can be used as a general-purpose
unstated) assumptions regarding the computational architaeural architecture for LR parsing.

ture and the primitive building blocks used to realize the It should be noted that the paper’'s primary focus was
desired behaviors. This places the two approaches in different taking advantage of massive parallelism and associative
regions of a vast (and as yet, unexplored) space of possipbdtern storage, matching, and recall properties of a particular
designs for intelligent systems. We believe that a judicious anthss of neural associative memories in designing high per-
systematic exploration of this design space, by (among otlfermance syntax analyzers fer priori specified grammars.
things) examining alternative designs for specific tasks (e.@onsequently, it has not addressed several other potential
inference, syntax analysis, pattern recognition) is central to tadvantages of neural-network architectures for intelligent sys-
enterprise of analysis and synthesis of intelligent systems. tems. Notable among these are inductive learning and fault

Against this background, this paper explores the design toferance.

a neural architecture for syntax analysis of languages withMachine learning of grammars or grammar inference is a
known (@ priori specified) grammars. Syntax analysis is major research topic which has been, and continues to be,
prototypical symbol processing task with a diverse range tfe subject of investigation by a large number of researchers
applications in artificial intelligence, cognitive modeling, andh artificial intelligence, machine learning, syntactic pattern
computer science. Examples of such applications includecognition, neural networks, computational learning theory,
language interpreters for interactive programming environatural language processing, and related areas. The interested
ments using interpreted languages (e.g., LISP, JAVA), parsirgpder is referred to [34], [44], [54], and [70] for surveys of
of symbolic expressions (e.g., in real-time knowledge basgdammar inference in general and to [3], [5], [11], [16], [18],
systems, database query processing, and mathematical proljterh [29], [37], [39], [55], [60], [61], [64], [66], [82], [84],
solving environments), syntactic or structural analysis of larg@7], [93], and [102]-[104] for recent results on grammar infer-
collections of data (e.g., molecular structures, engineeriegce using neural networks. The neural architecture for syntax
drawings, etc.), and high-performance compilers for prograamalysis that is proposed in this paper does not appear to lend
compilation and behavior-based robotics. Indeed, one woulself to use in grammar inference using conventional neural-
be hard-pressed to find a computing application that doestwork learning algorithms. However, its use in efficient
not rely on syntax analysis at some level. The need fparallel implementations of recently developed symbol pro-
syntax analysis in real time calls for novel solutions that casessing algorithms for regular grammar inference and related
deliver the desired performance at an affordable cost. Artificiptoblems [68], [69] is currently under investigation.

neural networks, due to their potential advantages for real-Fault tolerance capabilities of neural architectures under
time applications on account of their inherent parallelism [81dlifferent fault models (neuron faults, connection faults, etc)
offer an attractive approach to the design of high performanbave been the topic of considerable research [9], [86], [96] and
syntax analyzers. are beyond the scope of this paper. However, it is worth noting

The proposed neural architecture for syntax analysis tisat the proposed neural-network design for syntax analysis
obtained through systematic and provably correct compositiovherits some of the fault tolerance capabilities of its primary
of a suitable set of component symbolic functions which atmiilding block, the neural associative processor. The interested
ultimately realized using neural associative processor mawader is referred to [9] for detalils.
ules. The neural associative processor is essentially a 24t is relatively straightforward to estimate the cost and
layer perceptron which can store and retrieve arbitrary bingpgrformance of the proposed neural architecture for syntax
pattern associations [9]. Since each component in the proposedlysis based on the known computation delays associated
neural architecture computes a well-defined symbolic functiowjth the component modules (using known facts or a suitable
it facilitates the systematic synthesis as well as analysist of assumptions regarding current VLSI technology for
of the desired computation at a fairly abstract (symbolignplementing the component modules). Our estimates suggest
level. Realization of the component symbolic functions usinfpat the proposed system offers a systematic and provably
neural associative processors allows one to exploit masso@rect approach to designing cost-effective high-performance
parallelism to support applications that require syntax analysigntax analyzers for real-time syntax analysis using knaavn (
to be performed in real time. priori specified) grammars.

The proposed neural network for syntax analysis is capableThe choice of the neural associative processors as the
of handling sequentially presented character strings of varialplémary building blocks for the synthesis of the proposed
length, and it is assembled from neural-network moduleural architecture for syntax analysis was influenced, among
for lexical analysis, stack processing, parsing, and parse taher things, by the fact that they find use in a wide range of
construction. The neural-network stack can realize stacks syfstems in computer science, artificial intelligence, and cog-
arbitrary depths (limited only by the number of neurons avaikitive modeling. This is because associative pattern matching
able). The parser outputs the parse tree resulting from synemd recall is central to pattern-directed processing which is
analysis of strings from widely used subsets of deterministat the heart of many problem solving paradigms in Al (e.g.,
context-free languages (i.e., those generated by LR grammakspwledge-based expert systems, case based reasoning) as
Since logically an LR parser consists of two parts: a drivevell as computer science (e.g., database query processing, in-
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formation retrieval). As a result, design, VLSI implementation,
and applications of associative processors have been studied
extensively in the literature [9], [10], [30], [38], [41], [45],
[53], [62], [63], [77], [79]. Conventional computer systems
employ inherently sequential index or matrix structure for
the purpose of table lookup which entails a process pattern
matching. The proposed neural associative memory [9] can
compare a given input pattern with all stored memory patterns
in parallel. Therefore, it can serve as a cost-effective SIMD
(single instruction, multiple data) computer system which is
dedicated to massively parallel pattern matching and retrieval.
The neural-network architecture for syntax analysis proposed
in this paper demonstrates the versatility of neural associative
processors (memories) as generic building blocks for sys-
tematic synthesis of modular massively parallel architectures
for symbol processing applications which involves extensive
table lookup. A more general goal of this paper is to explore
the design of massively parallel architectures for symbol
processing using neural associative memories (processors) as
key components. This paper takes a small step in this direction
and adds to the growing body of literature [20], [34], [46], [95]
that demonstrates the potential benefits of integrated neural-
symbolic architectures that overcome some of the limitations
of today’s ANN and Al systems.

APPENDIX

This Appendix illustrates how the modules of an NNStack
together realize a stack by considering several successive stack
actions in terms of binary codings. The notations used here
follow Section IV. Letm = 6 and stack symbols be encoded
into 8-bit ASCII codes. Then there are 64 possible SP values
andn = 8. Letw;, andwy;, respectively, denote the first-layer
connection weight from input neurarto hidden neuron and 2)
the second-layer connection weight from hidden neuido
output neurork in the pointer control module. Than< ¢ < 8,
1<j<192andl <k < 6. Letw,, andw?,, respectively,
denote the first-layer connection weight from input neupon
to hidden neurony and the second-layer connection weight
from hidden neurory to output neuron- in the stack memory
module. Thenl < p <6,1 <g<64andl <r < 8. Let
SP(t) denote SP value at time

1) At time = ¢;, supposeSP(t;) = 4 = (000 100)

and the stack action to be performed ispash on
a stack symbola = 61,4 = 0110 0001,. Let & =
P1dad3ds dsdedrps be the 8-bit binary code denoting
the current stack symbol to be pushed. Thign= ¢3 =
¢s = 1 and other¢,’s are 0. Letc,, be the stack
configuration at time; . This time step computes a stack
push action with fsieck(push, a, ¢, ,4) = (¢, - 2,5)
and frop(cy, - a,5) = a. Before the execution of the
push action (encoded &91)), pointer(t) = SP(t1) =
(000100) = 4; and after thepush action, pointer(t +

1) = (000101) = 5.

a) Symbolically, the pointer control module com-
putes fpcontror(push,4) = 5. In the pointer
control module, the mapping from binary input
(000100, 01) to binary output{000101) is done
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by the 13th {3 = 1+ 3x 4) hidden neuron
and its associated connections. Note that the two
rightmost bits of the binary input together denote a
stack actionpush , the six leftmost bits together
denote an SP value 4, three hidden neurons are
used for three legal stack actions at each SP value,
and the first of the three neurons is reserved for
push action.

b) Symbolically, the write control module
(plus stack memory module) computes
fswrite(push,a,cy,,4) = ¢, - a. The write
control module uses binary inpu¢l 000 100}
to locate the sixth(6 = 2 + 4) hidden neuron
of the stack memory module and to update the
weights of the eight second-layer connections
associated with the sixth hidden neuron according
to expressioni?s = ¢,., 1 < r < 8. Note that the
leftmost bit of the binary input denotes a stack
action push and the six rightmost bits together
denote an SP value 4.

c) Symbolically, the stack memory module com-
putes frop(cy, - a,5) = a. When pointer(t +
1) = (000101) = 5 is passed to the stack
memory module, its sixt(6 = 1 + 5) hidden
neuron is turned on to recall the stack symbol
a = 0110 0001, which is stored by the second-
layer connections associated with the sixth hidden
neuron. Note that in the stack memory module
the first hidden neuron and its associated second-
layer connections are used to store ghack start
symbol (stack bottom) which is pointed by SP
= (000 000).

At time = ¢; + 1,SP(t; + 1) = 5 = (001001) and
the stack action to be performed ispash on a stack
SymbOIb = 6216 = 0110 00105. Then(f)g = ¢3 = ¢7 =

1 and otherg;’s are zero. Symbolically, this time step
computes a stachush action with fs;,.x(push, b, ¢, -
a,5) = (e, -a-b,6) and frop(cy, - a-b,6) = b.
Before the execution of thpush action, pointer(t)
(000101) = 5; and pointer(t + 1) = (000110) =
after thepush action.

6

a. Symbolically, the pointer control module com-
putes fpcontroi(push,5) = 6. In the pointer
control module, the mapping from binary input
(000101, 01) to binary output(000110) is done
by the 16th(16 = 1 + 3 x 5) hidden neuron and
its associated connections.

b. Symbolically, the write control module (plus stack
memory module) compute&y ,ite (push, b, ¢, -
a,b) = ¢, - a-b. The write control module uses
binary input{1 000 101) to locate the seventt¥ =
2+ 5) hidden neuron in the stack memory module
and to update the weights of the second-layer
connections associated with the seventh hidden
neuron using currend as before.

c. Symbolically, the stack memory module computes
frop(cy - a-b,6) = b. Whenpointer(t + 1) =
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(000110) = 6 is passed to the stack memory[10]
module, its seventl{7 = 1 + 6) hidden neuron

is turned on to recall the stack symbel = 1y
0110 00102 which is stored by the second-layer
connections associated with the seventh hidden
neuron. [12]

3) Attime = ¢, +2,5P(t; +2) = 6 = (000110) and

the stack action to be performed ispap. Symboli- [13]

cally, this time step computes a staplp action with
fStack(PoP7 *,Ct r @ b, 6) = (Ctl 4, 5) and fTOp(Ctl .
a,9) a. Before the execution of th@op action
(encoded ag10)), pointer(t) = (000110) = 6; and
after thepop action,pointer(t + 1) = (000101) = 5.

_ [14]

[15]

Symbolically, the pointer control module com{16l
putes fpcontroi(pop,6) = 5. In the pointer
control module, the mapping from binary input{17]
(000110, 10) to binary output{000101) is done

by the 20th(20 = 2 + 3 x 6) hidden neuron and [1g
its associated connections. Note that three hidden
neurons are used for three legal stack actioT§]
respectively at every SP value, and the second of9
the three neurons is used fpop action.
Symbolically, the stack memory module compute&o]
Jrop(cy, - a,5) = a. When pointer(t + 1)
(000101) = 5 is passed to the stack memory21]
module, its sixth hidden neuron is turned on to
recall the stack symbdl110 0001, = a which is [22]
stored by the second-layer connections associatﬁg]
with the sixth hidden neuron.

a)

b)

[24]
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