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Abstract—Real world social networks typically consist of actors
(individuals) that are linked to other actors or different types of
objects via links of multiple types. Different types of relationships
induce different views of the underlying social network. We
consider the problem of labeling actors in such multi-view
networks based on the connections among them. Given a social
network in which only a subset of the actors are labeled, our goal
is to predict the labels of the rest of the actors. We introduce
a new random walk kernel, namely the Inter-Graph Random
Walk Kernel (IRWK), for labeling actors in multi-view social
networks. IRWK combines information from within each of the
views as well as the links across different views. The results of our
experiments on two real-world multi-view social networks show
that: (i) IRWK classifiers outperform or are competitive with
several state-of-the-art methods for labeling actors in a social
network; (ii) IRWKs are robust with respect to different choices
of user-specified parameters; and (iii) IRWK kernel computation
converges very fast within a few iterations.

Index Terms—Multi-view Network, Inter-Graph Random
Walk Kernel; Social Network Analysis

I. BACKGROUND AND INTRODUCTION

A. Background

The emergence and wide adoption of social networks e.g.,
Facebook1, Google+2 and social media (e.g., Youtube3) offer
a rich source of big data for understanding the structure,
dynamics, formation and evolution of social structures, as
well as the role of such networks in influencing individual
and collective behavior, e.g., interest in particular products,
affiliation in specific groups, or participation in specific ac-
tivities, etc. Real world social networks are characterized by
multi-dimensional social relationships among individuals or
actors. Each actor can link to multiple other actors; and each
actor can have multiple types of relationships with a given
actor. For example, some, but not all of one’s co-workers may
also be one’s friends. The relationships between actors can
be of different types, e.g., friendship, co-authorship, etc., [1],

1https://www.facebook.com/
2https://plus.google.com/
3https://www.youtube.com/

[2], [3]. For example, Google+ allows members to specify
different ’circles’ that correspond to social relationships along
different dimensions e.g., friendship, family membership, etc.
Similarly, in the DBLP4 data, each actor (author) can be linked
to multiple other authors through a variety of relationships,
e.g., co-authorship of articles, publication venues, institutional
affiliations, etc. Furthermore, in general, actors in social net-
works can belong to multiple groups, e.g., authors, musicians,
professors, students, etc. Hence, real-world social networks
are naturally represented as multi-view networks wherein dif-
ferent types of links e.g., friendship, family membership, etc.,
constitute different network views [4], [5], [6].

There is a growing interest in the problem of labeling
actors in social networks [7], [8], [9], [10], [11] according to
their e.g., political affiliation, interest in particular products,
or participation in activities, etc. Actor labels can be used,
among other things, for targeting advertisements, recommend-
ing products, suggesting membership in social or professional
groups, analyzing the social or demographic characteristics
of the populations involved, etc. In such a setting, given a
social network in which only some of the actors are labeled,
the goal is to label the rest of the actors. More precisely,
given a social network represented by a graph G = (V,E)
in which each actor x ∈ V belongs to one of C categories in
Y = {y1, y2, · · · , yC} and a subset V

′
of labeled actors, the

goal is to label the rest of the actors in V U = V − V ′
.

B. Related Work

Early work on labeling nodes in networks focused on
networks with a single type of nodes and a single type of links.
This work has led to methods that exploit correlations among
the labels and attributes of nodes [9], [8], [12], [13]; methods,
e.g., relational learners, that label an actor by (iteratively)
assigning to a node a label that matches the labels of a majority
of its neighbors [14]; supervised and or semi-supervised learn-
ing methods [15], [16] including those that exploit abstraction
hierarchies over nodes to cope with data sparsity [13]; and

4http://www.informatik.uni-trier.de/∼ley/db

https://www.facebook.com/
https://plus.google.com/
https://www.youtube.com/
http://www.informatik.uni-trier.de/~ley/db


kernel based methods [17], [18], [7], [19], [20] that assign
similar labels to similar actors (where similarity is defined
by a kernel function); random-walk based methods [21], [22],
[11] that assign a label to a node based on the known label(s)
of the node(s) reachable via random walk(s) originating at the
node.

However, as noted above, real world social networks are
naturally modeled as multi-view networks that admit multiple
types of nodes (actors) and links (relationships). Hence, there
is a growing interest in methods for labeling actors in such
multi-view social networks. Of particular interest are methods
that effectively make use of both the information provided
by the multiple network views as well as the interactions
between the views. The views in social network can be either
explicit or implicit [2]. Eldardiry and Neville [12] proposed an
ensemble of relational learners wherein each relational learner
focuses on a single social dimension or view of the network.
EdgeCluster [1] and SCRN [23] extract the implicit views in
the network and use the actors’ social dimensions, i.e., social
relations (view affiliation) as features to label actors. Ji et al.
[24] integrate ranking of network nodes with classification to
improve the labeling of nodes in multi-view networks. Wan
et al. [25] use information extracted from sequences of linked
nodes of different types to label nodes and to identify nodes
for which labels should be obtained through active learning
to improve the accuracy of the learned models. Bui et al. [7]
introduced a heterogeneous graph kernels, a variant of graph
kernels applicable in the setting of heterogeneous networks
consisting of multiple types of nodes and links, for labeling
actors in such networks. Several authors have proposed latent
space models to handle the multiple views in multi-view
networks. Examples of such models [26] include hypergraph
regularized generative models [27], partially shared latent
factor models [28]. Latent space joint model [29] learns a
latent space representation of a multi-view network and uses
it to label the nodes. Other methods, e.g., DeepWalk [11],
LINE [30], and Node2Vec [31], that construct and exploit low-
dimensional vector space representations that encode social
ties of nodes, have been shown to achieve state-of-the-art
performance in labeling nodes in networks.

C. Overview

In this paper, we explore a novel approach to labeling actors
in multi-view networks. We represent each actor in a multi-
view social network in terms of the actor’s intra-view and
inter-view contexts where the intra-view context of an actor in
a view represents the direct and indirect neighbors and links
between neighbors within that view; and the inter-view context
of an actor refers to the social contexts of the actor across all of
the views other than the current view. Figure 1 schematically
depicts the intra-view and inter-view contexts of the actor x
that appears in the views V1, V2, V3.

Based on the multi-view representation of social networks
outlined above, we introduce a new random walk kernel,
the Inter-Graph Random Walk Kernel (IRWK), to efficiently
compute the similarity between of any pair of actors in the
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Fig. 1: Multi-view network. Solid lines between nodes within
each view denote one type of relationship, e.g., friendship.
Dotted lines between nodes in different views encode corre-
spondences between representations of specific actors across
different views.

network based on the social contexts of the actors from
different network views. Inter-Graph Random Walk Kernel
models the network based on information provided by each
of the views as well as relationships between views. IRWK
is then used to learn a discriminative classifier to label actors.
Results of experiments on two real-world multi-view social
network data sets show that: (i) IRWK classifiers outperform or
are competitive with several representative methods in labeling
actors in a social network; (ii) IRWKs are robust to different
choices of user-specified parameters (i.e., stopping probability,
transition probability); and (iii) IRWK computation converges
in a few iterations.

The rest of the paper is organized as follows. Section II
describes our approach to integrating information from within
and across multiple views of multi-view networks using an
inter-graph random walk kernel. Section III presents results of
experiments that compare the proposed approach with several
representative methods for labeling actors in multi-view social
networks. Section IV concludes with a summary and an outline
of some promising directions for further research.

II. INTEGRATING INFORMATION FROM WITHIN AND
ACROSS VIEWS IN MULTI-VIEW NETWORKS

A. Labeling Actors in Multi-View Networks

As noted earlier, real world social networks can be mod-
eled as multi-view networks wherein each view represents a
network structure consisting of single-type of links.

Definition 1: Multi-view Network. Let C = {1, 2, · · ·M}
be a set of colors (or views, or relation types). Let V = V1 ∪
V2 ∪ . . .∪ VM , where Vi denotes the set of actors that belong
to view i, and Eii = {(x, z) |x ∈ Vi, z ∈ Vi, 1 ≤ i ≤M} is
a (colored) set of edges that connect actors within view i. A
multi-view network consists of a set of graphs G = {Gi =
(Vi, Eii)|1 ≤ i ≤ M} augmented with inter-view edges
S =

⋃
i,j Eij = {(u, v) |u ∈ Vi, v ∈ Vj , i 6= j, i ∈ C, j ∈ C}

is a set of inter-view edges between vertices that belong to
different views (Inter-view edges establish correspondences



TABLE I: Symbols & their definitions.

Symbol Definition
N Number of actors in a multi-view network
M Number of views
Vi Set of vertices of view i.
Eij Set of edges that link vertices between view i

and j
Pi (z|x) Transition probability from x to z within view i

Pi→j (u|x) Inter-view transition probability of x from view i
to u in view j where x and u are representations
of the same actor.

d Maximum degree of a node in G
dv Maximum degree of node in all view when

disregarding inter-view links
(x, z)ij A pair of nodes x, z where x ∈ Vi and z ∈ Vj .

Tij Transition probability matrix between nodes
from view i to view j

T× Transition probability matrix of direct product
graph G×

between vertices across different views that represent the same
actor)

Definition 2: Labeling Actors. Given a multi-view network
with a set of actors (vertices) V , where a subset of actors are
labeled with labels taken from a label set C, the task is to
label the rest of the actors.

B. Random Walk Kernels

Recall that the random walk kernel [17], [32] can be
used to measure the similarity between pairs of nodes in
social networks [7]. Two nodes in a graph are consid-
ered to be similar if the sets of random walks originating
from the two nodes are similar. To more precisely define
the random walk graph kernel, it is useful to introduce
the concept of a direct product graph. Given two graphs
G1 = (V1, E1) and G2 = (V2, E2), the direct product
graph G× = (V×, E×) of G1 and G2 is a graph with
node set V× = {(vi, vk) : vi ∈ V1, vk ∈ V2} and edge set
E× = {((vi, vk) , (vj , vl)) : (vi, vj) ∈ E1 ∧ (vk, vl) ∈ E2}. A
random walk on the direct product graph is equivalent to
simultaneous random walks on G1 and G2. Let p1 and p2
denote initial probability distributions over the vertices of
G1 and G2, respectively. Likewise, q1 and q2 are stopping
probabilities. Then, the starting and stopping probability dis-
tributions of the direct graph product G× are p× = p1 � p2
and q× = q1 � q2 where � denotes for Kronecker product.
The transition probability matrix of the direct product graph
G× is defined in the same manner: T× = T1 � T2 where T1

and T2 are the transition probability matrices of G1 and G2,
respectively.

We now proceed to introduce the inter-graph random walk
kernel (IRWK), a variant of the random walk graph kernel
[17], [32] for integrating information from within and across
multiple views of multi-view networks. Specifically, we for-
mulate a kernel function of any pair of actors in a given
network view to measure their similarity based on both the
intra-view and inter-view contexts of an actor. The resulting
IRWK is then used to build a classifier for labeling actors in
multi-view social networks.

C. Inter-Graph Random Walk Kernel

We model the relationships of actors across two different
views by introducing a new type of link, the inter-view link
type among the same actors in the two views. Specifically, if
an actor belongs to two views, say i and j, there exists a link
that connects the two representations of the actor across the
two views (see Figure 1).

We define the transition probability between a node x and
its neighbors as being inversely proportional to number of x’s
neighbors. Let Tij be the transition probability matrix between
nodes in Vi and Vj (note that, in general, Tij 6= Tji). The sum
of the probabilities of transitioning from node x in view i to
its neighbors (within the same view or in a different view)
should sum to 1.

∑
z∈Ni(x)

Pi (z|x) +
M∑
j 6=i

Pi→j (u|x) + ρ = 1 (1)

where Pi (z|x) is the intra-view (view i) transition proba-
bility from x to z, Ni (x) is a set of neighbors of x in view i,
Pi→j (u|x) is the inter-view transition probability of x from
view i to u in view j where x and u are representations of the
same actor, and ρ is the probability of remaining at x (stopping
probability) at x in view i.

Let x be a node in a multi-view network G and let
hx = x− x1 − x2 − · · · − xl be a random walk starting from
x with the length of l. The probability of hx is defined as:
P (hx) = Ps (x)Pt (x1|x)Pt (x2|x1) · · ·Pt (xl|xl−1)Pe (xl)
where Ps (x) and Pe (xl) are starting and stopping probabil-
ities of x and xl, respectively and Pt (xi|xi−1) is the (intra-
view or inter-view) transition probability. We assume that
Ps (x) = τ and Pe (x) = ρ for nodes in all views. Kernel
function between two nodes x, z ∈ V is defined as follows:

K (x, z) =
∑
hx

∑
hz

R (hx, hz)P (hx)P (hz) (2)

where R (hx, hz), the similarity between two paths hx and
hz , is equal to 0 if they are of different lengths; otherwise,
R =

∏l
i=1R0 (xi, zi).

We call R0 (xi, zi) the initial kernel value between two
nodes xi, zi ∈ V . If xi and zi belong to same view (say
j), then R0 (xi, zi) = Rj

0 (xi, zi); otherwise, R0 (xi, zi) = 0.
Rj

0 (xi, zi) is defined on the sets of directed neighbors of xi
and zi as follows.

Rj
0 (xi, zi) =

{∑M
k=1|Nk(xi)∩Nk(zi)|∑M
k=1 |Nk(xi)∪Nk(zi)|

, if xi, zi ∈ Vj
0 , otherwise

(3)

Based on the definitions of P (hx) and R0 (xi, zi), we



derive Equation 2 using nested structure as follows.

K (x, z) = lim
L→∞

L∑
l=1

∑
x1,z1

(Ps (x)Pt (x1|x)R0 (x1, z1)

× Ps (z)Pt (z1|z)
∑
x2,z2

(Pt (x2|x1)R0 (x2, z2)

× Pt (z2|z1) · · · · · ·
∑
xl,zl

(Pt (xl|xl−1)Pe (xl)

×R0 (xl, zl)Pt (zl|zl−1)Pe (zl)) ...)) (4)

Hence, we have:

K (x, z) = τ2 lim
L→∞

RL (x, z) (5)

where
RL (x, z) =

∑L
l=1 rl (x, z)

rl (x, z) =
∑

x1,z1
Pt (x1|x)R0 (x1, z1)Pt (z1|z) rl−1 (x1, z1)

r1 (x, z) =
∑

x1,z1
Pt (x1|x)R0 (x1, z1)Pt (z1|z) r0 (x1, z1)

r0 (x, z) = Pe (x)Pe (z)

Recall that each view represents a network structure where
nodes in the view has the same type of social relationship, e.g.,
friendship, kinship. Each view can be treated as a network of
single type of node and single type of link, e.g., friendship
node type, friendship link type. Hence, we focus only on the
value of the kernel function applied to a pair of actors within
the same view (i.e., “same type”) by using intra-view context
and inter-view context of an actor.

Computing the value of K (x, z) using Equation 5 is not
feasible because random walks can be unbounded in length.
We can use a kernel matrix to represent, and efficiently
compute, the kernel function evaluations over all pairs of nodes
in G. We introduce a modification of direct product graph to
the setting of multi-view network and use it to Equation 5 in
the matrix form (see Table I for symbols and their definitions).

Lemma 1: Consider a multi-view network represented
by a graph G = {Gi = (Vi, Eii)|1 ≤ i ≤ M} augmented
with inter-view edges S =

⋃
i,j Eij . If there are two

random walks hx, hz that simultaneously start from x, z
of the same view and end at xl, zl, respectively such that
R (hx, hz) > 0. Then there exists a path in G× = (V×, E×)
from (x, z) to (xl, zl) where V× = {(xm, xn) : xm, xn ∈ V }
and E× = {((xk, xq) , (xm, xn)) : (xk, xm) ,
(xq, xn) ∈ Eij ∧ {xk, xq} ⊂ Vi ∧ {xm, xn} ⊂ Vj}.

Proof. Let hx = x − x1 − x2 − · · · − xl and
hz = z − z1 − z2 − · · · − zl be two random walks in
G. Clearly, p = (x, z)− (x1, z1)− · · · − (xl, zl) is a random
walk from (x, z) to (xl, zl) and all vertices in this walk
∈ V×. Since R (hx, hz) > 0, R0 (xk, zk) 6= 0 ∧ 1 ≤ k ≤ l,
we obtain that xk, zk belong to the same view, say
view i. WLOG, consider an edge ((xk, zk) , (xk+1, zk+1))
in p, likewise, xk+1, zk+1 are also in the same view,
say view j. Furthermore, (xk, xk+1) and (zk, zk+1) are
edges in hx and hy , respectively. As a result, we have
(xk, xk+1) , (zk, zk+1) ∈ Eij and {xk, zk} ⊂ Vi and
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Fig. 2: Reduction on dimension of T×

{xk+1, zk+1} ⊂ Vj or ((xk, zk) , (xk+1, zk+1)) ∈ E×. �

Lemma 1 implies that if two random walks hx and hz
starting from x and z of the same view are used in computing
the kernel value between x and z in Equation 2, there is a
corresponding random walk in the modified direct product
graph. The formula lim

L→∞
RL (x, z) in Equation 5 is written

as follows (see Appendix for the derivation).

R∞(x, z)=r1 (x, z)+
∑
x1,z1

T×((x, z) , (x1, z1))R∞(x1, z1) (6)

where T× ((x, z) , (x1, z1)) = Pt ((x1, z1) | (x, z)) =
Pt (x1|x)R0 (x1, z1)Pt (z1|z) is the transition probability
from (x, z) to (x1, z1) in the modified direct product graph
G×. Using Equation 6, the matrix form of Equation 5 is
written as follows (see Appendix for the derivation).

K = τ2 (I− T×)
−1 r1 (7)

where K = (K (x1, x1) ,K (x1, x2) , · · · ,K (xMN , xMN ))
T ∈

RM2N2

, I is an identity matrix, r1 =
(r1 (x1, x1) , r1 (x1, x2) , · · · , r1 (xMN , xMN ))

T ∈ RM2N2

,
and T× ∈ RM2N2×M2N2

.

D. Efficient Computation of IRWK

Computing the kernel value for any pair of vertices ∈ V
is equivalent to the solving linear system in Equation 7.
This requires inverting the coefficient matrix (I− T×) ∈
RM2N2×M2N2

. This coefficient matrix is sparse because the
number of non-zero elements of T× is fewer than (dMN)

2

(d is the maximum degree of a node in G). Hence, one can
deploy efficient numerical algorithms [17] that take advantage
of the sparsity of the linear system specified by Equation 7.
Specifically, we can use Lemma 1 to reduce the dimensions of
T×, K, and r1 to RMN2×MN2

, RMN2

, RMN2

, respectively,
taking note of the fact that the value of the kernel function
when applied to nodes from different views can be set equal
to zero.

Our approach to reducing the dimensionality of T× is shown
in Figure 2. Let Tij

× be the dashed-rectangle at ith row and jth

column of the reduced T× (right-hand side of Figure 2). Tij
×

represents the transition probabilities T× ((u, v) , (a, b)) where



u, v ∈ Vi and a, b ∈ Vj . Let dv be the maximum degree of
nodes in all views (note that dv < d), the number of non-zero
elements in a diagonal block Tii

× is less than (dvN)
2. Since

the number of inter-view links between two different views,
say views i and j is less than N , the number of non-zero
elements in Tij

× is less than N2. As a result, the number of
non-zero elements in the reduced T× is less than Md2vN

2 +
(M − 1)MN2 � (dMN)

2 when d and M are large. The
resulting K is of the form:

K = (· · · ,Ki (x, z) , · · · )T (8)

where Ki (x, z) is the kernel value of a pair x, z ∈ Vi.
Likewise, r1 has the following form.

r1 =
(
· · · ri1 (x, z) , · · ·

)T
(9)

The preceding steps set the stage for employing efficient
numerical algorithms to solve Equation 7 with the reduced
forms of K, T×, and r1. In our implementation, use the
following matrix form of Equation 6 on each individual view
to compute the kernel value between two nodes within a view,

Ri
L = ri1 +

M∑
j=1

Tij
×Rj

L−1 (10)

where Ri
L = (· · · , RL (x, z) , · · · )T ∈ RN2 ∧ x, z ∈ Vi and

ri1 = (· · · , r1 (x, z) , · · · )T ∈ RN2 ∧ x, z ∈ Vi. We iteratively
compute Ri

L using Equation 10 until convergence to obtain the
kernel value of any pair of nodes within view i (see Appendix
for a proof of convergence of kernel calculation using Equation
10). Since each actor node in a view has at most one inter-
view link to its representation in any other view, the time
complexity of naive matrix multiplication for obtaining Ri

L

is O
(
MLN3

)
. The computation of the kernel matrix Ri

L

depends on Rj
L−1, j 6= i. In our current implementation,

we employ multiple threads to compute all Rj
L−1 in parallel,

yielding substantial speedups relative to the naive matrix
multiplication algorithm. Additional speedup can be obtained
by exploiting the sparsity of the matrix.

III. EXPERIMENTS AND RESULTS

IRWK generates one kernel for each view by combining
information not only from random walks within each view but
also the random walks that traverse from each view, the other
views. In this section, we empirically compare the performance
of IRWK-based classifiers with several baseline as well as
the state-of-the-art methods for labeling actors in multi-view
networks using two real-world data sets. We also investigate
the sensitivity of IRWK-based classifiers with respect to the
choice of the relevant parameters as well as its speed of
convergence.

A. Data sets

We crawled two real-world multiple-view social networks:
(i) Last.fm Data Set. We manually identified 11 disjoint
groups (categories) of closely similar size of number of users

TABLE II: Summary of Data sets

Last.fm Flickr
Total number of users 10,197 6,163

Number of views 12 5
Number of groups 11 10

Min number of users in a view 1,024 1,341
Max number of users in a view 10,197 6,163
Min number of links in a view 14,486 13,789
Max number of links in a view 177,000 154,620

Total links of all views 1,325,367 378,547

in the Last.fm music network, then we crawled actors (users)
as well as item objects (e.g., tag, artist, track) and relation
information among objects and actors in the network. We
then generated 12 views on Last.fm actors: ArtistView (2118
actors, 149495 links), EventView (7240 actors, 177000 links),
NeighborView (5320 actors, 8387 links), ShoutView (7488
actors, 14486 links), ReleaseView (4132 actors, 129167 links),
TagView (1024 actors, 118770 links), TopAlbumView (4122
actors, 128865 links), TopArtistView (6436 actors, 124731
links), TopTagView (1296 actors, 136104 links), TopTrack-
View (6164 actors, 87491 links), TrackView (2680 actors,
93358 links), and UserView (10197 actors, 38743 links).
Except UserView and NeighborView which are explicit views
in Last.fm, the other views (e.g., EventView, TrackView) were
constructed based on the number of items shared between
two actors. That is, two users were connected if they shared
more than a specified number of items. For Last.fm data
set, we set the threshold for the number of shared items to
be 10. Each group in Last.fm refers to a set of actors who
have common interests (e.g., http://www.last.fm/group/Metal
denotes a group of actors who are interested in Metal music).
(ii) Flickr Data Set. We manually identified 10 disjoint groups
of consisting of approximately the same number of users,
and crawled actors as well as items (e.g., photo, tag) and
relations among items, actors, and actors and items from the
Flickr photo sharing network. We generated 5 views on Flickr
users: CommentView (2358 actors, 13789 links), FavoriteView
(2724 actors, 30757 links), PhotoView (4061 actors, 91329
links), TagView (1341 actors, 154620 links), and UserView
(6163 actors, 88052 links). Except the UserView which was
based on the original connection information from the Flickr,
other views were constructed based on the number of shared
items between two users. For Flickr, we set the threshold
for shared items to 5. Each group in Flickr refers to a
community of users who share an interest in similar pictures
(e.g., http://www.flickr.com/groups/iowa/ denotes a group of
users who are interested in pictures of places or events or
individuals associated with state of Iowa). In both data sets,
we use the group memberships of actors as class labels to train
and test predictive models for labeling actors. Table II shows
the summary of the two data sets.

B. Baseline methods

We compared the IRWK induced feature representation
with several representative baseline as well as state-of-the-art
alternatives using an one-versus-rest sparse logistic regression

http://www.last.fm/group/Metal
http://www.flickr.com/groups/iowa/


TABLE III: Classification performance of compared methods, respectively on five views of Flickr (views’ names were truncated
for short). Bold value indicates the best classifier based on paired t-test (p < 0.01).

Accuracy(%) Macro-F1(%)
Classifier Comment Favorite Photo Tag User Comment Favorite Photo Tag User

EdgeCluster 44.48 42.92 39.01 38.09 43.14 29.76 30.32 35.61 21.11 45.52
DeepWalk 45.33 47.94 43.81 37.14 50.45 25.74 30.19 37.96 11.69 46.32

LINE(1st + 2nd) 45.51 48.12 43.66 42.06 50.49 23.07 29.36 39.15 18.13 47.32
Node2Vec 43.81 46.95 43.49 35.87 48.56 24.51 32.53 38.42 16.12 44.43

RWK 50.86 50.19 44.41 31.62 50.09 33.87 34.83 40.46 13.28 46.63
IRWK 50.76 51.73 46.81 39.08 51.52 31.47 35.12 42.96 21.73 47.11

TABLE IV: Classification performance of compared methods, respectively on twelve views of Last.fm (views’ names were
truncated for short). Bold value indicates the best classifier based on paired t-test (p < 0.01).

Artist Event Nbor Release Shout Tag TopAlb TopArt TopTag TopTrk Track User

Accuracy(%)

EdgeCluster 37.38 33.82 40.29 30.67 47.25 26.58 30.94 53.05 31.49 38.63 48.72 52.51
DeepWalk 36.41 35.08 42.69 36.57 48.02 13.67 37.75 57.74 20.14 43.11 50.86 59.08

LINE(1st+2nd) 40.98 37.79 32.27 37.34 43.36 26.47 36.92 59.21 30.41 43.36 53.55 57.11
Node2Vec 36.12 35.93 41.64 35.79 46.51 16.99 34.98 56.84 22.45 43.88 50.82 56.25

RWK 37.87 46.81 47.86 39.21 53.12 40.42 39.25 60.95 28.78 50.24 62.09 60.91
IRWK 39.71 51.85 52.91 41.94 60.32 40.43 41.71 61.93 28.78 53.42 61.53 63.21

Macro-F1(%)

EdgeCluster 30.13 29.28 38.25 27.11 46.02 20.29 27.01 49.78 23.71 36.01 38.48 51.04
DeepWalk 25.51 27.06 37.48 27.59 44.99 6.67 28.25 53.88 6.95 38.32 39.21 56.98

LINE(1st+2nd) 32.02 31.37 29.32 30.98 41.54 18.51 29.98 55.42 19.77 39.65 42.26 55.64
Node2Vec 27.93 28.75 37.26 29.18 43.68 12.17 28.15 53.11 13.61 39.08 39.36 54.11

RWK 31.86 28.65 41.19 30.38 47.93 9.59 29.84 55.36 4.97 44.43 44.61 56.07
IRWK 35.85 36.12 45.65 33.18 54.65 9.61 32.48 56.61 4.97 47.71 42.82 58.38

classifier (trained using the LibLinear package5) for labeling
actors in multi-view social networks:

• Node2Vec [31]: A method that learns a mapping of
nodes in networks to a low-dimensional space of fea-
tures so as to maximize the likelihood of preserving
network neighborhoods of nodes, that has been shown
to outperform other methods on the node labeling and
link prediction tasks on several real-world networks from
diverse domains.

• LINE [30]: A scalable method for local as well as
global structure preserving embedding of large (directed
or undirected, weighted or unweighted) networks into
low-dimensional vector spaces for use in visualization,
node labeling, and link prediction, which has been shown
effective on a variety of real-world networks.

• DeepWalk [11]: A scalable method for learning latent
representations of nodes in a network that encode social
relations in a continuous vector space, by constructing
language models over sequences of nodes obtained using
truncated random walks over the network, which has been
shown to be effective at node labeling and related tasks
in a variety of social networks.

• EdgeCluster [1]: A scalable method that extracts a sparse
representation of an actor’s social dimensions (actor’s
latent affiliations) using an edge-centric clustering scheme
.

• RWK[17]: A random walk graph kernel that does not take
into account the information from traversal across views.

5https://www.csie.ntu.edu.tw/∼cjlin/liblinear/

For the baseline methods, we explored a range of parameter
settings on both data sets. We report results using parameter
settings that gave the best results on both data sets. Specif-
ically, we explored the performance of Node2Vec, LINE,
DeepWalk with the number of dimensions set to: 64, 128,
256, 512. For Node2Vec, for each setting of the number of
dimension, we explored several choices for the number of
epochs of stochastic gradient descent (SGD): 10, 20, 30, 40,
50, 60, and 70. We settled on the number of dimensions = 128
and the number of SGD epochs = 50 for Node2Vec and the
number of dimensions = 256 for both DeepWalk and LINE.
LINE offers two kinds of proximities: first-order proximity
(proximity based on local structure of network) and second-
order proximity (proximity based on the global structure of the
network). We explored representations generated using three
variants of LINE: first-order LINE, i.e., LINE(1st), second-
order LINE, i.e., LINE(2nd) and the concatenation of the
two, i.e., LINE(1st+2nd). We report the experimental results
on LINE(1st+2nd) since it yields the best results among the
three variants of LINE. For EdgeCluster, we explored the
following settings for the number of dimensions: 500, 1000,
2000, 3000, 4000, 5000, and 6000; and observed that the best
performance was achieved using the number of dimensions
= 4000. All other user-specified parameters of EdgeCluster,
DeepWalk, LINE, and Node2Vec, were set to their default
values. For IRWK, we set the stopping probability ρ = 0.1
and the inter-view transition probability be equal to 0.05 for
all nodes in the multi-view network. Likewise, we also set
the stopping probability ρ = 0.1 for RWK. For both IRWK
and RWK, we normalize kernel matrix for each view, i.e.,
Ki (x, z) = Ki (x, z) /

√
Ki (x, x)Ki (z, z) (Note that kernel

value is independent of the starting probability τ ).

https://www.csie.ntu.edu.tw/~cjlin/liblinear/


TABLE V: Classification performance of compared methods on multi-view setting for Flickr data set. Bold value indicates the
best classifier based on paired t-test (p < 0.05).

Classifier 10% 20% 30% 40% 50% 60% 70% 80% 90%

Accuracy(%)

EdgeCluster 39.86 42.04 43.21 43.32 43.57 44.21 44.04 44.56 44.48
EdgeCluster+ 41.61 44.06 45.29 45.73 45.93 46.02 46.45 46.69 46.37

DeepWalk 46.49 47.64 48.52 48.49 49.63 49.48 49.83 50.24 50.63
DeepWalk+ 47.17 51.52 52.93 54.07 54.64 55.35 55.49 55.27 55.79

LINE(1st+2nd) 40.13 45.99 48.37 49.88 51.19 52.26 52.74 53.26 52.94
LINE(1st+2nd)+ 43.34 49.95 52.61 54.09 55.11 55.26 55.35 55.63 56.21

Node2Vec 41.09 44.51 46.33 47.51 48.11 48.68 49.11 48.92 49.23
Node2Vec+ 41.98 46.67 49.34 50.88 51.91 52.26 52.56 52.87 53.51

RWK 43.21 46.23 47.22 47.95 48.27 48.81 48.93 49.16 49.18
RWK+ 46.98 50.86 52.42 52.96 53.95 54.95 55.28 55.19 55.46
IRWK 46.39 48.44 49.38 50.34 50.89 51.14 51.36 51.46 50.91

IRWK+ 48.99 52.93 54.44 55.08 55.43 55.54 55.86 55.62 55.73

Macro-F1(%)

EdgeCluster 37.18 39.63 41.01 41.29 41.59 42.13 42.18 42.75 42.75
EdgeCluster+ 38.36 41.56 43.27 43.81 44.02 44.36 44.98 45.26 44.99

DeepWalk 41.17 42.95 44.02 44.02 45.58 45.25 45.89 46.21 46.77
DeepWalk+ 43.73 49.17 50.89 52.21 52.91 53.83 53.96 53.82 54.37

LINE(1st+2nd) 31.46 40.81 44.27 46.57 48.05 49.36 49.86 50.43 50.32
LINE(1st+2nd)+ 39.75 48.28 51.38 53.15 54.31 54.52 54.84 55.06 55.69

Node2Vec 37.49 41.01 43.09 44.51 45.19 45.51 46.15 45.82 45.76
Node2Vec+ 39.01 44.47 47.53 49.28 50.49 50.94 51.34 51.62 52.57

RWK 34.45 39.16 41.01 42.44 43.02 43.98 44.34 44.71 44.69
RWK+ 42.13 47.25 49.77 50.56 52.11 52.49 53.68 53.77 54.11
IRWK 39.44 42.35 43.67 44.96 45.82 46.43 46.51 46.77 46.11

IRWK+ 44.52 49.82 51.74 52.81 53.41 53.66 54.17 54.06 54.18

TABLE VI: Classification performance of compared methods on multi-view setting for Last.fm data set. Bold value indicates
the best classifier based on paired t-test (p < 0.05).

Classifier 10% 20% 30% 40% 50% 60% 70% 80% 90%

Accuracy(%)

EdgeCluster 48.57 51.12 51.78 52.96 53.37 53.61 53.75 54.12 55.41
EdgeCluster+ 46.36 50.31 52.36 53.19 54.14 54.27 55.01 55.36 55.12

DeepWalk 51.65 53.24 53.87 54.09 54.36 54.49 54.83 54.84 54.63
DeepWalk+ 58.26 61.17 62.31 62.87 63.41 63.56 63.86 64.02 64.33

LINE(1st+2nd) 51.29 55.52 57.39 58.37 59.16 59.61 60.19 60.33 60.37
LINE(1st+2nd)+ 53.31 58.87 60.53 61.55 62.19 62.51 62.87 63.16 63.88

Node2Vec 52.33 54.38 55.51 56.13 56.57 56.66 57.04 57.03 56.96
Node2Vec+ 54.68 58.66 60.15 61.11 61.66 61.97 62.29 62.45 63.34

RWK 51.09 53.33 54.52 55.36 55.78 56.05 56.28 56.34 56.36
RWK+ 55.16 59.04 60.24 60.95 61.63 62.03 62.33 62.48 63.19
IRWK 56.35 59.23 60.61 61.59 62.39 62.58 63.21 62.76 63.06

IRWK+ 56.25 60.19 61.89 62.79 63.61 64.23 64.47 64.91 65.71

Macro-F1(%)

EdgeCluster 46.81 49.29 50.16 51.43 51.88 52.15 52.33 52.68 53.94
EdgeCluster+ 44.67 48.66 50.76 51.68 52.66 52.84 53.59 53.92 53.79

DeepWalk 48.43 50.37 51.21 51.48 51.75 51.83 52.21 52.12 51.88
DeepWalk+ 55.69 59.11 60.43 61.07 61.73 61.92 62.25 62.48 62.78

LINE(1st+2nd) 48.92 53.43 55.44 56.57 57.39 57.88 58.52 58.72 58.76
LINE(1st+2nd)+ 50.93 57.03 58.92 60.01 60.71 61.08 61.51 61.77 62.52

Node2Vec 49.38 51.71 53.03 53.75 54.23 54.33 54.71 54.72 54.54
Node2Vec+ 52.06 56.51 58.16 59.24 59.87 60.23 60.59 60.85 61.67

RWK 47.59 50.51 52.05 53.13 53.74 54.08 54.37 54.49 54.51
RWK+ 52.02 56.72 58.49 59.31 60.59 60.51 60.86 61.05 61.75
IRWK 47.48 52.07 54.61 56.02 57.23 57.64 58.33 58.03 58.32

IRWK+ 53.13 57.88 59.78 60.86 61.85 62.57 62.85 63.34 64.08

C. IRWK Compared to Baseline Methods

We compare the performance of one-versus-rest sparse
logistic regression classifier [33] (as implemented in the Lib-
Linear package6) trained to label actors in multi-view social
networks using representations produced by IRWK, RWK,
Node2Vec, DeepWalk, LINE, EdgeCluster, as described above,
using two sets of experiments.

6https://www.csie.ntu.edu.tw/∼cjlin/liblinear/

1) Labeling Actors Based on Single Views: The first set
of experiments investigates the benefits of IRWK, which,
unlike other methods, incorporates information from other
views (via inter-view links), even when the actors in multi-
view networks are labeled based primarily on information
provided by a single view. The performance of the methods as
measured by accuracy and Macro-F1, averaged over 10 runs
of a 10-fold cross-validation experiment, on the Flickr and
Last.fm data sets, are shown in Tables III and IV respectively.
It is evident that IRWK, the only method that incorporates

https://www.csie.ntu.edu.tw/~cjlin/liblinear/
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Fig. 3: Sensitivity of IRWK w.r.t Stop Probability

information from other views (through inter-view random
walks) in computing the similarity between nodes in each
view, significantly (p < 0.01) outperforms, in almost all cases,
all other representations (RWK, Node2Vec, DeepWalk, LINE,
EdgeCluster) that rely solely on information available within
the view. RWK comes in at a close second. Node2Vec and
DeepWalk show comparable performance, perhaps explained
by the fact that both use the Skip-gram model [34] to learn
vector space representations of nodes.

2) Labeling Actors Based on all Views: The second set of
experiments investigates the benefits of integrating information
from all of the views in labeling actors in multi-view networks.
To ensure fair comparison between IRWK, a method that is
specifically designed to integrate information from within as
well as across views and some of the other methods which
are not, we compare two variants of each of the methods: (i)
We assemble a single integrated network that includes all of
the links of each actor from all of the views in which the
actor appears. The resulting networks contain 274,967 and
886,894 links, in the case of Flickr and Last.fm, respectively.
Since it is not straightforward to use the joined network in
the case of IRWK, we choose to apply IRWK on the view
that has the largest number of actors and use it as the first
variant of IRWK. (ii) In the case of each method, we extract
for each actor, a feature vector from each view. We then
concatenate the resulting feature vectors into a single feature
vector. We add a “+” to the name of the method to denote this
variant. For example, the classifier that uses a concatenation
of feature vectors obtained by applying EdgeCluster to the
individual views is denoted by EdgeCluster+. We compare
the performance of the different methods as a function of the
percentage of actors in the network with known labels. For
each choice of the percentage of labeled actors, we randomly
select the corresponding fraction of labeled data for each node
label for training and the rest for testing. We repeat this process
10 times and report the average accuracy and Macro-F1.

The results of this set of experiments, on Flickr and Last.fm
data sets, respectively, are summarized in Tables V and VI.
On the Flickr data, IRWK+ outperform all other methods in
almost all cases. DeepWalk+ comes in at a close second,
with LINE(1st+2nd) catching up both when the fraction of
actors with known labels exceeds 50%. On the Last.fm data,
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IRWK+ and DeepWalk+ are competitive with each other and
outperform the other methods with LINE(1st+2nd)+ catching
up with both when the fraction of actors with known labels
exceeds 50%. The superior performance of IRWK+ is espe-
cially impressive in light of the fact that the user-specified
parameters of the other methods were set empirically to the
values that result in their best performance. It is worth noting
that although the dimensionality of the feature space of IRWK
is equal to the number of actors in the network, the sparse
logistic regression classifier trained on the IRWK-induced
representation results in a model that uses only 7% and 3%
of the features, respectively on the Flickr and Last.fm data,
yielding classifiers that are comparable in their complexity
with those obtained using the other methods (data not shown
due to space constraints).

We further note that the performance of the two variants of
IRWK, RWK, DeepWalk, LINE(1st+2nd), and Node2Vec are,
in several cases, comparable, which is perhaps explained by
the fact that IRWK, DeepWalk, Node2Vec are, at their core,
random walk-based methods. LINE(1st+2nd) is the combina-
tion of LINE(1st) and LINE(2nd). LINE(1st) encodes the local
structure of the network, similar in a manner that is similar
to that done by the first iteration of IRWK in Equation 3.
LINE(2nd) encodes the global structure of the network, not
unlike that done by random walks of IRWK in Equation 2.

D. Parameter Sensitivity

We investigate how the performance of IRWK varies as a
function of the values of stopping probability and the inter-
view transition probability. In each case, we report the results
of accuracy and Macro-F1 averaged over the runs of a 10-fold
cross-validation experiment.

To examine the sensitivity of the performance of IRWK
with respect to the stopping probability, we fix the inter-
view transition probability to 0.05. We increase the value of
stopping probability, i.e., ρ, from 0.01, in steps of 0.01 such
that 1 − ρ − 0.05 × (M − 1) > 0. Figure 3 shows that the
performance of IRWK is fairly stable across a broad range of
settings of stopping probability on both the data sets (i.e., the
variation in accuracy and Macro-F1 of IRWK as a function of
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stopping probability remains approximately under 1% on both
Flickr and Last.fm).

To examine the sensitivity of the performance of IRWK
with respect to the inter-view transition probability, we fix the
stopping probability to 0.1. We increase the value of the inter-
view transition probability from 0.01, in steps of 0.01 such that
0.9−(M − 1)×Pi→j > 0. Figure 4 shows the performance of
IRWK as a function of inter-view transition probability. Again,
we see that the performance of IRWK is stable across a broad
range of settings of the inter-view transition probability.

E. Convergence

We investigate the convergence of IRWK as a function of
the walk length. Specifically, we define the kernel difference
function δ (L) = ‖RL −RL−1‖F / ‖RL−1‖F , L > 1, (‖·‖F
denotes for the Frobenius norm a matrix) as a function of
length of walk (see Equation 10). Figure 5a shows the value
of δ (L) as a function of the walk length over five views of
the Flickr data set. Figure 5b shows the negative of log of
δ (L) as a function of the walk length. The results show that
the random walk converges rapidly after a few steps of walk.
For example, in Flickr δ (L) < 0.00005 when the length of
walk is equal or greater than 5 on all views.

IV. SUMMARY AND DISCUSSION

Real world social networks typically consist of actors (in-
dividuals) that are linked to other actors or different types of
objects via links of multiple types. Different types of links
relationships induce different views of the underlying social
network. In this paper, we considered the problem of labeling
actors in such multi-view networks: Given a social network
in which only some of the actors are labeled, our goal is to
label the rest of the actors. We introduced a new inter-graph
random walk kernel, namely IRWK, for multi-view network
i.e, network with multiple types of links. We used IRWK to
generate kernels where each of them is for one individual
view. We use the resulting IRWK kernels to train classifiers for
labeling actors in a multi-view social network. The results of
our experiments on two real-world multi-view social networks
show that: (i) IRWK classifiers outperform or are competitive
with several state-of-the-art methods for labeling actors in a
social network; (ii) IRWKs are robust with respect to different

choices of user-specified parameters; and (iii) IRWK kernel
computation converges very fast within a few iterations.

Some promising directions for further research include
investigation of: (i) more sophisticated models of multi-view
networks that exploit the dependencies between the intra-view
and inter-view contexts of actors as well as the dependencies
among the views, e.g., by taking advantage of latent space
generative models; (ii) variants of IRWK that take into account
not only the topological similarity of the graphs, but also
their semantic similarity, by incorporating node and edge types
in kernel calculations; (iii) variants of IRWK that make use
of abstractions defined over node and link types; (iv) more
extensive empirical study of the algorithms for labeling actors
in multi-view networks on a broader range of real-world
networks; (v) variants of IRWK and related methods for link
prediction in multi-view networks; (vi) variants of methods
for node labeling and link prediction, respectively, to node
regression and link regression where the labels on the nodes
and link assume real values as opposed to categorical values.

APPENDIX

Derivations for Equations 6, 7, 10, and convergence of 10.
From RL (x, z) =

∑L
l=1 rl (x, z), we have

R∞ (x, z) = lim
L→∞

L∑
l=1

rl (x, z)

= r1 (x, z) + lim
L→∞

L∑
l=2

rl (x, z)

= r1 (x, z) + lim
L→∞

L∑
l=2

∑
x1,z1

Pt (x1|x)R0 (x1, z1)

× Pt (z1|z) rl−1 (x1, z1)

= r1 (x, z)+
∑
x1,z1

T×((x, z) , (x1, z1)) lim
L→∞

L∑
l=1

rl (x1, z1)

= r1 (x, z) +
∑
x1,z1

T× ((x, z) , (x1, z1))R∞ (x1, z1)

We can write Equation 6 in matrix form as follows,

R∞ = r1 + T×R∞ ⇔ R∞ = (I− T×)
−1 r1

where R∞ = (· · · , R∞ (x, z) , · · · )T ∈ RM2N2

. Replacing
R∞ in Equation 5, we obtain Equation 7. Hence, we have:

Ri
L (x, z) = ri1 (x, z) +

∑
x1,z1

T× ((x, z)ii , (x1, z1))

×RL−1 (x1, z1) (11)



where Ri
L (x, z) denotes the RL (x, z) of x, z ∈ Vi. From

Lemma 1, we have x1, z1 are in the same view, say view j.
So, Equation 11 is written as follows.

Ri
L (x, z) = ri1 (x, z) +

M∑
j=1

∑
x1,z1∈Vj

T×
(
(x, z)ii , (x1, z1)jj

)
×Rj

L−1 (x1, z1) (12)

Hence, Equation 10 is the matrix form of Equation 12. From
Equation 12, we have:

Ri
L (x, z)−Ri

L+1 (x, z) =

M∑
j=1

∑
x1,z1∈Vj

(
T×
(
(x, z)ii , (x1, z1)jj

)

×

 M∑
k=1

∑
x2,y2∈Vk

T×
(
(x1, z1)jj , (x2, z2)kk

)
× · · · · · · · · ·

×

1−
M∑

m=1

∑
xL+1,zL+1

T× ((xL, zL)nn ,

× (xL+1, zL+1)mm)Pe (xL+1)Pe (zL+1)

)
· · ·

))
(13)

Since
∑M

m=1

∑
xL+1,zL+1

T× ((xL, zL)nn , (xL+1, zL+1)mm)

=
∑M

m=1

∑
xL+1,zL+1

Pt (xL+1|xL)Pt(zL+1|zL)Rm
0 (xL+1, zL+1)

< (1− ρ)2 < 1, Ri
L (x, z) − Ri

L+1 (x, z) > 0. Hence,
Ri

L (x, z) converges when L→∞ (ratio test).
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