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Abstract

Efficient learning of DFA is a challenging
research problem in grammatical inference.
Both exact and approximate (in the PAC
sense) identifiability of DFA from examples
is known to be hard. Pitt, in his semi-
nal paper posed the following open research
problem: “Are DFA PAC-identifiable if ex-
amples are drawn from the uniform distribu-
tion, or some other known simple distribu-
tion? (Pitt, 1989). We demonstrate that the
class of simple DFA (i.e., DFA whose canon-
ical representations have logarithmic Kol-
mogorov complexity) is efficiently probably
ezactly learnable under the Solomonoff Levin
universal distribution m (wherein an instance
z with Kolmogorov complexity K (z) is sam-
pled with probability that is proportional to
2K (””)). The simple distribution independent
learning theorem states that a concept class
is learnable under universal distribution m iff
it is learnable under the entire class of sim-
ple distributions provided the examples are
drawn according to the universal distribu-
tion (Li & Vitanyi, 1991). The class of simple
distributions includes all computable distribu-
tions. Thus, it follows that the class of simple
DFA is learnable under a sufficiently general
class of distributions.

1 INTRODUCTION

DFAs are recognizers for regular languages which con-
stitute the simplest class in the Chomsky hierarchy
of formal languages (Chomsky, 1956). DFA induc-
tion from finite sets of labeled examples finds ap-
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plications in several domains including syntactic pat-
tern recognition (Fu, 1982), intelligent autonomous
agents (Carmel & Markovitch, 1996), and language ac-
quisition (Feldman et al., 1990).

Exact learning of the target DFA is known to be a
hard problem in that no efficient (polynomial time)
algorithms are known that exactly learn a target DFA
from an arbitrary set of labeled examples (Gold, 1978;
Pitt & Warmuth, 1988). DFA learning can be made
tractable if we assume that some additional informa-
tion is available to the learner. Trakhtenbrot and
Barzdin described a polynomial time algorithm for
constructing the smallest DFA consistent with a com-
plete labeled sample i.e., a sample that includes all la-
beled examples up to a particular length (Trakhten-
brot & Barzdin, 1973). Angluin showed that DFA can
be exactly learned in polynomial time with the help
of a minimally adequate teacher (MAT) capable of an-
swering membership and equivalence queries. Oncina
and Garcia’s regular positive and negative inference
(RPNI) algorithm is guaranteed to identify a DFA that
is consistent with a given sample S in time polynomial
in the sum of lengths of the examples in S (Oncina &
Garcia, 1992). Further, if S is a superset of a charac-
teristic set (see section 2.1) for the target DFA then
the DFA output by RPNI is guaranteed to be equiv-
alent to the target (Oncina & Garcia, 1992; Dupont,
1996b).

Even approximate learnability of DFA (in the proba-
bly approximately correct (PAC) sense (Valiant, 1984))
was proven to be a hard problem (see (Pitt & War-
muth, 1989; Kearns & Valiant, 1989)). The PAC
model’s requirement of learnability under all conceiv-
able distributions is often considered too stringent
for practical learning scenarios. Pitt’s paper identi-
fied the following open research problem: “Are DFA’s
PAC-identifiable if examples are drawn from the uni-



form distribution, or some other known simple distri-
bution?” (Pitt, 1989). Using a variant of Trakhtenbrot
and Barzdin’s algorithm (Trakhtenbrot & Barzdin,
1973), Lang empirically demonstrated that random
DFAs are approximately learnable from a sparse uni-
form sample (Lang, 1992). However, exact identifica-
tion of the target DFA was not possible even in the
average case with a randomly drawn training sample.

Li and Vitanyi proposed a model for PAC learning
with simple examples called the simple PAC model
wherein the class of underlying probability distribu-
tions is restricted to simple distributions. In this pa-
per, we present a method for efficient PAC learning of
DFA from simple examples and prove that the class of
simple DFA is learnable under the simple PAC model.
We demonstrate that for each DFA in the class of sim-
ple DFA there exists a polynomial sized characteristic
set S. of simple examples. Further, we show that a
polynomial sized set of examples S drawn at random
according to the universal distribution (m) contains
the characteristic set S, with arbitrarily high proba-
bility. The RPNI algorithm on input S is thus guaran-
teed to return a canonical representation of the target
DFA (with very high probability).

2 Preliminaries

Let ¥ be a finite set of symbols called the alphabet; ¥*
be the set of strings over ¥; «a, 3,v be strings in ¥*;
and |a| be the length of the string a. A is a special
string called the null string and has length 0. Given a
string a = B, B is the prefiz of a and 7 is the suffiz
of a. Let Pref(a) denote the set of all prefixes of a.
A language L is a subset of ¥*. The set Pref(L) =
{a | af € L} is the set of prefizes of the language and
the set Ly, = {8 | af € L} is the set of tails of o in
L. The standard order of strings of the alphabet ¥ is
denoted by <. The standard enumeration of strings
over ¥ = {a,b} is A, a,b, aa, ab, ba, bb, aaa, ... The set
of short prefizes Sp(L) of a language L is defined as
Sp(L) = {a € Pref(L) |/A8 € X* such that L, =
Lg and B < a}. The kernel N(L) of a language L is
defined as N(L) = {A} U {aa | a € Sp(L),a € X,aa €
Pref(L)}. Given two sets S; and Sa, let S1\S2 and
S1 @ S2 denote the set difference and the symmetric
difference respectively. Let In and 1g denote the log to
the bases e and 2 respectively.

2.1 FINITE AUTOMATA

A deterministic finite state automaton (DFA) is a
quintuple A = (@, 6,%, g0, F) where, Q is a finite set

of states, X is the finite alphabet, qo € @ is the start
state, F' C @ is the set of accepting states, and ¢ is
the transition function: @ x ¥ — (). A state dg €
such that Va € X, §(dp,a) = dp is called a dead state.
A state ¢ € @ that is not dead is called a live state.
The extension of § to handle input strings is standard
and is denoted by 6*. The set of all strings accepted
by A is its language, L(A). The language L(A) of a
DFA is called a regular language.

Given any FSA A', there exists a minimum state
DFA (also called the canonical DFA, A) such that
L(A) = L(A'). Without loss of generality, we will
assume that the target DFA being learned is a canon-
ical DFA. Let N denote the number of states of A. It
can be shown that any canonical DFA has at most one
dead state (Hopcroft & Ullman, 1979). One can de-
fine a standard encoding of DFA as binary strings such
that any DFA with N states is encoded as a string of
length O(N1g N). A labeled example (a, c(«)) for A
is such that @ € ¥* and ¢(a) = + if « € L(A) (i.e., ais
a positive example) or ¢(a) = — if a & L(A) (i.e., a is
a negative example). Let ST and S~ denote the set of
positive and negative examples of A respectively. A is
consistent with a sample S = ST U S~ if it accepts all
positive examples and rejects all negative examples. A
set ST is said to be structurally complete with respect
to a DFA A if ST covers each transition of A (except
the transitions associated with the dead state dy) and
uses every element of the set of final states of A as an
accepting state (Pao & Carr, 1978; Parekh & Honavar,
1993; Dupont et al., 1994). It can be verified that the
set ST = {b,aa,aaaa} is structurally complete with
respect to the DFA in Fig. 1.

Figure 1: Deterministic Finite State Automaton.

A sample S = ST U S~ is said to be characteristic
with respect to a regular language L (with a canoni-
cal acceptor A) if it satisfies the following two condi-
tions (Oncina & Garcia, 1992):



eVa € N(L),ifa € Lthena € ST elsedf €
¥* such that a3 € ST.

o Ya € S,(L),V8 € N(L), if Lq # Lg then 3y €
¥* such that (ay € ST and By € S™) or (By €
St and ay € S7).

Intuitively, S,(L), the set of short prefixes of L is a
live complete set with respect to A in that for each
live state ¢ € @, there is a string o € Sp(L) such that
0*(go,) = q. The kernel N(L) includes the set of
short prefixes as a subset. Thus, N(L) is also a live
complete set with respect to A. Further, N(L) cov-
ers every transition between each pair of live states of
A. ie., for all live states g;,q; € @, for all a € X,
if 0(gi,a) = g; then there exists a string 8 € N(L)
such that 3 = aa and §*(go,) = ¢;- Thus, condi-
tion 1 above which identifies a suitably defined suf-
fix 8 € X* for each string @ € N(L) such that the
augmented string a8 € L implies structural complete-
ness with respect to A. Condition 2 implies that for
any two distinct states of A there is a suffix v that
would correctly distinguish them. In other words,
for any ¢;,¢; € Q whereg; # g;, 3y € ¥* such
that 6*(g;,v) € F and 0*(g;,y) ¢ F or vice-versa.
Given the language L corresponding to the DFA A in
Fig. 1, the set of short prefixes is Sp(L) = {\, a, b, aa}
and the kernel is N(L) = {\, a,b,aa,aaa}. It can
be easily verified that the set S = St U S~ where
St = {b,aa,aaaa} and S~ = {), a,aaa, baa} is a char-
acteristic sample for L.

2.2 PROBABLY APPROXIMATELY
CORRECT AND PROBABLY
EXACTLY CORRECT LEARNING OF
DFA

Let X denote the sample space defined as the set of
all strings ¥*. Let x C X denote a concept. For our
purpose, x is a reqular language. We identify the con-
cept with the corresponding DFA and denote the class
of all DFA as the concept class C. The representation
R that assigns a name to each DFA in C is defined
as a function R : C — {0,1}*. R is the set of stan-
dard encodings of the DFA in C. Assume that there
is an unknown and arbitrary but fixed distribution D
according to which the examples of the target concept
are drawn. In the context of learning DFA, D is re-
stricted to a probability distribution on strings of ¥*
of length at most m.

Definition 1 (due to (Pitt, 1989))
DFAs are PAC-identifiable iff there exists a (possibly

randomized) algorithm A such that on input of any pa-
rameters € and §, for any DFA M of size N, for any
number m, and for any probability distribution D on
strings of X* of length at most m, if A obtains labeled
examples of M generated according to the distribution
D, then A produces a DFA M' such that with prob-
ability ot least 1 — &, the probability (with respect to
distribution D) of the set {a |« € L(M) & L(M')} is
at most e (0 < e <1and0 < dé < 1). For polyno-
mial PAC-learnability, the run time of A (and hence
the number of randomly generated examples obtained
by A) is required to be polynomial in N, m, 1/e, 1/4,
and |Z|.

Definition 2 DFAs are probably exactly learnable iff
there exists an algorithm A such that on input of a pa-
rameter 8, for any DFA M of size N, for any number
m, and for any probability distribution D on strings
of ¥* of length at most m, if A obtains labeled ez-
amples of M generated according to the distribution
D, then A produces a DFA M' such that with prob-
ability at least 1 — 4, M s equivalent to M (i.e.,
Prp({a | @ € L(M) @& L(M')}) = 0). For polyno-
mial probably exact learnability, the run time of A is
polynomial in N, m, 1/§ and |X|.

2.3 KOLMOGOROV COMPLEXITY

Note that the definition of PAC learning requires that
the concept class (in this case the class of DFA) must
be learnable under any arbitrary (but fixed) probabil-
ity distribution. This requirement is often considered
too stringent in practical learning scenarios where it
is not unreasonable to assume that a learner is first
provided with simple and representative examples of
the target concept. Intuitively, when we teach a child
the rules of multiplication we are more likely to first
give simple examples like 3 x 4 than examples like
1377 x 428. A representative set of examples is one
that would enable the learner to identify the target
concept exactly. For example, the characteristic set
of a DFA would constitute a suitable representative
set. The question now is whether we can formalize
what simple examples mean. Kolmogorov complexity
provides a machine independent notion of simplicity
of objects. The Kolmogorov complexity of an object
(represented by a binary string «) is the length of
the shortest binary program that computes a. Ob-
jects that have regularity in their structure (i.e., ob-
jects that can be easily compressed) have low Kol-
mogorov complexity. For example, consider the string
51 = 010101...01 = (01)%°°. On a particular machine
M, a program to compute this string would be “Print



01 500 times”. On the other hand consider a totally
random string so that cannot be compressed. A pro-
gram to compute s on M would would have to ex-
plicitly specify the entire string s2. The length of the
program that computes s, is thus shorter than that of
the program that computes s;. Thus, we could argue
that s; has lower Kolmogorov complexity than s, with
respect to the machine M.

We will consider the prefiz version of the Kolmogorov
complexity that is measured with respect to prefix
Turing machines and denoted by K. Consider a pre-
fix Turing machine that implements the partial recur-
sive function ¢ : {0,1}* partiol {0,1}*. For any string
a € {0,1}*, the Kolmogorov complexity of « relative
to ¢ is defined as Ky4(a) = min{|n| | ¢(7) = a} where
7 € {0,1}* is a program input to the Turing machine.
Prefix Turing machines can be effectively enumerated
and there exists a Universal Turing Machine (U) ca-
pable of simulating every prefix Turing machine. As-
sume that the universal Turing machine implements
the partial function ¢. The Optimality Theorem for
Kolmogorov Complexity guarantees that for any prefix
Turing machine ¢ there exists a constant c4 such that
for any string o, Ky(a) < Kg(a) + cg. Note that we
use the name of the Turing Machine (say M) and the
partial function it implements (say ¢) interchangeably
ie., K4(a) = Kp(a). Further, by the Invariance The-
orem it can be shown that for any two universal ma-
chines v, and 9, there is a constant 5 € N (where N is
the set of natural numbers) such that for all strings «,
| Ky, (@) — Ky,(a)| <n. Thus, we can fix a single uni-
versal Turing machine U and denote K(a) = Ky(a).
Note that there exists a Turing machine that com-
putes the identity function x : {0,1}* — {0,1}*
where Va, x(a) = a. Thus, it can be shown that
the Kolmogorov complexity of an object is bounded
by its length i.e., K(a) < |a| + K(|a|) + n where 7 is
a constant independent of a.

2.4 UNIVERSAL DISTRIBUTION

The set of programs for a string « relative to a Tur-
ing machine M is defined as PROGpy(a) = {m |
M(rm) = a}. The algorithmic probability of a rel-
ative to M is defined as muy (o) = Pr(PROGum).
The algorithmic probability of a with respect to the
universal Turing machine U is denoted as my(a) =
m(a). m is known as the Solomonoff-Levin distribu-
tion. It is the universal enumerable probability distri-
bution, in that, it multiplicatively dominates all enu-
merable probability distributions. Thus, for any enu-
merable probability distribution P there is a constant

¢ € N such that for all strings a, ¢m(a) > P(a).
The Coding Theorem due independently to Schnorr,
Levin, and Chaitin (Li & Vitanyi, 1997) states that
In € N such that Ya mpr(a) < 275, Intuitively
this means that if there are several programs for a
string o on some machine M then there is a short pro-
gram for a on the universal Turning machine (i.e., @
has a low Kolmogorov complexity). By optimality of
m it can be shown that: 3In € N, such that Va €
{0,1}*, 2=%(@) < m(a) < 27K(2) We see that the
universal distribution m assigns higher probability to
simple objects (objects with low Kolmogorov complex-
ity).

The interested reader is referred to (Li & Vitdnyi,
1997) for a thorough treatment of Kolmogorov com-
plexity, universal distribution, and related topics.

3 The RPNI Algorithm

The regular positive and negative inference (RPNI) al-
gorithm (Oncina & Garcia, 1992) identifies a DFA con-
sistent with a given set S = St U S~ of labeled ex-
amples in time polynomial in the sum of the lengths
of the strings in S (||S||). Further, if S is a charac-
teristic set for the target DFA then the algorithm is
guaranteed to return a canonical representation of the
target DFA. Given a labeled set of examples S the al-
gorithm constructs a prefiz tree automaton (PTA) that
accepts exactly the strings in ST and nothing else.
The states of the PTA are numbered in the standard
order of the shortest strings that lead to them from
the start state. For instance, the PTA corresponding
to the set S = St U S~ where ST = {b,aa,aaaa}
and S~ = {\, a,aaa,baa} is depicted in Fig. 2. The
PTA is consistent with S and is treated as the initial
hypothesis.
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Figure 2: Prefix Tree Automaton.

A quadratic loop is used to find a more general hy-
pothesis by systematically merging the states of the
PTA in order (state 1 with state 0, state 2 with state
0, state 2 with state 1, and so on). The derived au-
tomaton obtained by merging two states is tested for



consistency with the set S~. If the derived automaton
accepts any string from S~ then the merge is rejected
and the remaining states are considered for merging
in order. Otherwise, the derived automaton that is
consistent with S is treated as the new hypothesis and
the state merging continues with the states of the new
hypothesis. For example, Fig. 3 depicts the derived
automaton obtained by merging together the states 0
and 2 of the PTA. This derived automaton accepts the
string A € S~ and hence the merge is rejected.

&o@ 0O

Figure 3: Derived Automaton Obtained by Merging
the States 2 and 0 of the PTA.

The algorithm terminates when no further state
merges result in a derived automaton that is consis-
tent with S~. The last consistent hypothesis is then
returned as the learned DFA.

The interested reader is referred to (Dupont, 1996a)
for a detailed exposition of the RPNI algorithm.

4 LEARNING SIMPLE DFA
UNDER THE SIMPLE PAC
MODEL

Li and Vitanyi have proposed the simple PAC learning
model where the class of probability distributions is re-
stricted to simple distributions (Li & Vitanyi, 1991). A
distribution is simple if it is multiplicatively dominated
by some enumerable distribution. Simple distributions
include all computable distributions. Further, the sim-
ple distribution independent learning theorem due to
Li and Vitanyi states that a concept class is learnable
under universal distribution m iff it is learnable under
the entire class of simple distributions provided the ex-
amples are drawn according to the universal distribu-
tion (Li & Vitdnyi, 1991). Thus, the simple PAC learn-
ing model is sufficiently general. Concept classes such
as logn-term DNF and simple k-reversible DFA are
learnable under the simple PAC model whereas their
PAC learnability in the standard sense is unknown (Li
& Vitdnyi, 1991). We show that the class of simple
DFA is polynomially learnable under the simple PAC
learning model.

A simple DFA is one with low Kolmogorov complex-
ity. More specifically, a DFA A with N states and

a standard encoding (or canonical representation) r
is simple if K(r) = O(lgN). For example, a DFA
that accepts all strings of length N is a simple DFA.
Note that this DFA contains a path for every string
of length N and hence it has a path of Kolmogorov
complexity N. In general, simple DFA might actually
have very random paths. We saw in section 2.3
that a natural learning scenario would typically
involve learning from a simple and representative
set of examples for the target concept. We adopt
Kolmogorov complexity as a measure of simplicity and
define simple examples as those with low Kolmogorov
complexity i.e., with Kolmogorov complexity O(lg N).
Further, a characteristic set for the DFA A can be
treated as its representative set. We demonstrate that
for every simple DFA there exists a characteristic set
of simple examples S..

Lemma 1 For any N state simple DFA (with Kol-
mogorov complexity O(lg N)) there exists a character-
istic set of simple examples S. such that the length of
each string in this set is at most 2N — 1.

Proof: Consider the following enumeration of a
characteristic set of examples for a DFA A =
(Q,6,%,q0, F) with N states!.

1. Fix an enumeration of the shortest paths (in stan-
dard order) from the state go to each state in @
except the dead state. This is the set of short pre-
fixes of A. There are at most N such paths and
each path is of length at most N — 1.

2. Fix an enumeration of paths that includes each
path identified above and its extension by each
letter of the alphabet ¥. From the paths just enu-
merated retain only those that do not terminate
in the dead state of A. This represents the kernel
of A. There are at most N(|X| + 1) such paths
and each path is of length at most N.

3. Let the characteristic set be denoted by S, = Sj U

So.

(a) For each string « identified in step 2 above,
determine the first suffix 3 in the standard
enumeration of strings such that a8 € L(A).
Since |a| < N, and f is the shortest suffix
in the standard order it is clear that o8| <
2N — 1. Each such af3 is a member of SF.

'Note that this enumeration strategy applies to any
DFA and is not restricted to simple DFA alone.



(b) For each pair of strings («, ) in order where
a is a string identified in step 1, 3 is a string
identified in step 2, and « and § lead to
different states of A determine the first suf-
fix v in the standard enumeration of strings
such that ay € L(A) and 8y ¢ L(A) or vice
versa. Since |o| < N -1, |8] £ N, and «
is the shortest distinguishing suffix for the
states represented by « and S it is clear that
|ay|, |87] < 2N —1. The accepted string from
among ay and A7 is a member of S} and the
rejected string is a member of S .

Trivial upper bounds on the sizes of ST and S
are |SF| < N2(|Z|+1) + N([Z)), [S;| < N2(|S|+
1)—N. Thus, |S.| = [(2N?|Z|+2N2+N|Z|-N)]
ie., |S;| < kN? where k is a constant . Further,
the length of each string in S, is less than 2V —1.

The strings in S, can be ordered in some way such
that individual strings can be identified by an index of
length at most lg(kN?2) = O(lg N) bits. There exists
a Turing machine M that implements the above algo-
rithm for constructing the set S.. M can take as input
an encoding of a simple DFA of length O(lg V) bits and
an index of length O(lg N) bits and output the corre-
sponding string a belonging to S.. Thus, Va € S,

K(a) < klgN+klgN
= O(gN)

This proves the lemma. m|

Lemma 2 Suppose a sample S is drawn according to
m. For 0 <& <1, if |S| = O(N*Ig(})) then with
probability greater than 1 — 6§, S. C S where k is a
constant.

Proof: From lemma 1 we know that Va € S., K(a) =
O(lgN). Further, |S.|] = O(N?). By definition,
m(a) > 27K Thus, m(a) > 275118V or equiva-
lently m(a) > N~* where k; is a constant.

Pr(a € S. is not sampled in one random draw) <

(1 — N~k
Pr(a € S. is not sampled in |S| random draws <
(1 _ ka1)|S|

Pr( some o € S, is not sampled in |S| random draws
< |8l (1 = N-F1) IS

Pr( some o € S, is not sampled in |S| random draws
< kagN?(1 = N=F1)ISI since |S.| = O(N?)

Pr(S. € S) < kg N?(1 — N—F1)/5|

We want this probability to be less than 4.

EaN2(1—N-F)Isl < 5

kaN2(e VT < g2
In(ky) +In(N?) = N"|S| < In(d)
NA (In(3) +In(ks) + (V%) < |5]
OV*ig(3)) = Is]
where k replaces k;
Thus, Pr(S. € S) > 1-4. O

We now prove that the class of simple DFA is polyno-
mially exactly learnable under m

Theorem 1 For all N, the class C<N of simple DFA
whose canonical representations have at most N states
is probably exactly learnable under the simple PAC
model.

Proof: Let A be a simple DFA with at most N states.
Let S, be a characteristic sample of A enumerated as
described in lemma 1 above. Recall that the examples
in S, are simple (i.e., each example has Kolmogorov
complexity O(lg N)). Now consider the algorithm A
in Fig. 4 that draws a sample S with the following
properties:

1. S = ST U S~ is a set of positive and negative
examples corresponding to the target DFA A.

2. The examples in S are drawn at random according
to the distribution m.

3. [S| = O(N*1g(})).
Algorithm A

Input: N0<§<1
Output: A DFA M

begin
¢ Randomly draw a labeled sample S
according to m.
e Retain only those examples in S
that have length at most 2V — 1.
e M = RPNI(S)
e return M
end

Figure 4: A Probably Exact Algorithm for Learning
Simple DFA.

Lemma 1 showed that for every simple DFA A there
exists a characteristic set of simple examples S, where



each example is of length at most 2N — 1. Lemma 2
showed that if a labeled sample S of size O(N*1g(5))
is randomly drawn according to m then with proba-
bility greater than 1—4, S. C S. The RPNI algorithm
is guaranteed to return a canonical representation of
the target DFA A if the set of examples S provided is
a superset of a characteristic set S.. Since the size of
S is polynomial in N and 1/4 and the length of each
string in S is restricted to 2N —1, the RPNI algorithm,
and thus the algorithm 4 can be implemented to run
in time polynomial in N and 1/6. Thus, with prob-
ability greater than 1 — d, A is guaranteed to return
a canonical representation of the target DFA A. This
proves that the class C=" of simple DFA whose canon-
ical representations have at most N states is exactly
learnable with probability greater than 1 — 4. O

5 DISCUSSION

The problem of exactly learning the target DFA from
an arbitrary set of labeled examples and the problem
of approximating the target DFA from labeled exam-
ples under Valiant’s PAC learning framework are both
known to be hard problems. Thus, the question as to
whether DFA are efficiently learnable under some re-
stricted yet fairly general and practically useful classes
of distributions was clearly of interest. In this paper,
we have answered this question in the affirmative for
the class of simple DFA by demonstrating that the
class of simple DFA is polynomially learnable under
the universal distribution m (the simple PAC learning
model).

The class of simple distributions includes a large va-
riety of probability distributions (including all com-
putable distributions). It has been shown that a con-
cept class is efficiently learnable under the universal
distribution if and only if it is efficiently learnable un-
der each simple distribution provided that sampling
is done according to the universal distribution (Li &
Vitdnyi, 1991). This raises the possibility of using
sampling under the universal distribution to learn un-
der all computable distributions. However, the univer-
sal distribution is not computable. Whether one can
instead get by with a polynomially computable ap-
proximation of the universal distribution remains an
open question. It is known that the universal distribu-
tion for the class of polynomially-time bounded simple
distributions is computable in exponential time (Li &
Vitdnyi, 1991). This opens up a number of interesting
possibilities for learning under simple distributions.

Denis et al proposed a model of learning (known as the

PACS model) where examples are drawn at random
according to the universal distribution by a teacher
that is knowledgeable about the target concept (Denis
et al., 1996). In this model examples that have low
Kolmogorov complexity given a canonical representa-
tion (r) of the target concept (i.e., K(z|r) = O(lg N))
are treated as simple examples. Further, the proba-
bility of drawing an example z is given by m,(z) =
2~ K(IN+0()  In related work we have shown that
the entire class of DFA is efficiently learnable in the
PACS model (Parekh & Honavar, 1997). Recently,
Castro and Guijarro have independently shown that
if a concept class is learnable under the PACS learn-
ing model then the set of simple concepts of that
concept class are learnable under the simple PAC
model (Castro & Guijarro, 1998). An analysis of
the relationship between the PACS and simple PAC
learning models and other popular models for learn-
ing in helpful environments such as learning from ex-
ample based queries (Angluin, 1988), learning from
polynomial teaching sets (Goldman & Mathias, 1993;
Gold, 1978), and mistake bounded learning (Little-
stone, 1988) appears in (Parekh & Honavar, 1999).

A related question of interest has to do with the na-
ture of environments that can be modeled by simple
distributions. In particular, if Kolmogorov complexity
is an appropriate measure of the intrinsic complexity
of objects in nature and if nature (or the teacher) has
a propensity for simplicity, then it stands to reason
that the examples presented to the learner by the en-
vironment are likely to be generated by a simple distri-
bution. Against this background, empirical evaluation
of the performance of the proposed algorithms using
examples that come from natural domains is clearly
of interest. Also of interest are investigation of other
interesting and practically useful concept classes that
might be learnable from simple examples.
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