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Abstract. The PAC and other equivalent learning models are widely
accepted models for polynomial learnability of concept classes. However,
negative results abound in the PAC learning framework (concept clas-
ses such as deterministic finite state automata (DFA) are not efficiently
learnable in the PAC model). The PAC model’s requirement of learnabi-
lity under all conceivable distributions could be considered too stringent
a restriction for practical applications. Several models for learning in
more helpful environments have been proposed in the literature inclu-
ding: learning from example based queries [2], online learning allowing
a bounded number of mistakes [14], learning with the help of teaching
sets [7], learning from characteristic sets [5], and learning from simple
examples [12,4]. Several concept classes that are not learnable in the
standard PAC model have been shown to be learnable in these models.
In this paper we identify the relationships between these different lear-
ning models. We also address the issue of unnatural collusion between
the teacher and the learner that can potentially trivialize the task of
learning in helpful environments.
Keywords:
Models of learning, Query learning, Mistake bounded learning, PAC lear-
ning, teaching sets, characteristic samples, DFA learning.

1 Introduction

Valiant’s PAC learning model [20] provided a framework for extensive research
on the computational complexity of various learning tasks. A concept class is
said to be polynomially learnable if there exists an algorithm that can find a
hypothesis approximating any concept in the class, when given a polynomial
number of labeled examples and polynomially bounded computational resour-
ces. Further, the algorithm is expected to run in time that is polynomial in the
parameters measuring the complexity of the target concept, size of the input

A.L. Oliveira (Ed.): ICGI 2000, LNAI 1891, pp. 207–220, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



208 R. Parekh and V. Honavar

to the algorithm, and the accuracy of the resulting approximation. The speci-
fic assumptions and criteria used to define polynomial learnability have led to
several variations of the basic PAC model. A unifying framework for proving
the equivalence of these different models was presented in [8]. Despite the PAC
model’s acceptance as a standard model of polynomial learning, several nega-
tive results about PAC learning have been proven (for instance, even elementary
concept classes such as DFA cannot be efficiently PAC learned [19,11]). Perhaps,
the main reason for these negative results is the model’s requirement that the
concept class must be learnable under any arbitrary (but fixed) probability dis-
tribution. It is conceivable that most practical learning scenarios do not place
such stringent restrictions on the learnability of concept classes. On the contrary,
practical learning scenarios feature helpful learning environments (for example,
a knowledgeable teacher might guide the learner by answering queries or by ca-
refully selecting training examples that would enable the learner to learn quickly
and efficiently).

Several models for learning in helpful environments have been proposed in
the literature. These include: learning from example based queries [2,7], online
learning allowing a bounded number of mistakes [14]1, learning with the help of
teaching sets [7], learning from characteristic sets [5], and learning from simple
examples [12,4]. A variety of concept classes whose learnability in the standard
PAC model is unknown are shown to be learnable in the above models (see
section 2 for the results on learning DFA).

In this paper, we study the relationships between these different models. Some
of these relationships have been identified by earlier research whereas others are
new. Fig. 1 gives a schematic representation of the relationships. The rest of
this paper is organized as follows: Section 2 provides an overview of the different
learning models. Section 3 proves the relationships outlined in Fig. 1. Section 4
addresses the issue of collusion in the models for learning in helpful environments.
Section 5 concludes with a summary and some directions for future research.

Learning from
example

based queries

Mistake bounded 
learning (with access

to membership queries)

Semi-Polynomial
T/L teachibility

PACS learning

simple -PAC learning

(Goldman & Mathias)

from characteristic 
samples

Polynomial identifiability

(de la Higuera) (Castro & Guijarro)

Fig. 1. Relationship between different learning models.

1 We consider a variant of the mistake bounded learning model where the learner has
access to a membership oracle or a teacher who answers membership queries.
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2 Models for Learning in Helpful Environments

2.1 Preliminaries

Let Σ denote a finite alphabet. If n ≥ 1 denotes the number of attributes then
the set Σn is referred to as the sample space X . If the learning domain involves
examples of varying lengths then the sample space is denoted as X =

⋃

n≥1

Σn.

A concept class C is defined as C ⊆ 2X . An individual concept c ∈ C is thus
a subset of X . A concept is usually associated with a classification function
c : X −→ {0, 1} such that c(x) = 1 if an example x belongs to the concept and
c(x) = 0 otherwise. The tuple (x, c(x)) represents a labeled example of c. If S
is a set of labeled examples then ||S|| denotes the size of S (i.e., the sum of the
lengths of the individual examples in S). A representation R assigns a name to
each concept in C and is defined as a function R : C −→ {0, 1}∗. Let r = R(c)
be the representation of a concept c. |r| (the length of the string r) denotes the
size of the concept c. Let D be an arbitrary (but fixed) probability distribution
defined over X .

A concept class C is said to be probably approximately correctly (PAC) learn-
able if there exists (a possibly randomized) algorithm A such that on input of
any parameters ε and δ, for any concept c ∈ C with corresponding represen-
tation r, and for any probability distribution D over X , if A draws a set S of
labeled examples of c, then A produces an approximation ĉ of c such that with
probability ≥ 1 − δ, PrD({x|x ∈ X and c(x) 6= ĉ(x)}) ≤ ε. The run time of
A is required to be polynomial in 1/ε, 1/δ, |r|, and ||S||. If the algorithm A
is such that any concept in C is learned exactly i.e., with probability ≥ 1 − δ,
PrD({x|x ∈ X and c(x) 6= ĉ(x)}) = 0 then C is said to be probably exactly
learnable2.

Kolmogorov complexity is a machine independent notion of simplicity of ob-
jects. Objects that have regularity in their structure (i.e., objects that can be
easily compressed) have low Kolmogorov complexity. For any string α ∈ {0, 1}∗,
the prefix Kolmogorov complexity of α relative to a Turing Machine φ is defined
as Kφ(α) = min{|π| | φ(π) = α} where π ∈ {0, 1}∗ is a program input to the
Turing machine. The Optimality Theorem for Kolmogorov Complexity guaran-
tees that for any prefix Turing machine φ there exists a constant cφ such that
for any string α, Kψ(α) ≤ Kφ(α)+ cφ where ψ is the Universal Turing Machine.
Further, by the Invariance Theorem it can be shown that for any two universal
Turing machines ψ1 and ψ2 there is a constant η ∈ N (where N is the set of
natural numbers) such that for all strings α, |Kψ1(α)−Kψ2(α)| ≤ η. Thus, fixing
a single universal Turing machine U we denote K(α) = KU (α). The Kolmogorov
complexity of a string is bounded by its length i.e., K(α) ≤ |α| + K(|α|) + ζ
where ζ is a constant independent of α. The conditional Kolmogorov complexity
of any string α given β is defined as Kφ(α | β) = min{|π| | φ(〈π, β〉) = α} where

2 Note that in this case A takes in only δ as a parameter and is expected to run in
time polynomial in 1/δ, |r|, and ||S||.
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π ∈ {0, 1}∗ is a program and 〈., .〉 is a standard pairing function. Fixing a single
universal Turing machine U we denote the conditional Kolmogorov complexity
by K(α|β) = KU (α|β).

The Solomonoff Levin universal distribution m is a universal enumerable
probability distribution in that it multiplicatively dominates all enumerable pro-
bability distributions. Formally, ∀i ∈ N+ ∃c > 0 ∀x ∈ N [cm(x) ≥ Pi(x)] where
P1, P2, . . . is an enumeration of all enumerable probability distributions and N
is the set of natural numbers. It can be shown that m(x) = 2−K(x)+O(1). Thus,
under m, simple objects (or objects with low Kolmogorov complexity) have a
high probability, and complex or random objects have a low probability. Given
a string r ∈ Σ∗, the universal distribution conditional on the knowledge of r,
mr, is defined as mr(α) = 2−K(α|r)+O(1) [4]. Further, ∀r ∈ Σ∗ ∑

αmr(α) < 1.
The interested reader is referred to [13] for a thorough treatment of Kolmogorov
complexity, universal distribution, and related topics.

2.2 Learning from Example Based Queries

A variety of concept classes are known to be learnable in deterministic polyno-
mial time when the learner is allowed access to a teacher (or an oracle) that
answers example based queries [2]. Example based queries include equivalence,
membership, subset, superset, disjointedness, exhaustive, justifying assignment,
and partial equivalence queries. A membership query is of the form “does x ∈ c?”
where x ∈ X is an example and c ∈ C is the target concept. The teacher’s res-
ponse is yes or no depending on whether c(x) = 1 or not. For all other types of
queries the input is the learner’s hypothesis ĉ and the teacher’s response is eit-
her a yes or a counterexample x ∈ X . Thus, an equivalence query is of the form
“∀x ∈ X is c(x) = ĉ(x)?”. The teacher’s response is either yes or an example x
such that c(x) 6= ĉ(x).

Definition 1. (Due to Goldman and Mathias [6])
An example based query is any query of the form

∀(x1, x2, . . . , xk) ∈ X k does φr(x1, x2, . . . , xk) = 1?

where r is the target concept and k is a constant.

φ may use the instances (x1, . . . , xk) to compute additional instances on which
to perform membership queries. The teacher’s response to example based queries
is either yes or a counter example consisting of (x1, x2, . . . , xk) ∈ X k (along with
the correct classification corresponding to each of the xi’s) for which φr (x1, x2,
. . ., xk) = 0 and the labeled examples for which membership queries were made
in order to evaluate φr.

Definition 2. A concept class C is said to be polynomially learnable from exam-
ple based queries iff there exist polynomials p1() and p2(), and an algorithm A,
such that for any concept c ∈ C with representation r, A returns a representation
r̂ of a concept ĉ that is equivalent to c when it is allowed to pose a number of
example based queries bounded by p1(|r|) and see a set of examples S (including
counterexamples returned by the example based queries) of size at most p2(|r|).
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The L∗ algorithm is a method for exactly learning DFA (in polynomial time)
from membership and equivalence queries [1].

2.3 Mistake Bounded Learning

Littlestone’s mistake bounded learning model deals with the online learning
scenario. Instead of presenting the learner with a set of labeled examples, the
online model presents one example at a time and asks the learner to predict the
class of each example it receives. After making this prediction, the learner is told
whether its prediction was correct. The learner uses this information to improve
its hypothesis. The mistake bounded model considers bounding the number of
(explicit) prediction errors made by the learner in the worst case while learning
(to predict) a target concept. Several concept classes are known to be learnable
with the help of membership queries in addition to other example based queries
(such as equivalence queries, subset queries, etc.). We consider an augmented
mistake bounded learning model where the learner has access to a teacher who
answers membership queries.

Definition 3. A concept class C is polynomially learnable in the augmented
mistake bounded model iff there exist polynomials p1() and p2(), a teacher T
capable of answering membership queries, and an online learning algorithm A
such that for any concept c with representation r, A learns a representation r̂
of a concept ĉ that is equivalent to c when it is allowed to make at most p1(|r|)
prediction errors on the sequence of examples it sees and pose (if required) at
most p2(|r|) membership queries.

DFA are known to be exactly learnable in this augmented mistake bounded
model for online learning with membership queries (see [18] for a description
of the Incremental ID algorithm). We show the relationship of this augmented
mistake bounded model to the model of learning from example based queries.
Note that this result subsumes Littlestone’s result depicting the relationship
between mistake bounded learning and learning by posing a bounded number of
equivalence queries [14].

2.4 Learning from Teaching and Characteristic Sets

Goldman and Mathias have developed a teaching model for efficient learning of
target concepts [7]. Their model takes into account the quantity of information
that a good teacher must provide to the learner. An additional player called
the adversary is introduced in this model to ensure that there is no unnatural
collusion whereby the teacher directly gives the learner an encoding of the target
concept.

Definition 4. (Due to de la Higuera [9])
A concept class C is semi-polynomially T/L teachable iff there exist polynomials
p1() and p2(), a teacher T , and a learner L, such that for any adversary ADV
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and any concept c with representation r that is selected by ADV , after the fol-
lowing teaching session the learner returns the representation r̂ of a concept ĉ
that is equivalent to c:
• ADV gives r to T .
• T computes a teaching set S of size at most p1(|r|).
• ADV adds correctly labeled examples to this set.
• The learner uses the augmented set S and outputs r̂ in time p2(||S||).

In this model, a concept class for which the computation of both the teacher
and the learner takes polynomial time and the learner always learns the target
concept is called polynomially T/L teachable. Without the restrictive assumption
that the teacher’s computations be performed in polynomial time, the concept
class is said to be semi-polynomially T/L teachable.

While studying the identification of languages in the limit, Gold proposed a
model for learning from given data [5]. In this model, the learner when presented
with a set of examples S must return a representation of a concept consistent
with S. Further, the model postulates that there exists a characteristic set of
examples for each language such that the learning algorithm upon seeing the
characteristic set must output a representation equivalent to that of the target
concept. This condition should be monotonic in that even if correctly labeled
examples are added to the characteristic set, the algorithm would still infer the
same language. This leads to the model for polynomial identifiability of concept
classes from characteristic sets. It is based on the availability of a polynomial
sized characteristic set for any concept in the concept class and an algorithm
which when given a superset of a characteristic set is guaranteed to return, in
polynomial time, a representation of the target concept.

Definition 5. (Due to de la Higuera [9])
A concept class C is polynomially identifiable from characteristic sets iff there
exist two polynomials p1() and p2() and an algorithm A such that:
• Given any set S of labeled examples, A returns in time p1(||S||) a representa-
tion r of a concept c ∈ C such that c is consistent with S.
• For every concept c ∈ C with corresponding representation r there exists a
characteristic set Sc such that ||Sc|| = p2(|r|) and if A is provided with a set
S ⊇ Sc then A returns a representation r̂ of a concept ĉ that is equivalent to c.

The framework of the RPNI algorithm for learning DFA identifies a practical
notion of a teaching or characteristic set of a DFA and demonstrates how DFA
can be exactly learned (in polynomial time) from a training set that includes a
characteristic set of the target DFA as a subset [15].

2.5 Learning from Simple Examples

The standard PAC model’s requirement of learnability under all conceivable
distributions is often considered too stringent for practical learning scenarios. Li
and Vitányi have proposed a simple-PAC learning model for efficiently learning
simple concepts. A concept class is said to be simple-PAC learnable if it is PAC
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learnable under the class of simple distributions [12]. A distribution is simple if
it is multiplicatively dominated by some enumerable distribution. The class of
simple distributions includes a variety of distributions (such as all computable
distributions). Further, the simple distribution independent learning theorem says
that a concept class is learnable under the universal distribution m iff it is
learnable under the entire class of simple distributions provided the examples
are drawn according to the universal distribution [12]. Thus, the simple-PAC
learning model is sufficiently general. Concept classes such as log n-term DNF
and simple k-reversible DFA are learnable under the simple-PAC model whereas
their PAC learnability in the standard sense is unknown [12].

Denis et al proposed a learning model (called the PACS model) where ex-
amples are drawn at random according to the universal distribution conditional
on the knowledge of the target concept [4]. Under this model, examples with
low conditional Kolmogorov complexity given a representation r of the target
concept are called simple examples. Specifically, for a concept with representa-
tion r, the set Srsim = {α | K(α|r) ≤ µlg(|r|)} (where µ is a constant) is the
set of simple examples for that concept. Further, Srsim,rep is used to denote a
set of simple and representative examples of r. The PACS model restricts the
underlying distribution to mr (where mr(α) = 2−K(α|r)+O(1) ).

The learnability of logarithmic Kolmogorov Complexity DFA in the simple-
PAC model and that of the entire class of DFA in the PACS model are shown
in [16,17].

3 Relationships between the Learning Models

In this section we show the relationships between the different models for learning
in helpful environments (see Fig. 1).

Theorem 1. A concept class C is learnable in deterministic polynomial time
using example-based queries iff it is learnable in the augmented mistake bounded
framework with a polynomial mistake bound.

Proof: We prove this result by showing that an algorithm using example ba-
sed queries can be simulated using a mistake bounded learning algorithm and
vice-versa. A similar strategy was used to show the equivalence of the mistake
bounded learning model with the model for learning by posing a bounded num-
ber of equivalence queries [14].

Let A be an algorithm for learning C from example based queries. We derive
a mistake bounded learning algorithm B as follows:

Algorithm B

1. simulate A until it outputs a hypothesis ĉ0 as its query
2. use ĉ0 as the initial hypothesis

let i = 0
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3. for each observed example x do
predict ĉi(x)
if ĉi(x) 6= c(x) — (where c(x) is the correct classification of x)
then return x as a counterexample in response to A’s query

let the next query output by A be the updated hypothesis ĉi+1

let i = i + 1
end if

end for

Note that A might make use of additional membership queries to assist in the
computation of its hypotheses ĉi. The number of membership queries and other
example based queries posed by A is polynomially bounded (by the definition
of polynomial learning from example based queries). The number of mistakes
made by the algorithm B is thus polynomially bounded.

Let B be a mistake bounded learning algorithm for C (i.e., B makes at most a
polynomial number of mistakes and possibly uses polynomial number of mem-
bership queries to learn any concept c ∈ C). We derive an algorithm A for
learning C from example based queries as follows:

Algorithm A
1. let i = 0

let ĉ0 be the initial hypothesis of B
2. repeat

use ĉi to pose an example based query
if the teacher’s response is yes
then output ĉi and halt
else present the counterexample x to B

B predicts ĉi(x) (which is 6= c(x) since x is a counterexample)
give c(x) to B
let ĉi+1 be the next hypothesis of B
let i = i + 1

end if
until eternity

Note that B may pose a polynomial number of membership queries during the
computation of its hypotheses ĉi. Further, since B makes a polynomial number
of mistakes it is clear that A poses at most a polynomial number of example
based queries. This proves the theorem. 2

Theorem 2. (Due to Goldman and Mathias [7])
Any concept class C learnable in deterministic polynomial time using example-
based queries is semi-polynomially T/L teachable.

Proof: (The result is proved by showing how a teaching set is constructed by
simulating the query based learning algorithm. The teaching set captures all
the counterexamples and the additional instances, if any, that are generated
during the evaluation of example based queries. The learner then simulates the
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execution of the query based algorithm. However, instead of posing queries to a
teacher, the learner evaluates the responses to example based queries using the
labeled instances that appear in the teaching set.) 2

Theorem 3. (Due to de la Higuera [9])
A concept class C is semi-polynomially T/L teachable iff it is polynomially iden-
tifiable from characteristic sets.

Proof: (This result is proved by identifying the characteristic set with the tea-
ching set.) 2

Lemma 1. Let c ∈ C be a concept with corresponding representation r. If there
exists a characteristic set Sc for c and a polynomial p1() such that Sc can be
computed from r and ||Sc|| = p1(|r|) then each example in Sc is simple in the
sense that ∀α ∈ Sc, K(α|r) ≤ µ lg(|r|) where µ is a constant.

Proof: Fix an ordering of the elements of Sc and define an index to identify
the individual elements. Since ||Sc|| = p1(|r|), an index that is O(lg(p1(|r|))) =
O(lg(|r|)) = µ lg(|r|) bits long is sufficient to uniquely identify each element of
Sc

3. Since Sc can be computed from r we can construct a Turing machine that
given r reads as input an index of length µ lg(|r|) and outputs the corresponding
string of Sc. Thus, ∀α ∈ Sc, K(α|r) ≤ µ lg(|r|) where µ is a constant independent
of α. 2

Lemma 2. (Due to Denis et al [4])
Suppose that a sample S is drawn according to mr. For an integer l ≥ |r|, and
0 < δ ≤ 1, if |S| ≥ lµ (ln(2)+ ln(lµ)+ ln(1/δ)) then with probability greater than
1 − δ, Srsim ⊆ S.

Proof:
Claim 1: ∀α ∈ Srsim, mr(α) ≥ l−µ

mr(α) ≥ 2−K(α|r)

≥ 2−µlg|r|

≥ |r|−µ
≥ l−µ

Claim 2: |Srsim| ≤ 2lµ

|Srsim| ≤ |{α ∈ {0, 1}∗ | K(α|r) ≤ µlg(|r|)}|
≤ |{α ∈ {0, 1}∗ | K(α|r) ≤ µlg(l)}|
≤ |{β ∈ {0, 1}∗ | |β| ≤ µlg(l)}|
≤ 2µlg(l)+1

≤ 2lµ

3 Note that if the sum of the lengths of the examples belonging to a set is k then
clearly, the number of examples in that set is at most k + 1.
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Claim 3: |S| ≥ lµ (ln(2) + ln(lµ) + ln(1/δ)) then Pr(Srsim ⊆ S) ≥ 1 − δ

Pr(α ∈ Srsim is not sampled in one random draw) ≤ (1 − l−µ)
(claim 4.1)

Pr(α ∈ Srsim is not sampled in |S| random draws) ≤ (1 − l−µ)|S|

Pr(some α ∈ Srsim is not sampled in |S| random draws) ≤ 2lµ(1 − l−µ)|S|

(claim 4.2)
Pr(Srsim 6⊆ S) ≤ 2lµ(1 − l−µ)|S|

We would like this probability to be less than δ.

2lµ(1 − l−µ)|S| ≤ δ

2lµ(e−l−µ

)|S| ≤ δ, since 1 − x ≤ e−x if x ≥ 0
ln(2) + ln(lµ) − |S|l−µ ≤ ln(δ)

|S| ≥ lµ (ln(2) + ln(lµ) + ln(1/δ))

Thus, Pr(Srsim ⊆ S) ≥ 1 − δ 2

Corollary 1. Suppose that a sample S is drawn according to mr. For an integer
l ≥ |r|, and 0 < δ ≤ 1, if |S| ≥ lµ (ln(2) + ln(lµ) + ln(1/δ)) then with probability
greater than 1 − δ, Srsim,rep ⊆ S.

Proof: Follows from Lemma 2 since Srsim,rep ⊆ Srsim. 2

Theorem 4. Any concept class that is semi-polynomially T/L teachable (or
equivalently polynomially identifiable from characteristic sets) is probably exactly
learnable in the PACS model.

Proof: Lemma 1 shows that if there exists a polynomial sized teaching (characte-
ristic) set Sc of examples for a concept c then the individual examples belonging
to the teaching set are simple (in that they have logarithmic Kolmogorov com-
plexity). Lemma 2 shows that a polynomial sized sample S drawn according to
the universal distribution mr is sufficient to include all simple examples with a
high probability. Further, corollary 1 shows that with high probability Sc ⊆ S
(we equate Sc with Srsim,rep). Since the concept class C is semi-polynomially T/L
teachable, there exists an algorithm A that in polynomial time exactly learns
any concept c ∈ C from any set of examples that includes Sc as a subset. The
PACS learning algorithm can be formulated as follows. Draw a polynomial sized
sample S according to mr and use it as the training set for algorithm A. Thus,
C is probably exactly learnable in the PACS model. 2

Theorem 5. (Due to Castro and Guijarro [3])
If a concept class C is learnable in the PACS model then the concept class
logK(C) = {c ∈ C | R(c) = r and K(r) ≤ κ lg(|r|) where κ is a constant }
(i.e., the set of concepts whose corresponding representations have logarithmic
Kolmogorov complexity) is learnable in the simple-PAC model.

Proof: (This result is proved by showing the relationship between the universal
distributions m and mr.) 2
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4 Collusion and Learning in Helpful Environments

Learning models that involve interaction between a knowledgeable teacher (an
oracle) and a learner are vulnerable to unnatural collusion wherein the teacher
passes information about the representation of the target concept as part of the
training set [10,7]. The teacher and learner can a-priori agree on some suitable
binary encoding of concepts. The teacher can then pass the representation of the
target concept r to the learner as a suitably labeled example. In the event that
the target concept cannot be suitably encoded as a single labeled example, the
teacher can break the representation r into smaller groups and pass these groups
as appropriately labeled examples to the learner. For example, an encoding of the
target concept could be passed via the counterexamples (in the case of learning
from example based queries) or via the first few examples of a teaching set (in
the case of learning from teaching sets or characteristic samples). The learner
can thus quickly discover the target concept without even considering the labels
of the training examples! The teaching model due to Jackson and Tomkins [10]
prevents this coding of the target concept by requiring that the learner must still
succeed if the teacher is replaced by an adversary (who does not code the target
concept as the teacher above). Further, they argue that in their model the learner
can stop only when it is convinced that there is only one concept consistent with
the information received from the teacher i.e., the teacher does not tell the learner
when to stop. Otherwise learning would be trivialized in that the teacher passes
groups of n bits to the learner (as training examples) and when sufficient number
of bits have been passed to the learner so as to reconstruct the representation r of
the target concept, the teacher tells the learner to stop. Goldman and Mathias’
work on polynomial teachability [7] shows that an adversary whose task is to
embed the training set (also called teaching set) provided by the teacher into
a larger set of correctly labeled examples is sufficient to prevent this type of
collusion.

Another (perhaps more subtle) form of collusion is possible in the models
for learning in helpful environments. For simplicity let us assume that the tar-
get representation can be encoded using a single labeled example. Consider the
polynomial teachability model. The adversary augments the teaching set with
correctly labeled examples. Assuming that the augmented set is suitably shuffled
the learner cannot directly identify the target without even considering the class
labels. However, the learner can decode each of the labeled examples in a fixed
order (say lexicographic order). For each example that represents a valid con-
cept (in C), the learner checks whether the decoded concept is consistent with
the teaching set and outputs the first concept that passes this consistency test.
Note that a suitably formulated teaching set can ensure that one and only one
concept is consistent with it. Here, the learner is provided with an encoding of
the target concept but must perform some computation (the consistency check)
in order to suitably identify the target. However, this method of identifying the
target concept is potentially easier and thus more attractive than the typical al-
gorithms that learn from a given teaching set (for instance the RPNI algorithm
for learning DFA [15]).
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The other models for learning in helpful environments are also vulnerable to
this form of collusion. In the PACS learning model the target concept r is itself a
simple example (since K(r|r) is very small). Thus, r has a very high probability
of being drawn under mr. By using the decoding and consistency check trick
illustrated above the learner can efficiently identify the target. Counterexamples
can be used to formulate a collusive learning scheme in the model for learning
from example based queries. Here the teacher can encode the target concept in
the counterexample it provides to the learner. The learner can attempt to decode
the counterexample. If the counterexample does not represent a valid concept
then the execution of the learning algorithm continues its normal execution. Ho-
wever, if the counterexample represents a valid concept then the learner can pose
an equivalence query to determine if the example is the target concept. If the
teacher replies yes then the learner outputs the target and halts. Otherwise it
takes the counterexample and repeats the above process. This method is poten-
tially more efficient in terms of computation time. From theorem 1 we know that
if there exists a deterministic polynomial time algorithm for learning a concept
class using example based queries then it is easy to construct an algorithm for
learning the concept in the augmented mistake bounded learning framework.
Thus, the collusive learning strategy for learning from example based queries
can be used to design a strategy to learn the concept in the augmented mistake
bounded learning framework.

It is clear that the frameworks for learning in helpful environments admit
unnatural collusion. Any learnability results within models that admit collusion
can be criticized on the grounds that the learning algorithm might be collusive.
One method of avoiding collusive learning is to tighten the learning framework
suitably. Collusion cannot take place if the representation of the target concept
cannot be directly encoded as part of the training set or if the learner cannot effi-
ciently decode the training examples and identify the one that is consistent with
the training set. In the event that the learning framework cannot be suitably
tightened to avoid collusion, one might provide a learning algorithm that does
not rely on collusion between the teacher and the learner. For instance, the L∗ al-
gorithm for learning DFA from membership and equivalence queries [1], the IID
algorithm for incremental learning of DFA using membership queries [18], and
the RPNI algorithm for learning DFA from characteristic samples [15] are ex-
amples of non-collusive algorithms in learning frameworks that admit collusion.
Obtaining a general answer to the question of collusion in learning would require
the development of much more precise definitions of collusion and collusion-free
learning than are currently available. A detailed exploration of these issues is
clearly of interest.

5 Summary

We have presented above the inter-relationships between different models for
learning in helpful environments. The PACS model for learning from simple
examples naturally extends the results obtained for the deterministic learning
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models (example based queries, mistake bounded learning, polynomial teacha-
bility, and polynomial identifiability from characteristic sets) to a probabilistic
learning framework. This work opens up several interesting questions that re-
main to be answered. For instance, does PACS learnability imply learnability
from example based queries or polynomial teachability? Or does there exist a
concept class that is PACS learnable but is not learnable from example based
queries or is not polynomially teachable? Similarly, does polynomial teachability
imply learnability in the mistake bounded model? We have also addressed the
important issue of collusion as it relates to the models for learning in helpful en-
vironments. We have shown how the models studied in this paper admit multiple
learning algorithms including some seemingly collusive ones. Additional research
is required to suitably address the issues of collusion and collusion-free learning.
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