
AVT-NBL: An Algorithm for Learning Compact and Accurate Naı̈ve Bayes
Classifiers from Attribute Value Taxonomies and Data

Jun Zhang and Vasant Honavar
Artificial Intelligence Research Laboratory

Department of Computer Science
Iowa State University

Ames, Iowa 50011-1040, USA
{jzhang, honavar}@cs.iastate.edu

Abstract

In many application domains, there is a need for learn-
ing algorithms that can effectively exploit attribute value
taxonomies (AVT) - hierarchical groupings of attribute val-
ues - to learn compact, comprehensible, and accurate clas-
sifiers from data - including data that are partially specified.
This paper describes AVT-NBL, a natural generalization of
the Naı̈ve Bayes learner (NBL), for learning classifiers from
AVT and data. Our experimental results show that AVT-NBL
is able to generate classifiers that are substantially more
compact and more accurate than those produced by NBL
on a broad range of data sets with different percentages
of partially specified values. We also show that AVT-NBL
is more efficient in its use of training data: AVT-NBL pro-
duces classifiers that outperform those produced by NBL
using substantially fewer training examples.

1. Introduction

Synthesis of accurate and compact pattern classifiers
from data is one of the major applications of data mining.
In a typical inductive learning scenario, instances to be clas-
sified are represented as ordered tuples of attribute values.
However, attribute values can be grouped together to reflect
assumed or actual similarities among the values in a domain
of interest or in the context of a specific application. Such a
hierarchical grouping of attribute values yields an attribute
value taxonomy (AVT). Such AVT are quite common in bi-
ological sciences. For example, the Gene Ontology Con-
sortium is developing hierarchical taxonomies for describ-
ing many aspects of macromolecular sequence, structure,
and function [1]. Undercoffer et al. have developed a hier-
archical taxonomy which captures the features that are ob-
servable or measurable by the target of an attack or by a

system of sensors acting on behalf of the target [22]. Sev-
eral ontologies being developed as part of the Semantic Web
related efforts [2] also capture hierarchical groupings of at-
tribute values. Kohavi and Provost have noted the need to
be able to incorporate background knowledge in the form of
hierarchies over data attributes in e-commerce applications
of data mining [11]. Against this background, algorithms
for learning from AVT and data are of significant practical
interest for several reasons:

a. An important goal of machine learning is to discover
comprehensible, yet accurate and robust classifiers
[18]. The availability of AVT presents the opportunity
to learn classification rules that are expressed in terms
of abstract attribute values leading to simpler, accurate
and easier-to-comprehend rules that are expressed us-
ing familiar hierarchically related concepts [24] [11].

b. Exploiting AVT in learning classifier can potentially
perform regularization to minimize overfitting when
learning from relatively small data sets. A common
approach used by statisticians when estimating from
small samples involves shrinkage [15] to estimate the
relevant statistics with adequate confidence. Learning
algorithms that exploit AVT can potentially perform
shrinkage automatically thereby yielding robust clas-
sifiers and minimizing over-fitting.

c. Presence of explicitly defined AVT allows specifica-
tion of data at different levels of precision, giving
rise to partially specified instances [25]. The attribute
value of a particular attribute can be specified at dif-
ferent levels of precision in different instances. For
example, the medical diagnostic test results given by
different institutions are presented at different levels
of precision. Partially specified data are unavoidable
in knowledge acquisition scenarios which call for in-
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tegration of information from semantically heteroge-
neous information sources [4]. Semantic differences
between information sources arise as a direct conse-
quence of differences in ontological commitments [2].
Hence, algorithms for learning classifiers from AVT
and partially specified data are of great interest.

Against this background, this paper introduces AVT-
NBL, an AVT-based generalization of the standard algo-
rithm for learning Naı̈ve Bayes classifiers from partially
specified data. The rest of the paper is organized as follows:
Section 2 formalizes the notions on learning classifiers with
AVT taxonomies; Section 3 presents the AVT-NBL algo-
rithm; Section 4 discusses briefly on alternative approaches;
Section 5 describes our experimental results and Section 6
concludes with summary and discussion.

2 Preliminaries

In what follows, we formally define AVT, and its induced
instance space. We introduce the notion of partially speci-
fied instances, and formalize the problem of learning from
AVT and data.

2.1 Attribute Value Taxonomies

Let A = {A1, A2, ..., AN}, be an ordered set of at-
tributes and C = {c1, c2, ..., cM} a finite set of mutually
disjoint classes. Let V alues(Ai) denote the set of values
(the domain) of attribute Ai. Instances are represented us-
ing ordered tuples of attribute values. Each instance belongs
to a class in C.

Let Ti be an Attribute Value Taxonomy AV T (Ai) de-
fined over the possible values of attribute Ai. We use Ti and
AV T (Ai) interchangeably to represent AVT for attribute
Ai. Let Nodes(Ti) represent the set of all values in Ti,
and Root(Ti) stand for the root of Ti. The set of leaves of
the tree, Leaves(Ti) = V alues(Ai), corresponds to the set
of primitive values of attribute Ai. The internal nodes of
the tree correspond to abstract values of attribute Ai. For
example, Figure 1 shows two attributes with corresponding
AVTs for describing students in terms of their student status
and work status.

We define two operations on AVT Ti associated with an
attribute Ai.

• depth(Ti, v(Ai)) returns the length of the path from
root to an attribute value v(Ai) in the taxonomy;

• leaf(Ti, v(Ai)) returns a Boolean value indicating
if v(Ai) is a leaf node in Ti, that is if v(Ai) ∈
Leaves(Ti).

After Haussler [9], we define a cut γi for AV T (Ai) as
follows.

Student Status Work Status

Freshman

Undergraduate Graduate

Junior
Sophomore

Senior

Master

Ph.D

On-Campus Off-Campus

TA RA AA

Government Private 

Federal

State

Local

Figure 1. Illustrative taxonomies on student
status and work status

Definition 1 (Cut) A cut γi is a subset of elements in
AV T (Ai) satisfying the following two properties: (1) For
any leaf l ∈ Leaves(Ti), either l ∈ γi or l is a descendant
of an element n ∈ γi; and (2) For any two nodes f, g ∈ γi,
f is neither a descendant nor an ancestor of g.

A cut γi induces a partition of elements of V alues(Ai).
For example in Figure 1, {On-Campus, Government, Pri-
vate} defines a partition over the primitive values of the
work status attribute.

Let T = {T1, T2, ..., TN} denote the ordered set of AVTs
associated with A1, A2, · · ·AN . For each Ti, define ∆i to
be the set of all valid cuts in Ti. Let ∆ = ×i ∆i denote the
cartesian product of the cuts through the individual AVTs.
Let Γ = {γ1, γ2, ..., γN} be an ordered set that defines a
global cut through T1, T2, · · ·TN accordingly, where γi ∈
∆i and Γ ∈ ∆.

Let ψ(v, Ti) be the set of descendants of a node corre-
sponding to value v in the AVT Ti; π(v, Ti), the set of all
children (direct descendants) of a node with value v in Ti;
Λ(v, Ti) the list of ancestors, including the root, for v in Ti.

Definition 2 (Refinements) We say that a cut γ̂i is a refine-
ment of a cut γi if γ̂i is obtained by replacing at least one
attribute value v ∈ γi by its descendants ψ(v, Ti). Con-
versely, γi is an abstraction of γ̂i. We say that a set of cuts
Γ̂ is a refinement of a set of cuts Γ if at least one cut in Γ̂ is
a refinement of a cut in Γ. Conversely, the set of cuts Γ is
an abstraction of the set of cuts Γ̂.

γ1 γ3γ2 γ2

BA

A1 A2
∧

∧

T1 T2 T3

Figure 2. A demonstrative refinement process

Figure 2 illustrates a refinement process. γ2 = {A,B}
in T2 has been refined to γ̂2 = {A1, A2, B} by replacing A
with its two children A1, A2. Therefore, Γ̂ = {γ1, γ̂2, γ3}
is a refinement of Γ = {γ1, γ2, γ3}.
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2.2 AVT-Induced Instance Space

Definition 3 (Abstract Instance Space) Any choice Γ of
∆ = ×i∆i defines an abstract instance space IΓ. When
∃i γi ∈ Γ such that γi �= Leaves(Ti), the resulting in-
stance space is an abstraction of the original instance space
I. The original instance space is given by I = IΓ0 , where
∀i γi ∈ Γ0, γi = V alues(Ai) = Leaves(Ti), that is, the
primitive values of the attributes A1 · · ·AN .

Definition 4 (AVT-Induced Abstract Instance Space)
A set of AVTs T = {T1 · · ·TN} associated with a set of
attributes A = {A1 · · ·AN} induces an instance space
IA = ∪Γ∈∆IΓ (the union of instance spaces induced by all
of the the cuts through the set of AVTs T).

2.3 Partially Specified Data

Definition 5 (Partially Specified Data) An instance Xj is
represented by a tuple = (v1j , v2j , ..., vNj). Xj is:

• a completely specified instance if ∀i vij ∈ Leaves(Ti)
• a partially specified instance if one or more of its

attribute values are not primitive: ∃vij ∈ Xj ,
depth(Ti, vij) ≥ 0 ∧ ¬leaf(Ti, vij)

Thus, a partially specified instance is an instance in
which at least one of the attributes is partially specified.
Relative to the AVT shown in Figure 1, the instance (Senior,
TA) is a fully specified instance. Some examples of partially
specified instances are: (Undergraduate, RA), (Freshman,
Government), (Graduate, Off-Campus).

Definition 6 (A Partially Specified Data Set) A partially
specified data set DT (relative to a set T of attribute value
taxonomies) is a collection of instances drawn from IA
where each instance is labelled with the appropriate class
label from C. Thus, DT ⊆ IA × C.

2.4 Learning Classifiers from Data

The problem of learning classifiers from AVT and data
is a natural generalization of the problem of learning classi-
fiers from data without AVT. The original data set D is sim-
ply a collection of labelled instances of the form (Xj , cj)
where Xj ∈ I = ×iV alues(Ai) = ×iLeaves(Ti), and
cj ∈ C is a class label. A classifier is a hypothesis in the
form of a function h : I → C, whose domain is the instance
space I and whose range is the set of classes C. A hypoth-
esis space H is a set of hypotheses that can be represented
in some hypothesis language or by a parameterized family
of functions (e.g., decision trees, Naive Bayes classifiers,
SVM, etc.). The task of learning classifiers from the origi-
nal data set D entails identifying a hypothesis h ∈ H that

satisfies some criteria (e.g., a hypothesis that is most likely
given the training data D).

The problem of learning classifiers from AVT and data
can be stated as follows: Given a user-supplied set of AVTs
T and a data set DT of (possibly) partially specified la-
belled instances, construct a classifier hT : IA → C for
assigning appropriate class labels to each instance in the in-
stance space IA. Of special interest are the cases in which
the resulting hypothesis space HT has structure that makes
it possible to search it efficiently for a hypothesis that is both
concise as well as accurate.

3 AVT-Based Naı̈ve Bayes Learner

3.1 Naı̈ve Bayes Learner (NBL)

Suppose each attribute Ai takes a value from a finite set
of values V alues(Ai). An instance Xp to be classified is
represented as a tuple of attribute values (v1p, v2p, · · · , vNp)
where each vip ∈ V alues(Ai). The Bayesian approach
to classifying Xp is to assign it the most probable class
cMAP (Xp). Naı̈ve Bayes classifier operates under the as-
sumption that each attribute is independent of others given
the class. Hence, we have:

cMAP (Xp) = argmax
cj∈C

P (v1p, v2p, · · · , vNp|cj)p(cj)

= argmax
cj∈C

p(cj)
∏

i

P (vip|cj)

Hence, the task of the Naive Bayes Learner (NBL) is to
estimate ∀cj ∈ C and ∀vik

∈ V alues(Ai), relevant class
probabilities p(cj) and the class conditional probabilities
P (vik

|cj) from training data D. These probabilities, which
completely specify a Naive Bayes classifier, can be esti-
mated from D using standard probability estimation meth-
ods [17] based on relative frequencies of the corresponding
classes and attribute value and class label cooccurrences ob-
served in D. These relative frequencies summarize all the
information relevant for constructing a Naive Bayes clas-
sifier from a training set D, and hence constitute sufficient
statistics for NBL [3, 4].

3.2 AVT-NBL

Given a user-supplied ordered set of AVTs T =
{T1, · · · , TN} corresponding to the attributes A1 · · ·AN

and a data set D = {(Xp, cp)} of labelled examples of the
form (Xp, cp) where Xp ∈ IA is a partially or fully spec-
ified instance and cp ∈ C is the corresponding class label,
the task of AVT-NBL is to construct a Naı̈ve Bayes classi-
fier for assigning Xp to its most probable class cMAP (Xp).
As in the case of NBL, we assume that each attribute is in-
dependent of the other attributes given the class.
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Let Γ = {γ1, γ2, · · · , γN} be a set of cuts where,
γi stands for a cut through Ti. A Naive Bayes classi-
fier defined on the instance space IΓ is completely spec-
ified by a set of class conditional probabilities for each
value of each attribute. Suppose we denote the table of
class conditional probabilities associated with values in
γi by CPT (γi). Then the Naive Bayes classifier de-
fined over the instance space IΓ is specified by h(Γ) =
{CPT (γ1), CPT (γ2), · · · , CPT (γN )}.

If each cut γi ∈ Γ is chosen to correspond to the
primitive values of the respective attribute i.e., ∀i γi =
Leaves(Ti), h(Γ) is simply the standard Naı̈ve Bayes Clas-
sifier based on the attributes A1, A2, · · · , AN . If each cut
γi ∈ Γ is chosen to pass through the root of each AVT, i.e.,
∀i γi = {Root(Ti)}, h(Γ) simply assigns each instance to
the class that is a priori most probable.

AVT-NBL starts with the Naı̈ve Bayes Classifier that is
based on the most abstract value of each attribute (the most
general hypothesis in HT) and successively refines the clas-
sifier (hypothesis) using a criterion that is designed to trade-
off between the accuracy of classification and the complex-
ity of the resulting Naı̈ve Bayes classifier. Successive re-
finements of Γ correspond to a partial ordering of Naive
Bayes classifiers based on the structure of the AVTs in T.
For example, in Figure 2, Γ̂ is a refinement of Γ, and hence
corresponding hypothesis h(Γ̂) is a refinement of h(Γ)

3.2.1 Class Conditional Frequency Counts

Let σi(v|cj) be the frequency count of value v of attribute
Ai given class label cj in a training set D and pi(v|cj),
the estimated class conditional probability of value v of at-
tribute Ai given class label cj in a training set D.

Given an attribute value taxonomy Ti for attribute Ai,
we can define a tree of class conditional frequency counts
CCFC(Ai) such that there is a one-to-one correspon-
dence between the nodes of the AVT Ti and the nodes of
the corresponding CCFC(Ai). It follows that the class
conditional frequency counts associated with a non leaf
node of CCFC(Ai) should correspond the aggregation of
the corresponding class conditional frequency counts as-
sociated with its children. Because each cut through an
AVT Ti corresponds to a partition of the set of possible
values Nodes(Ai) of the attribute Ai, the corresponding
cut through CCFC(Ai) specifies a valid class conditional
probability table for the attribute Ai.

When all of the instances in the data set D are fully
specified, estimation of CCFC(Ai) for each attribute is
straightforward: we simply estimate the class conditional
frequency counts associated with each of the primitive val-
ues of Ai from the data set D and use them recursively to
compute the class conditional frequency counts associated
with the non-leaf nodes of CCFC(Ai). When some of the

data are partially specified, we can use a 2-step process for
computing CCFC(Ai): First we make an upward pass ag-
gregating the class conditional frequency counts based on
the specified attribute values in the data set. Then we prop-
agate the counts associated with partially specified attribute
values down through the tree, augmenting the counts at
lower levels according to the distribution of values along the
branches based on the subset of the data for which the corre-
sponding values are fully specified. This procedure is a sim-
plified case of EM (Expectation Maximization) algorithm to
estimate expected sufficient statistics for CCFC(Ai). The
procedure is shown below.

1. Calculate frequency counts σi(v|cj) for each node v in Ti

using the class conditional frequency counts associated with
the specified values of attribute Ai in training set D.

2. For each attribute value v in Ti which received non-zero
counts as a result of step 1, aggregate the counts up-
ward from each such node v to its ancestors Λ(v, Ti):
σi(w|cj)w∈Λ(v,Ti) ← σi(w|cj) + σi(v|cj)

3. Starting from the root, recursively propagate the counts cor-
responding to partially specified instances at each node v
downward according to the observed distribution among
its children to obtain updated counts for each child ul ∈
π(v, Ti):

σi(ul|cj)←σi(ul|cj)

(
1+

σi(v|cj)−
∑|π(v,Ti)|

k=1
σi(uk|cj)∑|π(v,Ti)|

k=1
σi(uk|cj)

)
If

∑|π(v,Ti)|
k=1

σi(uk|cj) �=0;

σi(ul|cj)←
(

σi(v|cj)

|π(v,Ti)|

)
Otherwise.

Let Γ = {γ1, · · · , γN} be a set of cuts where γi stands for a
cut through CCFC(Ai). The estimated conditional proba-
bility table CPT (γi) associated with the cut γi can be cal-
culated from CCFC(Ai) using Laplace estimates [17, 12].

pi(v|cj)v∈γi
← 1/|D| + σi(v|cj)

|γi|/|D| +
∑
u∈γi

σi(u|cj)

Recall that the Naı̈ve Bayes Classifier h(Γ) based on a
chosen set of cuts Γ is completely specified by the con-
ditional probability tables associated with the cuts in Γ:
h(Γ) = {CPT (γ1), · · · , CPT (γN )}.

3.2.2 Searching for a Compact Naı̈ve Bayes Classifier

We use a variant of the minimum description length (MDL)
principle [20] to capture the tradeoff between the complex-
ity and accuracy of Naive Bayes classifiers that correspond
to different choices of cuts through the AVTs. Friedman
et al [8] suggested the use of a conditional MDL (CMDL)
score in the case of hypotheses that are used for classifica-
tion (as opposed to modelling the joint probability distri-
bution of a set of random variables) to capture this trade-
off. In general, computation of CMDL score is not feasible

Proceedings of the Fourth IEEE International Conference on Data Mining (ICDM’04) 
0-7695-2142-8/04 $ 20.00 IEEE 



for Bayesian networks with arbitrary structure. However,
in the case of Naive Bayes classifiers induced by a set of
AVT, as shown below, it is possible to efficiently calculate
the CMDL score.

CMDL(h|D) =
(

log |D|
2

)
size(h) − CLL(h|D)

where, CLL(h|D)=|D|
∑|D|

p=1
log Ph(cp|v1p,···,vNp)

Here, Ph(cp|v1p, · · · , vNp) denotes the conditional proba-
bility assigned to the class cp ∈ C associated with the train-
ing sample Xp = (v1p, v2p, · · · , vNp) by the classifier h,
size(h) is the number of parameters used by h, |D| the size
of the data set, and CLL(h|D) is the conditional log like-
lihood of the data D given a hypothesis h. In the case of
a Naı̈ve Bayes classifier h, size(h) corresponds to the total
number of class conditional probabilities needed to describe
h. Because each attribute is assumed to be independent of
the others given the class in a Naı̈ve Bayes classifier, we
have:

CLL(h|D) = |D|∑|D|
p=1 log

(
P (cp)

∏
i
Ph(vip|cp)∑|C|

j=1
P (cj)

∏
i
Ph(vip|cj)

)

where P (cp) is the prior probability of the class cp which
can be estimated from the observed class distribution in the
data D.

There are two cases in the calculation of the conditional
likelihood CLL(h|D) when D contains partially specified
instances. The first case is when a partially specified value
of attribute Ai for an instance lies on the cut γ through
CCFC(Ai) or corresponds to one of the descendants of
the nodes in the cut. In this case, we can treat that in-
stance as though it were fully specified relative to the Naı̈ve
Bayes classifier based on the cut γ of CCFC(Ai) and use
the class conditional probabilities associated with the cut
γ to calculate its contribution to CLL(h|D). The second
case is when a partially specified value (say v) of Ai is
an ancestor of a subset (say λ ) of the nodes in γ. In this
case, p(v|cj) =

∑
ui∈λ p(ui|cj), such that we can aggre-

gate the class conditional probabilities of the nodes in λ to
calculate the contribution of the corresponding instance to
CLL(h|D).

Because each attribute is assumed to be independent of
others given the class, the search for the AVT-based Naı̈ve
Bayes classifier (AVT-NBC) can be performed efficiently
by optimizing the criterion independently for each attribute.
This results in a hypothesis h that intuitively trades off the
complexity of Naı̈ve Bayes classifier (in terms of the num-
ber of parameters used to describe the relevant class condi-
tional probabilities) against accuracy of classification. The
algorithm terminates when none of the candidate refine-
ments of the classifier yield statistically significant improve-
ment in the CMDL score. The procedure is outlined below.

1. Initialize each γi in Γ = {γ1, γ2, · · · , γN} to {Root(Ti)}.

2. Estimate probabilities that specify the hypothesis h(Γ).

3. For each cut γi in Γ = {γ1, γ2, · · · , γN}:

A. Set δi ← γi

B. Until there are no updates to γi

i. For each v ∈ δi

a. Generate a refinement γv
i of γi by replacing

v with π(v, Ti), and refine Γ accordingly to
obtain Γ̂. Construct corresponding hypothe-
sis h(Γ̂)

b. If CMDL(h(Γ̂)|D) < CMDL(h(Γ)|D),
replace Γ with Γ̂ and γi with γv

i

ii. δi ← γi

4. Output h(Γ)

4 Alternative Approaches to Learning Clas-
sifiers from AVT and Data

Besides AVT-NBL, we can envision two alternative ap-
proaches to learning classifiers from AVT and data:

The first approach is to treat each partially specified (and
hence partially missing) attribute value as if it were (totally)
missing, and handle the resulting data set with missing at-
tribute values using standard approaches for dealing with
missing attribute values in learning classifiers. A main ad-
vantage of this approach is that it requires no modification
to NBL.

A second approach to learn classifiers from AVT and
data uses AVT to construct a set of Boolean attributes from
each (original) attribute Ai, a set of boolean attributes cor-
responds to nodes in Ti. Thus, each instance in the original
data set defined using N attributes is turned into a Boolean
instance specified using Ñ Boolean attributes where Ñ =∑N

i=1 |Nodes(Ai)|. The Boolean attributes that correspond
to descendants of the partially specified attribute value are
treated as unknown.

Note that the Boolean features created by the proposi-
tionalization technique described above are not independent
given the class. A Boolean attribute that corresponds to any
node in an AVT is necessarily correlated with Boolean at-
tributes that correspond to its descendants as well as its an-
cestors in the tree. For example, the boolean attribute (Stu-
dent Status = Undergraduate) is correlated with (Student
Status = Junior). (Indeed, it is this correlation that enables
us to exploit the information provided by AVT in learn-
ing classifiers from AVT and data). Thus, a Naı̈ve Bayes
classifier that would be optimal in the Maximal a Posteri-
ori sense [14] when the original attributes are independent
given class, would no longer be optimal when applied to
propositionalized data sets because of the strong dependen-
cies among the Boolean attributes derived from an AVT.
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5 Experiments and Results

Our experiments were designed to explore the perfor-
mance of AVT-NBL relative to that of the standard Naı̈ve
Bayes algorithm (NBL) and a Naı̈ve Bayes Learner applied
to a propositionalized version of the data set (PROP-NBL).

Although partially specified data and hierarchical AVT
are common in many application domains, at present, there
are few standard benchmark data sets of partially speci-
fied data and the associated AVT. We select 8 data sets
(with only nominal attributes) from the UC Irvine Machine
Learning Repository. For three of them (i.e., Mushroom,
Soybean, and Nursery), AVTs were supplied by domain ex-
perts. For the rest data sets, the AVTs were generated us-
ing AVT-Learner, a Hierarchical Agglomerative Clustering
(HAC) algorithm to construct AVTs [10].

The first set of experiments compares the performance
of AVT-NBL, NBL, and PROP-NBL on the original (fully
specified) data. The second set of experiments explores
the performance of the algorithms on data sets with dif-
ferent percentages of totally missing and partially missing
attribute values. Three data sets with a pre-specified per-
centage (10%, 30%, or 50%) of totally or partially miss-
ing attribute values were generated by assuming that the
missing values are uniformly distributed on the nominal at-
tributes [25]. In each case, the error rate and the size (as
measured by the number of class conditional probabilities
used to specify the learned classifier) were estimated using
10-fold cross-validation, and we calculate 90% confidence
interval on the error rate.

A third set of experiments were designed to investi-
gate the performance of classifiers generated by AVT-NBL,
Prop-NBL, and NBL as a function of the training set size.
We divided each data set into two disjoint parts: a training
pool and a test pool. Training sets of different sizes, corre-
sponding to 10%, 20%, . . . , 100% of the training pool, were
sampled and used to train Naı̈ve Bayes classifier using AVT-
NBL, Prop-NBL, and NBL. The resulting classifiers were
evaluated on the entire test pool. The experiment was re-
peated 9 times for each training set size. The entire process
was repeated using 3 different random partitions of data into
training and test pools. The accuracy of the learned classi-
fiers on the examples in the test pool were averaged across
the 9×3=27 runs.

5.1 Results

AVT-NBL yields lower error rates than NBL and PROP-
NBL on the original fully specified data. Table 1 shows
the estimated error rates of the classifiers generated by
the AVT-NBL, NBL, and PROP-NBL on 8 original bench-
mark data sets. The error rate of AVT-NBL is substantially
smaller than that of NBL and PROP-NBL, with the differ-

ence in error rates being most pronounced in the case of
Mushroom, Soybean, Audiology and Zoo data. It is worth
noting that PROP-NBL (NBL applied to a transformed data
set using Boolean features that correspond to nodes of the
AVTs) generally produces classifiers that have higher error
rates than NBL. This can be explained by the fact that the
Boolean features generated from an AVT are generally not
independent given the class.

Table 1. Comparison of error rate and size of
classifiers generated by NBL, PROP-NBL and
AVT-NBL on benchmark data

% Error rates using 10-fold cross validation with 90% confidence interval; The size of the classifiers for 

each data set is constant for NBL and Prop-NBL, and for AVT-NBL, the size shown represents the 

average across the 10-cross validation experiments.

NBL PROP-NBL AVT-NBL DATA      
SET

ERROR SIZE ERROR SIZE ERROR SIZE

Audiology 26.55 (±5.31) 3696 27.87 (±5.39) 8184 23.01 (±5.06) 3600 

Breast-Cancer 28.32 (±4.82) 84 27.27 (±4.76) 338 27.62 (±4.78) 62

Car 14.47 (±1.53) 88 15.45 (±1.57) 244 13.83 (±1.50) 80

Dermatology 2.18 (±1.38) 876 1.91 (±1.29) 2790 2.18 (±1.38) 576 

Mushroom 4.43 (±1.30) 252 4.45 (±1.30) 682 0.14 (±0.14) 202 

Nursery 9.67 (±1.48) 135 10.59 (±1.54) 355 9.67 (±1.48) 125 

Soybean 7.03 (±1.60) 1900 8.19 (±1.72) 4959 5.71 (±1.45) 1729 

Zoo 6.93 (±4.57) 259 5.94 (±4.25) 567 3.96 (±3.51) 245 

Table 2. Comparison of error rates on data
with partially or totally missing values

% Error rates using 10-fold cross validation with 90% confidence interval 

DATA PARTIALLY MISSING TOTALLY MISSING

METHODS NBL PROP-NBL AVT-NBL NBL PROP-NBL AVT-NBL 

10% 4.65(±1.33) 4.69(±1.34) 0.30(±0.30) 4.65(±1.33) 4.76(±1.35) 1.29(±071) 

30% 5.28 (±1.41) 4.84(±1.36) 0.64(±0.50) 5.28 (±1.41) 5.37(±1.43) 2.78(±1.04) 

M
U

S
H

R
O

O
M

50% 6.63(±1.57) 5.82(±1.48) 1.24(±0.70) 6.63(±1.57) 6.98(±1.61) 4.61(±1.33) 

10% 15.27(±1.81) 15.50(±1.82) 12.85(±1.67) 15.27(±1.81) 16.53(±1.86) 13.24(±1.70)

30% 26.84(±2.23) 26.25(±2.21) 21.19(±2.05) 26.84(±2.23) 27.65(±2.24) 22.48(±2.09)

N
U

R
S

E
R

Y

50% 36.96(±2.43) 35.88(±2.41) 29.34(±2.29) 36.96(±2.43) 38.66(±2.45) 32.51(±2.35)

10% 8.76(±1.76) 9.08(±1.79) 6.75(±1.57) 8.76(±1.76) 9.09(±1.79) 6.88(±1.58) 

30% 12.45(±2.07) 11.54(±2.00) 10.32(±1.90) 12.45(±2.07) 12.31(±2.05) 10.41(±1.91)

S
O

Y
B

E
A

N

50% 19.39(±2.47) 16.91(±2.34) 16.93(±2.34) 19.39 (±2.47) 19.59(±2.48) 17.97(±2.40)

AVT-NBL yields classifiers that are substantially more
compact than those generated by PROP-NBL and NBL.
The shaded columns in Table 1 compare the total num-
ber of class conditional probabilities needed to specify the
classifiers produced by AVT-NBL, NBL, and PROP-NBL
on original data. The results show that AVT-NBL is ef-
fective in exploiting the information supplied by the AVT
to generate accurate yet compact classifiers. Thus, AVT-
guided learning algorithms offer an approach to compress-
ing class conditional probability distributions that is dif-
ferent from the statistical independence-based factorization
used in Bayesian Networks.

AVT-NBL yields significantly lower error rates than
NBL and PROP-NBL on partially specified data and
data with totally missing values. Table 2 compares the
estimated error rates of AVT-NBL with that of NBL and
PROP-NBL in the presence of varying percentages (10%,
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30% and 50%) of partially missing attribute values and to-
tally missing attribute values. Naı̈ve Bayes classifiers gener-
ated by AVT-NBL have substantially lower error rates than
those generated by NBL and PROP-NBL, with the differ-
ences being more pronounced at higher percentages of par-
tially (or totally) missing attribute values.

AVT-NBL produces more accurate classifiers than NBL
and Prop-NBL for a given training set size. Figure 3
shows the plot of the accuracy of the classifiers learned as
a function of training set size for Audiology data. We ob-
tained similar results on other benchmark data sets used in
this study. Thus, AVT-NBL is more efficient than NBL and
Prop-NBL in its use of training data.
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Figure 3. Classifier accuracy as a function of
training set size

6 Summary and Discussion

6.1 Summary

In this paper, we have described AVT-NBL 1, an al-
gorithm for learning classifiers from attribute value tax-
onomies (AVT) and data. Our experimental results show
that AVT-NBL is able to generate classifiers that are sub-
stantially more compact and accurate than those produced
by NBL on a broad range of data sets with different per-
centages of partially specified values. We also show that
AVT-NBL is more efficient in its use of training data: AVT-
NBL produces classifiers that outperform those produced
by NBL using substantially fewer training examples. Thus,
AVT-NBL offers an effective approach to learning compact
(hence more comprehensible) accurate classifiers from data
- including data that are partially specified. AVT-guided
learning algorithms offer a promising approach to knowl-
edge acquisition from autonomous, semantically heteroge-

1A Java implementation of AVT-NBL and the data sets and AVTs used
in this study are available at:
http://www.cs.iastate.edu/˜jzhang/ICDM04/index.html

neous information sources, where domain specific AVTs are
often available and data are often partially specified.

6.2 Related Work

There is some work in the machine learning community
on the problem of learning classifiers from attribute value
taxonomies (sometimes called tree-structured attributes)
and fully specified data in the case of decision trees and
rules (see [25] for a review) desJardins et al [7] sug-
gested the use of Abstraction-Based Search (ABS) to learn
Bayesian networks with compact structure. Zhang and
Honavar [25] describe AVT-DTL, an efficient algorithm for
learning decision tree classifiers from AVT and partially
specified data. With the exception of AVT-DTL, to the best
of our knowledge, there are no algorithms for learning clas-
sifiers from AVT and partially specified data.

There has been some work on the use of class taxonomy
(CT) in the learning of classifiers in scenarios where class
labels correspond to nodes in a predefined class hierarchy
[6][13].

There is a large body of work on the use of domain the-
ories to guide learning. AVT can be viewed as a restricted
class of domain theories. However, the work on exploiting
domain theories in learning has not focused on the effective
use of AVT to learn classifiers from partially specified data.

Chen et al. [5] proposed database models to handle im-
precision using partial values and associated probabilities
where a partial value refers to a set of possible values for
an attribute. McClean et al [16] proposed aggregation oper-
ators defined over partial values. While this work suggests
ways to aggregate statistics so as to minimize information
loss, it does not address the problem of learning from AVT
and partially specified data.

Automated construction of hierarchical taxonomies over
attribute values and class labels is beginning to receive at-
tention in the machine learning community. Examples in-
clude distributional clustering [19], extended FOCL and
statistical clustering [23], information bottleneck [21]. Such
algorithms provide a source of AVT in domains where none
are available. The focus of work described in this paper is
on algorithms that use AVT in learning classifiers from data.

6.3 Future Work

Some directions for future work include:

(1) Development AVT-based variants of other machine
learning algorithms for construction of classifiers from
partially specified data from distributed, semantically
heterogeneous data sources [3][4].

(2) Extension of the algorithms like AVT-DTL and AVT-
NBL to handle taxonomies defined over ordered and
numeric attribute values.
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(3) Further experimental evaluation of AVT-NBL, AVT-
DTL, and related learning algorithms on a broad range
of data sets in scientific knowledge discovery applica-
tions e.g., computational biology.
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