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ABSTRACT 

Gas sensing systems for detection and identification of odor- 
ant molecules are of crucial importance in an increasing number 
of applications. Such applications include environmental moni- 
toring, food quality assessment, airport security, and detection of 
hazardous gases. In this paper, we describe a gas sensing system 
for detecting and identifying volatile organic compounds (VOCs), 
and discuss the unique problems associated with the separability of 
signal patterns obtained by using such a system. We then present 
solutions for enhancing the separability of VOC pattems to enable 
classification. A new incremental leaming algorithm that allows 
new odorants to be leamed is also introduced. 

1. INTRODUCTION 

Gas sensing systems for detection and identification of odor- 
ants are of significant importance for many industries and orga- 
nizations. Examples include food industries for testing the qual- 
ity or wholesomeness of food products, military and humanitarian 
organizations for locating buried land mines, petrochemical and 
valve manufacturing companies for detecting and identifying haz- 
ardous gases, and airport security and customs inspection agencies 
for detecting illegal drugs and plastic bombs. Due to their abil- 
ity to mimic the human olfactory system, albeit in a very limited 
sense, gas sensing systems are often referred to as Electronic Nose 
(Enose) S-vstems. 

Enose systems for detection and identification of volatile or- 
ganic compounds (VOCs), an important class of chemicals that can 
readily evaporate at room temperature, have gained considerable 
attention, since VOCs are encountered in many gas sensing appli- 
cations. A major problem in VOC identification is the substantial 
similarity of pattems obtained for different VOCs, a phenomenon 
attributed to low selectivity of the sensing system. Most attempts 
to solve this problem have provided only marginal success [ 11, and 
only for specific VOCs. Furthermore, no attempt has been made 
to develop an algorithm to incrementally learn new odorants. 

In this paper we describe a gas sensing system along with new 
pattem classification and incremental learning algorithms for de- 
tection and identification of VOCs. An experimental setup that 
can be used for various gas sensing applications is first described. 
Unique challenges that are encountered in processing and identi- 
fying signals obtained by using such systems are then presented, 
followed by an intuitive and powerful pattem separability enhanc- 
ing algorithm to address these challenges. An incremental leaming 
algorithm is then introduced, which allows the system to identify 
additional VOCs that have not been previously encountered. 

ing of Iowa State University while conducting this study. 
Robi Polikar was with the Dept. of Electrical and Computer Engineer- 

0-7803-7041 -4/01/$10.00 02001 IEEE 

2. EXPERIMENTAL SETUP FOR VOC DETECTION 

Piezoelectric acoustic wave sensors comprise a versatile class 
of chemical sensors for the detection of VOCs. Addition or sub- 
traction of molecular material from the surface or bulk of an acous- 
tic wave sensor results in a change in its resonant frequency. The 
frequency change, A  f, caused by a deposited mass, Am, can be 
described by the Sauerbrey Equation [2]. For quartz crystal mi- 
crobalances (QCMs), this relationship is given by 

(1) 
Af = -2.3 x l o 6 .  f' . - A m  

A 

wheref is the fundamental resonant frequency of the bare crystal, 
and A is the sensing surface area. For sensing applications, a sen- 
sitive polymer film is cast on the surface of the QCM. This film 
can bind the molecules of the VOC of interest, altering the reso- 
nant frequency of the device in proportion to the added mass. The 
QCM-based chemical sensor system typically consists of an array 
of several crystals, each coated with a different polymer film. The 
response pattem of such an array then serves as the signature for 
a given VOC. This array design is aimed at improving identifica- 
tion, which is hampered by the limited selectivity and sensitivity 
of individual films. 

An array of six 9 MHz QCMs was used in this study. The 
QCMs were first coated with chromiumigold, which served as 
electrodes. Each QCM was then coated with a different polymer 
to sorb the VOCs of interest. The QCMs were mounted in a sealed 
test fixture and exposed to VOC vapors. The vapor generation sys- 
tem consisted of calibrated mass flow controllers, conventional gas 
bubblers containing the VOCs, and a pair of three-way switchable 
valves leading into the test fixture. The vapor at various concentra- 
tions was generated by flowing a carrier gas, typically dry nitrogen, 
through the bubbler and further diluting the vapor with nitrogen to 
obtain the desired concentration. The switchable valves were com- 
puter controlled to automatically expose the sensor array to various 
concentrations of VOCs. The frequency response was monitored 
using an HP8753C network analyzer, interfaced to an IEEE 488 
card installed in the PC, and an HP8516A resonator measurement 
software. Real time data were displayed and analyzed to obtain 
frequency shifts (relative to the baseline) vs. VOC concentration. 
Typical noise levels (standard deviations of the baseline) for the 
QCMs were around 0.1 Hz. Figure 1 depicts the overall schematic 
of this setup. 

Sensors were exposed to five VOCs, namely toluene (TL), 
xylene (XL), ethanol (ET), octane (OC) and tricholoroethylene 
(TCE) at concentrations of 70, 105, 140, 175, 245, 350 and 700 
parts per million, in random order, for a duration of 10 minutes 
each. After each VOC exposure, the test fixture was purged with 
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Fig. 1. Experimental setup for the Enose system. 
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Fig. 2. (a) Raw data (b) Detrended data. 

dry nitrogen to flush the VOC molecules. At each concentration, 
the frequency shift of each sensor was recorded to obtain a six 
dimensional pattem, representing the exposed VOC at that con- 
centration. Figure 2 shows a typical response to these seven con- 
centrations of toluene from a single sensor. 

3. ISSUES ASSOCIATED WITH ODORANT PATTERNS 

Several issues are associated with pattems obtained from these 
systems. First, as seen Erom Figure 2(a), sensor responses often 
exhibit a drift that needs to be corrected. Therefore, a drift removal 
algorithm was first applied, which segments the data, computes 
the best linear fit in the least mean square sense for each segment, 
and then subtracts this fit from the original signal. Figure 2(b) 
illustrates the output of this simple detrending scheme. 

Sensor response amplitudes are linearly proportional to the 
VOC concentration, where the proportionality constant defines the 
sensitivity of the sensor for the given VOC. Since the concentra- 
tion for an unknown VOC is also unknown, the identification must 
be based on signature pattems, and not on the concentration de- 
pendent amplitudes. Therefore the concentration information was 
removed by normalizing each pattem by the square root of the sum 
of squares of sensor responses. However, this normalization re- 
moves most of the discriminatory information, as shown in Figure 
3, which illustrates responses of six sensors to toluene and xylene 
before and after the normalization for a given concentration. Ad- 
ditional information on the setup, the coatings, the database, and 
comparison of the Enose to mammalian olfactory system can be 
found in [ 3,4]. 
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Fig. 3. Effect of normalization. 

A number of classification algorithms, including neural net- 
works, decision trees, and cluster analysis have been employed to 
identify VOCs using their normalized sensor responses, however 
none of these methods converged to a solution. This is attributed 
to the poor selectivity of the sensors, which resulted in overlapping 
class distributions in the pattem space. Therefore, a preprocessing 
algorithm that can identify and augment the minor discriminatory 
information between pattems of different classes (VOCs) is neces- 
sary. Such a scheme is introduced in the next section. 

4. ENHANCING PATTERN SEPARABILITY 

Many of the existing schemes for enhancing pattem separabil- 
ity do not specifically target increasing intercluster distances, but 
rather try to obtain the smallest set of features with the most dis- 
criminatory information, through a mathematical transformation 
or a set of rules. One method that specifically targets increasing 
pattem separability is Fisher's linear discriminant method, which 
also reduces the dimensionality to C - 1, where C is the number 
of classes [ 5 ] .  This mandatory reduction in dimensionality, how- 
ever, can work against pattem separability, since there may not be 
enough discriminatory information left in C - 1 features. 

In this paper, we propose a new scheme where enhancing pat- 
tern separability is achieved through nonlinear cluster transfor- 
mation (NCT), a three-step supervised procedure that attempts to 
increase the intercluster distances and reduce the intracluster dis- 
tances, while preserving the dimensionality. 

In the first step, reduction of intracluster distances is achieved 
by eliminating the outliers, using the Mahalanobis distance metric. 
In the second step, the desired cluster separation is obtained by 
translation of each cluster along an optimal direction, away from 
all other clusters. This step, generates training data pairs for de- 
termining the NCT function. In the third step, the data generated 
in the second step is used to train a generalized regression neural 
network (GRNN) to approximate the function mapping between 
original and translated clusters. 

The cluster translation step addresses the problem of closely 
packed and possibly overlapping clusters. The underlying idea is 
to move clusters away from each other in order to physically sepa- 
rate them. Consider a two-class problem with possibly overlapping 
clusters, whose centers are located at ml and m2. The distance 
between these two clusters can be increased if class I patterns are 
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translated along the vector SI = - (mz - ml), and class I1 pat- 
tems are translated along Sz = -SI = -(ml - mz). This idea 
can be extended to multi-class problems of arbitrary dimension- 
ality, where patterns of class Ci can be translated along Si. The 
optimal direction Si can be computed as 

c 
Si=-C( mj - mi) (2 )  

j#i 

where C is the total number of clusters. All pattems in cluster i 
are moved along the dir2ction of S i ,  and the translated patterfls 
can then be obtained as Xi = xi + ( S i / l l S i ( l )  . disti ,  where X; 
is the new location of pattem xi, and disti = l/lm - mil is a 
normalizing constant that controls the amount of translation. 

It can be shown that the directions of these translation vec- 
tors are optimal 131, since these directions maximize the overall 
intercluster distance D; defined as the summation of intercluster 
distances between all cluster pairs: 

C C 

D = Dij = (mi - mj)T (mi - mj) (3) 
<,j=l i,j=l 

However, in order to translate a test pattem, we need to leam 
how to translate pattems without knowing to which class they be- 
long. This problem can be thought of as a function approximation 
problem, where the hnction to be approximated is the one that 
maps original patterns to their new locations. A G R "  was used 
to accomplish this function approximation. GRNNs, special cases 
of radial basis function (RBF) neural networks, have been used 
with significant success in multidimensional function approxima- 
tion. GRNNs do not require iterative training, and they can approx- 
imate any arbitrary multidimensional function defined between a 
set of input and output vectors. Detailed information on the use of 
GRNNs can be found in.[3,63. 

Figure 4 illustrates the effect of NCT on blind data which was 
not used for training. Only three sensor responses were used in 
Figure 4 for easy visualization, whereas computations were made 
in six dimensions. Note that patterns corresponding to different 
VOCs are very closely packed and overlapping before process- 
ing, and they are separated considerably after the NCT processing. 
Once the patterns have.been preprocessed, the complexity of the 
classifier can be significantly reduced. In fact, a single layer mul- 
tilayer perceptron (MLP) trained with 220 pattems corresponding 
to five VOCs at variousconcentrations, was able to correctly clas- 
sify 92% of 164 test patterns which were not used during training. 
Recall that no classifier, including single or double hidden layer 
MLPs, RBFs, or decision trees, was able to converge to a solution, 
let alone correctly classify the majority of the test pattems when 
trained with unprocessed signals. 

5. INCREMENTAL LEARNING OF VOC PATTERNS 

One of the main challenges in using Enose systems is to be 
able to increase the number of odorants that can be identified over 
time. From a pattem classification point of view, this requires an 
algorithm that is capable of incremental leaming of new classes, 
without forgetting the previously acquired knowledge. Further- 
more, the training database that was originally used to train the 
system, may not be available by the time new training datasets 
become available. Therefore, the algorithm should not require ac- 
cess to previously used databases when leaming new information. 
Commonly used classification algorithms such as MLPs, RBFs, or 
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Fig. 4. (a) Before (b) after NCT processing. 

wavelet networks are not capable of incremental leaming, since 
they need to be reinitialized and retrained with the combined old 
and new data to learn the additional information. This causes all 
previously acquired knowledge to be lost, a phenomenon known 
as catastrophic forgetting. 

LEARN++, which we first introduced in ICASSP 2000 [7], is 
an algorithm that addresses all of the issues mentioned above. In 
this section, we summarize the major points of LEARN++-, and in- 
troduce new features that improve classification performance. The 
details and theoretical analysis of LEARN++ can be found in [3]. 

LEARN++ is based on generating a number of classifiers us- 
ing different distributions of the training data, and then combining 
the outputs of these classifiers using a weighted majority voting 
scheme. The algorithm keeps track of the Performance of each 
classifier on each training instance, and generates a new training 
subset based on the performances of all previous classifiers. In 
particular, a weight is given to each instance, and this weight is 
increased if the instance is misclassified. The updated weight is 
then used to determine whether this instance should be included in 
the next training set. A distribution is formed from these weights 
according to which the next training set is chosen. Misclassified 
instances are more likely to be selected into the next training set. 
A new classifier is then trained with the new training set, added 
to the pool of classifiers generated earlier, and the combined clas- 
sification performance of all classifiers is then used to determine 
the next training set. Multiple classifiers are generated for any 
given database, and as new databases become available, new clas- 
sifiers are added. This scheme ensures that instances, particularly 
from new classes, are leamed efficiently, since these instances are 
most likely to be misclassified by previous classifiers. Further- 
more, since all classifiers are retained, previously learned infor- 
mation is not lost. The final classification for each instance is then 
based on the weighted majority voting of all classifiers. 

For each training instance (z2, yz), the weight distribution up- 
date rule from iteration t t o t  + 1 is given by 

(4) 
B t ,  i f H t ( z i )  = yi, Dt+l = -. 

where Ht (2%) is the composite classifier, computed by the weighted 
majority voting of all previous t classifiers for the instance z,, Dt 
is the weight distribution at the t th  iteration, is the desired clas- 
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sification, and 0 < Bt < 1 is percent error of misclassification of 
the t th classifier. For given t classifiers, the weighted majority vot- 
ing simply computes the class that receives the highest vote, from 
voters (individual classifiers) whose votes are weighted according 
to their individual performance. That is, 

K 

Session -+ Training 1 
Dataset 4 (5) 

s1 98.8 Yo 
sa 
s3 

TEST 56.7 % 

Ht = a r g m a x x  log(l/Bt) (5) 
k = l  t : H t ( s ) = y  

Training 2 Training 3 

86.3 Yo 75.0 % 
89.9 % 90.1 Yo 

94.1 Yo 

(10) (5) 

64.0 % 86.6 % 

where K is the total number of databases used to train t classifiers. 
Alternatively, the inverse of the Mahalanobis distance between 

each instance and the t th training dataset can also be used as the 
weight of each classifier during voting. Instances with small Ma- 
halanobis distances are likely to come from the database which 
was used to train the current classifier, and hence that classifier is 
more likely to classify this instance correctly. Using the inverse of 
the Mahalanobis distance to assign a different weight to each clas- 
sifier, ensures that the classifier weights are dynamically updated, 
which results in a better estimate of the optimal classifier weight 
for each instance [3]. The disadvantage of this approach is that it 
requires the mean and covariance matrices of the training datasets 
to be saved, increasing the space complexity of the algorithm. To 
use a Mahalanobis distance based voting scheme, the term €4 in 
Equation 5 is replaced by 

1 1 . _. 

where l /MWxi(t)  is the weight of the t th classifier for instance 
z;, and mt and Ct are the mean and covariance matrix of the 
instances in the t th training dataset. 

6. RESULTS AND DISCUSSION 

In this section we present the results of applying NCT pre- 
processing followed by LEARN* classification of VOC pattems 
in an incremental manner. The database consisted of 384 six- 
dimensional signals, 220 of which were used for training. This 
database was divided into three training datasets SI N S3 and one 
test dataset, TEST .  SI had instances from ET, OC, and TL, S2 
had instances mainly from TCE (and very few from the previous 
three), and S, had instances from XL (and very few from the previ- 
ous four). TEST set included instances from all classes. A single 
hidden layer MLP was used as the base classifier. Note however 
that LEARN++ is independent of the classifier, and can be used 
with any supervised leaming algorithm. Table 1 presents the data 
distribution, and Table 2 presents the results. 

Each column in Table 2 shows the performance of the com- 
posite classifier obtained by computing the Mahalanobis weighted 
majority of all classifiers generated up to that point. Each row 
shows the performance on a particular dataset. During training 
session one, only SI was used for training (5 classifiers), during 
session two, only SZ was used for training (1 0 classifiers), and so 
on. As expected, the performances of the classifiers on their own 
training data were very high. We note that the performance on 
the TEST  dataset improves as incremental learning progresses 
and the system leams new classes. This is also expected, since 
TEST set had instances from all five classes, and instances from 
all classes were not introduced to classifiers until the last session. 
We note that when the last five classifiers (which have seen in- 
stances from all classes) were evaluated on test dataset, the per- 
formance was around SO%, indicating that all training sessions 

Table 1. Data class distribution for the VOC database. 

are indeed necessary for the final classification. The performance 
improvement on the TEST data as new datasets are introduced 
demonstrates the incremental leaming capability of the algorithm. 

7. CONCLUDING REMARKS 

In this paper we introduced an electronic nose system for 
odor detection and identification along with various signal pro- 
cessing and classification algorithms. In particular, nonlinear clus- 
ter translation was introduced for increasing pattem separability, 
and LEARN++ for incremental learning. We note that both al- 
gorithms were also tested for identification of a larger number of 
VOCs, individual components of mixtures of VOCs, as well as non 
gas-sensing applications, and very promising results were obtained 
[3]. This demonstrates the effectiveness and feasibility of the al- 
gorithms for a broad spectrum of pattem separability and classi- 
fication problems. Current work is in progress, where the voting 
mechanism of LEARN* is used to estimate the reliability of the 
final classification and the confidence limits of the performance. 
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