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ABSTRACT 
We introduce a supervised learning algorithm that gives neural 
network classification algorithms the capability of leaming 
incrementally from new data without forgetting what has been 
learned in earlier training sessions. Schapire's boosting 
algorithm, originally intended for improving the accuracy of 
weak leamers, has been modified to be used in an incremental 
leaming setting. The algorithm is based on generating a number 
of hypotheses using different distributions of the training data 
and combining these hypotheses using a weighted majority 
voting. This scheme allows the classifier previously trained with 
a training database, to leam from new data when the original 
data is no longer available, even when new classes are 
introduced. Initial results on incremental training of multilayer 
perceptron networks on synthetic as well as real-world data are 
presented in this paper. 

1. INTRODUCTION 
Learning from new data without forgetting prior knowledge is 
known as incremental learning, and i t  is an issue of paramount 
importance in automated data analysis systems. The problem 
arises from the fact that most existing classification algorithms do 
not allow incremental leaming. Traditionally. when new data 
become available, these algorithms are reinitialized and retrained 
using a combination of old and new data. resulting in loss of all 
previous learning. Furthermore, the original data may not be 
available when new data arrives, making incremental leaming 
impossible for such algorithms. This phenomenon is known as 
"catastrophic forgetting", and it is a common problem of many 
automated signal classitication algorithms, including the 
multilayer perceptron (MLP), radial basis function, probabilistic, 
wavelet, and Kohonen networks. Therefore, a general approach 
that allows classification algorithms to learn incrementally would 
be of very beneticial, in particular to the signal processing 
community involved in  automated classification and 
characterization of signals. 

Incremental leaming has been a popular subject of study in 
machine leaming, and several versions of this problem have been 
addressed in the literature [I ] .  In  one extreme case, incremental 
leaming is trivialized by allowing retraining with old data, 
without adding new classes. On the other extreme end, an 
incremental leaming algorithm is expected to learn in an on-line 
setting, where the learning is carried out on an instance-by- 
instance basis with some instances introducing new classes. 
Algorithms that are currently available for incremental learning, 
such as ARTMAP, typically fall somewhere in the middle of this 

spectrum. It  is the opinion of the authors that for an algorithm to 
be considered as a truly incremental learning algorithm, i t  should 
not require access to the old data. 

In this paper, we present LEARN++, an algorithm for MLP type 
neural networks (NN)  allowing incremental learning from new 
data, which may or may not include new classes. We assume that 
database(s) with which the original network was trained is no 
longer available. 

LEARN++ is inspired by Schapire's ndapri\,e boostirig 
algorithm, originally proposed for improving the accuracy of 
weak learning algorithms. In "Strength of weak learning" [ 2 ] ,  
Schapire showed that for a two class problem. a bceak learner 
that almost always achieves high errors can be converted to a 
strong learner- that almost always achieves arbitrarily low errors 
using boosrirzg. Boosting is based on a majority voting of 
hypotheses (classification rules) generated by the weak learner 
for various distributions of the training data. Independently, 
Littlestone et al developed the weiglitcd riiajorit.v algorithm, 
which assigns weights to different hypotheses based on an error 
criterion, to construct a compound hypothesis which was proved 
to perform better than any of the individual hypotheses [3]. They 
also showed that the error of the compound hypothesis is closely 
linked to the mistake bound of the best hypothesis. Schapire and 
Freund later developed AdaBoost.M 1 extending boosting to 
multiclass learning problems [4]. 

The original AdaB0ost.M I and modifications made to this 
algorithm for obtaining incremental learning capability are 
discussed in Section 2 ,  followed by simulation results on 
synthetic and real world data in Section 3. Conclusions and 
discussion are presented in Section 4 along with directions for 
future work. 

2. INCREMENTAL LEARNING USING 
LEARN++ 

2.1 Boosting Performance with AdaBoost.Ml 

AdaB0ost.M 1 was developed to boost the performance of a weak 
learner classifier by generating various weak classification 
hypotheses and combining them through weighted majority 
voting of the classes predicted by the individual hypotheses. 
These hypotheses are obtained by retraining the classifier using 
different distributions of the training database. 

Inputs to AdaBoost.Ml are a sequence of labeled examples 
(training data, S), a weak leaming algorithm, WeakLearn, and 
an integer T that specifies the number of (iterations) hypotheses 
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to be generated by WeakLearn. AdaBo0st.M 1 iteratively 
updates the distribution of S by assigning appropriate weights to 
each instance such that the weak leamer, which is trained with a 
subset training data drawn from this distribution, is forced to 
focus on increasingly harder instances. Thus the weak learner is 
challenged to learn the difficult parts of the instance space. A 
subset training data is drawn for each weak hypothesis. 

At iteration t ,  AdaBoost.Ml provides WeakLearn with a subset 
training data drawn according to distribution D, from the original 
training data S=[(x,,yl),(x2, y2),. . .,(x,y,,,>], where x, are training 
instances and yi are the correct labels for i=O,l, ..., m instances. 
WeakLearn thensomputes a hypothesis (classifier) h,: X + Y, 
which should correctly classify a fraction of the training set with 
respect to D,. That is, WeakLearn's goal is to find a hypothesis 
h,, which minimizes the training error 

E ,  = C D , ( i )  ( 1 )  
r:h, (x, )* \, 

AdaBoost.Ml requires that E, < ?h for each h,, that is, each 
hypothesis must obtain a minimum performance of 50%. The 
initial distribution D, is uniform over S ,  that is, Dl( i )  = I h ,  Vi. 
This gives equal probability to all instances in S to be drawn into 
subset training data. The distribution is updated by 

if h, ( X; ) = ~ ' i  

otherwise 

where Z, = COr (i) is a normalization 

ensure that D,+, will be a distribution, 
I 

constant chosen to 

and P,=E, / ( I - & , ) .  
Essentially, easy instances that are correctly classified by h, get 
lower probability, and hard instances that are misclassified get 
higher probability of being selected for the next subset training 
data. Thus, AdaBoost.MI focuses on the examples that seem to 
be hardest for WeakLearn to learn. 

At the end of T iterations, AdaBoost.MI combines the weak 
hypotheses h,, ..., hT into a single final hypothesis hfinol by 
computing the weighted majority of the weak hypotheses as 

(3) 

For a given instance x, hfinol outputs the label y that maximizes 
the sum of the weights of the weak hypotheses predicting that 
label. The weight of hypothesis h, is defined to be log (l/a) so 
that greater weight is given to a hypothesis with lower error. 

Note that AdaBoost.Ml requires a weak learner that can achieve 
a minimum of 50% classification accuracy. For a binary class 
problem, this is the least restrictive requirement one could have. 
However, obtaining an error of ?h becomes increasingly difficult 
as the number of classes increase, since for a k class problem, the 
error for random guessing is (k-1)A. Therefore, the choice of a 
weak learning algorithm with a classification performance of at 
least 50% may not be very easy. NN algorithms, however, can be 
used as weak leamers, since they can be made weaker or stronger 
by modifying their parameters. For example, an MLP with larger 
number of nodes/layers and a smaller error goal is stronger than 
the one with smaller number of nodes and a higher error goal. It 

should be noted that using strong learners that achieve high 
classification performance on a particular training data are not 
recommended for use with boosting since they usually cause over 
fitting of the data [SI. One of the nice properties of AdaBoost.Ml 
algorithm is that i t  is less likely to encounter over fitting 
problems, since only a portion of the instance space is leamed at 
each iteration using weak learners. In addition, ensemble of 
weak learners performs at least as well as a strong learner, but in 
considerably less time, since strong learners spend most of the 
training time during fine-tuning at lower error rates. 

2.2 Connection to Incremental Learning 

As shown in [4], the original distribution B of the data from 
which the training data S is drawn need not be known. Only a 
sample training dataset S drawn from B is provided to the 
leamer. Consider a learner that has been trained with an initial 
dataset that came from a distribution B, E B  for which an initial 
set of hypotheses is generated. Now suppose that we are given a 
new dataset, drawn from a distribution B2, also unknown to the 
learner. If the original training dataset was a good representative 
of the entire instance space B. from which all instances (training 
and testing) were drawn, then the classifier will perform well on 
the new dataset. If the classifier does not perform well on the 
new dataset, we can conclude that the first dataset was not a good 
representative of the entire instance space, and B2 CZ 53,. In other 
words, the classifier was not trained with that part of the instance 
space from which the new data were drawn. Therefore, we can 
interpret these instances as hard exanzples of B, and force the 
leamer to learn instances coming from B2 by generating new 
hypotheses for this dataset and combine all hypotheses generated 
(for Bl and B2) for classification of unknown instances. The 
underlying assumption is that the unknown distribution B 
includes B2 as well as Bl. Note that instances coming from Bl 
are learned through an initial set of hypotheses, and those coming 
from B2 are learned through a second set of hypotheses. All 
hypotheses are then combined by weighted majority voting. 

Essentially, we use a modified version of AdaBo0st.M 1 to learn 
(possibly overlapping) different parts of the instance space using 
different training sets. Each new database represents a different 
region of the instance space, and each hypothesis learns that 
region of the space. If  enough number of these hypotheses are 
generated, a weighted majority of these hypotheses can be used 
to determine the true concept (final hypothesis) being learnt. 

2.3 An Incremental Learning Algorithm: LEARN++ 

Figure 1 illustrates the algorithm LEARN++. The arrow (f) 
indications point at major modifications made to AdaBo0st.M 1 
given in [4]. 

Since AdaBo0st.M 1 targets improving classification accuracy, i t  
is run on different distributions of a single training dataset, and 
the error is computed on the misclassified instances of the 
training set. Furthermore, distribution update is based on 
individual hypotheses h, and their scaled errors p,. LEARN++, 
however, runs a modified version of AdaBoost.Ml for each new 
dataset that become available. For each iteration t during current 
dataset Bk, training (TR,) and testing (E,) subsets are randomly 
generated from the current dataset. 
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Input: For each dataset drawn from !&, k=1,2 ,  ..., K 

Sequence of nz examples S=[(X,,YI),(XZ, .YZ),. . . , ( - ~ y J l  

Weak learning algorithm WeakLearn (MLP). 

Integer Th, specifying the number of iterations. 

Do for k = l , 2 ,  ..., K: 

Initialize Dl( i )  = I /m,  Vi . 

DO for t = 1,2,  ..., Th: 

1 .  Randomly choose training TR, and testing TE, subsets 
from D,. 

2. Call WeakLearn, providing i t  with TR, from 
distribution D,. 

3. Get back a hypothesis h, : X 3 Y, and calculate the 
error ofh,  : &, = > !h, 

set T = t - I ,  discard h, and go to step 1 .  Otherwise, 
compute scaled error as P,=&,I ( I - & , ) .  C 

4. Call weighted majority, obtain the overall hypothesis 

c D , ( i )  on TR, + TE,. If 
f h , ( r r ) * L ,  

error E, = Z D l ( i )  
I H,(  1, )*I(  

I 5. Set B, = E,/( 1 -E,), and update distribution D,: 

B, , i f  H , ( x ; )  = 4'; 

where Z ,  = c D , ( i )  is a normalization constant such 

that D,+, will be a distribution 
I 

Call Weighted majority and Output the final hypothesis: 

I 
Figure 1.  Algorithm LEARN++ 

These subsets are provided to WeakLearn (in this case, a weak 
MLP), which returns the hypothesis h,. Unlike AdaBoost.Ml, the 
error, E,, is computed from the misclassified patterns of TR, + 
TE,. If E, > Y2, h, is discarded, and new TR, and TE, are generated. 
The weighted majority voting is then called to compute the 
overall hypothesis, H,, of all hypotheses generated. Also unlike 
AdaBoost.Ml, the overall hypothesis, H,, and its scaled error, B,, 
are then used to update the distribution. Note that the weight of 
voting for each h, is still based on its own scaled error p,. These 
modifications were based on experimental observations made 
during simulations of the algorithm in an incremental learning 
setting. 
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Figure 2. Circular regions dataset 

3. SIMULATION RESULTS 
LEARN++ was tested on a variety of synthetic and real world 
datasets. Due to space limitations, two representative ones are 
presented here. 

3.1 Circular Regions Synthetic Dataset 

Figure 2 illustrates the two-dimensional, five-class circular 
regions dataset, which consists of concentric circles. Innermost 
circle was labeled as class 1 and outermost circle was labeled as 
class five. Six training datasets, SI  - S,, were generated from this 
dataset, where S, and S, had instances from classes 1,3, and 5, S3 
and S, added instances from class 4, and finally S, and S, added 
instances from class 2. An additional dataset, TEST, was also 
generated from all classes. These datasets were presented to the 
algorithm starting with S I ,  and the performance of the overall 
hypothesis generated at the end of each training session 
(consisting of T iterations) was tested on the training dataset as 
well on the TEST dataset which was never seen by the algorithm 
during training. Note that once training with a particular dataset 
was completed, instances from that dataset were not shown to the 
algorithm during subsequent training sessions to assure a truly 
incremental leaming setting. 

Table 1 presents results obtained using this dataset. Each column 
represents the performance of final hypothesis obtained by 
computing the weighted majority of all hypotheses generated up 
to that point in all current and previous training sessions (TS). 
Each row shows the performance on a particular dataset. During 
training, TSI used only SI, TS2 used only Sz, etc. As expected, 
the performances of the hypotheses on their own training data 
was very high, but the performance on the TEST dataset was not 
satisfactory until later stages of incremental learning. Recall that 
E S T  set which included instances from all classes was never 
seen during any training session. Also note that after TS3, when 
instances from an additional class (class 4) were introduced, the 
performance had a sudden jump from 59.8% to 72.2%. TS4 did 
not improve performance much (since no new classes were 
introduced in SJ, but TS5 did improve the performance, since 
instances from the last class (class 2) were included in S,. 
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Although previous data are not used in subsequent training, 
previously generated hypotheses are used in the majority voting. 
However, using hypotheses only from last session performed 
around 70%, demonstrating the need for all previously generated 
hypotheses, hence the truly incremental nature of LEARN++. 

Table 1. Performance of LEARN++ on synthetic data 

-0 t I I I 1 

TEST159.4% 159.8% 172.2% (73.4% 180.8% 1 88.0% 

3.2 Gas Sensing Database 

Quartz crystal microbalances (QCMs) are piezoelectric devices 
whose resonant frequencies change in response to a mass 
deposited on their surface. When QCMs are exposed to VOCs, 
the VOC molecules are deposited on the QCM surface causing a 
change in the resonant frequency of the crystal. An array of 
QCMs, each coated with a different polymer of varying affinities 
to various VOCs, are used to detect and identify VOCs from their 
frequency responses. The gas sensing dataset used in this study 
consisted of responses of six QCMs to five VOCs, including 
ethanol (ET), xylene (XL), octane (OC), toluene (TL), and 
trichloroethelene (TCE). The database consisted of 384 six- 
dimensional signals, half of which were used for training. This 
database was divided into three training datasets SI - S, and one 
test dataset. TEST. S, had instances from ET, OC and TL, S, had 
instances mainly from TCE (and very few from the previous 
three), and S, had instances from XL (and very few from the 
previous four). TEST set included instances from all classes. 
Table 2 presents the results, which is formatted similar to that of 
Table I .  Further details on VOC recognition using QCMs can be 
found in [6]. More information on this database, and sample 
signals are provided at the web site [7]. 

Table 2. Performance of LEARN++ on gas sensing data 

I I 90.0% 
TEST I 60.78% I 70.1% I 88.2% 

As expected, the performances of the hypotheses on their own 
training datasets were high, whereas the performances on the 
TEST set improved incrementally as data with new classes were 
introduced in subsequent training sessions. 

These results demonstrate that LEARN++ successfully converts 
MLP into an incremental learning algorithm, which otherwise 
suffers greatly from catastrophic forgetting. 

4. SUMMARY AND DISCUSSIONS 
We have introduced an incremental teaming algorithm for MLP 
networks, which employs an ensemble of networks for learning 
new data. Initial results using this algorithm look very promising, 

but there is much room for improvement. Although LEARN++ 
was implemented using MLPs as weak leamers, the algorithm 
itself is not dependent on the MLP, and current work includes 
evaluating LEARN++ using other teaming algorithms. 
Note that the algorithm has two key components. The first one is 
the selection of the subsequent training dataset (the distribution 
update rule). AdaBoost.Ml depends solely on the performance of 
individual h, for distribution update, whereas LEARN++ uses the 
performance of overall H,. The former one guarantees robustness 
and prevents performance deterioration, whereas the latter one 
allows efficient incremental learning capability when new classes 
are available. An appropriate combination of these might provide 
optimum performance levels. 

The second key component is how individual hypotheses are 
combined. or how much each hypothesis should be weighted. 
LEARN++ uses weighted majority voting, however, various 
other schemes for combining hypotheses can be used. One such 
scheme could be learning the weight of each hypothesis through 
a subsequent learner, rather than estimating it from the scaled 
errors of individual hypotheses. Work is currently underway to 
address these issues. 
Finally, the weighted majority voting for combining the 
hypotheses hints a simple way of estimating the reliability of the 
final decision and confidence limits of the performance figures. 
In  particular, if a vast (marginal) majority of 11, agree on the class 
of a particular instance, then this can be interpreted as the 
algorithm having high (low) confidence in the final decision. 
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