
LEARN++: AN INCREMENTAL LEARNING ALGORITHM
FOR MULTILAYER PERCEPTRON NETWORKS

R. Polikar*, L.Udpa*, S.S. Udpa*, V. Honavar**

Iowa State University
Ames, Iowa 500 I I , USA

**
*Dept. of Electrical and Computer Engineering, Dept. of Computer Science

ABSTRACT
We introduce a supervised learning algorithm that gives neural
network classification algorithms the capability of leaming
incrementally from new data without forgetting what has been
learned in earlier training sessions. Schapire's boosting
algorithm, originally intended for improving the accuracy of
weak leamers, has been modified to be used in an incremental
leaming setting. The algorithm is based on generating a number
of hypotheses using different distributions of the training data
and combining these hypotheses using a weighted majority
voting. This scheme allows the classifier previously trained with
a training database, to leam from new data when the original
data is no longer available, even when new classes are
introduced. Initial results on incremental training of multilayer
perceptron networks on synthetic as well as real-world data are
presented in this paper.

1. INTRODUCTION
Learning from new data without forgetting prior knowledge is
known as incremental learning, and i t is an issue of paramount
importance in automated data analysis systems. The problem
arises from the fact that most existing classification algorithms do
not allow incremental leaming. Traditionally. when new data
become available, these algorithms are reinitialized and retrained
using a combination of old and new data. resulting in loss of all
previous learning. Furthermore, the original data may not be
available when new data arrives, making incremental leaming
impossible for such algorithms. This phenomenon is known as
"catastrophic forgetting", and it is a common problem of many
automated signal classitication algorithms, including the
multilayer perceptron (MLP), radial basis function, probabilistic,
wavelet, and Kohonen networks. Therefore, a general approach
that allows classification algorithms to learn incrementally would
be of very beneticial, in particular to the signal processing
community involved in automated classification and
characterization of signals.

Incremental leaming has been a popular subject of study in
machine leaming, and several versions of this problem have been
addressed in the literature [I] . In one extreme case, incremental
leaming is trivialized by allowing retraining with old data,
without adding new classes. On the other extreme end, an
incremental leaming algorithm is expected to learn in an on-line
setting, where the learning is carried out on an instance-by-
instance basis with some instances introducing new classes.
Algorithms that are currently available for incremental learning,
such as ARTMAP, typically fall somewhere in the middle of this

spectrum. It is the opinion of the authors that for an algorithm to
be considered as a truly incremental learning algorithm, i t should
not require access to the old data.

In this paper, we present LEARN++, an algorithm for MLP type
neural networks (NN) allowing incremental learning from new
data, which may or may not include new classes. We assume that
database(s) with which the original network was trained is no
longer available.

LEARN++ is inspired by Schapire's ndapri\,e boostirig
algorithm, originally proposed for improving the accuracy of
weak learning algorithms. In "Strength of weak learning" [2] ,
Schapire showed that for a two class problem. a bceak learner
that almost always achieves high errors can be converted to a
strong learner- that almost always achieves arbitrarily low errors
using boosrirzg. Boosting is based on a majority voting of
hypotheses (classification rules) generated by the weak learner
for various distributions of the training data. Independently,
Littlestone et al developed the weiglitcd riiajorit.v algorithm,
which assigns weights to different hypotheses based on an error
criterion, to construct a compound hypothesis which was proved
to perform better than any of the individual hypotheses [3]. They
also showed that the error of the compound hypothesis is closely
linked to the mistake bound of the best hypothesis. Schapire and
Freund later developed AdaBoost.M 1 extending boosting to
multiclass learning problems [4].

The original AdaB0ost.M I and modifications made to this
algorithm for obtaining incremental learning capability are
discussed in Section 2 , followed by simulation results on
synthetic and real world data in Section 3. Conclusions and
discussion are presented in Section 4 along with directions for
future work.

2. INCREMENTAL LEARNING USING
LEARN++

2.1 Boosting Performance with AdaBoost.Ml

AdaB0ost.M 1 was developed to boost the performance of a weak
learner classifier by generating various weak classification
hypotheses and combining them through weighted majority
voting of the classes predicted by the individual hypotheses.
These hypotheses are obtained by retraining the classifier using
different distributions of the training database.

Inputs to AdaBoost.Ml are a sequence of labeled examples
(training data, S), a weak leaming algorithm, WeakLearn, and
an integer T that specifies the number of (iterations) hypotheses

0-7 803-6293-4/00/$10.0002000 IEEE 3414

to be generated by WeakLearn. AdaBo0st.M 1 iteratively
updates the distribution of S by assigning appropriate weights to
each instance such that the weak leamer, which is trained with a
subset training data drawn from this distribution, is forced to
focus on increasingly harder instances. Thus the weak learner is
challenged to learn the difficult parts of the instance space. A
subset training data is drawn for each weak hypothesis.

At iteration t , AdaBoost.Ml provides WeakLearn with a subset
training data drawn according to distribution D, from the original
training data S=[(x,,yl),(x2, y2),. . .,(x,y,,,>], where x, are training
instances and yi are the correct labels for i=O,l, ..., m instances.
WeakLearn thensomputes a hypothesis (classifier) h,: X + Y,
which should correctly classify a fraction of the training set with
respect to D,. That is, WeakLearn's goal is to find a hypothesis
h,, which minimizes the training error

E , = C D , (i) (1)
r:h, (x,)* \,

AdaBoost.Ml requires that E, < ?h for each h,, that is, each
hypothesis must obtain a minimum performance of 50%. The
initial distribution D, is uniform over S , that is, Dl(i) = I h , Vi.
This gives equal probability to all instances in S to be drawn into
subset training data. The distribution is updated by

if h, (X;) = ~ ' i

otherwise

where Z, = COr (i) is a normalization

ensure that D,+, will be a distribution,
I

constant chosen to

and P,=E, / (I - & ,) .
Essentially, easy instances that are correctly classified by h, get
lower probability, and hard instances that are misclassified get
higher probability of being selected for the next subset training
data. Thus, AdaBoost.MI focuses on the examples that seem to
be hardest for WeakLearn to learn.

At the end of T iterations, AdaBoost.MI combines the weak
hypotheses h,, ..., hT into a single final hypothesis hfinol by
computing the weighted majority of the weak hypotheses as

(3)

For a given instance x, hfinol outputs the label y that maximizes
the sum of the weights of the weak hypotheses predicting that
label. The weight of hypothesis h, is defined to be log (l/a) so
that greater weight is given to a hypothesis with lower error.

Note that AdaBoost.Ml requires a weak learner that can achieve
a minimum of 50% classification accuracy. For a binary class
problem, this is the least restrictive requirement one could have.
However, obtaining an error of ?h becomes increasingly difficult
as the number of classes increase, since for a k class problem, the
error for random guessing is (k-1)A. Therefore, the choice of a
weak learning algorithm with a classification performance of at
least 50% may not be very easy. NN algorithms, however, can be
used as weak leamers, since they can be made weaker or stronger
by modifying their parameters. For example, an MLP with larger
number of nodes/layers and a smaller error goal is stronger than
the one with smaller number of nodes and a higher error goal. It

should be noted that using strong learners that achieve high
classification performance on a particular training data are not
recommended for use with boosting since they usually cause over
fitting of the data [SI. One of the nice properties of AdaBoost.Ml
algorithm is that i t is less likely to encounter over fitting
problems, since only a portion of the instance space is leamed at
each iteration using weak learners. In addition, ensemble of
weak learners performs at least as well as a strong learner, but in
considerably less time, since strong learners spend most of the
training time during fine-tuning at lower error rates.

2.2 Connection to Incremental Learning

As shown in [4], the original distribution B of the data from
which the training data S is drawn need not be known. Only a
sample training dataset S drawn from B is provided to the
leamer. Consider a learner that has been trained with an initial
dataset that came from a distribution B, E B for which an initial
set of hypotheses is generated. Now suppose that we are given a
new dataset, drawn from a distribution B2, also unknown to the
learner. If the original training dataset was a good representative
of the entire instance space B. from which all instances (training
and testing) were drawn, then the classifier will perform well on
the new dataset. If the classifier does not perform well on the
new dataset, we can conclude that the first dataset was not a good
representative of the entire instance space, and B2 CZ 53,. In other
words, the classifier was not trained with that part of the instance
space from which the new data were drawn. Therefore, we can
interpret these instances as hard exanzples of B, and force the
leamer to learn instances coming from B2 by generating new
hypotheses for this dataset and combine all hypotheses generated
(for Bl and B2) for classification of unknown instances. The
underlying assumption is that the unknown distribution B
includes B2 as well as Bl. Note that instances coming from Bl
are learned through an initial set of hypotheses, and those coming
from B2 are learned through a second set of hypotheses. All
hypotheses are then combined by weighted majority voting.

Essentially, we use a modified version of AdaBo0st.M 1 to learn
(possibly overlapping) different parts of the instance space using
different training sets. Each new database represents a different
region of the instance space, and each hypothesis learns that
region of the space. If enough number of these hypotheses are
generated, a weighted majority of these hypotheses can be used
to determine the true concept (final hypothesis) being learnt.

2.3 An Incremental Learning Algorithm: LEARN++

Figure 1 illustrates the algorithm LEARN++. The arrow (f)
indications point at major modifications made to AdaBo0st.M 1
given in [4].

Since AdaBo0st.M 1 targets improving classification accuracy, i t
is run on different distributions of a single training dataset, and
the error is computed on the misclassified instances of the
training set. Furthermore, distribution update is based on
individual hypotheses h, and their scaled errors p,. LEARN++,
however, runs a modified version of AdaBoost.Ml for each new
dataset that become available. For each iteration t during current
dataset Bk, training (TR,) and testing (E,) subsets are randomly
generated from the current dataset.

3415

Input: For each dataset drawn from !&, k=1,2 , ..., K

Sequence of nz examples S=[(X,,YI),(XZ, .YZ),. . . , (- ~ y J l

Weak learning algorithm WeakLearn (MLP).

Integer Th, specifying the number of iterations.

Do for k = l , 2 , ..., K:

Initialize Dl(i) = I /m, Vi .

DO for t = 1,2, ..., Th:

1 . Randomly choose training TR, and testing TE, subsets
from D,.

2. Call WeakLearn, providing i t with TR, from
distribution D,.

3. Get back a hypothesis h, : X 3 Y, and calculate the
error ofh, : &, = > !h,

set T = t - I , discard h, and go to step 1 . Otherwise,
compute scaled error as P,=&,I (I - & ,) . C

4. Call weighted majority, obtain the overall hypothesis

c D , (i) on TR, + TE,. If
f h , (r r) * L ,

error E, = Z D l (i)
I H,(1,)*I(

I 5. Set B, = E,/(1 -E,), and update distribution D,:

B, , i f H , (x ;) = 4';

where Z , = c D , (i) is a normalization constant such

that D,+, will be a distribution
I

Call Weighted majority and Output the final hypothesis:

I
Figure 1. Algorithm LEARN++

These subsets are provided to WeakLearn (in this case, a weak
MLP), which returns the hypothesis h,. Unlike AdaBoost.Ml, the
error, E,, is computed from the misclassified patterns of TR, +
TE,. If E, > Y2, h, is discarded, and new TR, and TE, are generated.
The weighted majority voting is then called to compute the
overall hypothesis, H,, of all hypotheses generated. Also unlike
AdaBoost.Ml, the overall hypothesis, H,, and its scaled error, B,,
are then used to update the distribution. Note that the weight of
voting for each h, is still based on its own scaled error p,. These
modifications were based on experimental observations made
during simulations of the algorithm in an incremental learning
setting.

5

4

3

2

1

0

1

2

3

4

5
-5 -4 3 2 1 0 1 2 3 4 5

Figure 2. Circular regions dataset

3. SIMULATION RESULTS
LEARN++ was tested on a variety of synthetic and real world
datasets. Due to space limitations, two representative ones are
presented here.

3.1 Circular Regions Synthetic Dataset

Figure 2 illustrates the two-dimensional, five-class circular
regions dataset, which consists of concentric circles. Innermost
circle was labeled as class 1 and outermost circle was labeled as
class five. Six training datasets, SI - S,, were generated from this
dataset, where S, and S, had instances from classes 1,3, and 5, S3
and S, added instances from class 4, and finally S, and S, added
instances from class 2. An additional dataset, TEST, was also
generated from all classes. These datasets were presented to the
algorithm starting with S I , and the performance of the overall
hypothesis generated at the end of each training session
(consisting of T iterations) was tested on the training dataset as
well on the TEST dataset which was never seen by the algorithm
during training. Note that once training with a particular dataset
was completed, instances from that dataset were not shown to the
algorithm during subsequent training sessions to assure a truly
incremental leaming setting.

Table 1 presents results obtained using this dataset. Each column
represents the performance of final hypothesis obtained by
computing the weighted majority of all hypotheses generated up
to that point in all current and previous training sessions (TS).
Each row shows the performance on a particular dataset. During
training, TSI used only SI, TS2 used only Sz, etc. As expected,
the performances of the hypotheses on their own training data
was very high, but the performance on the TEST dataset was not
satisfactory until later stages of incremental learning. Recall that
E S T set which included instances from all classes was never
seen during any training session. Also note that after TS3, when
instances from an additional class (class 4) were introduced, the
performance had a sudden jump from 59.8% to 72.2%. TS4 did
not improve performance much (since no new classes were
introduced in SJ, but TS5 did improve the performance, since
instances from the last class (class 2) were included in S,.

3416

Although previous data are not used in subsequent training,
previously generated hypotheses are used in the majority voting.
However, using hypotheses only from last session performed
around 70%, demonstrating the need for all previously generated
hypotheses, hence the truly incremental nature of LEARN++.

Table 1. Performance of LEARN++ on synthetic data

-0 t I I I 1

TEST159.4% 159.8% 172.2% (73.4% 180.8% 1 88.0%

3.2 Gas Sensing Database

Quartz crystal microbalances (QCMs) are piezoelectric devices
whose resonant frequencies change in response to a mass
deposited on their surface. When QCMs are exposed to VOCs,
the VOC molecules are deposited on the QCM surface causing a
change in the resonant frequency of the crystal. An array of
QCMs, each coated with a different polymer of varying affinities
to various VOCs, are used to detect and identify VOCs from their
frequency responses. The gas sensing dataset used in this study
consisted of responses of six QCMs to five VOCs, including
ethanol (ET), xylene (XL), octane (OC), toluene (TL), and
trichloroethelene (TCE). The database consisted of 384 six-
dimensional signals, half of which were used for training. This
database was divided into three training datasets SI - S, and one
test dataset. TEST. S, had instances from ET, OC and TL, S, had
instances mainly from TCE (and very few from the previous
three), and S, had instances from XL (and very few from the
previous four). TEST set included instances from all classes.
Table 2 presents the results, which is formatted similar to that of
Table I . Further details on VOC recognition using QCMs can be
found in [6]. More information on this database, and sample
signals are provided at the web site [7].

Table 2. Performance of LEARN++ on gas sensing data

I I 90.0%
TEST I 60.78% I 70.1% I 88.2%

As expected, the performances of the hypotheses on their own
training datasets were high, whereas the performances on the
TEST set improved incrementally as data with new classes were
introduced in subsequent training sessions.

These results demonstrate that LEARN++ successfully converts
MLP into an incremental learning algorithm, which otherwise
suffers greatly from catastrophic forgetting.

4. SUMMARY AND DISCUSSIONS
We have introduced an incremental teaming algorithm for MLP
networks, which employs an ensemble of networks for learning
new data. Initial results using this algorithm look very promising,

but there is much room for improvement. Although LEARN++
was implemented using MLPs as weak leamers, the algorithm
itself is not dependent on the MLP, and current work includes
evaluating LEARN++ using other teaming algorithms.
Note that the algorithm has two key components. The first one is
the selection of the subsequent training dataset (the distribution
update rule). AdaBoost.Ml depends solely on the performance of
individual h, for distribution update, whereas LEARN++ uses the
performance of overall H,. The former one guarantees robustness
and prevents performance deterioration, whereas the latter one
allows efficient incremental learning capability when new classes
are available. An appropriate combination of these might provide
optimum performance levels.

The second key component is how individual hypotheses are
combined. or how much each hypothesis should be weighted.
LEARN++ uses weighted majority voting, however, various
other schemes for combining hypotheses can be used. One such
scheme could be learning the weight of each hypothesis through
a subsequent learner, rather than estimating it from the scaled
errors of individual hypotheses. Work is currently underway to
address these issues.
Finally, the weighted majority voting for combining the
hypotheses hints a simple way of estimating the reliability of the
final decision and confidence limits of the performance figures.
In particular, if a vast (marginal) majority of 11, agree on the class
of a particular instance, then this can be interpreted as the
algorithm having high (low) confidence in the final decision.

5. REFERENCES

[I] P. Jantke, “Types of incremental learning”, AAA1
Svmposium on Training Issues in Incremental Learning,
March 23-25, 1993, Stanford, CA.

[2] R. Schapire, “The strength of weak learning”, Machine
Learing, vol. 5 , pp. 197-227, 1990.

[3] N. Littlestone, M.Warmuth, “The weighted majority
algortithm”, Info. and Cotnp., vol. 108, pp. 21 2-261, 1994.

[4] Y . Freund, R. Schapire, “A decision theoretic generalization
of online learning and application to boosting”, J. Comp.
and Svs. Sci., vo1.55, pp. 1 19- 139, 1997.

[SI T.G. Dietterich, “An experimental comparison of three
methods for constructing ensembles of decision trees:
Bagging, Boosting, and randomization. Machine Learning,
(in press) 1999.

[6] E. Kress-Rogers, Handbook of Biosensot-s and Electronic
Nose. Medicine, * Food and the Environment. CRC Press:
Boca Raton, FL.. 1997.

[7] www.public.iastate.edu/-rpolikar/RESEARCH/vocdata.html

3417

