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Abstract

This paper details an essential component of a multi-agent distributed knowledge network system for intrusion detection. We

describe a distributed intrusion detection architecture, complete with a data warehouse and mobile and stationary agents for dis-

tributed problem-solving to facilitate building, monitoring, and analyzing global, spatio-temporal views of intrusions on large

distributed systems. An agent for the intrusion detection system, which uses a machine learning approach to automated discovery of

concise rules from system call traces, is described.

We use a feature vector representation to describe the system calls executed by privileged processes. The feature vectors are

labeled as good or bad depending on whether or not they were executed during an observed attack. A rule learning algorithm is then

used to induce rules that can be used to monitor the system and detect potential intrusions. We study the performance of the rule

learning algorithm on this task with and without feature subset selection using a genetic algorithm. Feature subset selection is shown

to significantly reduce the number of features used while improving the accuracy of predictions. � 2002 Elsevier Science Inc. All
rights reserved.
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1. Introduction

A definition of an intrusion is ‘‘any set of actions that
attempt to compromise the integrity, confidentiality, or
availability of a resource’’ (Heady et al., 1990). Detect-
ing intrusions against distributed computing systems is a
difficult problem (Denning, 1987). Manually detecting
intrusions in a distributed system requires a tremendous
amount of effort and is prone to error. Automating the
process of detecting intrusions is a topic of earnest re-
search by several groups, including ours.
Our intrusion detection system is based on the

concept of distributed knowledge networks (Honavar
et al., 1998) and data warehouse techniques. Distrib-
uted knowledge networks use agents for information
retrieval and extraction, data transformation and
knowledge discovery. Data warehouse technologies are
used for data and knowledge organization and as-

similation from heterogeneous physically distributed
data and knowledge sources. This approach provides
a modular and extensible approach to building com-
plex and adaptive information systems for knowledge-
intensive applications. Such distributed knowledge
networks offer a natural framework for design and
implementation of systems for monitoring distributed
systems for intrusions (including concerted intrusions
spread over space and time) and the initiation of
suitable countermeasures.
Our current implementation includes:

• Mobile and stationary data gathering agents that col-
lect system logs and audit data and render them into
a common format;

• Low level agents that monitor and classify ongoing
activities, classify events, and pass on this informa-
tion to higher level agents and to each other;

• Data mining agents that use machine learning to ac-
quire predictive rules for intrusion detection from
system logs and audit data.

The higher level agents would provide a high-level in-
trusion detector, able to analyze intrusions over the
whole system, execute countermeasures, and support
the system administration in their pursuit of attackers.
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The data warehouse knowledge provided by system of
agents could be used to help systems management staff
learn misuse patterns, understand intrusions, and sup-
port offensive and defensive actions. Our intrusion de-
tection system has been implemented using Java and
ObjectSpace’s Voyager mobile agent facility (Object-
Space Inc, 1999).
In this paper, we sketch the design of our distributed

intrusion detection system to provide background that
explains how the system call intrusion detector fits into
our larger system. We then explain our research in the
application of artificial intelligence to the problem of
identifying misuse of privileged programs. The Com-
puter Immunology project (Forrest et al., 1996) and the
Java Agents for Meta-Learning project (Lee and Stolfo,
1998) explored the use of system call traces from privi-
leged programs to detect intrusions. We use a feature
vector approach to describe the system calls executed by
a privileged program. We show that our feature vector
representation works well for automated knowledge
discovery using rule learning. We then employ feature
subset selection using a genetic algorithm to reduce the
number of features necessary in the feature vector and to
improve the accuracy of the results by eliminating ex-
traneous features.

2. Related work

Projects closely related to our intrusion detection
project include Common Intrusion Detection Frame-
work (CIDF), Distributed Intrusion Detection System
(DIDS), Computer Immunology, Java Agents for Meta-
Learning (JAM) and AAFID.
The CIDF (Reilly and Stillman, 1998) resembles our

project’s architecture. CIDF is a standard proposed by a
group including the Information Technology Office of
the Defense Advanced Research Projects Agency, Uni-
versity of California-Davis, Information Sciences Insti-
tute, Odyssey Research, and others. At the bottom
layer, the CIDF reconnaissance agents correspond to
our data gathering agents. In the middle, the CIDF
analysis agents correspond to our low-level agents. At
the top layer, the CIDF decision-response agents cor-
respond to our high-level agents. The similarity of our
prototype system to the CIDF model and the flexibility
of the CISL language (Feiertag et al., 1999) should lend
itself to integration with other CIDF-compatible sys-
tems when the need arises.
The DIDS of the University of California-Davis

(Mukherjee et al., 1994) uses a combination of host
monitors and local area network monitors to monitor
system and network activities. A centralized director
aggregates information from the monitors to detect
intrusions. DIDS is similar to our agent system for
intrusion detection and countermeasures in that it uses

multiple monitors and artificial intelligence algorithms
to determine the severity of events. DIDS differs from
our system in that the intelligence is purely central-
ized, and DIDS does not make use of any agent
technology.
The Computer Immunology project at the University

of New Mexico (Forrest et al., 1997) explored designs of
intrusion detection systems based on animal immune
systems. One portion of the project developed a sense of
‘‘self’’ for security-related computer programs by cre-
ating a database of normal system call traces from in-
stances of execution of the programs (Forrest et al.,
1996). This sense of self can be used to detect intrusions
by comparing execution traces of processes to the dat-
abase of system call traces. Work that is more recent
used a variety of approaches to detect intrusions using
system call traces from several different privileged pro-
grams (Warrender et al., 1999).
In general, the Computer Immunology project differs

from our project by focusing on individual agents rather
than sharing data between agents and feeding the data
into a data warehouse. In our specific application of
intrusion detection using system calls, we do not attempt
to develop a sense of self but instead concentrate on
developing rules to check a particular program’s exe-
cution trace for anomalies. We assume knowledge of the
identify of the program being traced and apply a rule set
learned for that particular program.
The JAM project at Columbia University (Stolfo

et al., 1997) is the most similar to our agent system for
intrusion detection and countermeasures. JAM uses in-
telligent, distributed Java agents and data mining to
learn models of fraud and intrusive behavior. The JAM
project expanded on the work done by Forrest’s group
(Forrest et al., 1996) to detect intrusions on privileged
programs. Like the JAM project, we apply the data
mining approach to intrusion detection but use a dif-
ferent data representation that provides a single signa-
ture for each process.
Our project differs from JAM in that we are con-

centrating on data mining within an organization. The
JAM project seemed to focus on data mining over
multiple organizations. Our project also is looking at
countermeasures that could be used to combat intru-
sions.
The AAFID group at Purdue’s COAST project has

prototyped an agent-based intrusion detection system.
Their paper analyzes the agent-based approach to in-
trusion detection and mentions the prototype work that
has been done on AAFID (Balasubramaniyan et al.,
1998). Our project differs from AAFID in that we are
using data mining to detect intrusions on multiple
components, emphasizing the use of learning algorithms
in intrusion detection, and using mobile agents. AAFID
is implemented in Perl while our system is implemented
in Java.
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3. Design of our agent-based system

A system of intelligent agents using collaborative in-
formation and mobile agent technologies (Bradshaw,
1997; Nwana, 1996) is developed to implement an in-
trusion detection system (Denning, 1987).
The goals of the system design are to:

• Learn to detect intrusions on hosts and networks us-
ing individual agents targeted at particular subsys-
tems;

• Use mobile agent technologies to intelligently process
audit data at the sources;

• Have agents collaborate to share information on sus-
picious events and determine when to be more vigi-
lant or more relaxed;

• Apply data mining techniques to the heterogeneous
data and knowledge sources to identify and react to
coordinated intrusions on multiple subsystems.

A notable feature of the intrusion detection system
based on data mining is the support it offers for gath-
ering and operating on data and knowledge sources
from the entire observed system. The system could
identify sources of concerted or multistage intrusions,
initiate countermeasures in response to the intrusion,
and provide supporting documentation for system ad-
ministrators that would help in procedural or legal ac-
tion taken against the attacker.
An example of an intrusion involving more than one

subsystem would be a combined NFS and rlogin intru-
sion. In the first step, an attacker would determine an
NFS filehandle for an .rhosts file or /etc/hosts.equiv
(assuming the appropriate filesystems are exported by the

UNIX system) (van Doorn, 1999). Using the NFS file-
handle, the attacker would re-write the file to give himself
login privileges to the attacked host. Then, using rlogin
from the formerly untrusted host, the attacker would be
able to login to an account on the attacked host, since the
attacked host now mistakenly trusts the attacker. At this
point, the attacker may be able to further compromise
the system. The intrusion detection system based on data
mining would be able to correlate these intrusions, help
to identify the origin of the intrusion, and support system
management in responding to the intrusion. The com-
ponents of the agent-based intrusion detection system are
shown in Fig. 1. Information routers read log files and
monitor operational aspects of the systems. The infor-
mation routers provide data to the distributed data
cleaning agents who have registered their interest in
particular data. The data cleaning agents process data
obtained from log files, network protocol monitors, and
system activity monitors into homogeneous formats. The
mobile agents, just above the data cleaning agents in the
system architecture, form the first level of intrusion de-
tection. The mobile agents travel to each of their asso-
ciated data cleaning agents, gather recent information,
and classify the data to determine whether suspicious
activity is occurring.
Like the JAM system (Stolfo et al., 1997), the low-

level agents may use a variety of classification algo-
rithms. Unlike the JAM system, though, the agents at
this level will collaborate to set their suspicion level to
determine cooperatively whether a suspicious action is
more interesting in the presence of other suspicious ac-
tivity.

Fig. 1. Architecture of the intrusion detection system.
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At the top level, high-level agents maintain the data
warehouse by combining knowledge and data from the
low-level agents. The high-level agents apply data min-
ing algorithms to discover associations and patterns.
Because the data warehouse provides a global, temporal
view of the knowledge and activity of the monitored
distributed system, this system could help train system
administrators to spot and defend intrusions. Our sys-
tem could also assist system administrators in develop-
ing better protections and countermeasures for their
systems and identifying new intrusions.
The interface agent for the agent-based intrusion

detection system directs the operation of the agents in
the system and maintains the status reported by the
mobile agents. The interface agent also provides access
to the data warehouse features.
In our project’s current state, several data cleaning

and low-level agents have been implemented. This paper
discusses the agent that monitors privileged programs
using machine learning techniques. Our work in pro-
gress includes the integration of data-driven knowledge
discovery agents into a distributed knowledge network
for monitoring distributed computing systems. In gen-
eral, we are interested in machine learning approaches to
discovering patterns of coordinated intrusions on a
system wherein individual intrusions are spread over
space and time.

4. Rule learning from system call traces

Programs that provide network services in distributed
computing systems often execute with special privileges.
For example, the popular sendmail mail transfer agent
operates with superuser privileges on UNIX systems.
Privileged programs like sendmail are often a target for
intrusions.
The trace of system calls executed by a program can

identify whether an intrusion was mounted against a
program (Forrest et al., 1996; Lee and Stolfo, 1998).
Forrest’s project at the University of New Mexico
(Forrest et al., 1996) developed databases of system calls
from normal and anomalous uses of privileged pro-
grams such as sendmail. Forrest’s system call data is a
set of files consisting of lines giving a process ID number
(PID) and system call number. The files are partitioned
based on whether they show behavior of normal or
anomalous use of the privileged sendmail program
running on SunOS 4.1.
Forrest organized system call traces into sequence

windows to provide context. Forrest showed that a
database of known good sequence windows can be de-
veloped from a reasonably sized set of non-intrusive
sendmail executions. Forrest then showed that intrusive
behavior can be determined by finding the percentage of
system call sequences that do not match any of the

known good sequences. The data sets that were used by
Forrest’s project are available in electronic form on their
Web site (Forrest, 1999). We use the same data set to
enable comparison with techniques used in related pa-
pers (Lee and Stolfo, 1998; Warrender et al., 1999).
Our feature vector technique improves on Forrest’s

technique because it does not depend on a threshold
percentage of abnormal sequences. Our feature vector
technique compactly summarizes the vast data obtained
from each process, enabling longer-term storage of the
data for reference and analysis. With respect to other
rule learning techniques, our technique induces a com-
pact rule set that is easily carried in lightweight agents.
Our technique also may mine knowledge from the data
in a way that can be analyzed by experts.
Lee and Stolfo (1998) used a portion of the data from

Forrest’s project to show that the RIPPER (Cohen,
1995) learning algorithm could learn rules from system
call sequence windows. Lee empirically found sequences
of length 7 and 11 gave the best results in his experi-
ments (Lee and Stolfo, 1998). For training, each window
is assigned a label of ‘‘normal’’ if it matches one of the
good windows obtained from proper operations of
sendmail; otherwise, the window is labeled as ‘‘abnor-
mal’’. An example of the system call windows and labels
are shown in Table 1. After RIPPER is trained, the
learned rule set is applied to the testing data to generate
classifications for each sequence window. Lee uses a
window across the classifications of length 2Lþ 1, where
L is the step size for the window, to group labels (Lee
and Stolfo, 1998). If the number of ‘‘abnormal’’ labels in
the window exceeds L, the window is considered ab-
normal. An example of a single window over the clas-
sifications is shown in Table 2.
The window scheme filters isolated noise due to oc-

casional prediction errors. When an intrusion takes

Table 1

Sample system call windows with training labels

System call sequences Label

4, 2, 66, 66, 4, 138, 66 Normal

2, 66, 66, 4, 138, 66, 5 Normal

66, 66, 4, 138, 66, 5, 5 Normal

66, 4, 138, 66, 5, 5, 4 Abnormal

4, 138, 66, 5, 5, 4, 39 Abnormal

Table 2

Sample system call windows with classifications

RIPPER’s

classification

System call sequences Actual label

Normal 4, 2, 66, 66, 4, 138, 66 Normal

Normal 2, 66, 66, 4, 138, 66, 5 Normal

Abnormal 66, 66, 4, 138, 66, 5, 5 Normal

Abnormal 66, 4, 138, 66, 5, 5, 4 Abnormal

Abnormal 4, 138, 66, 5, 5, 4, 39 Abnormal
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place, a cluster of system call sequences will usually be
classified abnormal. In Table 2, since there are more
abnormal classifications than normal in this window,
then this entire window is labeled anomalous. Lee em-
pirically found that values of L ¼ 3 and L ¼ 5 worked
best for identifying intrusions (Lee and Stolfo, 1998).
Finally, when the window has passed over all the

classifications, the percentage of abnormal regions is
obtained by dividing the number of anomalous windows
by the total number of windows. Lee uses this percent-
age to empirically derive a threshold that separates
normal processes from anomalous processes. Warrender
et al. (1999) uses a similar technique, the Locality Frame
Count (LFC), that counts the number of mismatches in
a group and considers the group anomalous if the count
exceeds a threshold. Warrender’s technique allows in-
trusion detection for long-running daemons, where an
intrusion could be masked by a large number of normal
windows with Lee’s technique.
Lee and Stolfo (1998) developed an alternate tech-

nique that predicts one of the system calls in a sequence.
The alternate technique allows learning of normal be-
havior in the absence of anomalous data. Our technique
is less suitable in that is does require anomalous data for
training.

5. Representing system call traces with feature vectors

One of the goals of automated discovery of predictive
rules for intrusion detection is to extract the relevant
knowledge in a form that lends itself to further analysis
by human experts. A natural question that was raised by
examination of the rules learned by RIPPER (Cohen,
1995) in the experiments of Lee and Stolfo (1998) and
Helmer et al. (1998) was whether essentially the same
performance could be achieved by an alternative ap-
proach that induced a smaller number of simpler rules.
To explore this question, we designed an alternative

representation scheme for the data. This representation
was inspired by the success of the bag of words repre-
sentation of documents (Salton, 1983) that has been
successfully used by several groups to train text classi-
fication systems (Yang et al., 1998). In this representa-
tion, each document is represented using a vector whose
elements correspond to words in the vocabulary. In the
simplest case, the vectors are binary and a bit value of 1
indicates that the corresponding word appears in the
document in question and bit value of 0 denotes the
absence of the word.
In this experiment, the data were encoded as binary-

valued bits in feature vectors. Each bit in the vector is
used to indicate whether a known system call sequence
appeared during the execution of a process. This en-
coding is similar in spirit to the bag of words encoding
used to represent text documents.

Feature vectors were computed on a per-process basis
from the sendmail system call traces (Forrest, 1999).
Based on ideas from previous work (Forrest et al., 1996;
Lee and Stolfo, 1998), sequence windows of size 5–12
were evaluated for use with our feature vector approach.
Sequence windows of size 7 were selected for their good
performance in learning accuracy and relatively small
dictionary size.
The training data was composed of 80% of the fea-

ture vectors randomly selected from normal traces and
all of the feature vectors from the selected abnormal
traces. To compare our results to those from the JAM
project, four specific anomalous traces were selected for
training. Five different selections of anomalous traces
were also tested to ensure that arbitrarily selecting these
four anomalous traces did not significantly affect the
results.
The number of abnormal records in the training data

was quite small (15 records) in proportion to the set of
normal training data (520 records). To balance the
weightings, the abnormal training data was duplicated
36 times so that 540 abnormal records were present in
the training data. Lee and Stolfo (1998) explains the
rationale for balancing the data to obtain the desired
results from RIPPER. From the feature vectors built
from sequences of length 7, RIPPER efficiently learned a
rule set containing seven simple rules:

good IF a1406¼ t

good if a67¼ t

good if a65¼ t

good if a576¼ t

good if a132¼ t

good if a1608¼ t

bad otherwise

The size of this set of rules compares favorably to the set
of 209 rules RIPPER learned when we used Lee’s system
call window approach. The feature vector approach
condenses information about an entire process’ history
of execution. Feature vectors may make it easier for
learning algorithms by aggregating information over the
entire execution of a process rather than by looking at
individual sequences.
Applying the learned rule set produced the results

shown in Table 3. All traces except ‘‘Normal sendmail’’
are anomalous. Boldface traces were used for training.
The total numbers of feature vectors, numbers of vec-
tors predicted abnormal by RIPPER, and detection re-
sults are shown. Since a single feature vector represents
each process, each trace tends to have few feature vec-
tors.
The rules cannot be expected to flag all of the pro-

cesses in an attacked trace as an intrusion. While han-
dling a mail message, sendmail spawns child processes
that handle different parts of the procedures involved in
receiving, queuing, and forwarding or delivering the
message. Some of these processes involved in handling
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an intrusive transaction may be indistinguishable from
processes handling a normal transaction because the
attack only affects one of the processes. Therefore, if at
least one of the processes involved in an intrusion is
flagged as abnormal, we can identify the group of re-
lated processes as anomalous.
Several attacks did not result in successful intrusions.

For our intrusion detection system, we identify all at-
tacks as intrusive activity that merits further investiga-
tion elsewhere in the IDS. It would be unlikely that an
attacker would attempt a single exploit and give up if it
fails. The data mining portion of our intrusion detection
system would then correlate these multiple (successful
and unsuccessful) attacks.
The anomalous traces are clearly identified in our

experiment with the exception of one of the minor in-
trusions, fwd-loops-2. The fwd-loop attacks are denial-
of-service attacks where the sendmail process spends its
time repeatedly forwarding the same message. The fea-
ture vector technique may need to be adjusted from
simple binary values to statistical measures to identify
this class of attack.
A benefit of the feature vector approach is the sim-

plicity of the learned rules. Training takes place ‘‘off
line’’ due to the amount of time need to learn a rule set.
Each learned rule set for the sendmail system call feature
vectors is simple: generally fewer than 10 rules, where
each rule often consists of a conjunction of one or two
Boolean terms. Such a small set of rules applied to this
simple data structure should allow us to use this ap-
proach in a near real-time intrusion detection agent

without placing an excessive load on a system. A small,
simple rule set also may lend itself to human expert
examination and analysis in data mining situations
(Cabena et al., 1998).
Another benefit of the feature vector approach is the

condensed representation of a process by its fixed-length
feature vector. The list of system calls executed by a
process can be enormous. Storing this information in its
entirety is infeasible. Representing the data by a rela-
tively short fixed-length string helps solve the problems
of transmitting and storing the data. This technique
realizes the mobile agent architecture’s goal of reducing
and summarizing data at the point of generation.

6. Feature subset selection using genetic algorithms

A learning algorithm’s performance in terms of
learning time, classification accuracy on test data, and
comprehensibility of the learned rules often depends on
the features or attributes used to represent the examples.
Feature subset selection has been shown to improve the
performance of a learning algorithm and reduce the ef-
fort and amount of data required for machine learning
on a broad range of problems (Liu and Motoda, 1998).
A discussion of alternative approaches to feature subset
selection can be found in John et al. (1994), Yang and
Honavar (1998), Liu and Motoda (1998).
The benefits and affects of feature subset selection

include:
• Feature subset selection affects the accuracy of a
learning algorithm because the features of a data set
represent a language. If the language is not expressive
enough, the accuracy of any learning algorithm is ad-
versely affected.

• Feature subset selection reduces the computational
effort required by a learning algorithm. The size of
the search space depends on the features; reducing
the feature set to exclude irrelevant features reduces
the size of the search space and thus reduces the
learning effort.

• The number of examples required to learn a classifi-
cation function depends on the number of features
(Langley, 1995; Mitchell, 1997). More features re-
quire more examples to learn a classification function
to a desired accuracy.

• Feature subset selection can also result in lower cost
of classification (because of the cost of obtaining fea-
ture values through measurement or simply the com-
putation overhead of processing the features).

Against this background, it is natural to consider feature
subset selection as a possible means of improving the
performance of machine learning algorithms for intru-
sion detection (Frank, 1994).
Genetic algorithms and related approaches (Gold-

berg, 1989; Michalewicz, 1996; Koza, 1992) offer an

Table 3

Results of learning rules for feature vectors

Trace name Total

feature

vectors

Vectors

predicted

abnormal

Attack

detected?

chasin 6 3 Y

decode1 6 2 Y

decode2 6 2 Y

fwd-loops-1 2 2 Y

fwd-loops-2 1 0 N

fwd-loops-3 2 2 Y

fwd-loops-4 2 2 Y

fwd-loops-5 3 2 Y

recursive 25 23 Y

sm565a 3 2 Y

sm5x 8 3 Y

smdhole 3 2 Y

sscp-1 1 1 Y

sscp-2 1 1 Y

sscp-3 1 1 Y

syslog-local-1 6 6 Y

syslog-local-2 6 6 Y

syslog-remote-1 7 7 Y

syslog-remote-2 4 4 Y

Normal sendmail

(not used for

training)

130 3
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attractive alternative to exhaustive search (which is in-
feasible in most cases due to its computational com-
plexity). They also have an advantage over commonly
used heuristic search algorithms that rely on the mo-
notonicity assumption (i.e., addition of features does not
worsen classification accuracy) which is often violated in
practice (Yang and Honavar, 1998).
The genetic algorithm for feature subset selection

starts with a randomly generated population of indi-
viduals, where each individual corresponds to a candi-
date feature subset. Each individual is encoded as a
string of 0’s and 1’s. The number of bits in the string is
equal to the total number of features. A 1 in the bit
string indicates an attribute is to be used for training,
and a 0 indicates that the attribute should not be used
for training. The fitness of a feature subset is measured
by the test accuracy (or cross-validation accuracy of the
classifier learned using the feature subset) and any other
criteria of interest (e.g., number of features used, the
complexity of the rules learned).
We used the RIPPER rule learning algorithm as the

classifier. The training data is provided to RIPPER,
which learns a rule set from the data. The number of
conditions in the learned rule set is counted, and this
value is used to determine the complexity of the learned
hypothesis. The learned rule set is applied to the test
examples and the determined accuracy is returned to the
feature subset selection routine. The fitness of the indi-
vidual is calculated, based on the accuracy of the learned
hypothesis (accuracyðxÞ), the number of attributes
(costðxÞ) used in learning, the complexity of the learned
hypothesis (complexityðxÞ), and weights (waccuracy, wcost,
wcomplexity) for each parameter:

fitnessðxÞ ¼ waccuracy � accuracyðxÞ þ wcost � costðxÞ
þ wcomplexity � complexityðxÞ:

This fitness is then used to rank the individuals for se-
lection. Other methods of computing fitness are possible
and are discussed by Yang and Honavar (1998).
A primary goal in using feature subset selection on

this intrusion detection problem is to improve accuracy.
A high percentage of the intrusion detection alerts re-
ported by current intrusion detection systems are false
alarms. Our system needs to be highly reliable, and we
would like to keep false alarms to a minimum. A sec-
ondary goal is to reduce the amount of data that must
be obtained from running processes and classified. This
would reduce the overhead of our intrusion detection
approach on the monitored system.

6.1. Feature subset selection results

The genetic algorithm used standard mutation and
crossover operators with 0.001 probability of mutation
and 0.6 probability of crossover with rank-based selec-

tion (Goldberg, 1989). The probability of selecting the
best individual was 0.6. A population size of 50 was used
and each run went through five generations.
We started with the training data used for the pre-

vious feature vector experiment (1060 feature vectors).
We added an additional copy of each unique feature
vector in the training data (72 feature vectors) to ensure
that rare but potentially important cases had a reason-
able probability of being sampled in the training and
testing phases. This gave a total of 1132 feature vectors
in the input to the genetic algorithm.
To show the general effectiveness of genetic feature

selection on this problem, Table 4 shows the results of
five separate runs of the genetic algorithm with RIPPER
with identical parameters used for each run. The number
of attributes is significantly reduced while the accuracy is
maintained.
Table 5 shows the results of using the rules from the

best individuals found in the five genetic feature selec-
tion runs and compares the results to the original results
learned from all the features. All traces except ‘‘Normal
sendmail’’ are intrusions. Boldface traces were used for
training. Despite using only about half the features in
the original data set, the performance of the learned
rules was comparable to that obtained using the entire
set of features. After feature subset selection, none of the
feature vectors from normal sendmail are labeled as
abnormal. This shows an improvement in the rate of
false positives.

7. Analysis

A comparison of the effectiveness of RIPPER on the
problem using two different data representations and
genetic feature selection algorithm follows.
Table 6 illustrates the advantages of the feature vec-

tor representation over the system call windows for this
learning problem. The feature vector representation al-
lows the learning algorithm to learn a hypothesis much
faster and with comparable accuracy on the normal test
data, and the complexity of the hypothesis is much
smaller. Using genetic feature selection on the feature
vectors is time consuming but further improves the
learned hypothesis and reduces the set of attributes used
for learning.

Table 4

Feature subset selection results with constant parameters

Trial Training accuracy of

best individual

Attributes used by

best individual

1 98.9399 847

2 98.8516 857

3 99.1166 846

4 99.1166 849

5 99.1166 839
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7.1. Rules learned by RIPPER

An example set of rules that were learned in first trial
of RIPPER with genetic feature subset selection is
shown below:

good IF a1024¼ t.

good IF a27¼ t.

good IF a873¼ f AND a130¼ f.

good IF a12¼ t.

good IF a191¼ t.

good IF a223¼ t.

good IF a327¼ t.

bad IF.

The set above contains eight individual rules com-
posed of eight tests, which correspond to this pseudo-
code:

IF \unlink,close,unlink,unlink,close,getti-
meofday,open" seen THEN good

ELSE IF \chmod,ioctl,fstat,write,close,un-
link,rename" seen THEN good

ELSE IF \sigsetmask,sigblock,sigvec,sigvec,
sigsetmask,sigblock,sigvec" not seen and

\close,setitimer,close,gettimeofday,link,
socket,fcntl" not seen THEN good

ELSEIF \accept,wait4,wait4,wait4,wait4,
accept,fork" seen THEN good

ELSE IF \fcntl,gettimeofday,getpid,sendto,
accept,fork,close" seen THEN good

ELSE IF \fstat,mmap,close,open,fstat,mmap,
getdents" seen THEN good

ELSE IF \getpid,sendto,accept,wait4,wait4,
accept,close" seen THEN good

ELSE bad

Each of the rule sets from the five genetic algorithm
trials contains rules that can be found in the other rule
sets. The third and fourth trials contain mostly unique
rules, while the other three runs contain a majority of
rules that are duplicated in other rule sets. The simi-
larities of rules between runs likely indicates the
strength of particular sequences in identifying normal
behavior.
Because the rule sets identify normal processes and

consider all others abnormal, none of the rules identifies
particular abnormal system call sequences. Conse-
quently, the rules do not identify system call sequences
that would directly signal an intrusion. However, these
rules may lead to an understanding of how an attack
causes the typical sequence of system calls to change.

Table 5

Results from rules learned by genetic feature selection

Trace All attributes Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

chasin Y Y Y Y Y Y

decode1 Y Y Y Y Y Y

decode2 Y Y Y Y Y Y

fwd-loops-1 Y Y Y Y Y Y

fwd-loops-2 N N Y N N N

fwd-loops-3 Y Y Y Y Y Y

fwd-loops-4 Y Y Y Y Y Y

fwd-loops-5 Y Y Y Y Y Y

recursive Y Y Y Y Y Y

sm565a Y Y Y Y Y Y

sm5x Y Y Y Y Y Y

smdhole Y Y Y Y Y Y

sscp-1 Y Y Y Y Y Y

sscp-2 Y Y Y Y Y Y

sscp-3 Y Y Y Y Y Y

syslog-local-1 Y Y Y Y Y Y

syslog-local-2 Y Y Y Y Y Y

syslog-remote-1 Y Y Y Y Y Y

syslog-remote-2 Y Y Y Y Y Y

Normal sendmail 1/120 0/120 0/120 0/120 0/120 0/120

Table 6

Effectiveness of different learning techniques

Measure Sequence windows Feature vectors Genetic algorithm feature selection

Learning effort Moderate (30 min) Very good (under 1 min) Intensive (approx. 4 h)

Accuracy of learned hypothesis Good (0.53% false positive) Good (0.83% false positive) Very good (0% false positive)

Complexity of learned hypothesis Poor (Avg. 225 rules) Good (4 rules, 7 tests) Good (Avg. 8.6 rules, 9.6 tests)

Number of attributes used 7 (7 system calls in window) 1832 Avg. 848.9

Classification effort Moderate (large rule set) Small (trivial rule set) Smaller (trivial rule set, fewer features)
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In general, the small size of the rules sets learned by
RIPPER from the system call feature vectors and the
performance of these learned rule sets indicates that a
concise set of rules clearly distinguish normal sendmail
processes from anomalous.

8. Conclusion and future work

Intrusion detection and abuse detection in com-
puter systems in networked environments is a problem
of great practical interest. This paper investigated the
classification of system call traces for intrusion de-
tection through the technique of describing each pro-
cess by a feature vector. From the feature vector
representation RIPPER learned a small, concise set of
rules that was successful at classifying intrusions. In
comparison with other techniques, the feature vector
representation does not depend on thresholds to sep-
arate normal from anomalous. We are concerned that
establishing an arbitrary threshold is difficult and
would require tuning in practice to balance false
alarms (false positives) against missed intrusions (false
negatives).
The rule sets learned using the feature vector rep-

resentation are an order of magnitude simpler than
those obtained using other approaches reported in the
literature (Helmer et al., 1998; Lee and Stolfo, 1998).
This is especially noteworthy given the fact that all of
the experiments in question used the same rule learning
algorithm. We conjecture that the feature vector rep-
resentation used in our experiments is primarily re-
sponsible for the differences in the rule sets that are
learned. The feature vectors condense information
from the entire execution of a process compared to the
fine-grained detail of individual sequences. The scope
of information contained in the feature vectors may
make it easier for learning algorithms to learn simple
rules.
It was further shown that feature subset selection

reduced the number of features in the data, which
resulted in less data and effort required for training
due to the smaller search space. Feature selection also
gave equivalent accuracy with a smaller set of fea-
tures.
We have integrated the learned rules into a mobile

agent running on a distributed system consisting of
Pentium II systems running FreeBSD. This labora-
tory network is connected by a firewall to the De-
partment of Computer Science’s network so we may
operate the intrusion detection system in a controlled
environment. For operation of the IDS, a Voyager
server is started on each host in the monitored dis-
tributed system. The mobile agent is travel through
the system, classifies sample sendmail system call
feature vectors, and reports the results to its media-

tor. The mediator reports the results to the user in-
terface and optionally stores the information in a
database for potential mining and warehousing op-
erations. We have implemented a set of Java classes
that can interpret and apply the RIPPER rules,
which allows our mobile agent to bring its classifier
and rule set(s) with it as it travels through the dis-
tributed system.
Open issues include the use of this technique in het-

erogeneous distributed systems. Specific rule sets may
need to be developed for each node in a distributed
system due to variabilities between operating systems
and workload characteristics. Fortunately, the rule sets
discovered by RIPPER have been small, so mobile
agents ought to be able to carry multiple rule sets
without becoming overly ‘‘heavy’’.
Another issue is whether this technique could be ap-

plied in real time. Feature subset selection itself is
computationally expensive, so training and refining the
agent cannot be done in real time. After the agent is
trained, our technique can determine whether a process
is an intruder only after the process has finished, which
provides near real time detection. Warrender et al.
(1999) or Lee and Stolfo (1998) techniques would allow
anomaly detection in real time during the execution of
the process. Our technique could be refined to determine
the likelihood that a process is intrusive during the
process’ execution, giving real time detection. This re-
finement would be necessary for long-lived daemons
such as HTTP servers.
We would also like to know how well this technique

applies to privileged programs other than sendmail.
Warrender worked with five distinct privileged pro-
grams and identified cases where different thresholds
and/or different algorithms worked better for different
programs (Warrender et al., 1999). Based on her work,
we expect this technique will be successful for more
programs than just sendmail.
Work in progress on intrusion detection is aimed at

the integration of data-driven knowledge discovery
agents into a distributed knowledge network for moni-
toring and protection of distributed computing systems
and information infrastructures. The investigation of
machine learning approaches to discover patterns of
coordinated intrusions on a system wherein individual
intrusions are spread over space and time is of particular
interest in this context.
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