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Abstract

We study a dominance relation for comparing outcomes
based on unconditional qualitative preferences and compare
it with its unconditional counterparts for TCP-nets and their
variants. Dominance testing based on this relation can be car-
ried out in polynomial time by evaluating the satisfiabilityof
a logic formula.

Introduction
Representing and reasoning about preferences is the subject
of much recent work in AI (Brafman and Domshlak 2009).
CP-nets (Boutilier et al. 2004), TCP-nets (Brafman, Domsh-
lak, and Shimony 2006) and their extensions (Wilson 2004b;
2004a) capture qualitative intra-variable preferences and rel-
ative importance over a set of variables. Dominance testing
for these languages has been shown to be PSPACE-complete
(Goldsmith et al. 2008) based on theceteris paribus(“all
else being equal”) interpretation of preferences.

We considerTUP-nets, an unconditional fragment of
TCP-nets. We introduce a dominance relation for TUP-nets
and compare it with its unconditional counterparts for TCP-
nets and their variants. We provide a polynomial time algo-
rithm for dominance testing for TUP-nets. TUP-nets arenot
special cases of already known restrictions of CP-/TCP-nets
for which polynomial time dominance testing algorithms ex-
ist (Boutilier et al. 2004).

A Language for Unconditional Preferences
LetX = {Xi} be a set of variables, each with a domainDi.
An outcomeα is a complete assignment to all the variables,
denoted by the tupleα := 〈α(X1), α(X2), . . . , α(Xm)〉
such thatα(Xi) ∈ Di for eachXi ∈ X . We consider
a preference languageLTUP for specifying: (a) uncondi-
tional intra-variable preferences≻i that are strict partial or-
ders (i.e., irreflexive and transitive relations) overDi for
eachXi ∈ X ; and (b) unconditional relative importance
preferences⊲ that are strict partial orders overX .

Let LCP , LTCP and LExt denote the preference lan-
guages of CP-nets, TCP-nets (an extension of CP-nets) and
Wilson’s extension to TCP-nets respectively. We note that:
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• LTUP allows the expression of relative importance while
LCP does not; andLCP allows the expression of condi-
tional intra-variable preferences whileLTUP does not.

• LTUP is less expressive thanLTCP because it does not
allow the expression of conditional preferences.

• When restricted to unconditional preferences,LTCP =
LTUP .

• LExt is more expressive thanLTCP (Wilson 2004b;
2004a), and hence,LTUP as well.

Dominance underCeteris Paribus Semantics
The semantics for dominance testing in the languagesLCP ,
LTCP andLExt were given by Boutilier et al. (Boutilier
et al. 2004), Brafman et al. (Brafman, Domshlak, and
Shimony 2006) and Wilson (Wilson 2004b; 2004a) respec-
tively. Dominance testing between two outcomes in these
languages is cast as a search for aflipping sequence of out-
comes from one outcome to the other.

Definition 1 (Adapted from (Wilson 2004b; 2004a) for
LTUP ). A sequence of outcomesγ1, · · ·γn is a (worsening)
flipping sequence fromγ1 to γn iff for 1 ≤ i < n, either

1. (V-flip) γi differs fromγi+1 in the value of exactly one
variableXj , andγi(Xj) ≻j γi+1(Xj), or

2. (I-flip) γi differs fromγi+1 in the value of variablesXj

and Xk1
, Xk2

, · · ·Xkl
, γi(Xj) ≻j γi+1(Xj), andXj ⊲

Xk1
, Xj ⊲ Xk2

, · · · , Xj ⊲ Xkl
.

Brafman et al.’s flipping sequence differs from (restricts)
the above such thatl = 1 in any I-flip in a flipping sequence.

Let≻◦ and≻� denote the dominance relation correspond-
ing to the semantics ofLTCP andLExt respectively (≻◦

also includes the semantics ofLCP ). Thenα ≻� β and
α ≻◦ β if and only if there exists a flipping sequence from
α to β according to Definition 1 (Wilson) and its restriction
(Brafman et al.) respectively.

Example 1. Let X = {X, Y, Z} and DX = {x1, x2};
DY = {y1, y2}; DZ = {z1, z2}. Suppose that the intra-
variable preferences are given byx1 ≻X x2, y1 ≻Y y2 and
z1 ≻Z z2, and the relative importance among the variables
is given byX ⊲ Y and X ⊲ Z. If α = 〈x1, y2, z2〉 and
β = 〈x2, y1, z1〉, thenα 6≻◦ β andβ 6≻◦ α butα ≻� β.

Dominance testing has been shown to be PSPACE-
complete (Goldsmith et al. 2008) forLCP ,LTCP andLExt.



Dominance Testing forLTUP

We now provide a polynomial time dominance testing ap-
proach forLTUP . We proceed by defining a relation�i

(for each variableXi ∈ X ) that is derived from≻i.

Definition 2 (�i). ∀u, v ∈ Di : u �i v ⇔ u = v ∨ u ≻i v

Since≻i is a strict partial order (irreflexive and transitive),
it can be shown that�i is a preorder (reflexive and transi-
tive). We next define dominance ofα overβ with respect to
{≻i} and⊲ using a first order logic formula.

Definition 3 (Dominance for Unconditional Preferences).
Given input preferences{≻i} and⊲, and a pair of outcomes
α andβ, we say thatα dominates β (denotedα ≻• β) iff:

∃Xi : α(Xi) ≻i β(Xi)
∧ ∀Xk : (Xk ⊲ Xi ∨ Xk ∼⊲ Xi) ⇒ α(Xk) �k β(Xk)

whereXk ∼⊲ Xi ⇔ Xk 6⊲ Xi ∧ Xi 6⊲ Xk, andXi is
called thewitness of the relation.

Intuitively, this definition of dominance ofα overβ (i.e.,
α ≻• β) requires thatα is preferredto β with respect to at
least one variable, namely the witness. Further, it requires
that for all variables that are relatively more important than
or indifferent to the witness,α is either equal to or is pre-
ferred toβ. In Example 1,α ≻• β, with witnessX1.

We list some properties of≻• below (see (Santhanam,
Basu, and Honavar 2009) for proofs). First,≻• is strict, i.e.,
no outcome is preferred over itself.

Proposition 1 (Irreflexivity of ≻•). ∀α : α 6≻• α.

We observe that≻• is not transitive when{≻i} and⊲ are
arbitrary strict partial orders, as shown by Example 2.

Example 2. LetX = {X1, X2, X3, X4}, and for eachXi ∈
X : Di = {ai, bi} with ai ≻i bi. Suppose thatX1 ⊲ X3

andX2 ⊲ X4. Letα = 〈a1, a2, b3, b4〉, β = 〈b1, a2, a3, b4〉
andγ = 〈b1, b2, a3, a4〉. Clearly, we haveα ≻• β (with X1

as witness),β ≻• γ (with X2 as witness), but there is no
witness forα ≻• γ, i.e.,α 6≻• γ according to Definition 3.

Since transitivity is a necessary condition for rational
choice (French 1986), it is interesting to explore whether
≻• is transitive under certain restrictions. It turns out that
when≻i’s are arbitrary partial orders,≻• is transitive if and
only if ⊲ is restricted to be aninterval order, a special type
of strict partial order.

Definition 4 (Interval Order). A binary relationR ⊆ X ×X
is an interval order iff it is irreflexive and satisfies theFerrers
axiom (Fishburn 1985): for allXi, Xj , Xk, Xl ∈ X , we
have:(Xi R Xj ∧ Xk R Xl) ⇒ (Xi R Xl ∨ Xk R Xj)

In other words,⊲ is an interval order if and only if it has
no restriction that is isomorphic to the partial orderXi ⊲

Xj ∧ Xk ⊲ Xl (Fishburn 1985).

Proposition 2 (Transitivity of≻•). If ⊲ is an interval order,
then∀α, β, γ : α ≻• β ∧ β ≻• γ ⇒ α ≻• γ.

Theorem 1. If intra-variable preferences{≻i} are partially
ordered, then≻• is transitive if and only if relative impor-
tance⊲ is an interval order.

Given partially ordered intra-variable preferences, the
preceding theorem holds for a wide range of relative im-
portance preferences including total orders, weak orders and
semi orders (Fishburn 1985) which are all interval orders.

Dominance testing inLTUP amounts to evaluating the
satisfiability of α ≻• β (Santhanam, Basu, and Honavar
2009), which can be done inO

(

m2(m4 + n4)
)

time, where
m = |X | is number of variables andn = maxXi∈X |Di| is
size of the domains of variables.

Semantics: Relationship Between≻◦, ≻� & ≻•

We investigate the relationship between the semantics≻◦,
≻•, and≻� for the languageLTUP . We show that:

a) ≻•⊆≻�

b) ≻•=≻� when⊲ is an interval order

c) (≻•)⋆ =≻�, where(≻•)⋆ is the transitive closure of≻•

d) ≻• 6⊆≻◦ and≻◦ 6⊆≻• in general; but≻◦⊆≻• when⊲ is
an interval order

Theorem 2. ≻• ⊆ ≻�.

Proof. We will show thatα ≻• β ⇒ α ≻� β for any pair
of outcomesα, β.

Suppose thatα ≻• β with witnessXi (see Definition 3).
Define the setsL = {Xl : Xi ⊲ Xl}, M = {Xl : (Xl ⊲

Xi∨Xl ∼⊲ Xi)∧α(Xl) ≻l β(Xl)∧Xl 6= Xi}, andM ′ =
{Xl : (Xl⊲Xi∨Xl ∼⊲ Xi)∧α(Xl) = β(Xl)∧Xl 6= Xi}.
Clearly, the sets{Xi}, L, M , M ′ form a partition ofX . Let
Xt1, Xt2, . . .Xtn be an enumeration ofM .

We now construct a sequence of outcomes
γt1, γt2, . . . , γtn corresponding toXt1, Xt2, . . . Xtn as
follows. γt1 = 〈γt1(X1), γt1(X2), . . . γt1(Xm)〉 such that
γt1(Xt1) = α(Xt1) and∀Xj ∈ X − {Xt1} : γt1(Xj) =
β(Xj). Similarly γti = 〈γti(X1), γti(X2), . . . γti(Xm)〉
such thatγti(Xti) = α(Xti); and∀Xj ∈ X − {Xti} :
γti(Xj) = γti−1(Xj).

Now, we make use of Definition 1 to compare these out-
comes with respect to≻�. γt1 ≻� β becauseγt1(Xt1) =
α(Xt1) ≻t1 β(Xt1) with γt1 andβ being equal in all vari-
ables other thanXt1 (V-flip). Also γti+1 ≻� γti because
γti+1(Xti) = α(Xti) ≻ti γti(Xti) = β(Xti), with γti+1

andγti being equal in variables other thanXti. For the last
outcome in this sequenceγt1, . . . , γtn, we haveα ≻� γtn

becauseα(Xi) ≻i γtn(Xi) = β(Xi) and∀Xl ∈ M ∪ M ′ :
α(Xl) = γtn(Xl), regardless of the assignments to variables
Xj ∈ L (they are less important thanXi) (I-flip). Hence,
α ≻� γtn ≻� . . . ≻� γt1 ≻� β. By the transitivity of≻�

(Wilson 2004b; 2004a),α ≻� β.
We now investigate the other side of the inclusion. We

recall Example 2 that is relevant in this context.

Example 2 (continued). Recall thatα = 〈a1, a2, b3, b4〉,
β = 〈b1, a2, a3, b4〉 andγ = 〈b1, b2, a3, a4〉 with α ≻• β
(with X1 as witness),β ≻• γ (with X2 as witness), but
α 6≻• γ according to Definition 3. However, there exists a
sequence of flips fromα to γ, namelyα, β, γ according to
Definition 1. Hence,α ≻� γ.

This example shows that≻� ⊆ ≻• does not hold in gen-
eral. However, observe that≻• holds for each consecutive



pair of outcomes in the flipping sequence. Hence, if≻• is
transitive, we can show that≻� ⊆ ≻•.

Theorem 3. ≻� ⊆ ≻• when⊲ is an interval order.

Proof. Given a set of intra-variable preferences{≻i} and
relative importance⊲, we show thatα ≻� β ⇒ α ≻• β
when⊲ is an interval order.

Let α ≻� β. According to Definition 1, there exists a
set of outcomesγ1, γ2, · · · , γn−1, γn such thatα = γ1 ≻�

γ2 ≻� · · · ≻� γn−1 ≻� γn = β such that for all1 ≤ i < n
there is either aV-flip or anI-flip betweenγi andγi+1.

Case 1: (V-flip)γi andγi+1 differ in the value of exactly
one variableXj andγi(Xj) ≻j γi+1(Xj). With Xj as the
witness, the first clause in the definition ofγi ≻

• γi+1 is sat-
isfied (γi(Xj) ≻j γi+1(Xj)). Becauseγi(Xk) = γi+1(Xk)
for all Xk ∈ X−{Xj}, we have∀Xk : (Xk⊲Xj∨Xk ∼⊲

Xj) ⇒ γi(Xk) �k γi+1(Xk) by Definition 2. Therefore,
we haveγi ≻

• γi+1 with Xj as the witness.
Case 2: (I-flip)γi andγi+1 differ in the value of vari-

ables Xj and Xk1
, Xk2

, · · ·Xkl
, and Xj ⊲ Xk1

, Xj ⊲

Xk2
, · · · , Xj ⊲ Xkl

, such thatγi(Xj) ≻j γi+1(Xj). With
Xj as the witness, the first clause in the definition ofγi ≻

•

γi+1 is satisfied (γi(Xj) ≻j γi+1(Xj)).
By Definition 1, γi(Xk) = γi+1(Xk) for all Xk ∈

X − {Xj, Xk1
, Xk2

, · · · , Xkl
}. In particular,γi(Xk) =

γi+1(Xk) for all Xk such thatXk ⊲Xj∨Xk ∼⊲ Xj, which
means that∀Xk : (Xk⊲Xj∨Xk ∼⊲ Xj) ⇒ γi(Xk) �k

γi+1(Xk) by Definition 2. Therefore, we haveγi ≻• γi+1

with Xj as the witness by Definition 31.
From Cases1 and2, γi ≻• γi+1 for every pair of con-

secutive outcomesγi andγi+1. Using the fact that≻• is
transitive when⊲ is an interval order (Theorem 1), we have
α ≻• β (by Definition 3) when⊲ is an interval order.
Hence,≻� ⊆ ≻• when⊲ is an interval order.

The next observation follows from the fact that≻• holds
for each pair of consecutive outcomes in a flipping sequence
supportingα ≻� β.

Observation 1. (≻•)⋆ =≻�, where(≻•)⋆ is the transitive
closure of≻•.

Note that this observation holds even when⊲ is not an
interval order. However, it does not yield a computationally
efficient algorithm for dominance testing in general because
computing(≻•)⋆ is in itself an expensive operation.

We now investigate the relationship between≻◦ and≻•.
In Example 2,α, β, γ forms a flipping sequence fromγ to
α, resulting inα ≻◦ γ (by Brafman et al.’s definition of a
flipping sequence). However,α 6≻• γ. α ≻◦ β implies that
there exists a flipping sequence fromα to β such that≻•

holds for each pair of consecutive outcomes in the sequence.
Hence, it follows that when≻• is transitive,≻◦⊆≻•. On the
other hand, Example 1 shows that it is possible thatα ≻• β
but α 6≻◦ β, and hence, the other side of the inclusion does
not hold. This leads us to the following observation.

Observation 2. ≻• 6⊆≻◦ and ≻◦ 6⊆≻• in general; but
≻◦⊆≻• when⊲ is an interval order.

1Note that we do not care howγi andγi+1 compare w.r.t. vari-
ables{Xk1

, · · · , Xkl
} that are less important than witnessXj .

Concluding Remarks
Dominance testing for conditional preference languages
such as CP-nets, TCP-nets and their extensions have been
shown to be computationally hard (Goldsmith et al. 2008).
Although polynomial time dominance testing algorithms
exist for restricted classes of CP-/TCP-nets, there are no
known polynomial time dominance testing algorithms for
any preference language that allows expression of relative
importance of variables. We study one such language,
LTUP , an unconditional fragment ofLTCP , the language
of TCP-nets. Dominance testing inLTUP amounts to eval-
uating the satisfiability of a logic formula that can be carried
out in polynomial time.

Our results lead to two natural questions that would be
interesting to explore: (1) whether dominance testing using
a search for flipping sequences can be achieved in polyno-
mial time in the case of unconditional preferences; and (2)
whether the existing large body of work on efficient SAT
solvers (Zhang and Malik 2002) can be leveraged to per-
form efficient dominance testing for other more expressive
preference languages.
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