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Abstract e Lryp allows the expression of relative importance while
Lcp does not; andC ¢ p allows the expression of condi-

We study a dominance relation for comparing outcomes tional intra-variable preferences whilgr » does not.

based on unconditional qualitative preferences and caenpar

it with its unconditional counterparts for TCP-nets andrthe * Lrup Is less expressive thaliycp because it does not
variants. Dominance testing based on this relation cantbe ca allow the expression of conditional preferences.
ried out in polynomial time by evaluating the satisfiabilitfy e When restricted to unconditional preferenc€s,-p =
a logic formula. LTup.
e Lg,.; is more expressive thadrcp (Wilson 2004b;
Introduction 2004a), and henc&ryp as well.

Representing and reasoning about preferences is the subjec  Dominance underCeteris Paribus Semantics
of much recent work in Al (Brafman and Domshlak 2009).

CP-nets (Boutilier et al. 2004), TCP-nets (Brafman, Domsh- Zhe sem%néics for domi_nancg te;tintgl_in th? I?ngléafg%?
lak, and Shimony 2006) and their extensions (Wilson 2004b; ~7CP andt e, WEre given by boutiier et al. (Boutilier

o : t al. 2004), Brafman et al. (Brafman, Domshlak, and
2004a) capture qualitative intra-variable preferencesah et ' ) , ' '
ative importance over a set of variables. Dominance testing Shimony 2006) and Wilson (Wilson 2004b; 2004a) respec-

tively. Dominance testing between two outcomes in these
for these languages has been shown to be PSPACE—completqang3l’Jages is cast as a sgarch feiping sequence of out-

(Goldsmith et al. 2008) based on theteris paribug“all

else being equal”) interpretation of preferences. comes from one outcome to the other.
We considerTUP-nets an unconditional fragment of  Definition 1 (Adapted from (Wilson 2004b; 2004a) for

TCP-nets. We introduce a dominance relation for TUP-nets Lrup). A sequence of outcomes - - -, is a (worsening)

and compare it with its unconditional counterparts for TCP- flipping sequence fromy to v, iff for 1 <4 < n, either

nets and their variants. We provide a polynomial time algo- 1. (V-flip) v; differs from~;,; in the value of exactly one

rithm for dominance testing for TUP-nets. TUP-netsraoe variable X;, and~; (X;) =; vi+1(X;), or

special cases of already known restrictions of CP-/TCB-net 5 (|_flip) ~, differs from'%ﬂ' in the value of variablest
for which polynomial time dominance testing algorithms ex- and X, Xy - - Xi 7i(X;) =5 vie1(X;), and X; g
ist (Boutilier et al. 2004). Xkl,le|> Xka, o ,lXj . )gkl. J j j

Brafman et al’s flipping sequence differs from (restricts)

A Language for Unconditional Preferences the above such that= 1 in any I-flip in a flipping sequence.

Let ¥ = {X;} be a set of variables, each with a doma&in Let>° and-"™ denote the dominance relation correspond-
An outcomen is a complete assignment to all the variables, ing to the semantics ofr¢cp and Lg,; respectively £°
denoted by the tupler := {(a(X1),a(X2),...,a(Xn)) also includes the semantics 6t-p). Thena =" 3 and
such thata(X;) € D, for eachX; € X. We consider a =° fif and only if there exists a flipping sequence from
a preference languagéry p for specifying: (a) uncondi- « to 8 according to Definition 1 (Wilson) and its restriction
tional intra-variable preferences; that are strict partial or- (Brafman et al.) respectively.

ders (i.e., irreflexive and transitive relations) ovey for Example 1. Let ¥ = {X,Y,Z} and Dx = {z1,22};

eachX; € X; and (b) unconditional relative importance Dy = {y1,ys}; Dz = {21,25}. Suppose that the intra-
preferences- that are strict partial orders ovét. variable preferences are given by = x 22,41 =y 2 and

Let Lcp, Lrop and Lp,, denote the preference lan- . " 554 the relative importance among the variables
guages of CP-nets, TCP-nets (an extension of CP-nets) andg given byX >V and X > Z. If a = (x1, 1, 22) and

Wilson's extension to TCP-nets respectively. We note that: 3 = (, 4 21), thena #° 3 andj £° a buta = 3.

Copyright(© 2010, Association for the Advancement of Artificial Dominance testing has been shown to be PSPACE-
Intelligence (www.aaai.org). All rights reserved. complete (Goldsmith et al. 2008) fai-p, L7rcp andLg,;.



Dominance Testing forLy p

We now provide a polynomial time dominance testing ap-
proach forLryp. We proceed by defining a relatior;
(for each variableX; € X) that is derived from-;.

Definition 2 (=;). Yu,v € D; :u =m;v S u=vVu=; v

Sinces-; is a strict partial order (irreflexive and transitive),
it can be shown that; is a preorder (reflexive and transi-
tive). We next define dominance afover 5 with respect to
{>:} andr> using a first order logic formula.

Definition 3 (Dominance for Unconditional Preferences)
Given input preferences-;} andr>, and a pair of outcomes
« and, we say thatv dominates 3 (denotedy >-* () iff:

X (X)) = B(Xi)
AVXE + (XpD XiV Xp ~p Xi) = a(Xk) =k B(Xk)

where X, ~x X; & X ¥ X; A X, ¥ X, and X is
called thewitness of the relation.

Intuitively, this definition of dominance af overg (i.e.,
a »=* () requires that is preferredto 3 with respect to at
least one variable, namely the witness. Further, it require
that for all variables that are relatively more importargrth
or indifferent to the witnessy is either equal to or is pre-
ferred tos. In Example 1 >* 3, with withessX;.

We list some properties of* below (see (Santhanam,
Basu, and Honavar 2009) for proofs). First, is strict, i.e.,
no outcome is preferred over itself.

Proposition 1 (Irreflexivity of =°). Va : a #° «a.

We observe that * is not transitive wheg -, } andr are
arbitrary strict partial orders, as shown by Example 2.

Example 2. LetX = { X1, X5, X3, X4}, and for eachX; €
X : D; = {a;,b;} with a; >; b;. Suppose thak; > X3
anng > Xy Leta = <a1,a2, b3, b4>, ﬁ = <b1, as,as, b4>
andy = (b1, b2, as, aq). Clearly, we haver =* 3 (with X,
as witness) 5 -* v (with X, as witness), but there is no
witness forx - v, i.e.,« #* « according to Definition 3.

Since transitivity is a necessary condition for rational
choice (French 1986), it is interesting to explore whether
¢ is transitive under certain restrictions. It turns out that
when-;'s are arbitrary partial orders;* is transitive if and
only if > is restricted to be aimterval order, a special type
of strict partial order.

Definition 4 (Interval Order) A binary relationR C X' x X

is an interval order iff it is irreflexive and satisfies tRerrers
axiom (Fishburn 1985): for allX;, X;, Xi, X; € X, we
have:(X; RX; A Xy RX;) = (X; RX; V Xi RXj)

In other wordsp> is an interval order if and only if it has
no restrictionthat is isomorphic to the partial ordéf; >
X; N Xy, > X; (Fishburn 1985).

Proposition 2 (Transitivity of -*). If &> is an interval order,
thenva, B,y :a =*BAB=*v= a=* .

Theorem 1. If intra-variable preference$:-; } are partially
ordered, then-* is transitive if and only if relative impor-
tancer> is an interval order.

Given partially ordered intra-variable preferences, the
preceding theorem holds for a wide range of relative im-
portance preferences including total orders, weak ordets a
semi orders (Fishburn 1985) which are all interval orders.

Dominance testing inCpyyp amounts to evaluating the
satisfiability ofa >-* 3 (Santhanam, Basu, and Honavar
2009), which can be done i@i(m?(m* + n*)) time, where
m = |X| is number of variables and = max x,cx|D;| is
size of the domains of variables.

Semantics: Relationship Betweer-°, -* & ~*

We investigate the relationship between the semarstits
~*, and>" for the language& ¢ . We show that:

a) ~*Cc-"
b) ~*=~" whenp> is an interval order
c) (=*)* ==", where(>~*)* is the transitive closure of*

d) =*Z>° and>=°¢>* in general; but-°C>* whenr> is
an interval order

Theorem 2. »-* C ",

Proof. We will show thate -* 5 = o =™ § for any pair
of outcomesy, G.

Suppose that ~* 3 with witnessX; (see Definition 3).
Definethesetd = {X; : X;> X;}, M ={X; : (Xi>
X, VX~ Xi)/\OL(Xl) 1 ﬁ(Xl)/\Xl 75 Xi}, andM’ =
{Xl : (XlDXi\/Xl ~ Xi)/\a(Xl) = ﬁ(Xl)/\Xl #+ Xi}.
Clearly, the set$ X;}, L, M, M’ form a partition ofX. Let
X1, X0, ... Xy, be an enumeration atf .

We now construct a sequence of outcomes
Ye1, Ye2, - - -, Yen  COrresponding to X;q, X, ... Xy, as
follows. v41 = (v (X1), %1 (X2), ... v1(X:)) such that
’Ytl(th) = a(th) andVXj e X — {th} : '7t1(Xj) =
B(X;). Similarly v = (72 (X1), 1i(X2), - 7i(Xm))
such thaty (Xy;) = a(Xy); andvX; € X — { Xy}

Vi (Xj) = Yei-1(X;)-

Now, we make use of Definition 1 to compare these out-
comes with respect te™. ~;; =" 3 becausey;;(X;1) =
(X)) =0 B(Xn) with ,; andg being equal in all vari-
ables other thak;; (V-flip). Also 741 ™ v because
Yeit1(Xei) = a(Xpi) =4 (X)) = B(Xe), With 4541
and~;; being equal in variables other thaf);. For the last
outcome in this sequencgs, . . ., Vi, We havea =" v,
becausev(X;) >; vn(X;) = B(X;) andvX;, e M UM’ :
a(X;) = 1 (X)), regardless of the assignments to variables
X, € L (they are less important thaX,) (I-flip). Hence,

a " v, ~® ... =" 4,4 =" 3. By the transitivity of-®
(Wilson 2004b; 2004a); ~" 3. O

We now investigate the other side of the inclusion. We

recall Example 2 that is relevant in this context.

Example 2 (continued). Recall thata = (a1, az, b3, bs),
ﬁ = <b1,a2,a3,b4> and’}/ = <b1,b2,a3,a4> with o =* ﬁ
(with X; as witness),8 »* ~ (with X5 as witness), but
a ¥* v according to Definition 3. However, there exists a
sequence of flips from to v, namelya, 3, v according to
Definition 1. Henceq =™ +.

This example shows that® C ~* does not hold in gen-
eral. However, observe that® holds for each consecutive



pair of outcomes in the flipping sequence. Hence; fis
transitive, we can show that® C -°.

Theorem 3. =™ C ~* when is an interval order.

Proof. Given a set of intra-variable preferences;} and
relative importance-, we show thaty =™ 3 = o =* 3
whenr> is an interval order.

Let o« =™ 3. According to Definition 1, there exists a
set of outcomes, v2, -+ ,Yn_1,Vn SUCh thaty = ~; ~®
yo ™ My, ~® 5, =Bsuchthatforall <i<n
there is either &-flip or anl-flip betweeny; and~; ;.

Case 1: (V-flip)y; and~v;,; differ in the value of exactly
one variableX; and~;(X;) =; vi+1(X;). With X; as the
witness, the first clause in the definitiongf=* ~; 1, is sat-
isfied (i (X;) >=; 7i+1(X;)). Becausey; (Xi) = vit1(Xk)
forall X, € X —{X;} we havev Xy, : (Xi>X;VXi ~p
X;) = vi(Xk) =k vi+1(Xy) by Definition 2. Therefore,
we havey; >* ;11 with X; as the witness.

Case 2: (I-flip)y; and~;41 differ in the value of vari-
ables X; and X, , Xy,, - Xy, and X; > X, X; >
Xk27 T an > sz’ such thatyl(XJ) = ’7i+1(Xj)' With
X as the witness, the first clause in the definitionpf-*
Yit1 is satisfied 'QZ(XJ) =3 ’}/1'+1(Xj)).

By Definition 1, v;(X;) = ~vit1(Xy) for all X, €
X —{X;, Xty Xbpy -+ » X} In particular,v;(Xy) =
vi+1(Xy) for all X, such thatX, > X; vV X, ~. X, which
means that X, : (X, X;V Xy ~p X;) = 7(Xk) =k
vi+1(Xk) by Definition 2. Therefore, we havg >* ;11
with X; as the witness by Definition'3

From Cased and2, v; =* ;41 for every pair of con-
secutive outcomes; and~;+1. Using the fact that-* is
transitive whern> is an interval order (Theorem 1), we have
a =* [ (by Definition 3) whent> is an interval order.
Hence,~"™ C ~* whenr> is an interval order. O

The next observation follows from the fact that holds
for each pair of consecutive outcomes in a flipping sequence
supportingy =" 3.
Observation 1. (~*)* =>", where(>~-*)* is the transitive
closure of-°.

Note that this observation holds even wheris not an
interval order. However, it does not yield a computationall
efficient algorithm for dominance testing in general beeaus
computing(>*)* is in itself an expensive operation.

We now investigate the relationship betweehand>-"*.

In Example 2o, 3, v forms a flipping sequence fromto
a, resulting ina >=° ~ (by Brafman et al.’s definition of a
flipping sequence). Howevaey, °* ~. o >=° [ implies that
there exists a flipping sequence framto 3 such that-*

holds for each pair of consecutive outcomes in the sequence.

Hence, it follows that wher-* is transitive,~°C-*. On the
other hand, Example 1 shows that it is possible that®
buta %#° 3, and hence, the other side of the inclusion does
not hold. This leads us to the following observation.

Observation 2. =°*Z>° and >=°¢Z>* in general; but
=°C»>* whenr> is an interval order.

INote that we do not care how and~;+1 compare w.r.t. vari-
ables{ Xy, ,---, X, } that are less important than witneXs.

Concluding Remarks

Dominance testing for conditional preference languages
such as CP-nets, TCP-nets and their extensions have been
shown to be computationally hard (Goldsmith et al. 2008).
Although polynomial time dominance testing algorithms
exist for restricted classes of CP-/TCP-nets, there are no
known polynomial time dominance testing algorithms for
any preference language that allows expression of relative
importance of variables. We study one such language,
Lryp, an unconditional fragment of ¢ p, the language

of TCP-nets. Dominance testing iy p amounts to eval-
uating the satisfiability of a logic formula that can be czdri

out in polynomial time.

Our results lead to two natural questions that would be
interesting to explore: (1) whether dominance testinggisin
a search for flipping sequences can be achieved in polyno-
mial time in the case of unconditional preferences; and (2)
whether the existing large body of work on efficient SAT
solvers (Zhang and Malik 2002) can be leveraged to per-
form efficient dominance testing for other more expressive
preference languages.
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