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ABSTRACT
Many real-world applications involve longitudinal data, consist-
ing of observations of several variables, where different subsets
of variables are sampled at irregularly spaced time points. We in-
troduce the Longitudinal Gaussian Process Latent Variable Model
(L-GPLVM), a variant of the Gaussian Process Latent VariableModel,
for learning compact representations of such data. L-GPLVM over-
comes a key limitation of the Dynamic Gaussian Process Latent
Variable Model and its variants, which rely on the assumption that
the data are fully observed over all of the sampled time points.
We describe an effective approach to learning the parameters of
L-GPLVM from sparse observations, by coupling the dynamical
model with a Multitask Gaussian Process model for sampling of the
missing observations at each step of the gradient-based optimiza-
tion of the variational lower bound. We further show the advantage
of the Sparse Process Convolution framework to learn the latent
representation of sparsely and irregularly sampled longitudinal
data with minimal computational overhead relative to a standard
Latent Variable Model. We demonstrated experiments with syn-
thetic data as well as variants of MOCAP data with varying degrees
of sparsity of observations that show that L-GPLVM substantially
and consistently outperforms the state-of-the-art alternatives in
recovering the missing observations even when the available data
exhibits a high degree of sparsity. The compact representations of
irregularly sampled and sparse longitudinal data can be used to
perform a variety of machine learning tasks, including clustering,
classification, and regression.
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1 INTRODUCTION
Longitudinal data, also called panel data, consist of repeated obser-
vations of several variables from a set of individuals ([12, 15, 21, 26]).
In contrast to multivariate time series, wherein all of the variables
are measured at regularly spaced time points, in the longitudinal set-
ting, different subsets of variables are sampled at varried irregularly
sampled time points. Such data present longitudinal counterparts
of classical machine learning problems of clustering, classification,
and regression. Some examples include the task of clustering exper-
imental subjects based on longitudinal observations of performance
on various cognitive tests; predicting age-related cognitive declines,
e.g., in episodic memory, or predicting educational attainment of
students as a function of age, demographics, educational experi-
ences, etc., or clustering patients based on their clinical histories
(captured in their Electronic Health Records). Models which ac-
commodate longitudinal data typically address a few challenges:
sparsity: the temporal observation are highly sparse, meaning they
containmany missing data points; and varying length: The length
of the observation may vary substantially.

1.1 REPRESENTATION LEARNING FROM
LONGITUDINAL DATA

Given the many challenges presented by real-world longitudinal
data, a problem of particular interest is the task of learning compact,
low-dimensional representations or embedding of longitudinal data.
Such representations make it possible to apply a wide range of
existing machine learning methods for clustering, classification,
and regression to longitudinal data. Against this background, this
study addresses the problem of representation learning from the
longitudinal data.

Related Work. Latent Variable Models (LVMs), or statistical models
that relate a set of observed variables to a set of latent variables
under the assumption that the observations are controlled by the
latent variables, have a long history in machine learning. Of par-
ticular interest in the context of this paper are Gaussian Process
Latent Variable Models (GPLVM) ([16]) which can be thought of as
a combination of LVMs and Gaussian Process (GP) models ([19]).
GPLVMs consist of a set of LVMs where each observed variable is
the sum of the corresponding latent variables and noise. Further-
more, GPLVM assumes that the functional variables are generated
from low dimensional variables modeled by Gaussian Processes.
GPLVM represent a class of Bayesian non-parametric model whose



flexible structure allows it to grow as needed to accommodate the
complexity of the data. In recent years, many variants and exten-
sions of GPLVMs have been developed. For example, The Gaussian
process dynamical models (GPDM) ([27]) models the dynamics
of the process using Markov transitions between states in the la-
tent space, and variants of GPDM such as higher-order Markov
dependencies in the latent space ([28]). Due to the dynamical prior,
irregular time observation are treated in Markov fashion. Titsias
introduced a variational inference framework for training GPLVM
for Bayesian nonlinear dimensionality reduction ([24]). Damianou
et al. ([9, 10]) introduced the Dynamical Gaussian Process Latent
Variable Model (D-GPLVM), a natural extension of the Bayesian
GPLVM that can accommodate dependencies between latent vari-
ables. Unlike GPDM,D-GPLVMuses kernels to incorporate complex
(not necessarily Markov) dependencies between latent variables. It
can use the Radial Basis Function (RBF) kernel to model smooth
temporal dynamics, or Ornstein-Uhlbeck covariance function to
model a Gauss-Markov process. As a generative model, D-GPLVM
can be used to produce the observations at any desired time point.
More recently, Damianou et al. ([10, 11]), building on the results
of ([13, 14]), proposed general frameworks for dealing with the
scenario where the inputs and outputs of the generative model
are uncertain. However, this body of work assumes that the data
samples are fully observed at many time points. A key limitation of
the body of work summarized above is that they assume that the
data is fully observed, that is the values of the observable variables
are available at all observed time points. However, this assumption
does not hold in many practical scenarios where only small sub-
sets subsets of the observable variables are sampled at irregularly
spaced time points.

Contributions. Wepropose to relax the assumption of fully observed
data to develop, L-GPLVM, a variant of GPLVM for learning com-
pact representations of longitudinal data where the observations
are produced by sampling of possibly different sparse subsets of
variables at irregularly spaced time points. We show how to effi-
ciently learn the parameters of L-GPLVM from longitudinal data.
We present results of experiments with synthetic as well as several
variants of the Human Motion Capture (MOCAP) benchmark data
that show that L-GPLVM substantially outperforms the state-of-
the-art methods for representation learning from longitudinal data.
The proposed approach is amenable to being extended to handle
irregularly and sparsely sampled spatio-temporal data.

Organization of the Paper. The rest of the paper is organized as
follows. Section 2 introduces the D-GPLVM and the variational
inference framework for learning D-GPLVM. Section 3 introduces
L-GPLVM for learning the representations of sparsely and irregu-
larly sampled longitudinal data. Section 4 presents results of exper-
iments that show that L-GPLVM significantly outperforms GPLVM
([9]), deepGP with dynamical prior ([8]) when evaluated using the
reconstruction error of the longitudinal data as the performance
metric.

2 PRELIMINARIES
Gaussian Processes. Gaussian Process (GP) ([23]), is a flexible Bayesian
non-parametric model and is the primary building block of the

Gaussian Process Latent Variable Model. In GP, we model a finite
set of random functions 𝑓 = [𝑓 (𝑥1), ..., 𝑓 (𝑥𝑁 )]𝑇 as a joint Gauss-
ian distribution 𝑓 ∼ GP(𝜇, 𝐾) where the covariance matrix 𝐾 is
evaluated using choices of kernel functions.

In GP Regression, the goal is to predict the response 𝑦∗ of a new
input 𝑥∗, given a training set {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1 of 𝑁 training samples.
The response variable 𝑦𝑖 is modeled as the function value 𝑓 (𝑥𝑖 )
corrupted by noise𝑦𝑖 ∼ N(𝑓 (𝑥𝑖 ), 𝜎2). Given the joint probability of
the response variables and the latent function 𝑝 (𝑦, 𝑓 ) = 𝑝 (𝑦 |𝑓 )𝑝 (𝑓 ),
the distribution of the latent function value 𝑓 ∗ is a Gaussian distri-
bution with mean and variance

𝜇 (𝑥∗) = 𝑘𝑥∗𝑋 (𝜎2𝐼 + 𝐾𝑋𝑋 )−1𝑦

𝑣𝑎𝑟 (𝑥∗) = 𝑘𝑥∗𝑥∗ − 𝑘𝑥∗𝑋 (𝜎2𝐼 + 𝐾𝑋𝑋 )−1𝑘𝑋𝑥∗
(1)

where 𝑘𝑥∗𝑋 = 𝑘 (𝑥∗, 𝑋 ) is the covariance between the new input 𝑥∗
and the 𝑁 training sample evaluated by the kernel function 𝑘 .

Gaussian Process Latent Variable Model (GPLVM). GPLVM was first
conceived as an approach to visualize data by reducing its dimen-
sionality and can be seen as a non-linear extension of the Probabilis-
tic PCA ([17]). GPLVM learns a low dimensional representation
𝑋𝑁×𝑄 of the data matrix 𝑌𝑁×𝐷 where 𝑄 ≪ 𝐷 . The mapping
𝑓 : 𝑋 → 𝑌 is a nonlinear function with Gaussian Process (GP) prior
𝑓 ∼ GP(0, 𝐾). Thus, the 𝑖𝑡ℎ sample 𝑦𝑖 is generated as

𝑦𝑖 = 𝑓 (𝑥𝑖 ) + 𝜖 (2)

GPLVM allows the specification of a suitable prior over the
latent space 𝑋 . While one can utilize GPLVM without specifying a
prior, that would be tantamount to maximizing the log marginal
likelihood of the data with the attendant danger of over fitting
([19]). Up until ([24]), the standard approach in learning GPLVM
was to find the MAP estimate of 𝑋 ([16]) whilst jointly maximizing
the log marginal likelihood with respect to the data and the hyper-
parameters. Recent work has led to several variants of GPLVM for
specific applications ([19]). Of particular interest in our setting is
GPLVM with a dynamical prior to model multivariate time series
data ([9, 27]).

Bayesian-GPLVM. ([24, 25]) gave a full Bayesian treatment of the
GPLVM, introducing a GP prior based on auxiliary inducing points
([7]) to make the resulting the variational Bayes inference problem
computationally tractable. The latent variables were then varia-
tionally integrated out and a closed-form lower bound on the mar-
ginal likelihood computed. The marginal likelihood of the data
𝑝 (𝑌 ) =

∫
𝑝 (𝑌 |𝑋 )𝑝 (𝑋 )𝑑𝑋 is intractable because 𝑋 appears non-

linear inside the covariance matrix 𝐾𝑁𝑁 + 𝛽−1𝐼𝑁 . A variational
distribution 𝑞(𝑋 ) is introduced to approximate the true posterior
distribution 𝑝 (𝑋 |𝑌 ). The chosen variational distribution in the i.i.d
case has a factorized Gaussian form:

𝑞(𝑋 ) =
𝑁∏

N(𝑥𝑛 |𝜇𝑛, 𝑆𝑛) (3)

This yields the Jensen’s lower bound on the 𝑙𝑜𝑔 𝑝 (𝑌 ) of the form:

𝐹 (𝑞) = 𝐹 (𝑞) − 𝐾𝐿(𝑞(𝑋 ) |𝑝 (𝑋 )) (4)



The negative KL divergence between the variational posterior dis-
tribution q(X) and the prior distribution 𝑝 (𝑋 ) can be computed
analytically whereas the first term can be decomposed into sepa-
rate computations for each dimension:

𝐹 (𝑞) = 𝑞(𝑋 )𝑙𝑜𝑔𝑝 (𝑌 |𝑋 )𝑑𝑋

=

𝐷∑
𝑑=1

∫
𝑞(𝑋 )𝑙𝑜𝑔𝑝 (𝑦𝑑 |𝑋 )𝑑𝑋 = 𝐹𝑑 (𝑞)

(5)

The intractable integration of 𝑙𝑜𝑔𝑝 (𝑦𝑑 |𝑋 ) which appears in 𝐹𝑑 (𝑞)
can then be approximated using inducing points. For each vector
𝑓𝑑 , a set of 𝑀 inducing variables 𝑢𝑑 is introduced. The 𝑢 ′

𝑑
𝑠 are

evaluated at a set of inducing locations given by 𝑍 ∈ 𝑅𝑀×𝑄 .𝑈 are
simply the function samples drawn from the same conditional prior,
augmenting the joint probability model:

𝑝 (𝑦𝑑 , 𝑓𝑑 , 𝑢𝑑 |𝑋,𝑍 ) = 𝑝 (𝑦𝑑 |𝑓𝑑 )𝑝 (𝑓𝑑 |𝑢𝑑 , 𝑋, 𝑍 )𝑝 (𝑢𝑑 |𝑍 ) (6)

The likelihood 𝑝 (𝑦𝑑 |𝑋 ) can be computed from the augmented
model by marginalizing out (𝑓𝑑 , 𝑢𝑑 ) for any value of the induc-
ing inputs 𝑍 . This allows 𝑝 (𝑓𝑑 |𝑋 ) to be computed by 𝑞(𝑓𝑑 , 𝑢𝑑 ) =
𝑝 (𝑓𝑑 |𝑢𝑑 , 𝑋 )𝜙 (𝑢𝑑 ) = 𝑝 (𝑓𝑑 |𝑢𝑑 )𝜙 (𝑢𝑑 ), which is tractable. The bound
for the data can then be fully specified by the Psi statistics Ψ0 =

𝑇𝑟 (
〈
𝐾𝑁𝑁

〉
𝑞 (𝑋 ) ), Ψ1 =

〈
𝐾𝑁𝑀

〉
𝑞 (𝑋 ) , Ψ2 =

〈
𝐾𝑀𝑁𝐾𝑁𝑀

〉
𝑞 (𝑋 ) where〈

·
〉
𝑞 (𝑋 ) denotes the expectation under the variational distribution

𝑞(𝑋 ) ([18]). An attractive feature of this approach is its ability to
automatically determine the latent dimensionality of a given data
set by Automatic Relevance Determination (ARD).

Variational Gaussian Process Dynamical Systems. A dynamical prior
can be imposed over the 𝑋 in the GPLVM to enable modeling of
dynamical system ([9, 18]). In the multivariate time series data
{𝑦𝑛, 𝑡𝑛}𝑁𝑛=1, where 𝑦𝑛 ∈ IRD is a 𝑑-dimensional observation at time
𝑡𝑛 ∈ IR+. The system could be summarized as follows:

𝑥𝑞 (𝑡) ∼ GP(0, 𝑘𝑥 (𝑡𝑖 , 𝑡 𝑗 )), 𝑞 = 1, ..., 𝑄
𝑓𝑑 (𝑥) ∼ GP(0, 𝑘𝑓 (𝑥𝑖 , 𝑥 𝑗 )), 𝑑 = 1, ..., 𝐷

(7)

The kernel functions 𝑘𝑥 and 𝑘𝑓 are parameterized by 𝜃𝑥 and 𝜃 𝑓
respectively. The choice of 𝑘𝑥 to be indefinitely differentiable func-
tion, i.e. the square exponential (RBF) allows generation of a smooth
path in the latent space. Indeed, the major difference between the
Bayesian GPLVM in ([24]) and D-GPLVM in ([8]) has to do with the
use of dynamical prior by the latter. Consequently, the derivations
of the variational lower bound of D-GPLVM is similar to that of
GPLVM with one exception: the KL divergence 𝐾𝐿(𝑞(𝑋 ) | |𝑝 (𝑋 ))
being replaced by 𝐾𝐿(𝑞(𝑋 ) | |𝑝 (𝑋 |𝑡)) and 𝑋 are coupled temporally
leading to the factorization on 𝑞(𝑋 ):

𝑞(𝑋 ) =
𝑄∏

N(𝑥𝑞 |𝜇𝑞, 𝑆𝑞) (8)

This results in a full-rank covariance matrix 𝑆𝑞 with 𝑁 2 parame-
ters. The re-parameterization trick introduced in ([20]) can then
be employed to reduce the number of parameters to that of the
standard Bayesian Gaussian Process. Specifically 𝜇𝑞 and 𝑆𝑞 can be
parameterized by the 𝜇𝑞 = 𝐾𝑡 𝜇𝑞 and 𝑆𝑞 = (𝐾−1

𝑡 + Λ𝑞)−1 where 𝜇𝑞
and Λ𝑞 consist of 𝑄 × 𝑁 free parameters.

3 LONGITUDINAL GAUSSIAN PROCESS
LATENT VARIABLE MODEL

We proceed to first show how a simple sampling procedure of the
unseen observations suffices to resolve the difficulty of learning the
dynamical representation in the longitudinal setting, yielding L-
GPLVM, a longitudinal variant of D-GPLVM.Wewill then introduce
a more computationally efficient formulation for the L-GPLVM.

In the fully observed setting of GPLVM, the latent variables 𝑋
are optimized so as to properly propagate the information con-
tained in 𝑋 to the observations 𝑌 . However, in the longitudinal
setting, because the observations are irregular and sparse, the vari-
ational approximation underlying GPLVM becomes non-trivial. An
intuitive way to overcome such difficulty is to impute the missing
observations at each of the time points given possible correlation
among the different variables in 𝑌 . Specifically, we model the miss-
ing observations using a Gaussian Process model. Suppose the
covariance function of the dynamical model is given by a dynami-
cal covariance 𝐾𝑡 over 𝑋 , this covariance function also implicitly
specifies the covariance among observations within individual di-
mension of 𝑌 . Specifically, the computation of the evidence bound
breaks down to the summation over the log likelihood of individual
data dimensions with respect to the variational distribution 𝑞(𝑋 )
in (5) whose mean and covariance are parameterized by 𝐾𝑡 in (8).
Thus, the dynamical covariance function enables estimation of the
sampling distribution for each unobserved variable 𝑦∗

𝑑
in the 𝑑𝑡ℎ

dimension at time 𝑡∗:

𝑦∗
𝑑
∼ GP(𝜇∗𝑚𝑜 , Σ

∗
𝑚𝑜 ) (9)

where 𝜇∗𝑚𝑜 , Σ
∗
𝑚𝑜 are the mean and covariance of a multi-task Gauss-

ian Process estimated over the observed outputs with the covariance
function, 𝐾𝑡 . Here, each missing observation is imputed using re-
gression by solving a multi-task regression problem (where each
task corresponds to one (unobserved) dimension of 𝑌 . Figure 1
illustrate the plate annotation of the proposed approach. we define
a new objective on the composite log-likelihood over the observed
data:

𝐹 ∗ (𝑞) ≥ L𝑚𝑜 (𝑦𝑜 , 𝐾𝑡 ) + F̃∗ (𝑞) − 𝐾𝐿(𝑞 | |𝑝) (10)
The multitask model log-likelihood L𝑚𝑜 is computed over the
observed data using the global dynamical covariance𝐾𝑡 ; and F̃ ∗ (𝑞)
is the dynamical model log-likelihood computed over the fully
sampled data F̃ ∗ (𝑞) =

∑𝐷
𝑑=1 F̃

∗
𝑑

=
∑𝐷
𝑑=1 𝑞(𝑋 )𝑙𝑜𝑔 𝑝 (𝑦

∗
𝑑
, 𝑦𝑜

𝑑
|𝑋 )𝑑𝑋 .

The multi-task regression model is used to adaptively and optimally
impute the unobserved 𝑌 ∗ at each optimization step using the
current best approximation of the global dynamical covariance
whereas the Dynamical GPLVM attempts to optimize dynamical
covariance as well as the cross-covariance structures using the
sampled and observed data.

Sampling using multi-output Gaussian Process. One of the most
straightforward choices to establish the sampling distribution is to
use the Multi-task Learning Model (MTLM) ([5, 19]:

𝜇∗𝑚𝑜 = (𝐾𝑓 ⊗ 𝐾𝑡 (𝑡∗, 𝑡𝑜 ))𝑇 (Σ∗𝑚𝑜 )−1𝑦𝑜

Σ∗𝑚𝑜 = 𝐾𝑓 ⊗ 𝐾𝑡 + 𝐷 ⊗ 𝐼
(11)

in which, 𝐾𝑓 = ΦΦ𝑇 is the task covariance matrix to be inferred in
the multi-task model. In the case where data dimensions are known



Figure 1: Overview of L-GPLVM Using The Plate Notation.
The dashed line represents the utilization of dynamical
model parameters to impute missing observations.

a priori to be independent,𝐾𝑓 can be set to the identity matrix𝐾𝑓 =

𝐼𝐷 . Regardless of data dimension dependencies, initializing𝐾𝑓 = 𝐼𝐷
allows the unobserved data to first be sampled independently.

Fig. 2 demonstrates the ability of this approach to learn a repre-
sentation and associated mapping to produce reasonable predictive
means in a synthetic longitudinal data set. The pitfall of this sim-
ple approach is the complexity during training being dominated
by the MTLM with the naive implementation of cubic complexity
𝑂 (𝑁 3𝐷3) or a reduced complexity of 𝑂 (𝑁𝐷𝑀2𝑃2) with a couple
approximations of such that𝑀 ≪ 𝑁 and 𝑃 < 𝐷 (For more details
on the approximations and complete derivation of L𝑚𝑜 over the
observed data, refer to ([5]). While the procedure described above is
able to recover the correlation structure and impute the unobserved
variables at each time point, it is not computationally efficient. We
next describe a way to get around this limitation.

More efficient sampling via sparse convolved Gaussian Processes. We
introduce a more efficient construction of the sampling distribu-
tion in 9 using the Sparse Convolved Gaussian Process framework.
Unlike the MTLM whose multitask covariance is captured by the
Kronecker product between the coregionalization matrix, 𝐾𝑓 , and
the input covariances, in the Process Convolution framework, each
function 𝑓𝑑 (𝑥), the noiseless version of 𝑦𝑑 , can be expressed as
a convolution integral between a smoothing kernel 𝐺𝑑 and the
shared latent function 𝑢 ([1–3]).

𝑓𝑑 (𝑥) =
∫
X
𝐺𝑑 (𝑥 − 𝑧)𝑢 (𝑧)𝑑𝑧 (12)

While it is possible to consider influences from multiple latent
functions (𝑢’s) each with its own smoothing kernel, for simplicity
of exposition we will assume the a single latent function as shown
in (12). Assume 𝑢 (𝑧) has the general covariance, 𝑘 (𝑧′, 𝑧), then the

Figure 2: Visualization of Predictive Mean In A Single Di-
mension of A Simulated Dataset. Only 10% of the 100 simu-
lated time points are observed (represented by the blue dots).
The auxiliaryMTLMmodel enables VGPDS to explicitly cap-
ture the dependency among the dimensions in the resulting
sparse data set.

(cross-)covariances can be computed as:

𝑐𝑜𝑣 [𝑓𝑑 (𝑥), 𝑓 ′𝑑 (𝑥
′)] =

∫
X
𝐺𝑑 (𝑥 − 𝑧)𝐺 ′

𝑑
(𝑥 ′ − 𝑧)

𝑘 (𝑧, 𝑧′)𝑑𝑧′𝑑𝑧

𝑐𝑜𝑣 [𝑓𝑑 (𝑥), 𝑢 (𝑧)] =
∫
X
𝐺 ′
𝑑
(𝑥 ′ − 𝑧)𝑘 (𝑧, 𝑧′)𝑑𝑧′

(13)

Alvarez et al. showed that by making specific conditional indepen-
dence assumptions, they arrived at efficient approximation similar
in form to partially independent training conditional model (PITC)
([1, 2, 22]). Specifically, they showed that instead of drawing samples
from 𝑢 (𝑧), one could draw samples from its finite representation,
i.e.,𝑢 = [𝑢 (𝑧1), ..., 𝑢 (𝑧𝑀 )]𝑇 at𝑍 = 𝑧𝑘

𝑀
𝑘=1, the set of inducing vectors

at which 𝑢 (𝑧) is evaluated. In this study, the set of inducing input
𝑍 are𝑀 equally spaced time points in the modeling interval. Each
function 𝑓𝑑 in (12) can then be approximated by:

𝑓𝑑 (𝑥) ≈
∫
X
𝐺𝑑 (𝑥 − 𝑧)𝐸 [𝑢 (𝑧) |𝑢]𝑑𝑧 (14)

The likelihood for 𝑓 is 𝑝 (𝑓 |𝑢, 𝑍, 𝑋, 𝜃 ) = N(𝑓 |𝐾𝑓 ,𝑢𝐾
−1
𝑢,𝑢𝑢, 𝐾𝑓 ,𝑓 −

𝐾𝑓 ,𝑢𝐾
−1
𝑢,𝑢𝐾𝑢,𝑓 ), where 𝐾𝑢,𝑢 is evaluated using the temporal covari-

ance 𝐾𝑡 (𝑧, 𝑧′). For this study, like in ([2] we assume the individual
outputs in 𝑓 are independent conditional on 𝑢. Under this assump-
tion, the full multitask covariance matrix 𝐾𝑓 ,𝑓 can be replaced by
its low rank approximation𝐾𝑓 ,𝑢𝐾

−1
𝑢,𝑢𝐾𝑢,𝑓 in all entries except in the

diagonal block corresponding to 𝐾𝑓𝑑 ,𝑓𝑑 . Following the same line of
reasoning as in the previous subsection and ([2], we can construct
a sampling distribution in (9) as follows:

𝜇∗𝑚𝑜 = 𝐾𝑓∗,𝑢𝐴
−1𝐾𝑢,𝑓 (𝐷 + Σ)−1𝑦𝑜

Σ∗𝑚𝑜 = 𝐾𝑓∗,𝑓∗ − 𝐾𝑓∗,𝑢𝐾
−1
𝑢,𝑢𝐾𝑢,𝑓∗

+ 𝐾𝑓∗,𝑢𝐴
−1𝐾𝑢,𝑓∗ + Σ∗

(15)



where 𝐴 = 𝐾𝑢,𝑢 + 𝐾𝑢,𝑓 (𝐷 + Σ)−1𝐾𝑓 ,𝑢 , and 𝐷 = 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔[𝐾𝑓 ,𝑓 −
𝐾𝑓 ,𝑢𝐾

−1
𝑢,𝑢𝐾𝑢,𝑓 ] is the relevantmultitask likelihood over the observed

output sharing the same covariance parameters as the Dynamical
model:

L𝑚𝑜 ∝ −1
2
𝑙𝑜𝑔 |𝐾𝑢,𝑢 | −

1
2
𝑙𝑜𝑔 |𝐴| − 1

2
𝑡𝑟
[
𝐷−1𝑦𝑦𝑇

]
+1

2
𝑡𝑟
[
𝐷−1𝐾𝑓 ,𝑢𝐴

−1𝐷−1𝑦𝑦𝑇
] (16)

This multitask Gaussian Process Model shares the set of parameters
from the Dynamical model, particularly the dynamical kernel, at
each step of the optimization, yielding a sampling process much
more efficient𝑂 (𝑁 3𝐷) than MTLM𝑂 (𝑁 3𝐷3) due to the use of the
sparse approximation.

4 EXPERIMENTS AND RESULTS
We proceed to describe experiments that are designed to address the
following research questions: How does the L-GPLVM (with RBF
kernel) compare with with the state-of-the-art baselines, namely,
the D-GPLVM ([9]), the deepGP ([8]) , Nearest Neighbor (NN), and
3 popular statistical imputations for time-series, in imputing the
unobserved variables (as measured by the error of the reconstructed
observations relative to the ground truth) in the longitudinal setting
where observations are made at irregularly spaced time points at
each of which only a small subset of the observable variables are
actually observed? How does the performance of vary as a function
of sparsity of the available observations? Before proceeding to
discuss the experiments, we briefly describe the data sets used in
our experiments.

Dataset
Synthetic Data: The synthetic data were generated by sampling 3
smooth curves using Gaussian Process unknown to the dynamical
models with time as input. 15 additional dimensions were created
by random linear combination of the sampled curves. The resulting
curves were sampled at 100 equally spaced time points between
0 to 2𝜋 . To obtain irregularly sampled sparse data, a subset of the
observations were masked by choosing a random subset of the
time points independently for each dimension until the desired
fraction of the observations were eliminated. Using this procedure,
we generated data sets with varying degrees of data sparsity ranging
from 0.1 to 0.8.
Humanmotion capture dataWe used the data from the MOCAP
data set ([6]) corresponding to the walking motion of a human
body represented by the positions of 59 joints. We applied the same
masking procedure as the one used in the case of synthetic data to
generate the data sets with varying degrees of data sparsity ranging
from 0.0 to 0.6.

Experiments
We compare GPLVM based models with the identical choice of the
number of latent dimensions with 𝑄 = 3 for the synthetic data
set and 𝑄 = 7 for the MOCAP data set. The deepGP model has
1 intermediate layer which is over-complete, i.e., the number of
nodes exceed the dimensionality of the data set (in our experiments,
by a factor of 3). Each node in the intermediate layer’s output is
a randomly selected group of variable in 𝑌 . L-GPLVM performs

imputation of unobserved data using the algorithm described in
Section 3, whereas D-GPLVM and deepGP do so using mean im-
putation. We also included the result for three other time-series
imputation methods to serve as popular baseline for comparison:
NN, Last Observation Carried Forward (LOCF), Moving Window
Interpolation (MW, window size=5), and Multiple Imputation by
Chained Equations (MICE) ([4]).

We assessed the performance (as measured by the sum of abso-
lute error, 𝑆𝐴𝐸 =

∑𝑁
𝑖=1 |𝑦𝑖 −𝑦𝑖 |, of the reconstructed data relative to

the ground truth data) on the synthetic data as well as the MOCAP
data with different degrees of sparsity of observations.

The results of experiments with the synthetic data, summarized
in Table 1, show that L-GPLVM substantially outperforms all other
methods, reconstructing the missing observations, even when pre-
sented with data with fairly high degrees of data sparsity. The
experiment was repeated 3 times and the mean and standard de-
viation (in parentheses) of the reconstruction error are reported.
In contrast, the performance of the standard D-GPLVM quickly
degrades as the observations become increasingly sparse, until at
data sparsity of 0.7, it fails to recover the shape of the underlying
curve.

The results of experiments with theMOCAP data, summarized in
Table 2, are consistent with the results obtained with the synthetic
data. That is, L-GPLVM substantially outperforms all other methods,
reconstructing the missing observations, even when presented with
data with fairly high degrees of data sparsity, whereas the other
methods fail to do so, especially as the degree of data sparsity
increases.

5 SUMMARY AND DISCUSSION
In this paper, we have introduced L-GPLVM, a variant of GPLVM
for representation learning from high dimensional longitudinal
observations, where different subsets of the variables are sampled
at irregularly spaced time points. L-GPLVM overcomes a key limita-
tion of D-GPLVM and related models which rely on the assumption
that the data are fully observed over all of the sampled time points,
an assumption that is often violated the longitudinal setting. We
have also described an effective approach to learning the parameters
of L-GPLVM from sparse observations, by coupling the dynamical
model with a Multitask Gaussian Process model for sampling of the
missing observations at each step of the gradient-based optimiza-
tion of the variational lower bound. We have further shown how
to take advantage of the Sparse Process Convolution framework
([1]) to learn the latent representation of sparsely and irregularly
sampled longitudinal data with minimal computational overhead
relative to a standard LVM. We have presented results of experi-
ments with synthetic data as well as MOCAP data that show that
L-GPLVM substantially and consistently outperforms the state-of-
the-art alternatives in recovering the missing observations even
when the available data exhibits a high degree of sparsity. The com-
pact representations of irregularly sampled and sparse longitudinal
data can be used to perform a variety of machine learning tasks,
including clustering, classification, and regression.

Some promising directions for further research include exten-
sions of L-GPLVM to irregularly sampled, sparse, spatio-temporal
data, dynamic processes over networks (topological longitudinal



Table 1: Reconstruction Absolute Sum of Error of The Different Models Learned From The Irregularly And Sparsely Sampled
Longitudinal Data.

Sparsity 0.1 0.3 0.5 0.6 0.7 0.8
D-GPLVM 21.5(1.6) 48.2(1.4) 75.4(1.5) 87.2(2.2) 128(0.4) 128(0.4)
deepGP 17.6(1.1) 33.0(2.3) 57.4(1.3) 67.4(0.9) 85.9(0.8) 104(3.8)
NN 22.4(0.9) 29.9(4.6) 62.0(6.0) 65.2(5.6) 80.1(6.4) 107(1.1)
LOCF 38.1(2.1) 66.3(1.3) 94.7(1.9) 105(2.3) 127(1.0) 129(0.2)
MW 31.6(1.2) 56.9(2.0) 87.2(1.9) 101.4(3.8) 128(0.4) 128(0.4)
MICE 24.9(1.4) 31.7 (1.8) 68.8(2.1) 81.8(1.6) 117(2.3) 130(10)
L-GPLVM 14.2(0.7) 19.4(2.8) 28.8(1.2) 32.4(2.5) 36.1(0.7) 53.4(1.9)

Table 2: Reconstruction Error Using Only Time As Input In
The Temporal Models

Sparsity 0.0 0.2 0.4 0.6
D-GPLVM 84.2 252 332 332
deepGP 82.3 143 201 320
L-GPLVM 84.1 84.9 135 221

data) and to settings where the observations are influenced by tran-
sitions between latent states (e.g., as in the case of longitudinal
electronic health records data which reflect observations resulting
from transitions between different latent states, e.g., healthy and
unhealthy). Additional applications of interest include modeling of
environmental data, climate data, etc.
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