Learning Information Extraction Patterns

by

Fajun Chen

A thesis submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Major Professor: Vasant Honavar

Towa State University
Ames, Iowa
2000

Copyright (©) Fajun Chen, 2000. All rights reserved.

ii

Graduate College
Towa State University

This is to certify that the Master’s thesis of
Fajun Chen

has met the thesis requirements of lowa State University

Major Professor

For the Major Program

For the Graduate College

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i i it et i et e e e e e e e e e e e e viii
ABSTRACTt it i e ix
CHAPTER 1. INTRODUCTION i ittt ittt e et e ea e 1
1.1 Imformation Extraction. 1
1.1.1 Introduction to Information Extraction 1

1.1.2 The Goal of Information Extraction 1

1.1.3 The Difficulties of Information Extraction 3

1.1.4 Information Extraction in Context 4

1.2 The Architecture of Information Extraction Systems 4

1.3 Relevant Terminology and Definitions 6
1.3.1 Semantic Class and Semantic Hierarchy 6

1.3.2 Design Issues in Knowledge Representation 7

1.3.3 Learning Algorithms o 8

1.4 The Goal of this Thesis 0 it et et 9

1.5 Organization e e e e e 10

CHAPTER 2. LEARNING INFORMATION EXTRACTION PATTERNS 11

2.1

2.2

2.3

Overview e e e e 11
Learning Extraction Patterns for Information Extraction from Free Text 12
2.2.1 AutoSlog e 12
2.2.2 CRYSTAL . . . e 14
2.2.3 LIEP and PALKA 15

Learning Extraction Patterns for Information Extraction from Structured Text 16

v

23.1 WIEN . . . e 16
23.2 STALKER e 18

2.4 Learning Extraction Patterns for Information Extraction from Semi-structured
Text . . o o e e e 19
24.1 SRV . . o e 19
242 RAPIER e 20
2.5 A Related IE System: WHISK 21
2.6 Proposed IE System: IEPlus, 26
2.6.1 Semantic Units 26
2.6.2 Semantic Resolution o o000 27
2.6.3 Target Slot Filler Location 28
2.6.4 Rule Specialization o 0L o e 28
2.6.5 Rule Evaluation 29
2.6.6 Rule Firing Strategy 30
2.6.7 Extraction Pattern Learning Algorithms 31
2.7 Remarkson ITE Systems 33
CHAPTER 3. DESIGN AND IMPLEMENTATION OF IEPLUS 34
3.1 Lexical Analysis 34
3.1.1 JLex Lexical Analyzer Generator 35
3.1.2 JLex Specifications for Rental Ads 37
3.2 Tterative Parser Design e 39
3.2.1 Interpreter Design Pattern. 39
3.2.2 Application of Interpreter pattern in IEPlus Implementation 41
3.3 The Collection Classes in IEPlus 43
CHAPTER 4. EXPERIMENTAL EVALUATION OF IEPLUS 45
4.1 Domain Description Lo 45
4.2 Performance Metrics L. L L 45
4.3 System Evaluation and Fine Tuning 46

4.3.1
4.3.2
4.3.3
4.34

The Number of Training Instances
Pruningo
Rule Evaluation

Lexical Analysis i e

4.4 System Comparisono

4.5 DISCUuSSION o e e e e e e e e e e e e e

4.6 Sample Extraction Rules

CHAPTER 5. SUMMARY AND DISCUSSION

5.1 Contributions e e e e e e e e e e e e

5.2

5.1.1
5.1.2
5.1.3
5.14

5.1.5

Object-oriented System Design
Semantic Units and Semantic Resolution
Target Slot Filler Location
Case Frame Matching and Rule Evaluation

Rule Firing Strategy o e

Future Work e e e e e e

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7

5.2.8

More Tests o e e
Document Partitioningo oo
Relevance Filtering Lo oo
XML Representationo
Finite-State Transducer Cascade Architecture
Semantic Class and Semantic Hierarchy
Additional constraints oL

More Specialized Entity Extraction

APPENDIX A. SAMPLE TRAINING INSTANCES .

APPENDIX B. COMPLETE JLEX SPECIFICATION

APPENDIX C. SAMPLE RULES GENERATED . . .

BIBLIOGRAPHYo

56
56
56
57
58
58
58
59
59
60
60
60
62
62
63
63

64

66

74

78

Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5
Table 2.6

Table 2.7

Table 3.1

Table 4.1
Table 4.2
Table 4.3

Table 4.4

vi

LIST OF TABLES

AutoSlog Concept Node: an Example 13
AutoSlog Concept Node Template: an Example 13
CRYSTAL Concept Node: an Example 14
LIEP Extraction Pattern: an Example 15
A Web Page for Wrapper 17
An Example from the Rental Ads domain 21
A Rental Ads Text for Semantic Resolution 27
Patterns for Identifying Semantic Tokens in Rental Ads. 38
The Performance of IEPlus for the Rental Ads domain 47
The Effect of Post-Pruning 48
The Comparison of Features between IEPlus and WHISK 51

The Comparison of Performance between IEPlus and WHISK 53

Figure 1.1

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8

Figure 2.9

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4

Figure 3.5

vii

LIST OF FIGURES

Architecture of IE Systems oL 0oL 5
IE Extraction Pattern Learning Diagram 12
ECT description of Country Codes pages 18
WHISK Learning Algorithm: Top-down Covering 22
WHISK Learning Algorithm: Rule Growing 23
WHISK Learning Algorithm: Slot Anchoring 24
WHISK Learning Algorithm: Rule Extension 25
The Architecture of IEPlus.o L. 26
IEPlus Learning Algorithm: Top-down Covering 31
IEPlus Learning Algorithm: Rule Growing 32
Interaction of lexical analyzer with parser 34
JLex Usage e 35
The Structure of Interpreter Design Pattern 40
The Class Diagram for IEPlus Grammar 42
The Collection Class Diagram for IEPlus 43

viii

ACKNOWLEDGEMENTS

I am grateful to the many people who helped me in my research and the writing of this
thesis.

I would like to give my special thanks to Dr. Vasant Honavar for his guidance, patience,
mentoring, and support during the preparation of this thesis. It is he who led me to the
exciting field of information extraction. More importantly, he taught me how to do research.
His insightful advice has been invaluable during the entire course my graduate study in Iowa
State University. He is a great advisor.

I would also like to thank my committee members for their help and advice: Dr. Les Miller
and Dr. Drebb Dobbs.

I am indebted to Dr. John Riley, who patiently reviewed my thesis and helped me correct
many grammatical errors. Weiyi Chen helped me review chapters 2 and 3, and made several
helpful suggestions.

I would like to thank Rushi Bhatt and Tarkeshwari Trivedi for their help with LaTex for

formatting this thesis, and to Arun David Raghavan for helping me with some aspects of Java.

ix

ABSTRACT

The rapid growth of online texts call for systems that can extract relevant information.
Many information extraction systems have been developed using the knowledge engineering
approach, which is often time-consuming, laborious, and of no portability. A more promising
direction is to apply machine learning techniques to information extraction.

A complete Information Extraction (IE) system, IEPlus, has been developed for exploring
various design issues. Fine-grained semantic units were defined, and a strategy for semantic
resolution was proposed in IEPlus. An enhancement for rule evaluation based on case frame
matching was implemented in IEPlus. A rule firing strategy was also presented in IEPlus,
which prioritizes the most specific rule in terms of the number of slots extracted. Experiments
on the Rental Ads domain demonstrated the effectiveness of the IEPlus system. IEPlus is
highly flexible resulting from its object-oriented design, and has the capability of exploring

various issues in information extraction system design.

CHAPTER 1. INTRODUCTION

1.1 Information Extraction

1.1.1 Introduction to Information Extraction

We live in an age in which, more than ever before, individuals are overwhelmed by a
deluge of data. Much of this data is textual in nature. Some examples include electronic
mail (e-mail), articles posted to electronic news groups, documents on the web, scientific
articles stored in digital libraries, electronic newspapers, transcripts of radio and television
news programs, etc. Modern web browsers or some text retrieval tools or digital assistants
can help us perhaps even selectively, proactively, and reactively retrieve such data. However,
retrieving the relevant documents is only the first step. Translating our ability to gather, store,
and access large amounts of data in digital form into fundamental advances in decision making
calls for the development of sophisticated tools for information extraction, and data driven
knowledge discovery. In the absence of such tools, information relevant for effective decision
making are likely to be overlooked or ignored, potentially at great cost. This motivates us
to explore various strategies for automated and customizable extraction of useful information
from text. Such information, once extracted, may be used to support decision making, stored in
a structured database for future use, summarized, or analysed (using data mining algorithms)

to discover useful knowledge about the domain.

1.1.2 The Goal of Information Extraction

The goal of Information Extraction (IE) is to extract from a collection of documents relevant

facts such as events, entities, or relationships. For example, IE for rental data may be needed

to extract the information about neighborhood, number of bedrooms, price, etc. IE for job
news group might involve identifying job title, skills required, salary, etc. A sample training

instance from the Rental Ads domain (Sod99) is shown as follows:

es[
BALLARD - Deluxe 1 br $550/2 br $600.
Jim 206-781-1300.

<i> (This ad is from 08/02/97 to 08/03/97.)
 </i> <hr>
les
@QTAGS Rental {Neighborhood BALLARD} {Bedrooms 1 br} {Price $550}

@QTAGS Rental {Neighborhood BALLARD} {Bedrooms 2 br} {Price $600}

In this example, the text embraced by "@S[” and ”]@S” is the raw text to be extracted,
and the part beginning with ?@QTAGS” is the template annonated by humans. The example
contains two case frames. Each case frame consists of three slots, Neighborhood, Bedrooms,
and Price respectively.

The origin of IE can be traced to DARPA’s MUC program (ARP92), where newspaper
and newswire texts such as Latin American terrorist incidents were used to evaluate various
IE systems. For each evaluation, each attending team receives a set of texts from a prespecified
domain associated with the annotated templates (we call this set a training set). Each template
annotated by humans contains relevant information in the corresponding text, which is usually
composed of one or multiple case frames. Each attending system is adapted to this training
set, generating extraction patterns. After that, these systems are evaluated on the same test
set of previously unseen texts. Performance metrics of precision and recall are used for system
comparison.

The extracted facts are usually entered automatically into a database, which can then be
used for on-line access, data mining, text summary, etc. For example, after applying an IE
system as the translator on structured or semi-structured text (it is termed as Wrappers in

literature), we can view it as a structured information source and query it using a uniform

query language. IE techniques are finding application in sophisticated web search techniques
for heterogeneous information integration, Web knowledge bases (CFMe97), news group query

systems (TMT97), weather forecasting (Sod97b), restaurant information systems (MMK99).

1.1.3 The Difficulties of Information Extraction

Information Extraction is a difficult problem which shares some of the challenges of natu-
ral language understanding (AI99) including efficient parsing, ambiguity resolution, discourse
structure reasoning, language semantics, etc.

There are different ways of expressing the same fact ':

BNC Holdings Inc named Ms G Torretta as its new chairman.

Nicholas Andrews was succeeded by Gina Torretta as chairman of BNC Holdings Inc.

e Ms. Gina Torretta took the helm at BNC Holdings Inc.

After a long boardroom struggle, Mr Andrews stepped down as chairman of BNC Hold-

ings Inc. He was succeeded by Ms Torretta.

IE system should be able to generate the same template (ie. tags) out of these different text

as follows:

Succession event {Organization: BNC Holdings Inc}

{PersonIn: G Torretta} {Position: chairman}

Notice that in the example above, relevant information is distributed among several sentences.
IE system should be able to merge the relevant fractions in different sentences together to form
meaningful events.

There might be some subtle nuances of meaning in the text. So IE is difficult even for
humans (Sod99; AI99). For various IE tasks, different human annotators may just agree on

only 60-80% of the annotations.

"http://www.dcs.shef.ac.uk/research /groups/nlp/extraction/

1.1.4 Information Extraction in Context

IE differs from Information Retrieval (IR) and Natural Language Understanding (NLU)
(AI99; All95). Typically, IR involves searching and retrieving from a collection of documents
a subset which is relevant to a query in terms of keyword matching (or some variants such as
stemming). The functionality of NLU is hard to characterize and evaluate, but usually it is
more sophisticated. There is no clearly-cut boundary among IE, IR, and NLU. However, IE
can be viewed as a task that lies between IR and NLU from the perspective of the complexity

of functionality required. In particular,

¢ IE systems typically have to go beyond naive keyword matching (as in IR) which results

in retrieval of entire documents.
e IE systems typically fall short of in-depth text understanding.

¢ IE systems are more ambitious than IR systems and less ambitious than text understand-
ing systems in terms of the nature of information that provides the end user. They are
typically designed with some specific domain in mind (e.g., wall street journal articles,
scientific abstracts, rental advertisements) with the goal of understanding text only to
the extent necessary to fill the slots in a structured template that captures the relevant

information.

1.2 The Architecture of Information Extraction Systems

Although a variety of architectures have been proposed fro IE systems, most of them share
the following basic modules for: tokenization, lexical analysis, syntactical analysis, and domain-

specific processing. These basic components are shown in Figure 1.1 (Car97; AI99).

First, raw text is tokenized into words, the basic unit of linguistic structure. Lexical analysis
usually follows, which identifies Part of Speech (POS) (Bri94), word sense, semantic classes (a

kind of complex words) such as date, location, price, and other lexical items.

Sentence
Analysis

Lexical
Analysis

Extraction

-

Template
Generation

Merging

Figure 1.1 Architecture of IE Systems

The second phase involves sentence analysis which is composed of syntactic analysis or
parsing. Noun groups, verb groups, prepositional phrases, and other constituents of a sen-
tence are identified, the sentence structure is determined in this phase. Some systems such as
FASTUS (Hob97) also recognize more complex noun groups and verb groups for the sake of
simplifying extraction pattern (rules) in the subsequent phase. Partial parsing is preferred to
full parsing in this step since we only concern the structures around relevant information. Full
parsing, although it has been widely used in the systems of natural language understanding,
often leads to bad performance in IE systems (HAe90; HAe92).

The third phase involves domain-specific extraction. Extraction pattern is applied to ex-
tract relevant information. Extraction patterns are specified by domain experts in some hand-
crafted systems, while they can also been learned automatically by corpus-based machine
learning algorithms. This thesis will focus on extraction pattern learning algorithms.

The next phase is the merging phase, also called coreference resolution, or anaphora reso-
lution. As mentioned in the last section, the entities in different sentences might refer to the
same object. The ability to identify and merge the entities distributed in different sentences
together might increase the performance of IE systems.

The last phase of IE is to generate the template, which is the output of an IE system.
Different events are identified and each event is filled with the information extracted by previous

phases.

1.3 Relevant Terminology and Definitions

1.3.1 Semantic Class and Semantic Hierarchy

A semantic class is a set of terms which belongs to an equivalence class, embodying the
meaning of a concept. Semantic classes can be represeted in several ways. Disjunctive form
and structural form are among the commonly used representations. For instance, The semantic

class Bedrooms in the Rental Ads domain (Sod99) can be defined as:

Bedrooms = ”brs”|”br”|”bdrm”|”bd” |”bedrooms” |” bedroom” |"bed”

which is a list of disjunctive terms, while semantic class DIGITS is in the structural form as

follows according to regular expressions (Sip97):
DIGITS = [0-9]+

A domain-specific semantic class is usually created manually by a domain expert, which
may not be a complete or perfect listing, but it helps an IE system generalize its extraction
pattern beyond the tokens in its training instances.

Stand-alone semantic classes are not helpful from the point of semantic representation.
Hence, semantic classes are typically tied together to form semantic net (RK91) or a semantic
hierarchy. If we view a semantic class as a node, then a semantic net is a graph with a set
of nodes connected to each other by a set of labeled arcs, which represents the relationships
among the nodes.

WordNet (Mil95) is a domain-independent lexical database of about 57,000 words con-
taining a semantic hierarchy in the form of hypernym links. A semantic class is represented
by a synsets in WordNet. For instance, the English word board can signify either a piece of
lumber or a group of people assumbled for some purpose. The synsets, {board, plank} and
{board,committee} can designate two different concepts. Each word typically has more than
one synset to which it belongs. The synsets in WordNet are connected by links of various
types, including synonyms, antomyms, meronyms, holonyms, hyponyms, and hypernyms. The
semantic hierarchy is formed by hyponym and hypernym links. Hyponym links indicate seman-

tic subclasses while hypernym links indicate semantic superclasses. The semantic hierarchy

implemented in WordNet would greatly faciliate the semantic generalization and specialization

in extraction rule learning process.

1.3.2 Design Issues in Knowledge Representation

Knowledge representation is one of the key concerns of Artificial Intelligence (AI) (RN95;
RK91). It plays an important role in automated inference and knowledge discovery. The choice
of the knowledge representation language determines the types of entities and relationships
that can be represented, the efficiency of inference, the comprehensibility of representation
and inference, the types of reasoning that are allowed, etc (DSS93). Hence, an appropriate
choice of knowledge representation is essential for successful learning of information extraction
patterns. Regular languages and first order predicate logic are some of the commonly used
knowledge representation formalisms for information extraction patterns.

We define regular languages as the smallest class of languages which contains all finite lan-
guages and closed with respect to union, concatenation and Kleene closure. Regular languages
are useful tools for recognizing patterns in data (Sip97). It has been used in speech processing
and in optical character recognition. Regular language is compact yet expressive that it is
suitable for representing the extraction patterns in IE system for many domains although it
fails in representing recursive structure inherent in some domains. A limited form of regular
language is used in IEPlus and WHISK as a good medium of knowledge representation.

Predicate logic is a logic which concerns not only with sentential connectives but also with
the internal structure of atomic propositions. First Order Predicate Logic (FOPL) (RN95;
RKY1) considers both predicates (or relations) and individual elements. Atomic sentences are
constructed by applying predicates to individual elements, and quantification is permitted only
over the individual elements.

The languages represented by FOPL is more expressive than regular languages. Thus, richer
constraints can be incorporated into an IE system by choosing FOPL as its representation of
extraction patterns. For instance, FOPL was used in SRV (Fre98) and Rapier (CM99). The

major problem with FOPL is the time and space complexity involved.

1.3.3 Learning Algorithms

A varity of approaches to machine learning are available in the literature (Mit97). Of par-
ticular interest are inductive learning approaches that produce general hypothesis from data.
Inductive learning differ from each other in terms of choice of knowledge representation (e.g.,
rules, grammars, etc.) and the search strategy used to identify a hypothesis from data. Com-
pression and covering are two basic strategies used in rule learning systems (Cal98). Systems
that use compression conduct a specific to general search, trying to compress the rule set
learned.

Systems that use covering strategy include AQ (Mic73),CN2 (CN89),FOIL (Qui90), etc.

They work as follows:

1. Start with an empty rule set.
2. Select a positive instance or a set of positive instances from a training set
3. Find the candidate rules which can cover this instance or this set of instances.

4. Select the best rule among these candidate rules according to some criteria which is

usually a tradeoff between generality and compactness.
5. Remove the instances covered by the best rule from the training set.

6. If the training set is empty, stop. Otherwise, repeat step 2 to 5.

Covering algorithms tend to be more efficient during search than compression algorithms
because they don’t learn rules for instances that have been covered by existing rules, but the
rules learned by covering algorithms are more specific since there is no process for subsuming
existing rules with more general ones. One way to make it up is to design specific rule firing
strategy to limit the rules applicable for an instance.

Similar to WHISK(S0d99), IEPlus developed for this thesis uses a covering algorithm with

enhancements for rule specialization, rule firing strategy, etc.

1.4 The Goal of this Thesis

This thesis focuses on algorithms for automated learning of information extraction patterns.
A review of some existing approaches to learning information extraction patterns is given in
Chapter 2.

Learning information extraction patterns poses a number of interesting and challenging

questions:
e What kind of preprocessing is required by an extraction pattern learner?

e What kind of semantic and syntactic constraints should be used for an ex-

traction pattern learner?

e What kind of learning algorithm should be designed for an extraction pattern

learner ?

IEPlus, a specialized descendant of WHISK (S0d99), is designed to explore these interesting

problems. IEPlus is distinguished from similar IE systems in the following aspects:

e The role of lexical analysis:
Since most of the online documents are semi-structured, which may not be gramatically
correct, syntactic analysis is not always possible for these data. Lexical analyzer in
IEPlus is implemented by specialized tools. It is the only component in the system
where domain-specific knowledge is hand-coded. Separating domain-specific component
from domain-independent components faciliates the exploring of various choices in the

phase of lexical analysis.

e The role of semantic and syntactic contraints:
The choice of semantic or syntactic constraints determines the granularity of extractions,
the robustness, and the performance of an IE system. Hybrid semantic units and semantic
resolution are implemented in IEPlus, and a limited form of regular languages are used

to represent syntactic constraints.

10

e The role of rule specialization, rule firing, and rule evaluation:
The design of rule learning algorithms is of great importance for an IE system. Similar
to WHISK, a top-down covering algorithm is used in IEPlus. However, IEPlus enhances
it in various aspects including rule specialization, rule firing strategy, and rule evaluation

strategy.

1.5 Organization

The rest of this thesis is organized as follows. Chapter 2 presents a survey of extraction
pattern learning algorithms used in various IE systems, and highlights some of the improve-
ments over WHISK that are incorporated in IEPlus. Chapter 3 describes some of the key
design choices and implementation details of IEPlus. Chapter 4 presents the experimental
evaluation of IEPlus on the Rental Ads domain. Chapter 5 concludes with a summary and
a brief discussion of some directions for further research. The sample training instances, com-
plete JLex specification, and the sample rules generated, are presented in Appendix A, B,

C respectively.

11

CHAPTER 2. LEARNING INFORMATION EXTRACTION PATTERNS

2.1 Overview

As defined in (Car97), good extraction patterns are “those that are general enough to
extract the correct information from more than one sentence but specific enough to not apply
in inappropriate contexts”.

Generally speaking, there are two approaches to coming up with information extraction
patterns for IE: the Knowledge Engineering Approach and the Machine Learning Approach
(AI99). In the Knowledge Engineering Approach, the extraction patterns used in the system
are designed and specified by a “knowledge engineer”. The design of knowledge base or the
so-called expert systems, this knowledge engineering can be labor-intensive, error-prone, and
time-consuming. In the Machine Learning Approach, the extraction pattern is generated by
a learning algorithm which identifies the essential regularities useful for information extrac-
tion from a training set that consist of suitably annotated text. Thus, designing information
extraction patterns for different domains reduces to generating suitable training sets for the
respective domains. Extraction pattern learning algorithms differ in terms of the nature of
the text (e.g., unstructured text, HTML, semi-structured text, etc.) syntactical/semantic fea-
tures used, the expressive power of extraction patterns, number of training examples required,
language preprocessing required, time/space efficiency, effectiveness (recall and precision), etc.

However, they do share general architecture as shown in Figure 2.1.

12

Annotated Text

with tagging

(Preprocessing }

Case Generatio Knowledge

[Learning Algorithr}

Extraction Patterns

[Training/Test } World
n

Figure 2.1 IE Extraction Pattern Learning Diagram

2.2 Learning Extraction Patterns for Information Extraction from Free

Text

Free text is gramatically complete plain text, so syntactic and semantic preprocessing

typically help in improving the performance of IE systems.

2.2.1 AutoSlog

AutoSlog was one of the earliest IE systems for extraction pattern learning (Ril93). One
or multiple extraction patterns are generated for each concept to be extracted, which are in
the form of concept nodes. Each concept node has a name of the concept to be recognized, a
trigger for activating the pattern, a position specifying the syntactical location (subject, direct

object, indirect object, etc.) of the concept in an input sentence, the constraint to be satisfied,

13

and the enabling condition to be met such as active-voice, passive-voice, or other linguistic

contexts. For example, the concept node for extracting successor’s name from the sentence:
BNC Holdings Inc named Ms G Torretta as its new chairman.

is as shown in Table 2.1.

Table 2.1 AutoSlog Concept Node: an Example

Concept: Position Succession

Trigger = "named”
Position = direct-object
Constraints = (person’s name)

Enabling Conditions = (active-voice)

The learning of concept nodes is achieved by specializing one of thirteen domain-independent
linguistic patterns. First, the sentence containing the name to be extracted is located. Then,
this sentence is fed to a partial parser, which can identify the subject, direct object, and other
linguistic constituents. Thirteen linguistic patterns are applied in order to get the parsed re-
sult. The first linguistic pattern fired is used to generate the extraction pattern (concept node).
In our example, the pattern is ” <active-voice-verb> <direct-object>", which can generate the
concept node in Table 2.1 as a specialied form of the template concept node (Car97) shown in

Table 2.2.

Table 2.2 AutoSlog Concept Node Template: an Example

Concept: <slot type> of <target-np>
Trigger = ” <verb> of <active-voice-verb>”
Position = direct-object

Contraint = (<semantic class> of <concept>)

Enabling Conditions = (active-voice)

Notice that the input sentence to AutoSlog has to be preprocessed by syntactical analyzer
and semantic analyzer, and the output of AutoSlog are single-slot rules (concept nodes), which

are passed to human experts for perusal.

14

2.2.2 CRYSTAL

CRYSTAL (SFAL95; Sod97a) is able to learn multi-slot rules (concept nodes) from free
text. Similar to AutoSlog, CRYSTAL requires precise syntactical analysis and semantic anal-
ysis for input text, which can identify and categorize the syntactical constituents (subject,
object, prep phrase, etc.) and semantic classes as extraction features.

An example concept node of CRYSTAL for extracting the organization, person, and po-

sition from the sentence below:
e BNC Holdings Inc named Ms G Torretta as its new chairman.
is shown in Table 2.3 (following the format in (MMK99)).

Table 2.3 CRYSTAL Concept Node: an Example

Concept type: Position Succession
SUBJECT:
Classes include: <Organization name>

Terms include: Inc

Extract: organization

VERB:

Root: NAME

Mood: active-voice

DIRECT OBJECT:

Classes include: <Person name>

Terms include: Ms

Extract: person

PREP-PHRASE:

Prep: AS

Classes include: <Position name>

Extract: position

The extraction pattern of CRYSTAL is much more expressive than AutoSlog because the
trigger of CRYSTAL is no longer limited to a single trigger word or local linguistic context, it
can be any sequence of words or any modifier of semantic class (Car97). CRYSTAL uses a
bottom-up covering algorithm, which is a kind of inductive learning algorithms starting from
learning specific rules and continuing the generalizing by unification until negative examples

are covered or the error threshold is exceeded.

15

By using Webfoot (Sod97b) as an additional preprocessing step, CRYSTAL can extract
relevant information from HTML sources. The trick here is to partition a web page into small
sections according to page hierarchy cues. CRYSTAL can process each small section of a web

page as free text.

2.2.3 LIEP and PALKA

LIEP (Huf95) can generate multi-slot patterns from free text. LIEP can’t extract single
slot because its extraction of a slot is with regard to the syntactic context of other slots. For

instance, for extracting the organization, person, and position from the following sentence:
e BNC Holdings Inc named Ms G Torretta as its new chairman.

The extraction pattern in Table 2.4 is generated by LIEP following the format in (MMK99).

Table 2.4 LIEP Extraction Pattern: an Example

Event: Position Succession
noun-group(ORGANIZATION,head(isa(Organization name)))
verb-group(VG,type(active-voice),head(named))
noun-group(PERSON head(isa(Person name)))
preposition(PREP,head(as))

noun-group(POSITION, head(isa(Position)))
subject(ORGANIZATION,VG)

verb-object(VG,PERSON)

object-prep(PERSON,PREP)
prep-object(PREP,POSITION) =
event(organization(ORGANIZATION),person(PERSON),position(POSITION))

In Table 2.4, syntactic constraints and semantic constraints are employed. For example,
the syntactic form of the sentence is subject-verb-object-prep-object phrase, ORGANIZATION
is in the semantic class of ”Organization name”. One drawback of LIEP is that the rules are
induced only from positive training instances, which leads to low performance on negative
instances. Some key word filtering is performed for filtering out irrelevant text (negative
instances).

PALKA (KM95) is quite similar to AutoSlog except the inclusion of concept hierarchy

and semantic class hierarchy, which guide the generalization and specialization of extraction

16

patterns. An induction learning algorithm which is similar to Mitchell’s candidate elimination
algorithm is used. Given a new instance, a rule is either generalized to cover the positive
instance or specialized to exclude the negative instance. In concept hierarchy, generaliztion
is through replacing a semantic class with an ancester, while specialization is through the

substitution of a semantic class with its child node.

2.3 Learning Extraction Patterns for Information Extraction from

Structured Text

Some text data online are highly structured such as the web pages automatically generated
by programs, which often exhibit regular starting and ending delimiters.

An independent branch of research for learning extraction pattern for structured text is
wrapper induction, where wrapper is a domain-specific procedure translating a structured

information source into the equivalent of database.

2.3.1 WIEN

WIEN (KWD97) is a wrapper induction environment designed for information extraction.
It assumes that there is a unique multi-slot rule applicable for all documents. The features
used for extraction include only the delimiters right before and after the relevant part of the
text. No semantic class is used.

The HLRT wrapper class, which is efficiently learnable yet reasonably expressive, was

proposed. A HLRT wrapper class is specified by
< h,tli,r1, . g, T >

where label h marks the end of the header, label t marks the start of the tail, and each pair of
labels [; and r; delimits the field to be extracted.

The learning process is to search for appropriate values for the 2K + 2 parameters in the
space of all possible combinations. The search problem can be decomposed into 3 independent

subproblems: searching for

17

e right delimiter

o left delimiter except the first left delimiter /4

e header, tail delimiter and first left delimiter [,
Considering the web page in Table 2.5(KWD97):

Table 2.5 A Web Page for Wrapper

< HTML ><TITLE > CountryCodes < /TITLE >
< BODY >< B > CountryCodes < /|B >< P >
Congo<I>242< /I >< BR >
EFEgypt <I1>20< /I >

< B > Belize < B ><1>501< /I >< BR>

< B> Spain < B><I>34< /I >

<HR>< B> End< /B >< /[BODY >< /HTML >

The extraction pattern for extracting country name and country code is obtained from a

specialized HLRT template, which is detailed below:
(h='< P>'t='<HR>' ;e {{"/<I>}re{/</I>"})
that is,
(1) we skip past the first occurence of < P > in the page,

(2) if the current starting delimiter [is before < HR > in the page, extract the tuples in

order according to /; and r;.
(3) repeat (2) until it doens’t hold.

WIEN can only work for some very structured text such as the web pages generated au-
tomatically by programs because of its strong assumption. Also, the features selected are not

expressive enough to capture the rich format of HTML text.

18

2.3.2 STALKER

The information on a web page is often presented in a hierarchical format. For example,
each page might contain a list of tuples, each tuple might contain a list of smaller tuples or
items, and so on.

STALKER (MMK99) is a single-slot learning system which is capable of extracting infor-
mation from arbitrarily complex combinations of embedded lists and items.

STALKER proposed Embedded Catalog Tree (ECT) for formalizing the embedded struc-
ture in the web pages. A web page is represented as a tree-like structure by an ECT formalism,
where a leaf contains relevant data, while an internal node contains congregational data such

as a list. For instance, Figure 2.2 shows the ECT formalism for the HTML text in Table 2.5.

Country Codes

'

List (Country, Code)

Country Code

Figure 2.2 ECT description of Country Codes pages

The extractin patterns to be learned by STALKER include the extraction rule for each
node in the tree as well as the iteration rule for each LIST node.

A sequential covering algorithm is used in STALKER. Given a set of positive instances,
STALKER. can learn an ordered list of disjuncts which covers all the positive instances. The
ordering of disjuncts is based on the matching statistics of learned disjuncts: the disjuncts
with more right matchings (a right matching is the matching which consumes neither too few
tokens nor too many tokens among training instances) should be put earlier, the disjuncts with
more correct matches are preferred in case of a tie.

The major contributions of STALKER are

19

e Although STALKER is a single-slot learning algorithm, it can extract multi-slot tem-
plates effectively because of the ECT mechanism can group single items extracted to-

gether.

e The decomposition of a web page extraction into single node extraction pattern learning
is a typical use of “divide and conquer” strategy, which is invariant to the ordering of

the items to be extracted.

2.4 Learning Extraction Patterns for Information Extraction from

Semi-structured Text

Semi-structured text such as HTML is ungramatical and has no rigid format. The challenge
lies in the learning of irregular extraction patterns. For instance, the normal parsing technique
which divides a sentence into subject, verb, or objects can’t work for semi-structured text
because of its irregular format.

Almost all the IE systems we have reviewed so far use very limited features, and the
representation of extraction pattern is not expressive enough. SRV and RAPIER incorporated
more features and employed the extraction pattern in the form of first order predicate logic

(RN95).

2.4.1 SRV

SRV (Fre98) is a multi-strategy single-slot learner for IE. Three different learners are used:
rote learner, naive Bayes classifier (Mit97), and a relational rule learner which is similar to
FOIL (Qui90).

There are many mature techniques in the field of machine learning. One of the contribution
of SRV is to transform a IE problem into a typical machine learning problem. All possible
phrases in the text up to a prespecified length are considered to be possible candidates for
extraction. Each phrase is assigned by multiple learners a confidence weight indicating the

probability of correct extraction as a target slot filler.

20

Rote learner simply compares a phrase to the correct slot filler in training instances and
assigns it some similarity measurement.

Naive Bayes classifier considers each fragment of the text as a candidate hypothesis, which
has a vector of TFIDF features associated with it. Naive Bayes algorithm is applied to each
fragment of text and a confidence weight can be assigned according to observed data.

The relational learner performs a top-down induction which is similar to FOIL (Qui90).
Rote learner and naive Bayes only take into account simple term frequency statistics. The
relational learner complements it with structural features such as linguistic syntax, document
layout, or simple orthography. The learning proceeds as FOIL: starting with null rule, SRV
adds predicates according to FOIL’s information gain. Two kinds of predicates are used:
simple features mapping a token to a exact value such as capitalized? or noun?, and relational

features such as next-token and prev-token.

2.4.2 RAPIER

RAPIER (CM99) is also a single-slot learning system. RAPIER extraction pattern makes
use of both syntactic information such as POS tags and semantic class information such as
WordNet (Mil95) links. Thus, POS tagger (Bri94) for preprocessing is required.

The extraction pattern learned by RAPIER is composed of three parts: pre-filler pattern
coresponding to left delimiter, post-filler pattern corresponding to right delimiter, and filler
pattern specifying the structure in the target slot filler. The pattern in each part is a sequence
of elements of pattern items and pattern lists, where a pattern item can match exactly one
word for its constraints, while a pattern list can match a set of words and each word satisfies
a set of constraints.

RAPIER uses a bottom-up approach, which starts with most specific rules matching a
target slot filler, then randomly picks up a pair of rules and conducts a beam search for the

least general generalization.

21

2.5 A Related IE System: WHISK

WHISK (Sod99) is a comprehensive IE system which works for structured, semi-structured,
and free text. It can extract both single-slot and multi-slot information. WHISK doesn’t re-
quire syntactic preprocessing for structured and semi-structured text, and recommend syntactic
analyzer and semantic tagger for free text.

The extraction pattern learned by WHISK is in the form of limited regular expression,
which is a good representation considering the tradeoff between expressiveness and efficiency.
Considering the TE task of extracting neighborhood, number of bedrooms, and price from the

text in Table 2.6:

Table 2.6 An Example from the Rental Ads domain

Capitol Hill - 1 br twnhme. fplc D/W W/D.

Undrgrnd pkg incl $675.

call (206)999-9999 < br >

< i >< fontsize = —2 > (This ad last ran on 08/03/97)
< [font >< [i >< hr >

An example extraction pattern which can be learned by WHISK is as follows:
* (Neighborhood) * (Bedroom) * ’$’ (Number) (2.1)

where Neighborhood, Bedroom, and Number are semantic classes specified by domain experts.
That is, we skip until a token in the semantic class of Neighborhood is encountered, extract
this token. The tokens for the number of bedrooms and price can be extracted similarly.
WHISK learns the extraction rules using a top-down covering algorithm. First, a general
rule covering the seed instance is learned, then we add terms to specialize it in order to reduce

the Laplacian error of the rule. The Laplacian expected error is defined as

e+1
Laplacian = —— 2.2
aplacian = ——— (2.2)

where n is the number of extractions on the training instances, and e is the number of wrong
extractions among them. The candidate terms to be considered include left delimiter, right

delimiter, semantic class of a target slot filler, and the additional terms in the seed instance.

22

WHISK can work in both batch and interactive mood. The algorithm for interactive

learning is shown in Figure 2.3, 2.4, 2.5, and 2.6.

Cover (UntaggedSet)

Input:

UntaggedSet: a set of texts without annotated templates
Output:

RuleSet: a set of extraction rules

begin

RuleSet = null

TrainingSet = null

repeat at user’s request
select a subset of untagged texts NewInst
user tags NewInst
add NewInst to TrainingSet
discard rules with errors on TrainingSet
for each Inst in

for each Tag of Inst
if Tag is not covered by RuleSet
Rule=Grow_Rule(Inst,Tag,TrainingSet)

end for

end repeat

Prune RuleSet

Return RuleSet
end

Figure 2.3 WHISK Learning Algorithm: Top-down Covering

23

Grow_Rule(Inst,Tag,TrainingSet)

Input:
Inst: a text with an annotated template
Tag: the annotated template associated with Inst
TrainingSet: a set of training instances

Output:

Rule: an extraction rule

begin

Rule = empty_rule(terms replaced by wildcards)

for i=1 to number of slots in Tag
Anchor (Rule,Inst,Tag,TrainingSet,i)

end for

do until Rule makes no errors on TrainingSet or

no improvement in Laplacian error

Extend_Rule(Rule,Inst,Tag,TrainingSet)

end do

return Rule
end

Figure 2.4 WHISK Learning Algorithm: Rule Growing

24

Anchor (Rule,Inst,TrainingSet,i)

Input:
Rule: the rule before anchoring slot i
Inst: a text with an annotated template
TrainingSet: a set of training instances
i: slot number

Output:

Rule: the rule after anchoring slot i

begin
Base_1 = Rule+ terms just within extraction i
test first i slots of Base_1 on TrainingSet
while Base_1 does not cover Tag
Extend_Rule(Base_1,Inst,Tag,TrainingSet)
end while

Base_2 = Rule + terms just outside extraction i

test first i slots of Base_2 on TrainingSet

while Base_2 does not cover Tag
Extend_Rule(Base_2,Inst,Tag,TrainingSet)

end while

Rule = Base_1

if Base_2 covers more of TrainingSet than Base_1
Rule = Base_2

end if

return Rule
end

Figure 2.5 WHISK Learning Algorithm: Slot Anchoring

25

Extend_Rule(Rule,Inst,Tag,TrainingSet)

Input:
Rule: the rule before anchoring slot i
Inst: a text with an annotated template
Tag: +the annotated template associated with Inst
TrainingSet: a set of training instances
Output:

Rule: the rule after entending

begin
Best_Rule = null
Best_L = 1.0
if Laplacian of Rule within error tolerance
Best_Rule = Rule
Best_L = Laplacian of Rule
end if

for each Term in Inst
Proposed = Rule + Term
test Proposed on TrainingSet
if Laplacian of Proposed < Best_L
Best_Rule = Proposed
Best_L = Laplacian of Proposed
end if
end for

Rule = Best_Rule
end

Figure 2.6 WHISK Learning Algorithm: Rule Extension

26

2.6 Proposed IE System: IEPlus

IEPlus is a reconstruction of WHISK with improvements over semantic units, semantic
resolution, target slot filler location, rule specialization, rule evaluation, rule firing strategy,
etc.

IEPlus is composed of lexical analyzer, extraction pattern learner, and template generation
module. An optional component is syntactic analyzer. Syntactic analysis is not applicable
for semi-structured text because its text may not be gramatically correct, but it would defi-
nitely improve the performance of IEPlus on free text because syntactic constituents can be
incorporated into the system as additional constraints.

Figure 2.7 shows the architecture of IEPlus.

Lexical Extraction Pattern Template

Analysis Learning/Test Generation

Figure 2.7 The Architecture of IEPlus

2.6.1 Semantic Units

A semantic unit is the smallest fragment of text which has self-contained semantic mean-
ing. For instance, the semantic unit is “word” in RAPIER, syntactic constituent (e.g., subject,
direct object) in AutoSlog. Semantic units determine the granularity of extractions, the ro-
bustness, and the performance of an IE system. Thus, the semantic units adopted by an IE
system is critical for system performance.

Three types of semantic units are used in IEPlus:

e Semantic Class
A semantic class in IEPlus is a set of terms specifying same concept. There could
be domain-specific or domain-independent semantic classes. Domain-specific semantic

classes are specified by domain experts in a domain. For example, the semantic class

27

for Bedrooms is Bdrm = (’brs’ ||’br’||’bds’|’bdrm’||...). Domain-independent semantic
classes can be obtained from some linguistic resources such as WordNet (Mil95). A
semantic class corresponds to a synset in WordNet. Only domain-specific semantic classes

are used in the current implementation of IEPlus.

e Structural Phrase
Some fraction of text has predictable structure and would convey wrong information
if we view it separately. For instance, 572-4496 indicates a phone number rather than

bl

two numbers connected by ’-’. Structural phrases are used in TEPlus to capture the

predictable structure inherent in a text.

e Word
A fragment of text which can’t be tokenized into semantic class and structural phrase is

considered to be a word in IEPlus.

Fine grained semantic units in IEPlus differentiate similar text fragments from each other.
For instance, there may be several numbers in a text, but only the one right after ’$’ (structural
phrase) can be considered as a price.

2.6.2 Semantic Resolution

Let’s consider a text from the Rental Ads domain in Table 2.7.

Table 2.7 A Rental Ads Text for Semantic Resolution

First Hill - Large 2 & 3 BR, great views, new kitchens, hardwd flrs.
$750-900.

call 206-999-9999. < br >

< hr >

There are two digits in the text. The first digit can be tokenized into a semantic class Digit,
and the second digit combined with 'BR’ into a structural phrase representing the number of
bedrooms. However, the interpretation of the first digit in this way is not precise. In fact,

these two digits should be tokenized into same semantic category.

28

We propose to resolve it using context. Some contextual patterns can be specified by users.

For instance, the grammar:
Digit < ParallelOperator > Bedrooms = Entryg;q; < Bedrooms

where ParallelOperator=("&'|'~') is a semantic class, and Entrygg is the entry for the first
digit in a symbol table. A lexer or a partial parser can resolve this semantic ambiguity by
entering additional patterns. Similarly, the 900’ in the text can be interpreted as a price
rather than a number by context.

Languages cannot be understood without considering the knowledge shared by speakers.
The adding of contextual knowledge enhances the capability of semantic resolution in the

IEPlus system.

2.6.3 Target Slot Filler Location

One of the difficulties in extraction pattern learning as mentioned in (Car97) is that “the
output templates indicate which strings should be extracted, and how they should be labeled
but say nothing about which occurrence of the string is responsible for the extraction when
multiple occurrences appear in the text”.

For each target slot in the annotated templates, the corresponding target slot filler in the
text needs to be located. Since a fragment of text can appear zero, one, or many times in the
annotated template, it is not easy to find a corresponding filler for a target slot.

The heuristic guiding the slot filler location in IEPlus is that the tokens (i.e., word, semantic
class, structural phrases) in a text are tried in order. If there is no matching token following

current position, then IEPlus searches for candidate tokens from the beginning of a text.

2.6.4 Rule Specialization

A good extraction rule should be specialized such that it reflects the unique structure in the
instances it covers. In some domains, it is easy to learn a general extraction rule which covers
most of the instances. However, further improvement of an IE system is highly dependent on

specialized small disjuncts (HAP89)

29

Let’s consider which features in an instance make it saliently different from other instances.
Although left delimiter, right delimiter, and semantic class of a slot filler are ideal candiate
features for rule specialization, they are not enough. WHISK tries the terms in an instance in
order until the error tolerance is satisfied.

A better heuristic is proposed to specialize a rule. Generally speaking, the terms near a
target slot filler are usually more informative than the terms far from it according to local
context, so a rule is specialized by using the terms nearby first, then the terms far away, until

the error tolerance is met.

2.6.5 Rule Evaluation

Quite different from concept learning, the template generated by an extraction rule can
be partially correct. Since IEPlus requires the evaluation of candidate extractin rules in the
intermediate phases to guide its hill climbing process, reasonable evaluation of an extraction
rule is the key to system performance.

Each extraction rule is evaluated based on its Laplacian error on a set of test instances.

Precisely, the Laplacian error of a rule on a set of test instances is defined in Equation 2.3.

Number of wrong slots extracted

Laplacian, e = (2.3)

Number of slots extracted

Only the slots in a case frame which has a matching case frame in the corresponding annotated
template are considered to be correct. Thus, case frame matching is of great importance for
rule evaluation.

For two matching case frames, they don’t have to be exactly the same. The case frame ex-
tracted by IEPlus containing more slots can’t match any case frame in the annotated template
with fewer slots for the sake of assigning more credit to better rules, but it can be composed
of less slots considering that the case frame might be generated by partially formed candidate
rules in the training phase. However, the slots in the shared positions between two case frames

have to be the same.

30

Consider the comparison of the following two templates.

QQ@TAGS Rental{Neighborhood UNIVERSITY} {Bedrooms 1 br} {Price $515} {Price $550}

QQTAGS Rental{Neighborhood UNIVERSITY} {Bedrooms 2 br} {Price $975}
Template Extracted by IEPlus

Q@TAGS Rental{Neighborhood UNIVERSITY} {Bedrooms 1 br} {Price $515}

QQTAGS Rental{Neighborhood UNIVERSITY} {Bedrooms 2 br} {Price $975}
Template Annotated by Human

The second case frame in the template extracted by IEPlus matches the first case frame in
the template annotated, while the first case frame has no match. Thus, the number of correct
slots extracted from this text is 3, and the total number of slots extracted from this text is 7.

The matching between two case frames should be invariant to their positions in the tem-
plates. They should be considered to be matching as long as the same amount of information
is presented.

This definition of case frame matching is coincident with commone sense. It guides IEPlus
to search for better extraction rules through refined mechanism of case frame matching and

rule evaluation.

2.6.6 Rule Firing Strategy

There may be multiple extraction rules matching a centain instance. What kind of strategy
should be employed to generate the output template?

WHISK merges all the case frames generated by these rules when there are multiple rules
matching an instance, which may reduce the precision because too many case frames could be
generated.

Following the pattern matching strategy in JLex, the most specific rule matching an in-
stance is prioritized in IEPlus. The more slots can be extracted by a matching rule, the more
specific this rule is. The rule with low Laplacian error is chosen whenever there is a tie in

terms of the number of slots matched.

31

This rule firing strategy is based on the assumption that the most specific rule has more

chance to be correct than general ones.

2.6.7 Extraction Pattern Learning Algorithms

Figure 2.8 and 2.9 shows the pseudo code of IEPlus. Similar to WHISK, a top-down cover-

ing algorithm is used in IEPlus. However, IEPlus differs from WHISK in the rule specialization.

IEPlus adds additional terms to specialize a rule only if a candidate rule has been anchored

from slot filler, and its Laplacian error is greater than the pre-pruning threshold.

Cover(TrainingSet,PreThreshold,PostThreshold)

Input:

Output:

TrainingSet: a set of training instances
PreThreshold: a threshold for pre-pruning
PostThreshold: a threshold for post-pruning

RuleSet: a set of extraction rules

begin
EvaluationSet = a clone of TrainingSet
RuleSet = null
begin loop
SeedInst = the first instance in TrainingSet
aRule = Grow_rule(SeedInst, EvaluationSet, PreThreshold)
if (Laplacian_error(aRule,EvaluationSet) < PostThreshold)
add aRule to RuleSet
remove the instances covered by aRule from TrainingSet
end if
end loop until(TrainingSet == null)

return RuleSet
end

Figure 2.8 IEPlus Learning Algorithm: Top-down Covering

32

Grow_rule(SeedInst, EvaluationSet, PreThreshold)

Input:
SeedInst: an instance where a rule will be inducted
EvaluationSet: a set of training instances
for evaluating candidate rules
PreThreshold: a threshold for specifying the upper
bound of Laplacian error
Output:

aRule: an extraction rule

begin
aRule = null
aTemplate = the annotated template of SeedInst
for i = 1 to number of case frames in aTemplate
for j = 1 to number of slots in case frame i
locate target slot filler for slot j
store the position in an ordered set aSet
end for

for each position aPos in aSet
candidate_1 = aRule + terms in the slot filler
candidate_2 = aRule + left/right delimiter
error_1 = Laplacian_error(candidate_1, EvaluationSet)
error_2 = Laplacian_error(candidate_2, EvaluationSet)
if (error_1 <= error_2)
BestRule = candidate_1
MinError error_1
else
BestRule = candidate_2
MinError = error_2
end if
end for

if (MinError > PreThreshold)
begin loop
candidate = BestRule + additional terms
error = Laplacian_error(candidate, EvaluationSet)
end loop until (error < pre_threshold) or
no improvement in Laplacian error

BestRule = candidate
MinError = error
end if

return BestRule
end

Figure 2.9 IEPlus Learning Algorithm: Rule Growing

33

2.7 Remarks on IE Systems

The IE systems for free text have the following drawbacks which limit their applicability

in semi-structured text:

(1) They are highly dependent on the regular format of free text. For instance, AutoSlog can
only extract relevant information from the text which follows its prespecified linguistic

patterns.

(2) The features used are limited to local syntactic or semantic constraint, which is far from
expressive enough to represent the rich extraction patterns required by semi-structured

text.

The IE systems for structured text lack flexibility and are limited to very regular patterns
in structured text. For example, WIEN can only extract relevant information from tabular
web pages.

SRV and RAPIER use a rich set of features as constraints which could help extract the
irregular patterns in semi-structured text with the cost of increased time complexity. They
can’t extract multi-slot information, which is very critical in some applications.

WHISK is the first IE system to learn single-slot or multi-slot extraction rules for the text
styles ranging from structured to semi-structured to free text. As Wrapper inductin algo-
rithms such as WIEN, WHISK can transform a structured text into relational database entries
with high precision. Like SRV and RAPIER, WHISK requires no syntactic analysis for semi-
structured text. Compared with CRYSTAL and AutoSlog, WHISK can extract information
with finer granularity for free text.

IEPlus is a reconstruction of WHISK with improvements over semantic units, semantic
resolution, target slot filler location, rule specialization, rule evaluation, rule firing strategy,

etc. Its design is object-oriented, modular, extensible, and portable.

34

CHAPTER 3. DESIGN AND IMPLEMENTATION OF IEPLUS

Two major functions are implemented in IEPlus: a lexical analyzer, and an iterative parser.
The lexical analyzer (ASU86; App95; App98) takes a stream of characters and produces a
stream of basic semantic units including semantic classes, structural phrases, words, and punc-
tuation marks. The iterative parser is composed of a set of regular expressions, which stand
for the extraction patterns for various texts with different syntactic structure. The interaction

between a lexical analyzer and a parser can be shown schematically in Figure 3.1 (ASUS86).

Token

Lexical

------- =
Text —= Parser

Analyzer

Get next token

mmmbol
Table

Figure 3.1 Interaction of lexical analyzer with parser

3.1 Lexical Analysis

The lexical analyzer is the first phrase of an IE system design. For the sake of simplicity,
efficiency, and portability, specialized tools such as Lex (Les75) and Yacc(Joh78) have been

designed to automate the process of lexical analyzer generation.

35

3.1.1 JLex Lexical Analyzer Generator

JLex ! is a tool for generating a lexical analyzer for Java. It was developed by Elliot Berk
at Princeton University.

The JLex utility follows the Lex (Les75) lexical analyzer generator model. JLex takes a
input specification file which contains the details of a lexical analyzer, then creates a Java

source program as the table-driven lexer.

3.1.1.1 How JLex Works

The way JLex works is shown in Figure 3.2.

JLex
Source JLex _
- . —
Program: Compiler Text.lex.java
Text.lex
. Java
Text.lex.java——= _ —= Yylex.class
Compiler
in Method Yylex in sequence of
put
stream Yylex.class = tokens

Figure 3.2 JLex Usage

e First, a specification file Text.lex is written in JLex language.

e Then, Text.lex is fed into the JLex compiler to produce a Java source program Text.lex.java.
This source program contains a class named Yylex. The constructor of this class requires

the input stream to be tokenized as an argument.

Yhttp://www.cs.princeton.edu/ appel/modern/java/JLex/

36

e Third, Text.lex.java is run through the Java compiler to produce a lexical analyzer class

file Yylex.class.

e Finally, an input stream is transformed into a sequence of tokens through the call of

method Yylex in Yylex class.

3.1.1.2 JLex Specification

The JLex input specification is organized in three sections, which are separated by double-

percent directives (“%%”) at the beginning of an empty line.

e User Code
User code section is the section where users can write Java code for being used by the
lexical analyzer. Packages, classes, variables and return types for the lexer can be defined

here.

The code is optional and must be situated before the first %% delimiter. It will be copied

verbatim into the beginning of the Java source program generated by JLex.

e JLex Directives
The lexical analyzer directives are defined in this section. It begins after the first “%%”
delimiter and continues until the second “%%” delimiter. Each JLex directive should
start from the beginning of a line and be contained in a single line only. For instance,

%ignorecase directive can be given to generate case-insensitive lexers.

JLex directives section can also define macros and lexical states. The format of a micro

definition is as follows:

< macro_name >=< definition >

The definition above should be a valid regular expression.

States can be defined by %state directive. The default JLex lexical state is YYINITIAL,

which is the starting state of a lexical analyzer.

37

e Regular Expression Rules
The third part of the JLex specification consists of a set of pattern-action pairs. These
patterns are regular expressions, which are associated with actions consisting of Java

source code.

Each rule is composed of three distinct parts: the optional state list, the regular expres-

sion, and the associated action. Each rule has the following format:

[< states >] < expression > < action

— <states> is an optional state list which specifies the initial states under which the
rule can be matched. If no state is specified, it is matched against all possible lexical

states.

— <expression> specifies the pattern to be matched. Strings from an input should
be matched with at least one expression, otherwise an error will be generated. If
more than one rule match strings from an input, the generated lexer chooses the
rule matching the longest string. If more than one rule match strings of the same
length, the lexer will choose the rule that is given first in the JLex specification.
Therefore, rules appearing earlier in the specification are given a higher priority by

the generated lexer.

— <action> is the action associated with a rule. It contains the Java code which is
copied verbatim into the lexical analyzer class. State transitions can be realized by
function call yybegin(state). The generated lexer remains in its initial state until a

transition is made.

3.1.2 JLex Specifications for Rental Ads

The Rental Ads domain was collected from the Seattle Times on-line classified ads. The
relevant information in Rental Ads includes neighborhood, number of bedrooms, price, phone

number, etc.

38

Table 3.1 lists the regular expressions given as specifications to JLex to identify relevant to-
kens in Rental Ads domain. {BEDROOMS},{PRICE}, {AREACODE} , and {LOCALPHONE}
are micro defintions as defined in the table. {BEDROOMS} represents the semantic class of
Bedrooms, {PRICE} represents the semantic class of Price, {AREACODE} stands for the
semantic class of Area Code, and {LOCALPHONE} stands for the semantic class of Local
Phone Number. Some regular expressions in the table are presented in a different way from
JLex source program for a self-contained explanation. The complete JLex source program for
Rental Ads is in Appendix B.

The fine-grained semantic tokens increase the accuracy of target slot filler locating, the
precision of extraction rules generated, the correct matching of an extraction rule against

input text, etc.

Table 3.1 Patterns for Identifying Semantic Tokens in Rental Ads

Regular Expression given as JLex Specification Description | Example
(“West Seattle”|”Seattle Center”|” Capitol Hill”|...) Neighborhood | Seattle Center
("br”|”bds” |”bdrm” |”bd”| .. .) Bedrooms br

[0-9]’ ”"+”)” ”*{BEDROOMS} # Bedrooms | 1 br
("one”|"two”)(” "|”+”)” "*{BEDROOMS} # Bedrooms | one br
(”Studio”|” Studios”) # Bedrooms | Studio

[0-9]” "*(&”|"-7)” ?*¥[0-9](” ”|"+”)” "*{BEDROOMS} ¢ | # Bedrooms | 1 & 2 br
"$710-9]+ Price $500
{PRICE}” "*" 77 "*[0-9]+ © Price $500-600

[0— 97[0 — 9][0 — 9][0 — 9]0 — 9][0 — 9][0 — 9] Local Ph. 6342521
[0—9][0 — 9][0 — 9]” —" [0 — 9][0 — 9][0 — 9][0 — 9] Local Ph. 634-2521

[0 —9][0 — 9][0 — 9] Area Code 206

» (" {AREACODE}”)” {LOCALPHONE} Domestic Ph. | (206)634-2521
{AREACODE}(-"]” ”|" /") {LOCALPHONE} Domestic Ph. | 206-6342521

“Two Bedrooms tokens are generated
’Two Price tokens are generated

39

3.2 Iterative Parser Design

Each style of text has rules that prescribe its syntactic structure. Parsing is the process of
determining if a sequence of tokens matches the syntactic structure specified by a grammar.
Given a grammar, what a parser does is to construct a parse tree which matches the grammar.

There are a lot of parsing techniques (ASU86) if grammar rules are known. The chal-
lenge for the IE system is that the grammar rules which represent extraction patterns are not
available apriori and are changing over the learning process. An extraction pattern learning al-
gorithm tries to iteratively refine grammar rules for the sake of discovering the correct syntactic
structure around relevant information. Thus, the design of an iterative parser is challenging
and critical. Fortunately, the parsing required by IE system is usually partial parsing. Partial
parsing concerns only the syntactic structure around relevant fragmants of text. Thus the
parser for IE system is simpler and more efficient than full parsing which is usually used by
the compilers of programming languages and text understanding systems.

There are several design alternatives to construct an iterative parser for an IE system. One
possible choice is to use parser generators such as Yacc (Joh78) and CUP 2. However, it is
very awkward to construct an iterative parser in this way. Since the grammar is ever changing,
you have to generate a specification for parser generator every time the rule is updated. This
design choice will be less efficient and hard to extend.

A better design choice is to use Intepreter pattern (GHJV95).

3.2.1 Interpreter Design Pattern

The Interpreter pattern describes how to define a grammar for simple languages, represent
strings in the language, and interpret these strings. The Interpreter pattern is applicable when
there is a language to interpret, the grammar of the language is simple, and can be represented
as abstract syntax trees.

Figure 3.3 shows the structure of the Interpreter pattern.

*http://www.cs.princeton.edu/ appel/modern/java/CUP/

40

Context

Client AbstractExpression b

Interpret(Context)

Terminal Expression Nonter minal Expr essiork >——

Interpret(Context) Interpret(Context)

Figure 3.3 The Structure of Interpreter Design Pattern

e AbstractExpression defines the abstract Interpret operations common to all nodes in

the abstract syntax tree.

e TerminalExpression implements the Interpret operations for the terminal symbols
associated with the grammar. An instance is required for each terminal symbol in a

sentence.

e NonterminalExpression represents the syntactic structure in each rule of the gram-
mar. For instance, there are Alternative Expression, Repetition Expression, Sequence
Expression for regular languages. One NonterminalExpression class is required for each
rule in the grammar. For each rule R ::= R1Rs... R, instance variables of type Ab-
stractExpression should be maintained for each symbol R; through R,. Similarly, the
Interpret operation is also implemented in the class which typically involves the recursive

invocation of the operations in the variables representing R; through R,,.

e Context contains the global information shared by all classes. Context may be updated

by the Interpret operations in each class.

41

e Client constructs an abstract syntax tree by using instances of the NonterminalEx-
pression and TerminalExpression classes, and calls the Interpret operation for specific

application.

The advantages (GHJV95) of Interpreter pattern are summarized as follows:

o [t is easy to change and extend the grammar. Because grammar rules are represented by

classes, they can be changed or extended easily by using inheritance or composition.

o Implementing the grammar is easy. Because the classes in an abstract syntax tree have

similar implementations, they are easy to code.

o Adding new ways to interpret is easy. The class hierarchy makes it easier to interpret an
expression in a new way. Visitor design pattern may be used for the application which

requires creating new ways of interpreting frequently.

The extensibility and portability makes the Interpreter pattern fit nicely into extraction
pattern learning in IE systems which requires dynamic rule generation and iterative rule eval-

uation.

3.2.2 Application of Interpreter pattern in IEPlus Implementation

The representation of extraction patterns in IEPlus employs a limited form of regular
languages. The major difference lies in the pattern matching mechanism. IEPlus language
only considers the first token matching each terminal expression rather than taking all possible
matchings into consideration. The language in TEPlus is less expressive than normal regular
languages, but it is more efficient because it doesn’t need to keep track of all possible matchings.

The following grammar defines the limited regular language in IEPlus:

RegularExpr ::= StartExpr|EndExpr|Term|SequentialExpr |SkipExpr
SequentialExpr ::= RegularExpr RegularExpr ...

SkipExpr ::= * RegularExpr

42

where StartExpr, EndExpr, and Term are terminal expressions, StartExpr is the pattern in-
dicating the beginning of a string, while EndExpr indicates the end of a string. Each Term
corresponds to each token obtained from lexical analysis, and there is an associated list of
(Tag,Slot) coordinates which shows the locations where the matching term will be extracted.
SequentialExpr and SkipExpr are nonterminal expressions. SequentialExpr contains a list of
regular expressions. It matches a string only if this string matches these regular expressions in
order. SkipExpr is composed of one regular expression. Given a string, it skips to check if any
subsequent tokens match the regular expression. We can specify to extract the skipped tokens
or matched tokens by assigning a list of (Tag,Slot) coordinates with a corresponding part. The
7 in SkipExpr is different from the Kleen Star in regular languages, it stands for wild card.
The grammar above is represented by six classes. an abstract class RegularExpr and its
five subclasses StartExpr, EndExpr, Term, SequentialExpr, and SkipExpr. Figure 3.4 shows

the class diagram according to the notation in (GHJV95).

Regular Expr
Interpret()
StartExpr EndExpr
Interpret() Interpret()
— SkipExpr Term Sequential Expr :
Interpret() token:Symbol Interpret() K>

Interpret()

Figure 3.4 The Class Diagram for IEPlus Grammar

43

The matching strategy is implemented in each class. The composition of the instance of

these classes can generate various extraction rules. For instance, the following rule:
* (NEIGHBORHOOD: 0,0) * (BEDROOMS: 0,1) * (PRICE: 0,2)

is an instance of SequentialExpr which is composed of three instances of SkipExpr, and each
instance of SkipExpr contains an instance of Term associated with the (Tag,Slot) coordinate
for matching tokens.

We can change matching strategy and extend the grammar easily by using object-oriented
mechanisms such as inheritance and composition. For example, if we want to add additional
constraints such as the length of matching tokens into SkipExpr, we only need to modify the
Interpret operation in class SkipExpr. We can also extend the language in IEPlus easily by

adding more classes in the class diagram through inheritance and composition.

3.3 The Collection Classes in IEPlus

There are Collection classes in Java (Fla99), but we implemented specialized Collection
classes in IEPlus in order to incorporte more sophisticated operations. Figure 3.5 shows the

class diagram of the Collection design for IEPlus following UML (BRJ99).

Symbol |~ Slot RPN Tag

1 1 1 1 1 1
——< Instance [——<> TaggedInstance_>—— Tags <
1.*

—{ TaggedInstancgs
1

Figure 3.5 The Collection Class Diagram for IEPlus

44

Let’s consider a sample tagged text for extracting from the Rental Ads domain.

@s[
BALLARD - Deluxe 1 bed $550/2 bed $600. Jim 206-781-1300.

<i> (This ad is from 08/02/97 to 08/03/97.) </i> <hr>
Jes
QQ@TAGS Rental {Neighborhood BALLARD} {Bedrooms 1 br} {Price $550}
@QTAGS Rental {Neighborhood BALLARD} {Bedrooms 2 br} {Price $600}

Q@Q@ENDTAGS

We model this tagged text as an instance of TaggedInstance class. It is composed of
untagged text beginning with “@QS[“ and ending with “|@S” and a set of case frames in the
output template. Each case frame starts with “Q@TAGS” at the beginning of a line. We
model the untagged text as an instance of Instance class, and each case frame as an instance of
Tag class. Each case frame consists of a list of target slots. Each slot is embraced by “{“ and
“}”, and it is an instance of Slot class. Each slot contains a list of tokens, which are instances
of Symbol class. The set of case frames is stored in an instance of Tags class. There might be

many tagged texts like this in a training set, we model it by defining class TaggedInstances.

45

CHAPTER 4. EXPERIMENTAL EVALUATION OF IEPLUS

Our objectives in developing IEPlus included: investigating the feasibility of learning in-
formation extraction patterns using of a limited form of regular languages for representing
extraction patterns; evaluation of the performance of IEPlus under various settings; and com-

paring IEPlus with other IE systems.

4.1 Domain Description

The domain Rental Ads (Sod99) was collected by Stephen Soderland from Seattle Times
on-line classified ads. The template contains three types of slots: Neighborhood, number of
Bedrooms, and Price. Each type of slot might appear multiple times in an template. There
might be multiple case frames in a template. The instances are generated from a HTML file
separated by the HTML tag < hr >. 362 training instances are used in the experiments after
filtering out the instances without relevant information. A test set of 350 instances obtained
from the same source six weeks later is used for testing IEPlus. The template format is slightly
different from that for WHISK. For instance, the slot for the number of Bedrooms is {Bedrooms

1 br} rather than {Bedrooms 1} for the sake of self-contained lexical analysis.

4.2 Performance Metrics

The experiments are designed to achieve two major goals: system evaluation and system
comparison. The purpose of system evaluation is to determine the relationship between various
parameters and the performance of IEPlus, while system comparison is to compare TEPlus with

WHISK and some other systems.

46

Similar to information retrieval, precision and recall are used as the performance metrics
of IE systems. Precision is the percentage of information extracted by the system which is
correct, while recall is the percentage of relevant information which can be extracted correctly
by the system.

We define the precision and recall formally in Equation 4.1 and 4.2.

Precisi Number of correct slots extracted (4.1)
recision = .
Number of slots extracted

Number of correct slots extracted
Recall = - (4.2)
Number of slots in annotated templates

Since case frame is the minimal unit representing a relationship, a slot is considered to be
correct only if it is in a correct case frame. There will be a detailed discussion about the
similarity computation between the extracted case frame and the annotated case frame in next
section.

For the ease of performance comparison, the MUC conference also proposed a F-measure
(ARP92), which combines precision and recall into a single measurement for information ex-
traction. The F-measure is defined in Equation 4.3.

2 { 1)PR
F- % (4.3)

where P stands for precision, R for recall, and 8 is a parameter weighting the relative impor-
tance of precision and recall. § is normally assigned to 1. The F-measure of current state-of-art
IE systems is around 0.6 (AI99).

To some extent, the number of extraction rules induced from a training set can reflect
the complexity of extraction patterns generated and the structures inherent in the training
set. Compact extract rules can help humans understand the regularity underlying the domain.

Thus the number of rules is reported as additional performance metrics when appropriate.

4.3 System Evaluation and Fine Tuning

IE system is more of an experimental system. Its performace is susceptible to the number

of training instances, similarity measurement, error estimation function, granularity of lexical

47

analysis, rule firing strategy, rule pruning strategy, and various other parameters or settings.
The motivation underlying system evaluation is to understand the influence of various param-
eters or setting on the performance of IEPlus such that we can fine tune the system to its

optimal performance.

4.3.1 The Number of Training Instances

In order to test the effect of the number of training instances on the performance of IEP]us,
a subset of a training set is obtained by random sampling. The size of the subset starts from
25 instances up to all the instances in the training set. For each training size, we reported
the average and standard deviation of 5 trials on a separate test set with 350 instances. The
performance metrics reported include precision, recall, and the number of rules. Figure 4.1

shows the performance of IEPlus as the number of training instances increases.

Table 4.1 The Performance of IEPlus for the Rental Ads domain

Training Size | Prec +/- StdDev (%) | Recall +/- StdDev (%) | #Rules +/- StdDev
25 82.85 +/- 1.56 79.42 +/- 2.08 76 1/- 1151
50 87.17 +/- 1.26 85.11 +/- 1.13 13.2 /- 1.084
75 89.72 +/- 1.31 84.39 +/- 1.25 13.4 +/- 0.975
100 88.81 +/- 0.79 85.46 +/- 1.14 20.8 +/- 1.342
125 91.69 +/- 0.53 88.39 1/- 1.34 20.6 +/- 1.823
150 92.62 +/- 0.54 90.70 +/- 0.71 24.0 +/- 2915
175 92.60 +/- 0.73 90.36 +/- 1.07 28.6 +/- 1.823
200 92.34 +/- 0.52 90.99 +/- 1.43 31.0 +/- 1.768
225 92.66 +/- 1.02 91.07 +/- 1.22 34.0 +/- 1.658
250 93.38 +/- 0.24 91.63 +/- 0.97 35.4 +/- 1.997
275 93.46 +/- 0.24 92.82 +/- 0.16 37.8 +/-2.074
300 93.31 +/- 0.18 92.93 +/- 0.21 39.8 +/- 0.652
325 93.73 +/- 0.08 93.20 +/- 0.08 434 +/- 0.758
350 93.85 +/- 0.00 93.31 1/- 0.00 444 +/- 0.447
362 93.80 +/- 0.00 93.30 +/- 0.00 46.0 +/- 0.000

One interesting point is that what really counts for an IE system is not the number of
training instances, but the number of training instances with different syntactic structures
surrounding relevant fragments of text. This can explain the nonmonotonicity in Table 4.1 as

training size increases.

48

The precision of IEPlus increased from 0.8285 to 0.938, and the recall from 0.7942 to
0.933 when the training size increased from 25 instances to 362 instances. Compared with
WHISK without post-pruning, whose precision increased from 0.85 to 0.91, and the recall
increased from 0.83 to 0.94 when the training size increased from 25 instances to 400 instances.
Considering that IEPlus simply used random sampling, while WHISK used selective sampling
(Sod99)(WHISK selects one third from instances covered by the current rule set, near misses
of the rules, and instances not covered by any rule in each step), the performance of IEPlus is

competitive with that of WHISK.

4.3.2 Pruning

An extraction rule without any error might be so specific that it can only cover very few
instances. TEPlus uses pre-pruning to avoid overfitting. Given a seed instance, IEPlus first
generates a candidate rule where only slot filler and left/right delimiters are used, then the
Laplacian error of this rule is compared with a pre-pruning threshold. The rule is further
specialized by adding additional terms if its Laplacian error is greater than the pre-pruning
threshold.

Since not all the rules learned have low Laplacian expected error, adding the rules with
large Laplacian expected error might pollute the rule set. Post-pruning could be used to discard
such rules by assigning a threshold. Rules with Laplacian error greater than the threshold are
removed from the rule set. The effect of post-pruning on the performance is shown in Table

4.2,

Table 4.2 The Effect of Post-Pruning

Threshold | 0.1 | 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Precision | 0.0 | 0.780 | 0.804 | 0.831 | 0.840 | 0.854 | 0.887 | 0.944 | 0.944 | 0.938
Recall 0.0 | 0.734 | 0.756 | 0.819 | 0.830 | 0.844 | 0.876 | 0.933 | 0.933 | 0.933
#Rules 0 3 4 7 30 32 37 39 40 46

The best precision of TEPIlus with post-pruning is 0.944, and the best recall is 0.933, while

the best precision of WHISK with post-pruning is between 0.94 and 0.98, and the recall is 0.92.

49

The performance of IEPlus with post-pruning is still comparable to WHISK with post-pruning.

Threshold 0.8 and 0.9 result in the best system performance, but they are close to the
system without post-pruning corresponding to threshold 1.0. This could be attributed to the
specific rule firing strategy in IEPlus. Rules with the largest number of slots extracted are
fired when there are multiple matching rules, and the rule with low Laplacian error is chosen
when there is a tie on the number of slots extracted. Thus the rules with large Laplacian error
may have very few chance of being fired.

Another possible explanation is that the rules filtered out by post-pruning might contain
extraction patterns which are not covered by other rules with low Laplacian error. These rules

play the important role of small disjuncts.

4.3.3 Rule Evaluation

Similar to WHISK, IEPlus learns rules in greedy fashion. It needs to evaluate two candidate
rules for each slot filler in the training phase, and chooses the one with low Laplacian error. For
each case frame in the output template extracted by candidate rules, it has to be determined
whether there is a matching case frame in the template annotated by humans.

One refinement which has been implemented in IEPlus is its order-invariance for case frame
matching. For instance, the cases frames in the two templates below are in different order,
but the same amount of information is presented. Therefore, each case frame in the extracted

template is considered to have a matching one in the annotated template.

Q@TAGS Rental {Neighborhood UNIVERSITY}{Bedrooms 2 br}{Price $975}

Q@TAGS Rental {Neighborhood UNIVERSITY}{Bedrooms 1 br}{Price $515}

Template Extracted by IEPlus

QQTAGS Rental {Neighborhood UNIVERSITY } {Bedrooms 1 br} {Price $515 }

Q@TAGS Rental {Neighborhood UNIVERSITY } {Bedrooms 2 br} {Price $975 }

Template Annotated by Human

50

For two matching case frames, they don’t have to be exactly the same. The case frame ex-
tracted by IEPIlus containing more slots can’t match any case frame in the annotated template
with fewer slots for the sake of assigning more credit to better rules, but it can be composed
of less slots considering that the case frame might be generated by partially formed candidate
rules in the training phase. However, the slots in the shared positions between two case frames
have to be the same.

This fine-tuning of case frame matching is critical for the performance of IEPlus, which
boosts the precision of IEPlus from 0.906 to 0.938, and the recall from 0.901 to 0.933. This
more reasonable rule evaluation guides IEPlus to discover the extraction rules which better

reflects the syntactic and semantic structure of the domain.

4.3.4 Lexical Analysis

A lexical analyzer decides the semantic units used, the granularity of tokenizations. Wrong
tokens lead to misleading extraction rules. Thus, lexical analyzer fine tuning is indispensible
for a state-of-art IE system.

The experiments designed in this section are used to answer the following questions in

lexical analysis:

o Is it better to use case sensitive matching or case insensitive matching in lexical analysis?
Since IEPIlus is highly dependent on the correct categorization of semantic classes, and
it is time-consuming if not impossible to enumerate all possible cases, a case insensitive
lexer would be more able to handle unseen instances. Thus, the current optimal setting
of TEPlus used the case insensitive lexer. The experiments on 362 training instances
showed that the precision would be reduced from 0.938 to 0.905, and the recall from

0.933 to 0.892 if a case sensitive lexer is used.

e Do HTML tags help extract relevant information?
Web pages are written in HyperText Markup Language (HTML), which are composed of
two types of texts, regular text, and HTML tags describing the text. These markup tags

can describe the appearance such as font size, layout such as table, etc. One interesting

51

question in information extraction is whether HTML tags in a text help extract relevant
information though they may not contain relevant information in itself. IEPlus catego-
rizes all HTML tags into the same semantic class, and thus has the precision of 0.938, the
recall of 0.933 on 350 test instances using 46 rules learned from 362 training instances
with HTML tags. The precision will be reduced to 0.938, the recall to 0.933 on the same
test set using 47 extraction rules learned from the same set of training instances without
HTML tags. This verified our conjecture that HTML tags play an important role in
formatting information, but are not effective delimiters surrounding relevant information

on the Rental Ads domain.

4.4 System Comparison

Since IEPlus is a descendant of WHISK, a comparision would be helpful to clarify the
underlying differences between IEPlus and WHISK. IEPlus enhances WHISK in the following
aspects: lexical analysis, rule evaluation, rule firing strategy, etc.

Table 4.3 summarizes the differences between IEPlus and WHISK.

Table 4.3 The Comparison of Features between TEPlus and WHISK

Feature IEPlus WHISK
Structural Phrase Yes No
Semantic Resolution Yes No
Heuristic for Slot Filler Locating Yes Unknown
Case Frame Order-invariance Yes Unknown
Rules Applied Most specific rule All matching rules
Template Generation By most specific rule | All templates merged
Implementation Language Java Perl

The lexical analysis in IEPlus is much more fine-grained than WHISK. WHISK doesn’t
consider structural phrases, and the definition of semantic classes is slightly different from
IEPlus. For instance, 'br’ is tokenized into semantic class Bedrooms in WHISK, while '1 br’ is
in semantic class Bedrooms in IEPlus. There is no semantic resolution based on local context
in WHISK. For instance, WHISK tokenizes ’'1 & 2 br’ into a token DIGIT, a connecting token

&’, and a semantic class Bedrooms; While TEPlus tokenizes it into two semantic classes,

52

Bedrooms, and a connecting token '&’. WHISK doesn’t consider the issue of case sensitivity.
The use of JLex makes IEPlus much easier to construct fine-grained lexer and to conduct
various experiments.

For each target slot in the annotated templates, the corresponding target slot filler in the
text needs to be located. Since a fragment of text can appear zero, one, or many times in the
annotated template, it is not easy to have an exact matching between target slot and target
slot filler. The heuristic guiding the slot filler locating in IEPlus is that the tokens (i.e., word,
semantic class, structural phrases) in a text are tried in order. If there is no matching token
following current position, then IEPlus searches for candidate tokens for the beginning of a
text. There is no corresponding discussion in WHISK.

The case frame matching implemented in IEPlus is order-invariant, while there is no de-
scription about it in WHISK.

There may be multiple extraction rules matching a centain instance. Following the pattern
matching strategy in JLex, the most specific rule matching an instance is prioritized. The
more slots extracted by a rule from an instance, the more specific this rule is. The rule with
low Laplacian error is chosen whenever there is a tie in terms of the number of slots extracted.
Experiments demonstrated that the rule firing strategy can pick up the right rule coincident
with a test instance with high probability. This specific rule firing strategy can make up the
less specific rule generated by IEPlus, and increase the precision while keeping the recall of
IEPlus. WHISK merges all the case frames generated by these rules when there are multiple
rules matching an instance, which may reduce the precision because too many case frames
could be generated.

Last but not least, IEPlus is implemented in Java such that it can work in multiple plat-
forms, while WHISK is implemented in Perl which can make use of the pattern matching
language features.

Table 4.4 lists the comparison of performance between IEPlus and WhISK. 362 instances
used for training IEPlus were obtained by filtering out irrelevant instances from the original

400 instances, while 400 instances for WHISK contain both relevant and irrelevant instances.

53

Table 4.4 The Comparison of Performance between IEPlus and WHISK

System Training Size | Precision (%) | Recall (%)
IEPlus without Post-Pruning 25 82.85 79.42
IEPlus without Post-Pruning 362 93.80 93.30
IEPlus with Post-Pruning 362 94.40 93.30
WHISK without Post-Pruning 25 85.00 83.00
WHISK without Post-Pruning 400 91.00 94.00
WHISK with Post-Pruning 400 94.00-98.00 92.00

The performance of WHISK is the average performance of ten runs', while the performance

of IEPlus is the average performance of five trials.

4.5 Discussion

Similar to WHISK, the performance of IEPlus on the Rental Ads domain demonstrated
that extraction rules in the form of regular languages are suitable for structured and semi-
structured text, where there is a predictable order of fixed tokens surrounding the relevant
information.

One of the bottlenecks for performance boosting in the Rental Ads domain is the inabil-
ity of IEPlus to differentiate some complementary constituent from a standalone one. For
instance, in the text fragment: ” Ames, North of Ankeny”, ” Ankeny” shouldn’t be tokenized
into a standalone semantic class, it should be combined with direction token to act as the
complementary constituent of previous semantic class. Such ambiguity can be resolved if a
component of sentence analysis can be incorporated into the system.

The semantic class and structural phrase IEPlus can handle is self-delimiting or with pre-
dictable pattern, IEPlus is not capable of recognizing the unstructured portion of the text
when the surrounding text is highly variable, which is the problem IEPlus has to solve for
better performance on other domains without predictable delimiting patterns.

More constraints may be incorporated into IEPlus such that its precision can be enhanced.

For instance, the following rule caused many wrong extractions in the experiments.

!The results reported are from the paper about WHISK (Sod99)

54

* (NEIGHBORHOOD: 0,0) * /> (*: 0,1) >~ * (BEDROOMS: 0,2) * (PRICE: 0,3)

With the incorporation of the constraint regarding the length of matching tokens for the slot

1 in case frame 0, Precision and recall could be further improved.

4.6 Sample Extraction Rules

One of the rules which covers most of instances in the Rental Ads domain is:
* (NEIGHBORHOOD: 0,0) * (BEDROOMS: 0,1) * (PRICE: 0,2)

This rule means that it ignores any tokens until it encounters semantic class Neighborhood,
extracts the tokens corresponding to this semantic class and puts it in slot 0 in case frame
0. It continues skipping up to semantic class Bedrooms, then the tokens associated with this
semantic class is extracted to slot 1 in case frame 0. The tokens matching semantic class Price
are extracted similarly.

This rule covers most of the instances with high precision. Later rules act as small disjuncts
covering instances that can’t be fit into this pattern, such as the text with more than one
neighborhood, and a list of bedrooms and prices.

Another rule which generates multiple case frames is:

* (NEIGHBORHOOD: 0,0; 1,0; 2,0) * (BEDROOMS: 0,1) * (PRICE: 0,2) *
(BEDROOMS: 1,1) * (PRICE: 1,2) * (BEDROOMS: 2,1) * (PRICE: 2,2)

When it is applied to the instance below, it can generate the same template as annotated

below.

es[
DOWNTOWN 1 br from $825.
2 br from $1090.
2 br/2 ba penthse $1785.
Short term lse & furn apt avail.

W/D, dw, pkg avl, hlth club.

55

Call for appt 464-0585

<hr>
les
QQ@TAGS Rental {Neighborhood DOWNTOWN} {Bedrooms 1 br} {Price $825}
QQTAGS Rental {Neighborhood DOWNTOWN} {Bedrooms 2 br} {Price $1090}

QQTAGS Rental {Neighborhood DOWNTOWN} {Bedrooms 2 br} {Price $1785}

For more sample extraction rules, see Appendix B.

56

CHAPTER 5. SUMMARY AND DISCUSSION

This chapter summarizes the major contributions of this thesis. IEPlus, a reconstruction
of WHISK, was built to explore the use of machine learning to automate the design of IE

systems.

5.1 Contributions

The contributions made by this thesis can be summarized as follows:

e A complete IE system, TEPlus, was developed in Java. Its design is object-oriented,

modular, extensible, and portable.

e Fine-grained semantic units were proposed, and a strategy for semantic resolution was

suggested.
e Heuristics for target slot filler location was proposed.

e Case frame matching was detailed in IEPlus. Experiments proved its effectiveness in

evaluating candidate rules.

e A novel rule firing strategy was proposed, which prioritizes the most specific rule. Ex-

periements proved that it can choose the right rule to fire for most of the instances.

Each of these contributions will be elaborated in order.

5.1.1 Object-oriented System Design

Lexical analysis, iterative parser generation, and instances modeling are three major func-

tions implemented in TEPlus. The function of lexical analysis is to tokenize a text into a

57

sequence of tokens with correct semantic meaning. Iterative parser generation is a process of
learning extraction rules in the form of abstract syntax trees from training instances iteratively.
A sequential covering algorithm is used for learning. Instance modeling is simply to manage
the text collections of various types.

JLex is chosen to generate domain-specific lexical analyzer, which is separated from domain-
independent components in the sytem. This design makes the lexical analyzer highly flexible.
Thus, world knowledge can be easily incorporated to guide fine-grained lexical analysis and to
adjust the granularity of TEPlus to the right level.

Interpreter design pattern is applied to IEPlus for realizing a limited form of regular lan-
guage. Because each grammar rule is represented by a class, the extension of a grammar rule
is quite easy by using inheritance or composition. Well-defined responsibility in each class fa-
cilitates dynamic adding or changing of actions. This flexible design make it feasible to explore
various rule representations, and to incorporate more features and constraints into grammar
rules in extraction pattern learning.

The flexible design and implementation play an important role for being able to tune IEPlus

to its optimal performance.

5.1.2 Semantic Units and Semantic Resolution

The semantic units in IEPlus include word, semantic class, and structural phrase. Semantic
classes help IEPlus generalize beyond the tokens in the training instances, and structural
phrases capture the tokens with predictable structure in the training instance. The fine-grained
semantic units boost the performance of IEPlus in target slot filler location, rule generation,
rule evaluation, and template generation.

Another contribution IEPlus made is semantic resolution. It is proposed in IEPlus that
the semantic ambiguity of a token can be resolved by considering local context. Patterns and
actions can be entered by users for specifying the correct semantic category a token belongs
to in a certain syntactic context.

Experiments demonstrated the effectiveness of semantic units and semantic resolution in

58

IEPlus.

5.1.3 Target Slot Filler Location

For each target slot in the annotated templates, the corresponding target slot filler in the
text needs to be located. Since a fragment of text can appear zero, one, or many times in the
annotated template, it is not easy to have an exact matching between target slot and target
slot filler. The heuristic guiding the slot filler location in IEPlus is that the tokens (i.e., word,
semantic class, structural phrases) in a text are tried in order. If there is no matching token
following current position, then IEPlus searches for candidate tokens for the beginning of a

text.

5.1.4 Case Frame Matching and Rule Evaluation

IEPlus generates multi-slot extraction rules, which could output the template containing
one or multiple case frames. Only if a case frame extracted by IEPlus has a matching one in
the annotated template could it be considered to be correct, and all the slots in a wrong case
frame are considered to wrong extractions.

The case frame matching implemented in IEPlus is order-invariant and coincident with
common sense. Experiments with the Rental Ads domain demonstrated that it guides the rule
learning algorithm to find the best rule reflecting the regularity inherent in the domain. Please
refer to Appendix C for a complete set of rules generated from 362 training instances on the

Rental Ads domain.

5.1.5 Rule Firing Strategy

WHISK uses merging strategy to combine the extractions made by all firing rules. That is,
all the case frames generated by firing rules are considered to be the extractions of the system.
It could lead to poor precision if multiple rules are fired and many case frames are generated.

It is proposed in IEP1lus to fire the most specific rule when there are multiple rules matching

a test instance. The more slots a rule can extract from an instance, the more specific it is.

59

Since each rule has an associated confidence which is the complement of Lapalician error (i.e.,
1- Laplacian) in IEPlus, a rule with low Laplacian error is pickup whenever there is a tie in
terms of the number of slots extracted. Experiments on the Rental Ads domain showed that

this firing strategy can fire the right rule for most instances.

5.2 Future Work

Further improvement is possible for IEPlus in a number of directions. First, more tests
are desirable. More domains of various text styles and more experimental metrics such as the
precision and recall of each slot should be tested. Second, more enhancements can be made
to IEPlus in text preprocessing, incorporating more features and constraints into the system,

and adding more specialized component for specific entity recognition.

5.2.1 More Tests

There is a set of standard test data in the newly created RISE repository !, including
the Seminar Announcements collected by Freitag (Fre98), Jobs collected by Califf(Cal98), LA-
Weekly Restaurant used by Muslea (MMK99), etc. The Seminar Announcements data set
would test IEPlus’s performance in name-entity extraction. The Jobs data set would be good
for testing IEPlus in extracting many slots with various difficulties, and the nesting structure
in LA-Weekly restaurant would challenge the power of IEPlus’s limited regular languages. The
experiments on these test sets will facilitate the comparison among IE systems. Also, more
domains containing temporal, causal, or other complex relationships among events would be
helpful to expose the problems in IEPlus.

Besides the precision and recall over complete system, more experimental metrics can be
designed to test the performance of IEPlus. For instance, the difficulty of extractions differs
among different slots. It would be better to test the performance of IEPlus on extracting

individual slot such that the weaknesses and strengths of the system can be discovered.

"http://www.isi.edu/ muslea/RISE

60

5.2.2 Document Partitioning

An IE system has expertise in extracting relevant information from logically coherent seg-
ments of text, but it may not be good at extracting from a raw text. Thus, an indispensible
function for a complete IE system is to divide raw text into logically coherent segments ac-
cording to document hierarchy. These text segments should put logically related facts together
and separate unrelated facts. Webfoot (Sod97b) is an example preprocessor which uses page
layout cues to divide a web page into sentence-length segments of text. The output of Webfoot
is fed into CRYSTAL (SFAL95) such that the segments of text from a web page can be treated
as free text.

In order to turn IEPlus into a complete IE system, a preprocessor for automatically parti-
tioning raw text into logically coherent segments is necessary. Since it is not always possible
to specify salient delimiters, some unsupervised learning algorithms such as clustering might

be able to group related facts together while keeping unrelated facts apart.

5.2.3 Relevance Filtering

Irrelevant instances were filtered out to form a training set of 362 relevant instances for the
experiments on the Rental Ads domain. To build a complete IE system, this relevance filtering
process should also be automated. There are two possible ways to tackle the problem.

Relevance filtering is essentially a problem of text classification, and there have been a lot of
mature machine learning algorithms addressing the problem. Thus, some supervised learning
algorithms such as decision tree and naive Bayesian algorithm would work. Another way is to

use traditional information retrieval relevance feedback techniques (Sal89).

5.2.4 XML Representation

Extensible Markup Language, or XML? for short, is a World Wide Web Consortium Stan-
dard for data representation. XML was designed to describe data and to focus on what data

is, while HTML was designed to display data and to focus on how data looks.

2http://www.w3.org/TR/2000/ WD-xml-2e-20000814

61

XML can be used to describe the data in IEPlus. For instance, a training instance in

IEPlus can be represented as:

<Document>
<Advertisement>
BALLARD - Deluxe 1 br $550
Jim 206-781-1300.

<i> (This ad is from 08/02/97 to 08/03/97.)
 </i> <hr>
</Advertisement>
<Template>
<Slot>
<Neighborhood>
BALLARD
</Neighborhood>
<Bedrooms>
1 br
</Bedrooms>
<Price>
$550
</Price>
</Slot>
</Template>

</Document>

The advantages of using XML in IEPlus include:

e XML makes it easy for data sharing.

e XML facilitates content-based retrieval.

62

e XML documents are easy to parse because there is Java Simple API for XML (SAX) 3

e XML documents are easy to be transformed into the format desired using XSLT *.

5.2.5 Finite-State Transducer Cascade Architecture

A document could have different syntactic structure from different point of view. The
finite-state transducer cascade (Abn96) builds up syntactic structure in a series of levels. For

instance, for the following sentence:
An NH circle was used to solve problems with CAD.

It can be viewed as a sequence of words (Level 0). It can also be viewed as a list of POS tags
(Level 1). Up one level (Level 2), it is viewed as a sequence of base noun phrases. At the top
level (Level 3), it is viewed as a list of clauses (subject clause, verb clause, and complement
clause). Each level is built upon the previous levels by a transducer, which is a finite-state
automaton for mapping input languages to output languages.

The incorporation of finite-state transducer cascade architecture into IEPlus could im-
prove the flat syntactic structure in IEPlus, but it poses challenging problems in parsing
semi-structured text, extraction pattern learning from multiple levels of representation, rule
pattern matching, etc. However, it is definitely a promising direction for boosting the system

performance.

5.2.6 Semantic Class and Semantic Hierarchy

An information extraction learning system can generalize its extraction pattern beyond the
tokens in its training instances. The current implementation of IEPlus only incorporates the
domain-specific semantic classes, which is far from complete and perfect.

An improvement of IEPlus is to support domain-independent semantic class and semantic
hierarchy. WordNet (Mil95) is a domain-independent lexical database of about 57,000 words

containing a semantic hierarchy in the form of hypernym links. A semantic class is represented

3http://www.javaworld.com /javaworld /jw-08-2000/jw-0804-sax-2.html
*http:/ /www.w3.org/ TR /xslt

63

by a synsets in WordNet. The semantic hierarchy implemented in WordNet would greatly
faciliate the semantic generalization and specialization in an extraction rule learning process.

Thus, extending [EPlus to support WordNet would definitely boost the performance of IEPlus.

5.2.7 Additional constraints

The constraints in an IE system can be categorized into two types: local constraints and
non-local constraints.

Three types of contraints have been incorporated in IEPlus: word, semantic class, and
structural phrase. All of them are local constraints. There are many more features which
can be added as local constraints. Examples include the length of a slot to be extracted,
orthographic constraints (Fre98), POS tag (CM99), syntax constraints such as subject, direct
object, prepositional phrase (Ril93) depending on the style of text for processing.

Non-local constraints are often ignored by IE system designers. These constraints embody
the non-local relations between sentences such as coreference, recursive structure, etc. If the
text is of recursive structure around relevant fragment of text, it is beyond the representation
power of the regular language in IEPlus, then context free grammar (Sip97) would be a better

knowledge representation.

5.2.8 More Specialized Entity Extraction

TEPlus uses semantic classes and structural phrases to identify an entity. However, some
entity in a text may not be enumerable and may not contain predictable structure, and the
entities in the same text could be so similar that even human experts can hardly differentiate
them. The challenge for an IE system is how to differentiate ambiguous entities in a text. For
instance, how to tell a person’s name from a company’s name if the company was named after
a person.

There is no simple solution to this problem. One feasible way is to incorporate more special-
ized entity extraction components, which could make use of all kinds of hints embodied in the

text such as capitalization, formatting tags, local context, coreference, and entity conventions.

64

APPENDIX A. SAMPLE TRAINING INSTANCES

This appendix contains three types of training instances with different number of case

frames in the annotated templates.

QS[

BALLARD - 1 br, covered prkng, strg, N/P $530.

206-634-2521

<i> (This ad last ran on 08/03/97.) </i> <hr>
Jes
@QTAGS Rental {Neighborhood BALLARD} {Bedrooms 1 br} {Price $530}

QQ@ENDTAGS

@s[

BOULEVARD PARK - Spacious 2 BR, 11/2 BA $585.

1 BR with view of Seattle skyline $465.

Pool.

NO PETS PLEASE.

Call 206-767-3806

<i> (This ad last ran on 08/03/97.) </i> <hr>
Jes
Q@TAGS Rental {Neighborhood BOULEVARD PARK} {Bedrooms 2 br} {Price $585}
QQ@TAGS Rental {Neighborhood BOULEVARD PARK} {Bedrooms 1 br} {Price $465}

QQ@ENDTAGS

65

es[

Capitol Hill - 1 bdrm w/decks $625; 2 bdrm w/patios $725.

Both: yard, off st prkng, buses.

N/S (206) 324-6241

<i> (This ad last ran on 08/03/97.) </i> <hr>
les 61
QQTAGS Rental {Neighborhood Capitol Hill} {Bedrooms 1 br} {Price $625}
QQTAGS Rental {Neighborhood Capitol Hill} {Bedrooms 2 br} {Price $725}
Q@TAGS Rental {Neighborhood Capitol Hill} {Bedrooms 1 br} {Price $725}

QQ@ENDTAGS

66

APPENDIX B. COMPLETE JLEX SPECIFICATION

package Parse;

import java.util.*;

o

%implements Lexer

%function nextToken

%type java_cup.runtime.Symbol
%char

%line

%state INSTANCE

%state TAGS

%state TAG

%state SLOT

Y%state UNIT

hi

private void newline()

{

errorMsg.newline (yychar);

67

private void err(int pos, String s)
{

errorlMsg.error(pos,s) ;

private void err(String s)
{

err(yychar,s);

private java_cup.runtime.Symbol tok(int kind, Object value)

{

return new java_cup.runtime.Symbol(kind, yychar, yychar+yylength(), value);

private ErrorMsg.ErrorlMsg errorlMsg;

private TaggedInstances aTaggedInstances;
private TaggedInstance aTaggedInstance;
private Instance alnstance;

private Tags aTags;

private Tag aTag;

private Slot aSlot;

private java_cup.runtime.Symbol tt;

//get the tagged instance set after tokenizing
public TaggedInstances getTaggedInstances()

{

68

return aTaggedInstances;

Yylex(java.io.InputStream s, ErrorMsg.ErrorMsg e)
{
this(s);

errorMsg=e;

h}

%init{
aTaggedInstances = new TaggedInstances();

%init}

%heofvalq{
{
return tok(sym.EOF, null);
}

Y%eofval}

ALPHA=[A-Za-z]

DIGIT=[0-9]

DIGITS={DIGIT}+
REAL=({DIGITS}"."{DIGIT}+) | ({DIGIT}+"."{DIGITS})

WORD={ALPHA} ({ALPHA} [{DIGIT}|"_"["@"I\\|"?")*

69

PRICE=("$"{DIGITS})

AREACODE={DIGIT}{DIGIT}{DIGIT}

LOCALCODE=({DIGIT}{DIGIT}{DIGIT}{DIGIT}{DIGIT}{DIGIT}{DIGIT}

| {DIGIT}HDIGITH{DIGIT}"-"{DIGIT}{DIGIT}{DIGIT}{DIGIT})
PHONE=({LOCALCODE} | " ("{AREACODE}") "{LOCALCODE}
| " ("{AREACODE}") "{LOCALCODE}
| {AREACODE} ("~"|" "|"/"|"."){LOCALCODE}|"1-"{AREACODE}"~"{LOCALCODE})

HTMLTAG="<" [">]*">"

WHITE_SPACE_CHAR=[\r\n\ \t\b\012]

BEDROOMS=("brs" | "br" | "bds" | "bdrm" | "bd" | "bedrooms" | "bedroom" | "bed" | "bdr"

| "BDRM" | "BR" | "Br" | "Bedroom" | "BD" | "apts")

NEIGHBORHOOD=("ALKI BEACH"|"ALKI"|"ADMIRAL"|"Avalon"|"BALLARD"|"Ballard"
|"Beacon Hill"|"Bellevue"|"Belltown"|"Bel-Sq"|"Bothell" |"BOULEVARD PARK"
| "Broadview"|"Capitol Hill"|"Central Area"|"Central District"|"Central"
| "Downtown" | "Eastlake" | "Eastside" | "EDMONDS" | "Fauntleroy" | "FACTORIA"
["First Hill"|"Fremont" |"GEORGETOWN" | "Green Lake"|"Greenlake"|"GREENWOOD"
|"Issaquah"|"Juanita Beach"|"Kirkland"|"Lake City"|"Lake Union"
| "Laurelhurst"|"Leschi"|"Licton"|"Lincoln Park"|"Madison Park"
| "Madrona" | "MAGNOLIA"|"Maple Leaf"|"Mt Baker"|"Mt. Baker"

["North Seattle"|"Northend"|"Northgate"|"Mercer Is"|"Mercer Island"

| "Newcastle"|"Oak Tree"|"Phinney Ridge"|"Phinney"|"Queen Anne"

| "RAINIER VALLEY"|"Ravenna"|"Redmond"|"Regrade"|"Roosevelt"

| "Sandpoint"|"Seattle, South"|"SHORELINE"|"South Seattle"

| "UNIVERSITY DISTRICT"|"University Village"|"University"

|"Volunteer Park"|"Wallingford"|"Wedgewood"|"West Seattle"

| "Westwood" | "Wedgwood" | "Lincoln Pk"|"Juanita"|"Seattle Center")
MONTH=("Jan"|"January"|"Feb" | "Februrary"|"March" |"Apr" | "April" | "May"

| “June“ | "July" | "Aug" | “August" | Ilsepll | "September" | "OCt " | "October"

70

|"Nov" | "November" | "Dec" | "December")
YEAR=({DIGIT}{DIGIT} |{DIGIT}{DIGIT}{DIGIT}{DIGIT})

DATE=({DIGIT}{DIGIT}\/{DIGIT}{DIGIT}\/{YEAR} | {MONTH}" "{DIGIT}{DIGIT}","{YEAR})

SEPARATOR=(“,” | II:II | ||;n | n‘ 1] | n?n |\| |II_II | nygn | II#II |\/|\\|\(|\) | n<n | II>II |\n | n:nln [II
|n] n | nyn | ngn | n=n | Ny | n-n | Il%ll | n~n | n@nl\l | Il$ll)
PARASEPARATOR=("&" ["-")

o

<YYINITIAL> \@"S"\[{ yybegin(INSTANCE); alnstance = new Instance();
aTaggedInstance = new TaggedInstance(); }
<INSTANCE> {HTMLTAG} { tt = tok(sym.HTMLTAG,yytext());
alnstance.add(tt); return tt;}
<INSTANCE> {DATE} { tt = tok(sym.DATE,yytext());
aInstance.add(tt); return tt;}
<INSTANCE> {PHONE} { tt = tok(sym.PHONE,yytext());
alnstance.add(tt); return tt;}
<INSTANCE> {DIGIT}(" "|"+")" "x{BEDROOMS}
{ tt = tok(sym.BEDROOMS,yytext().substring(0,1));
alnstance.add(tt); return tt;}
<INSTANCE> ("ome"|"two") (" "[|"+")" "x{BEDROOMS}
{ tt = tok(sym.BEDROOMS,yytext () .substring(0,3));
alnstance.add(tt); return tt;}
<INSTANCE> ("Studio"|"Studios") { tt = tok(sym.BEDROOMS,yytext());
aInstance.add(tt); return tt;}
<INSTANCE> {DIGIT}" "*{PARASEPARATOR}" "*{DIGIT}(" "[|"+")" "x{BEDROOMS}
{ tt = tok(sym.BEDROOMS,yytext () .substring(0,1));
alnstance.add(tt);

int i=1;while(yytext().charAt(i)==’ ’) i++;

tt

71

tok(sym.PARASEPARATOR,yytext () .substring(i,++i));

alnstance.add(tt);

while(yytext () .charAt(i)==" ’) i++;

tt = tok(sym.BEDROOMS,yytext().substring(i,++i));

aInstance.add(tt);

tt = tok(sym.COMPLEXBEDROOMS,yytext()); return tt;}

<INSTANCE> {NEIGHBORHOOD} { tt = tok(sym.NEIGHBORHOOD,yytext());

alnstance.add(tt); return tt;}

<INSTANCE> {PRICE} { tt = tok(sym.PRICE,yytext().substring(l,yylength()));

alnstance.add(tt); return tt; }

<INSTANCE> {PRICE}" "x"-"" "x{DIGITS}

<INSTANCE>

<INSTANCE>

<INSTANCE>

<INSTANCE>

<INSTANCE>

<INSTANCE>

{ int i=yytext() .index0f("-"); i--;

while(yytext () .charAt(i)==> 7) i--; i++;

tt = tok(sym.PRICE,yytext().substring(1,i));

alnstance.add(tt);

tt

tok (sym.PARASEPARATOR,"-");

aInstance.add(tt);

i=yytext () .index0f ("-"); i++;

while(yytext().charAt(i)==7 ’) i++;

tt = tok(sym.PRICE,yytext().substring(i,yylength()));

alnstance.add(tt);

tt = tok(sym.COMPLEXPRICE,yytext()); return tt; }

{REAL} { tt

tok (sym.REAL,yytext()); alnstance.add(tt); return tt; }

{DIGITS} {tt = tok(sym.INT,yytext()); alnstance.add(tt); return tt;}

{WORD} { tt

{DIGIT} { tt

n{n
Il}ll

{ tt

{ tt

tok(sym.WORD,yytext()); alnstance.add(tt); return tt; }
tok(sym.DIGIT,yytext()); alnstance.add(tt); return tt; }
tok(sym.LBRACE,yytext()); alnstance.add(tt); return tt; }

tok(sym.RBRACE,yytext ()); alnstance.add(tt); return tt; }

72

<INSTANCE> {SEPARATOR} { tt = tok(sym.SEPARATOR,yytext());
alnstance.add(tt); return tt;}
<INSTANCE> {PARASEPARATOR} { tt = tok(sym.PARASEPARATOR,yytext());
alnstance.add(tt); return tt; }
<INSTANCE> \]\@"S" { aTaggedInstance.setInstance(alnstance);

yybegin(YYINITIAL); }

<YYINITIAL> "QQTAGS" { yybegin(TAG); aTag = new Tag(); aTags = new Tags(); }

<TAGS> "QOTAGS" { yybegin(TAG); aTag

new Tag(); }
<TAG> {WORD} { aTag.setName(yytext()); yybegin(SLOT);}
<SLOT> "{" { aSlot = new Slot(); }
<SLOT> {WORD} { aSlot.setName(yytext()); yybegin(UNIT);
return tok(sym.WORD, yytext());}
<UNIT>{NEIGHBORHOOD} { tt = tok(sym.NEIGHBORHOOD,yytext());
aSlot.add(tt); return tt;}
<UNIT>{PRICE} { tt = tok(sym.PRICE,yytext().substring(l,yylength()));
aSlot.add(tt); return tt; }
<UNIT>{DIGIT}(" "|"+")" "x{BEDROOMS}
{ tt = tok(sym.BEDROOMS,yytext().substring(0,1));
aSlot.add(tt); return tt; }
<UNIT>("ome"|"two") (" "["+")" "*{BEDROOMS}
{ tt = tok(sym.BEDROOMS,yytext().substring(0,3));
aSlot.add(tt); return tt; }
<UNIT> ("Studio"|"Studios") { tt = tok(sym.BEDROOMS,yytext());
aSlot.add(tt); return tt;}
<UNIT>{DATE} { tt = tok(sym.DATE,yytext()); aSlot.add(tt); return tt; }
<UNIT>{PHONE} { tt = tok(sym.PHONE,yytext()); aSlot.add(tt); return tt; }
<UNIT>{REAL} { tt = tok(sym.REAL,yytext()); aSlot.add(tt); return tt; }

<UNIT>{DIGITS} { tt = tok(sym.INT,yytext()); aSlot.add(tt); return tt; }

73

<UNIT>{WORD} { tt = tok(sym.WORD,yytext()); aSlot.add(tt); return tt; }
<UNIT>{DIGIT} { tt = tok(sym.DIGIT,yytext()); aSlot.add(tt); return tt; }
<UNIT> {SEPARATOR} { tt = tok(sym.SEPARATOR,yytext());
aSlot.add(tt); return tt; }
<UNIT> {PARASEPARATOR} { tt = tok(sym.PARASEPARATOR,yytext());
aSlot.add(tt); return tt;}
<UNIT> "}" { aTag.add(aSlot); yybegin(SLOT); }

<SLOT> "QQ@COVERED_BY" { aTags.add(aTag); yybegin(TAGS); }

<YYINITIAL> "Q@ENDTAGS" {aTaggedInstances.add(aTaggedInstance); }

<TAGS> "QOENDTAGS" { aTaggedInstance.setTags(aTags);
aTaggedInstances.add(aTaggedInstance) ;
yybegin(YYINITIAL); }

<YYINITIAL> ({DIGIT}|{DIGITS}|{WORD}) { }

<YYINITIAL,INSTANCE,TAGS,TAG,SLOT,UNIT> {WHITE_SPACE_CHAR}* { }

<YYINITIAL> "Q@ENDFILE" {return tok(sym.EOF,null);}

<YYINITIAL,INSTANCE,TAGS,TAG,SLOT,UNIT> .

{System.out.println("Unrecognized symbol on line " + yyline); }

74

APPENDIX C. SAMPLE RULES GENERATED

This appendix contains a set of extraction rules learned from the Rental Ads domain.

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

o
*

(NEIGHBORHOOD: 0,0) * (BEDROOMS: 0,1) * (PRICE: 0,2) * (PRICE: 0,3)

e
*

(NEIGHBORHOOD: 0,0) * (BEDROOMS: 0,1) * (BEDROOMS: 0,2) * (PRICE: 0,3)

*

(PRICE: 0,4)

N
*

(NEIGHBORHOOD: 0,0) * (BEDROOMS: 0,1) * (PRICE: 0,2)
3 : * (NEIGHBORHOOD: 0,0; 1,0) * (BEDROOMS: 0,1) * (PRICE: 0,2) *
>/ (*: 1,1) ’600° * (PRICE: 1,2)
4 : x (NEIGHBORHOOD: 0,0) * (NEIGHBORHOOD: 0,1) * (BEDROOMS: 0,2)
* (PRICE: 0,3)
5 : * (NEIGHBORHOOD: 0,0) * (BEDROOMS: 0,1) * (BEDROOMS: 0,2)
* (BEDROOMS: 0,3)
6 : = (NEIGHBORHOOD: 0,0; 1,0) * (BEDROOMS: 0,1) * (PRICE: 0,2) *
».7 (*: 1,1) ’with’ = (PRICE: 1,2)
7 : * (NEIGHBORHOOD: 0,0) * (PRICE: 0,2)
8 : * (NEIGHBORHOOD: 0,0; 1,0) * (BEDROOMS: 0,1) * (PRICE: 0,2) *
».7 (*: 1,1) ?,> x (PRICE: 1,2)
9 : x (NEIGHBORHOOD: 0,0; 1,0; 2,0) * (BEDROOMS: 0,1; 2,1) * (PRICE: 0,2)
* (BEDROOMS: 1,1) * (PRICE: 1,2; 2,2)
10 : = (NEIGHBORHOOD: 0,0) * (BEDROOMS: 0,1) * (PRICE: 0,2) * (PRICE: 0,3)
* 7.2 (x: 0,4) ’;°
11 : * (NEIGHBORHOOD: 0,0) * ’/’ (*: 0,1) ’-’ =« (BEDROOMS: 0,2)

* (PRICE: 0,3)

75

Rule 12 : * (NEIGHBORHOOD: 0,0) * (’So’: 0,1) (’Seattle’: 0,1) * (BEDROOMS: 0,2)
* (PRICE: 0,3) * (PRICE: 0,4)
Rule 13 : * (NEIGHBORHOOD: 0,0; 1,0) * (BEDROOMS: 0,1) * (PRICE: 0,2) *
=2 (*: 0,3) ’;’ * (BEDROOMS: 1,1) * (PRICE: 1,2) * (PRICE: 1,3)
Rule 14 : =* (NEIGHBORHOOD: 0,0) * ’Affordable’ (*: 0,1) ’
’ * (BEDROOMS: 0,2)
Rule 15 : * (NEIGHBORHOOD: 0,0) * (’Westlake’: 0,1) * (BEDROOMS: 0,2)
* (BEDROOMS: 0,3) * (PRICE: 0,4) * (PRICE: 0,5)
Rule 16 : * (NEIGHBORHOOD: 0,0; 1,0; 2,0) * (NEIGHBORHOOD: 0,1; 1,1; 2,1)
* (BEDROOMS: 0,2; 2,2) * (PRICE: 0,3) * ’
’ (*x: 1,2) ’from’
* (PRICE: 1,3; 2,3)
Rule 17 : * (NEIGHBORHOOD: 0,0; 1,0) * 2,2 (*: 0,1) ?:7 * =2 (*x: 1,1) ’:?
* (PRICE: 0,2) * (PRICE: 1,2)
Rule 18 : =* (NEIGHBORHOOD: 0,0; 1,0) * (BEDROOMS: 0,1) * (PRICE: 0,2) *
7,7 (*: 1,1) °750° * (PRICE: 1,2) * (PRICE: 1,3)
Rule 19 : * (NEIGHBORHOOD: 0,0) * (BEDROOMS: 0,1) * (BEDROOMS: 0,2) *
7.7 (*: 0,3) °+?
Rule 20 : * (NEIGHBORHOOD: 0,0) * (NEIGHBORHOOD: 0,1) * (BEDROOMS: 0,2)
* (PRICE: 0,3) * (PRICE: 0,4)
Rule 21 : * (NEIGHBORHOOD: 0,0) * (NEIGHBORHOOD: 0,1) * (BEDROOMS: 0,2)
* (BEDROOMS: 0,3) * (PRICE: 0,4)
Rule 22 : * (NEIGHBORHOOD: 0,0) * (’Brdvw’: 0,1) * (BEDROOMS: 0,2)
* (PRICE: 0,3)
Rule 23 : * (NEIGHBORHOOD: 0,0) * ’/’ (*: 0,1) ’Brand’ =* (BEDROOMS: 0,2)
* (PRICE: 0,3)
Rule 24 : * (NEIGHBORHOOD: 0,0) * (BEDROOMS: 0,1) * &’ (*: 0,2) ’7°
* 7.7 (x: 0,3) 'Up’
Rule 25 : =* (’Madison’: 0,0) * (NEIGHBORHOOD: 0,1) * (BEDROOMS: 0,2)

* (BEDROOMS: 0,3) * (PRICE: 0,4) * (PRICE: 0,5)

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

26 :

27

28 :

29 :

30 :

31 :

32 :

33 :

34 .

35 :

36 :

37 :

38 :

39 :

*

*

*

*

76

(NEIGHBORHOOD: 0,0) * (BEDROOMS: 0,1) * (PRICE: 0,2)
(’NEAR’: 0,0) (’KING’: 0,0) (’ST’: 0,0) =* (BEDROOMS: 0,1)
(PRICE: 0,2)

(NEIGHBORHOOD: 0,0) * (BEDROOMS: 0,1) * (BEDROOMS: 0,2) *

’g? (*: 0,3) ’from’ * (PRICE: 0,4)

*

*

(NEIGHBORHOOD: 0,0) * (BEDROOMS: 0,1) * (BEDROOMS: 0,2) * (PRICE: 0,3)
(’0Oaktree’: 0,0) * (NEIGHBORHOOD: 0,1) * (BEDROOMS: 0,2) * (PRICE: 0,3)
(NEIGHBORHOOD: 0,0; 1,0; 2,0) * (BEDROOMS: 0,1)

(PRICE: 0,2) * .2 (*: 1,1) ’,> *x 2 (*: 1,2) .’

?.0 (x: 2,1) ?/? * (PRICE: 2,2)

(NEIGHBORHOOD: 0,0; 1,0) * (BEDRODOMS: 0,1) * (PRICE: 0,2)

(PRICE: 0,3) #* .7 (%: 1,1) ’525° % (PRICE: 1,2)

(NEIGHBORHOOD: 0,0) * (BEDROOMS: 0,1) * (PRICE: 0,2)

(NEIGHBORHOOD: 1,0) * (BEDROOMS: 1,1) % (PRICE: 1,2)

(NEIGHBORHOOD: 0,0) * (NEIGHBORHOOD: 0,1; 1,1) * (BEDROOMS: 0,2)

(PRICE: 0,3) * (BEDROOMS: 1,2) * (PRICE: 1,3) * (NEIGHBORHOOD: 1,0)

(NEIGHBORHOOD: 0,0; 1,0) * °-? (x: 0,1; 1,1) ’Junction’

(BEDROOMS: 0,2) * (PRICE: 0,3) * (BEDROOMS: 1,2) * (PRICE: 1,3)
(’Trenton’: 0,0) (’St’: 0,0) =* (BEDROOMS: 0,1) * (PRICE: 0,2)
(’California’: 1,0) (’Ave’: 1,0) * (BEDROOMS: 1,1) * (PRICE: 1,2)
(NEIGHBORHOOD: 2,0) (’Ave’: 2,0) * (BEDROOMS: 2,1) * (PRICE: 2,2)
(’Barton’: 3,0) (’°St’: 3,0) * (BEDROOMS: 3,1) * (PRICE: 3,2)
@start (*: 0,0) ’-’ * (BEDROOMS: 0,1) * (PRICE: 0,2)

(NEIGHBORHOOD: 0,0) * °/? (*: 0,1) ’Spectacular’ * (BEDROOMS: 0,2)

(BEDROOMS: 0,3) * (PRICE: 0,4)

(NEIGHBORHOOD: 0,0; 1,0; 2,0) * (BEDROOMS: 0,1) * (PRICE: 0,2)

750 (*: 1,1) 2,7 % 22 (*x: 1,2) °/’ * (PRICE: 1,3)

(BEDROOMS: 2,1) * (PRICE: 2,2) * (PRICE: 2,3)

7

Rule 40 : * (NEIGHBORHOOD: 0,0; 1,0; 2,0) * (BEDROOMS: 0,1) * (PRICE: 0,2)
* (BEDROOMS: 1,1) * (PRICE: 1,2) * (PRICE: 1,3) * (BEDROOMS: 2,1)
* (PRICE: 2,2) * (PRICE: 2,3)
Rule 41 : * (NEIGHBORHOOD: 0,0; 1,0; 2,0) * (BEDROOMS: 0,1) * (PRICE: 0,2)
* (BEDROOMS: 1,1) * (PRICE: 1,2) * (BEDROOMS: 2,1) * (PRICE: 2,2)
Rule 42 : * (NEIGHBORHOOD: 0,0) * (BEDROOMS: 0,1) * (BEDROOMS: 0,2)
* (BEDROOMS: 0,3) * ’fr’ (*: 0,4) ’.°
Rule 43 : * (NEIGHBORHOOD: 0,0) * ’Vista’ (*: 0,1) 99’ x (PRICE: 0,2)
Rule 44 : * (NEIGHBORHOOD: 0,0) * (’Efficient’: 0,1) * (PRICE: 0,2) * (PRICE: 0,3)

Rule 45 : * (NEIGHBORHOOD: 0,0) * (BEDROOMS: 0,1) * &’ (x: 0,2) ’’?

[Abn96]

[AI99]

[A1195]

[App95]

[App98]

[ARP92]

[ASUSG6]

[Brig4]

[BRJ99]

78

BIBLIOGRAPHY

S. Abney. Partial parsing via finite-state cascades. In Workshop on Robust Parsing,
8th European Summer School in Logic, Language and Information, pages 8-15,

Prague, Czech Republic, 1996.

Douglas E. Appelt and David J. Israel. Introduction to information extraction

technology. In Proceedings of IJCAI-99, 1999.

James Allen. Natural Language Understanding. The Benjamin/Cummings, Red-
wood City, CA, 1995.

Andrew W. Appel. Modern Compiler Implementation in C. Cambridge University

Press, New York, 1995.

Andrew W. Appel. Modern Compiler Implementation in Java. Cambridge Univer-
sity Pres, New York, 1998.

Editor. ARPA. Proceedings of the fourth darpa message understanding evaluation

and conference. Morgan Kaufman, San Mateo, CA, 1992.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, Reading, MA, 1986.

E. Brill. Some advances in rule-based part of speech tagging. In Proceedings of the

12th Annual Conference on Artificial Intelligence, pages 722-727, 1994.

Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Lan-

guage User Guide. Addison Wesley, Reading, MA, 1999.

[Cal98]

[Car97]

[CFMe97]

[CM99]

[CN8Y]

[DSS93]

[Fla99)

[Fre9s]

[GHIV95]

[HAe90]

79

Mary Elaine Califf. Relational learning techniques for natural language information
extraction. Ph.D. Thesis, Department of Computer Sciences, University of Texas

at Austin, 1998.

Claire Cardie. Empirical methods in information extraction. AI Magazine, 18(4):65—

79, 1997.

M. Craven, D. Freitag, A. McCallum, and etc. Learning to extract symbolic knowl-
edge from the world wide web. Technical report, School of Computer Science,

Carnegie Mellon University, 1997.

Mary Elaine Califf and Raymond J. Mooney. Relational learning of pattern-match
rules for information extraction. In Proceedings of the Sizteenth National Conference

on Artificial Intelligence, 1999.

P Clark and R Niblett. The c¢n2 induction algorithm. Machine Learning, 3:261-284,

1989.

R. Davis, H. Shrobe, and P. Szolovits. What is a knowledge representation? ATl

Magazine, 14(1):17-33, 1993.

David Flanagan. awva in a Nutshell : A Desktop Quick Reference (Java Series).
O’Reilly & Associates, Cambridge, MA, 1999.

Dayne Freitag. Information extraction from html: Application of a general ma-
chine learning approach. In Proceedings of the Fifteenth Conference on Artificial
Intelligence AAAI-98, pages 517-523, 1998.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA,

1995.

Jerry R. Hobbs, Douglas E. Appelt, and etc. Interpretation as abduction. Technical

Report SRI Technical Note 499, SRI International, Menlo Park, CA, 1990.

[HAe92]

[HAPS9)

[Hob97]

[Huf95]

[JohT78]

[KMO5]

[KWD97]

[LesT75]

[Mic73]

80

Jerry R. Hobbs, Douglas E. Appelt, and etc. Fastus: A system for extracting
information from natural-language text. Technical Report SRI Technical Note 519,

SRI International, Menlo Park, CA, 1992.

R.C. Holte, L. Acker, and B. Porter. Concept learning and the problem with
small disjuncts. In Proceedings of the Eleventh International Joint Conference on

Artificial Intelligence, pages 813-818, 1989.

Fastus: A cascaded finite-state transducer for extracting information from natural-
language text. 05/20/97,In Stuart Shieber (Coordinator) Computation and Lan-

guage E-Print Archive, 1997.

Scott B. Huffman. Learning information extraction patterns from examples. In
1JCAI-95 Workshop on new approaches to learning for natural language processng,

pages 127-142, 1995.

Stephen C. Johnson. Yacc: Yet another compiler compiler. Technical Report

Technical Report CSTR 32, AT&T Bell Lab, Murray Hill, NJ, 1978.

J. Kim and D. Moldovan. Acquisition of linguistic patterns for knowledge-based
information extraction. IEEE Transaction on knowledge and Data Engineering,

7(5):713-724, 1995.

Nicholas Kushmerick, Daniel S. Weld, and Robert Doorenbos. Wrapper induc-
tion for information extraction. In Proceedings of the Fifteenth International Joint

Conference on Artificial Intelligence, pages 729-737, 1997.

M. E. Lesk. Lex - a lexical analyzer generator. Technical Report Technical Report

CSTR 39, AT&T Bell Lab, Murray Hill, NJ, 1975.

R. S. Michalski. Discovering classification rules using variable valued logic system.
In Third International Joint Conference on Artificial Intelligence., pages 162-172,
1973.

[Mil95]

[Mit97]

[MMEK99]

[Qui90]

[Ril93]

[RK91]

[RN95]

[Sal89]

[SFALYS5]

[Sip97]

[Sod97a]

81

G. Miller. Wordnet: a lexical database for english. Communications of the ACM,
38(11):39-41, 1995.

T. Mitchell. Machine Learning. McGraw Hill, New York, NY, 1997.

Ton Muslea, Steven Minton, and Craig A. Knoblock. Hierarchical wrapper induc-
tion for semistructured information sources. Autonomous Agents and Multi- Agent

Systems (Special issue on Best of Agents’99), 1999.

J.R. Quinlan. Learning logical definitions from relations. Machine Learning,

5(3):239-266, 1990.

E. Riloff. Automatically constructing a dictionary for information extraction tasks.
In Proceedings of the Eleventh National Conference on Artificial Intelligence, pages
811-816, 1993.

Elaine Rich and Kevin Knight. Artificial Intelligence. McGraw-Hill Inc, New York,

NY, 1991.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, page 33.

Prentice Hall, Engelwood Cliffs, NJ, 1995.

g. Salton. Automatic Text Processing: The Transformation, Analysis and Retrieval

of Information by Computer. Addison-Wesley, Reading, MA, 1989.

Stephen Soderland, D. Fisher, J. Aseltien, and W. Lehnert. Crystal: Inducing a
conceptual dictionary. In Proceedings of the Fourteen International Joint Confer-

ence on Artificial Intelligence, pages 1314-1321, 1995.

Michael Sipser. Introduction to the Theory of Computation. PWS Publishing Com-

pany, Boston, MA, 1997.

Stephen Soderland. Learning text analysis rules for domai-specific natural lan-
guage processing. Technical Report Technical report UM-CS-1996-087, University

of Massachusetts, Amherst, MA, 1997.

82

[Sod97b] Stephen Soderland. Learning to extract text-based information from the world wide
web. In Proceedings of Third International Conference on Knowledge Discovery and

Data Mining, 1997.

[Sod99] Stephen Soderland. Learning information extraction rules for semi-structured and-

free text. Machine Learning, pages 1-44, 1999.

[TMT97] C.A. Thompson, R.J. Mooney, and L.R. Tang. Learning to parse natural language
database queries into logical form. In Proceedings of the ML-97 Workshop on Au-
tomata Induction ,Grammatical Inference, and Language Acquisition. Association

for Computational Linguistics, Somerset, NJ, 1997.

