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Abstract—Ortholog detection methods present a powerful ap-
proach for finding genes that participate in similar biological
processes across different organisms, extending our understand-
ing of interactions between genes across different pathways,
and understanding the evolution of gene families. We exploit
features derived from the alignment of protein-protein interac-
tion networks to reconstruct KEGG orthologs for Drosophila
melanogaster, Saccharomyces cerevisiae, Mus musculus and Homo
sapiens protein-protein interaction networks extracted from the
DIP repository for protein-protein interaction data using the deci-
sion tree, Naive-Bayes and Support Vector Machine classification
algorithms. The performance of our classifiers in reconstructing
KEGG orthologs is compared against a basic reciprocal BLAST
hit approach. We provide implementations of the resulting
algorithms as part of BiNA, an open source biomolecular network
alignment toolkit.

I. INTRODUCTION

With the advent of fast and relatively inexpensive sequenc-
ing technology, it has become possible to access and compare
genomes from a wide range of organisms including many
eukaryotes as well as bacteria and archea through databases
such as GenBank [4], Ensembl [17], PlantGDB [13] and
others [9], [8], [5]. The availability of genomes from such
a wide range of organisms has enabled the comparison and
analysis of evolutionary relationships among genes across
organisms through the reconstruction of phylogenies [39],
common pathways [23], [27], and comparing gene functions
[33], [15]. Of particular interest in this context is the problem
of finding genes originating from a single gene from a common
ancestor of the compared genomes (orthologs) [25]. Ortholog
detection methods present a powerful approach for finding
genes that participate in similar biological processes across dif-
ferent organisms, extending our understanding of interactions
between genes across different pathways, and understanding
the evolution of gene families.
Several sequence-based approaches currently exist for finding
orthologous genes among a set of genomes. For instance,
one of the simplest methods is to utilize reciprocal best
BLAST hits [1] across a set of species to identify orthologs
[21]. The COGs (Clusters of Orthologous Groups) approach
[36], for example, defines orthologs as sets of proteins that
are reciprocal best BLAST hits across a minimum of three
species. Another possible approach utilized by databases such
as InParanoid [30] and OrthoMCL [26] consists of an it-
erative BLAST search to construct the reciprocal BLAST
hits, and a second step that clusters the reciprocal hits to
achieve greater sensitivity. InParanoid uses a pre-defined set
of rules to construct its clusters, while OrthoMCL utilizes a
sequence-based Markov clustering algorithm for clustering its
proteins/genes into ortholog groups. Other approaches, such

as PhyOP [19], RAP [14] and others [33], [23], [39], [15]
identify orthologous genes/proteins by utilizing phylogenetic
analysis to explicitly exploit the evolutionary rates across the
species being compared. Such approaches account for the
different mutation rates accumulated by the various species
being compared, thus allowing greater sensitivity in detecting
the pairs of genes/proteins to be classified as orthologous.
Methods such as those utilized by Fu et al. consider gene order
and rearrangements in detecting orthologs [18]. Recently,
with the availability of large-scale analysis of protein-protein
interactions, protein-protein interaction networks have also
been considered in detecting orthologous genes. Ogata et al.
utilized a graph comparison algorithm to compare protein-
protein interaction networks and determined orthologs by
matching the nodes in the protein-protein interaction graphs
[31]. Bandyopadhyay et al. utilized the PathBLAST pathway
alignment algorithm to detect orthologs [3]. Another method
utilized by databases such as KEGG is to manually construct
orthology groups based on a combination of features such
as sequence similarity, pathway interactions, and phylogenetic
analysis [27], [23].
Against this background, we explore a set of graph features
that may be utilized in detecting orthologs based on sequence
similarity as well as the similarity of their neighborhoods
in protein-protein interaction networks. Furthermore, we con-
struct a set of classifiers that utilize the above features and
compare the classifiers to the reciprocal BLAST hits ap-
proached for the reconstruction of KEGG orthologs [23]. The
basic idea behind our approach is to align a pair of protein-
protein interaction networks and scan the alignment for all
possible matches that a node (protein) from one network can
pair with in the other network. We then train decision tree
[42], Naive-Bayes [29], Support Vector Machine [10], and an
ensemble classifier [12] that utilize features from the alignment
algorithm to identify KEGG orthologs and we compare the
performance of the classifiers to the reciprocal BLAST hit
method.
We utilize the alignment algorithms available as part of the
BiNA (Biomolecular Network Alignment) toolkit [38] as well
as graph features extracted from the aligned protein-protein
interaction networks such as degree distribution, BaryCenter
[41], betweenness [40] and HITS (Hubs and Authorities) [24]
centrality measures. Our experiments with the fly, yeast, mouse
and human protein-protein interaction networks extracted from
DIP (Database of Interacting Proteins) [34] demonstrate the
feasibility of the proposed approach for detecting KEGG
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orthologs.
The rest of the paper is organized as follows: Section 2 intro-
duces the dataset and methods for aligning two biomolecular
networks and describes our approach for exploiting the neigh-
borhood similarity measures for detecting orthology. Section
3 describes the experimental setup and experimental results.
Section 4 concludes with a summary of the main contributions
of the paper in the broader context of related literature and a
brief outline of some directions for further research.

II. MATERIALS AND METHODS
A. Dataset

The yeast, fly, mouse and human protein-protein interaction
networks were obtained from the Database of Interacting
Proteins (DIP) release 1/26/2009 [34]. The sequences for each
dataset were obtained from uniprot release 14 [2]. The DIP
sequence ids were matched against their uniprot counterparts
using a mapping table provided on the DIP website. All
proteins from DIP that had obsolete uniprot IDs or were
otherwise not available in release 14 of the uniprot database
were removed from the dataset. The fly, yeast, mouse and hu-
man protein-protein interaction networks consisted of 6, 645,
4, 953, 424 and 1, 321 nodes and 20, 010, 17, 590, 384 and
1, 716 edges, respectively. The protein sequences for each
dataset were downloaded from uniprot [2]. BLASTp [1] with
a cutoff of 1 × 10−10 was used to match protein sequences
across species. The KEGG (Kyoto Encyclopedia of Genes
and Genomes) [23] orthology and uniprot annotations for
all species were downloaded from the KEGG website and
matched against the uniprot id’s for the proteins in the datasets.

B. Graph Representation of BLAST Orthologs

The proteins in the DIP protein-protein interaction net-
works for mouse, human, yeast, and fly were matched using
BLAST as shown in figure 1. As can be seen from the
figure, protein-protein interaction networks are represented as
two labeled graphs (graphs 1 and 2) with weighted edges
connecting sequence-homologous nodes across the two graphs.
The BLAST similarity scores are taken into account when
comparing the neighborhoods around each of the vertices in
the graphs to reconstruct the KEGG orthologs. This graph
representation is similar to the representations used by Net-
workBLAST [22], HopeMap [37], and Graemlin 2.0 [16].
A k-hop neighborhood-based approach to alignment uses the
notion of k-hop neighborhood. The k-hop neighborhood of
a vertex v1

x ∈ V1 of the graph G1(V1, E1) is simply a
subgraph of G1 that connects v1

x with the vertices in V1 that
are reachable in k hops from v1

x using the edges in E1. Given
two graphs G1(V1, E1) and G2(V2, E2), a mapping matrix P
that associates each vertex in V1 with zero or more vertices in
V2 (the matrix P can be constructed based on BLAST matches)
and a user-specified parameter k, we construct for each vertex
v1
x ∈ V1 its corresponding k-hop neighborhood Cx in G1. We

then use the mapping matrix P to obtain the set of matches
for vertex v1

x among the vertices in V2; and construct the k-
hop neighborhood Zy for each matching vertex v2

y in G2 and
Pv1xv2y = 1. Let S(v1

x, G2) be the resulting collection of k-hop
neighborhoods in G2 associated with the vertex v1

x in G1. We

compare each k-hop subgraph Cx in G1 with each member of
the corresponding collection S(v1

x, G2) to identify the k-hop
subgraph of G2 that is the best match for Cx (based on a
chosen similarity measure). Figure 1 illustrates this process.

Figure 1. A schematic of the graph representation of the BLAST orthologs
based on the DIP protein-protein interaction networks. The protein-protein
interaction networks are represented as two labeled graphs (G1 and G2) with
corresponding relationships among their nodes (similarly colored nodes are
sequence homologous according to a BLAST search). Nodes from G1 (e.g.,
v3) are compared to their sequence-homologous counterparts in G2 (e.g., v’2
and v’6) based on the topology of their neighborhood and sequence homology
of the neighbors. In the figure, v’2 has the same number of neighbors of v3
and one of the neighbors of v’2 (i.e., v’3) is sequence-homologous to v4.
Thus, v’2 is scored higher (more likely to be an ortholog to v3) compared to
v’6.
C. Shortest Path Graph Kernel Score

The shortest path graph kernel was first described by
Borgwardt and Kriegel [6]. As the name implies, the kernel
compares the length of the shortest paths between any two
nodes in a graph based on a pre-computed shortest-path
distance. The shortest path distances for each graph may be
computed using the Floyd-Warshall algorithm as implemented
in the CDK (Chemistry Development Kit) package [35]. We
modified the Shortest-Path Graph Kernel to take into account
the sequence homology of nodes being compared as computed
by BLAST [1]. The shortest path graph kernel for subgraphs
ZG1 and ZG2 (e.g., k-hop subgraphs, bicomponent clusters
extracted from G1 and G2 respectively) is given by:

S =
∑
v1

i
,v1

j
∈ZG1

∑
v2

k
,v2p∈ZG2

δ(v1
i , v

2
k)× δ(v1

j , v
2
p)×

d(v1
i , v

1
j )× d(v2

k, v
2
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where δ(v1
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2
y) = BlastScore(v1x,v

2
y)+BlastScore(v2y,v

1
x)

2 .
d(v1

i , v
1
j ) and d(v2

k, v
2
p) are the lengths of the shortest paths

between v1
i ,v1

j and v2
k,v2

p computed by the Floyd-Warshall
algorithm. The runtime of the Floyd-Warshall Algorithm
is O(n3). The shortest path graph kernel has a runtime of
O(n4) (where n is the maximum number of nodes in larger
of the two graphs being compared). Please see figure 2 for
a general outline of the comparison technique used by the
shortest-path graph kernel.

D. Random Walk Graph Kernel Score

The random walk graph kernel [7] has been previously
utilized by Borgwardt et al. [7] to compare protein-protein
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Figure 2. An example of the graph matching conducted by the shortest path
graph kernel. Similarly colored nodes are sequence homologous according to
a BLAST search. As can be seen from the figure, the graph kernel compares
the lengths of the shortest paths around homologous vertices across the two
graphs. The red edges show the matching shortest path in both graphs as
computed by the graph kernel. The shortest path distance graph kernel takes
into account the sequence homology score for the matching vertices across
the two graphs as well as the distances between the two matched vertices
within the graphs.

interaction networks. The random walk graph kernel for sub-
graphs ZG1 and ZG2 (e.g., k-hop subgraphs, bicomponent
clusters extracted from G1 and G2 respectively) is given by:

K(ZG1 , ZG2) = p× (I− λKx)−1 × q (1)

where I is the identity matrix, λ is a user-specified variable
controlling the length of the random walks (a value of 0.01
was used for the experiments in this paper), Kx is an nm×nm
matrix (where n is the number of vertices in ZG1 and m is
the number of vertices in ZG2 resulting from the Kronecker
product Kx = ZG1 ⊗ ZG2 , specifically,

Kαβ = δ(ZG1ij
, ZG2kl

), α ≡ m(i− 1) + k, β ≡ m(j − 1) + l
(2)

Where δ(ZG1ij
, ZG2kl

) =
BlastScore(ZG1ij

,ZG2kl
)+BlastScore(ZG2kl

,ZG1ij
)

2 ; p and
q are 1× nm and nm× 1 vectors used to obtain the sum of
all the entries of the inverse expression ((I− λKx)−1).
We adapted the random walk graph kernel to align protein-
protein interaction networks by taking advantage of the
reciprocal BLAST hits (RBH) among the proteins in the
networks from different species [21]. Naive implementation
of our modified random-walk graph kernel, like the original
random-walk graph kernel [7], has a runtime complexity
of O(r6) (where r = max(n,m)). This is due to the fact
that the product graph’s adjacency matrix is nm × nm, and
the matrix inverse operation takes O(h3) time, where h is
the number of rows in the matrix being inverted (thus, the
total runtime is O((rm)3) or O(r6) where r = max(n,m)).
However, runtime complexity of the random walk graph
kernel (and hence our modified random walk graph kernel)
can be improved to O(r3) by making use of the Sylvester
equations as proposed by Borgwardt et al. [7]. Figure 3
illustrates the computation of the random walk graph kernel.

E. BaryCenter Score

The BaryCenter score is calculated based on the total
shortest path of the node. The shortest path distances for each
node in a graph is calculated and the score is assigned to
the node based the sum of the lengths of all the shortest
paths that pass through the node [41]. More central nodes
in a connected component will have smaller overall shortest

Figure 3. An example of the graph matching conducted by the random walk
graph kernel. Similarly colored vertices are sequence homologous according to
a BLAST search. As can be seen from the figure, the graph kernel compares
the neighborhood around the starting vertices in each graph using random
walks. Colored edges indicate matching random walks across the two graphs
of up to length 2. The random walk graph kernel takes into account the
sequence homology of the vertices visited in the random walks across the
two graphs as well as the general topology of the neighborhood around the
starting vertex.

paths, and ’peripheral’ nodes on the network will have larger
overall shortest paths.

F. Betweenness Score

Betweenness is a centrality measure of a vertex within a
graph. Vertices that occur on many shortest paths between
other vertices have a higher betweenness score than nodes that
do not occur on many paths [40]. For a graph G1(V1, E1), the
betweenness score for vertex v1

x ∈ V1is defined as:

B(v1
x) =

∑
v1

i
6=v1x,v1j 6=v1x,v

1
i
6=v1

j
,v1

x,i,j
∈V1

δv1
i
v1

j
(v1
x)

δv1
i
v1

j

Where δv1
i
v1

j
is the number of the shortest paths from v1

i to
v1
j and δv1

i
v1

j
(v1
x) is the number of shortest paths from v1

i to
v1
j that pass through vertex v1

x.

G. Degree Distribution Score

A simple node importance ranker based on the degree of
the node. Nodes with a high number of connections will get a
high score while nodes with a smaller number of connections
will receive a lower score.

H. HITS Score

The HITS score represents the “hubs-and-authorities” im-
portance measures for each node in a graph [24]. The score is
computed iteratively based on the degree connectivity of the
nodes in the graph and the “authoritativeness” of the neighbors
around each node. For a graph G1(V1, E1), each node v1

x

is assigned two scores: α(v1
x) and γ(v1

x). Vertices that are
connected to many vertices are marked as hubs, and thus their
α(v1

x) scores are large. On the other hand, a vertex that points
to highly connected vertices is referred to as an authority and
is assigned a high γ(v1

x) score. Some nodes can be both highly
connected (have high α(v1

x) score) and most of their neighbors
can also be highly connected (thus, have a high γ(v1

x)); such
nodes would have a high HITS score.

I. Classification of Orthologs Based on Sequence and Network
Similarity

In order to establish orthologs between fly, yeast, human
and mouse, the 1 hop and 2 hop shortest path and random walk
scores, BLAST score, BaryCenter score, betweenness score,
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degree distribution score and HITS score were computed
for each pair of homologs detected by BLAST (total of 9
features). The BaryCenter, betweenness, degree distribution
and HITS scores were combined using Milenkoviæ et al.’s
[28] formula for averaging node-based scores in a graph:

S(u1
x, v

2
y) =

| log(S(u1
x) + 1)− log(S(v2

y) + 1)|
log(max(S(u1

x), S(v2
y)) + 2)

Where S(u1
x) and S(v1

y) are the scores for the nodes from
G1(V1, E1) and G2(V2, E2), where u1

x ∈ V1 and v2
y ∈ V2. The

above formula produces a normalized score for each node-
based feature (BaryCenter, betweenness, degree distribution,
and HITS scores) for each pair of homologs while adjusting
for any bias in magnitude differences in the scores for the
graphs (e.g, G1 may have much more nodes than G2, thus the
node-based scores for G1 may be more likely to be greater
than the node-based scores for G2).

J. Performance evaluation

We compare the performance of a simple method for
detecting orthologs based on reciprocal BLASTp hits with the
decision tree [42], Naive-Bayes [29], Support Vector Machine
[10], and ensemble classifier [12] trained using the graph-
based features as well as features based on network neigh-
borhood similarity (see above) with 10-fold cross-validation.
Demsar’s [11] non-parametric test can be used to compare
machine learning algorithms. However, because the use of this
test requires the number of data sets to be greater than 10 and
the number of methods to be greater than 5 [11], it cannot be
applied directly to our analysis (since we have only 6 datasets
and 5 methods). Hence, following Demsar’s recommendation
[11], we use the average ranks for each classifier based on
their observed performance on datasets to compare the overall
performance of different classification methods.

III. ANALYSIS AND RESULTS

A. Reconstructing KEGG Orthologs Using BLAST

The detection of orthologs based on network alignment was
recently conducted by Bandyopadhyay et al. [3]. Although
Bandyopadhyay et al. showed that network-based features may
be used to detect orthologs that might be missed by InParanoid,
their performance was not directly compared to a reciprocal
BLASTp approach. In our analysis, we compare predictions
based only on the BLASTp score as well as predictions
based on the network features discussed in section 2. The
results in table I show the performance of the reciprocal
BLAST hits method (similar to that utilized by COGs [36])
in reconstructing the orthologs between the fly, yeast, human
and mouse datasets from DIP [34]. The reciprocal BLAST hit
method involved finding all reciprocal hits between proteins
in each dataset (e.g., mouse and human) and iterating over
all possible BLAST score cutoffs to detect which of the hits
are orthologous. As can be seen from the table, this method
performs fairly well in reconstructing the KEGG orthologs
for each dataset. As noted by Bandyopadhyay et al. [3],
this may be due to the fact that most ortholog detection
schemes depend on sequence homology analysis for at least

part of their methods. Although KEGG orthologs rely on
additional information other than sequence homology (such
as metabolic pathway comparison and manual curation) [23],
sequence homology may still carry a very strong basis to the
detection of KEGG orthologs. Table II shows the performance
of classifiers using only the BLASTp scores to detect KEGG
orthologs between fly, yeast, mouse and human. The logistic
regression classifier in WEKA [42] has the best performance
overall (according to the average rank score shown in table
II), however, it does not outperform the reciprocal BLASTp
hit method shown in table I. As noted above, this may be
due to KEGG’s reliance on sequence homology in identifying
orthologs.

Datasets AUC
Mouse-Human 90.39

Mouse-Fly 92.62
Mouse-Yeast 96.14
Human-Fly 88.89

Human-Yeast 85.63
Yeast-Fly 75.03

Table I
PERFORMANCE OF THE RECIPROCAL BLAST HIT METHOD ON THE FLY,
YEAST, HUMAN AND MOUSE PROTEIN-PROTEIN INTERACTION DATASETS

FROM DIP.

B. Reconstructing KEGG Orthologs Using Sequence and
Protein-Protein Interaction Network Data

Figure 4. A sample 1 hop neighborhood around one of the matched
orthologs (TNF receptor-associated factor 2 “P39429” in mouse and “Q12933”
in human) according to the graph features (LEFT: 1 hop network around
the “P39429” protein for mouse, RIGHT: 1 hop neighborhood around the
“Q12933” protein for human). Similarly colored nodes are sequence homolo-
gous. The graph properties search for similar topology and sequence homology
around the neighborhood of the nodes being compared.

Table III shows a comparison of the classifiers trained on
the 1 hop and 2 hop Random Walk graph kernel and Shortest
Path graph kernel scores as well as the degree distribution,
BaryCenter [41], betweenness [40] and HITS (Hubs and
Authorities) [24] centrality measures described in section II.
We utilized the approach of Hall et al. [20] as implemented in
WEKA [42] to rank the features based on their contribution
to the classification performance. We found that the random-
walk and shortest-path graph kernel scores were the top two
ranked features in terms of their predictive ability. As seen
from Table III, most of the classification methods show some
improvement over the classifiers trained only on the BLASTp
scores shown in table II. Notably, the ensemble classifier
on the mouse-human dataset substantially outperforms its
BLASTp counterpart. Table IV shows a few representative
orthologous pairs that are missed by a regression-based clas-
sifier trained on BLASTp scores but are detected by the
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Datasets Adaboost
j48 AUC

NB AUC SVM AUC Log. Reg. AUC Ensemble
AUC

Mouse-Human 87.79 (4) 90.15 (3) 77.31 (5) 90.29 (2) 90.30 (1)
Mouse-Fly 87.58 (4) 88.47 (3) 70.17 (5) 92.01 (1) 88.89 (2)

Mouse-Yeast 89.85 (5) 91.89 (2) 90.78 (3) 95.46 (1) 91.45 (4)
Human-Fly 81.35 (4) 87.70 (2) 65.90 (5) 88.90 (1) 84.42 (3)

Human-Yeast 82.97 (3) 81.26 (4) 63.68 (5) 85.50 (1) 84.19 (2)
Yeast-Fly 73.02 (3) 72.49 (4) 56.80 (5) 74.86 (1) 74.48 (2)

Average Rank 3.83 3 4.67 1.17 2.33

Table II
PERFORMANCE OF THE RECIPROCAL BLAST HIT SCORE AS A FEATURE TO THE DECISION TREE (J48), NAIVE BAYES (NB), SUPPORT VECTOR

MACHINE (SVM) AND ENSEMBLE CLASSIFIERS ON THE FLY, YEAST, HUMAN AND MOUSE PROTEIN-PROTEIN INTERACTION DATASETS FROM DIP.
VALUES IN PARENTHESIS ARE THE RANKS FOR THE CLASSIFIERS ON THE SPECIFIED DATASET.

Datasets Adaboost
j48 AUC

NB AUC SVM AUC Log. Reg. AUC Ensemble
AUC

Mouse-Human 95.19 (2) 88.72 (5) 90.78 (3) 89.57 (4) 96.18 (1)
Mouse-Fly 90.31 (1) 85.81 (3) 81.28 (4) 80.67 (5) 88.94 (2)

Mouse-Yeast 92.04 (3) 85.50 (4) 79.63 (5) 95.60 (1) 95.50 (2)
Human-Fly 88.18 (1) 83.10 (4) 75.03 (5) 87.04 (3) 87.20 (2)

Human-Yeast 82.83 (2) 81.26 (4) 78.22 (5) 81.57 (3) 84.84 (1)
Yeast-Fly 74.52 (1) 69.36 (4) 64.57 (5) 74.33 (2) 72.78 (3)

Average Rank 1.67 4 4.5 3 1.83

Table III
PERFORMANCE OF ALL THE COMBINED FEATURES (RECIPROCAL BLAST HIT SCORE, 1 AND 2 HOP SHORTEST PATH GRAPH KERNEL SCORE, 1 AND 2

HOP RANDOM WALK GRAPH KERNEL SCORE, BARYCENTER, BETWEENNESS, DEGREE DISTRIBUTION AND HITS) AS INPUT TO THE DECISION TREE
(J48), NAIVE BAYES (NB), SUPPORT VECTOR MACHINE (SVM) AND ENSEMBLE CLASSIFIERS ON THE FLY, YEAST, HUMAN AND MOUSE

PROTEIN-PROTEIN INTERACTION DATASETS FROM DIP. VALUES IN PARENTHESIS ARE THE RANKS FOR THE CLASSIFIERS ON THE SPECIFIED DATASET.
Mouse Protein Human Protein BLASTp score RW 1HOP SP 1HOP RW 2HOP SP 2HOP BaryCenter betweenness Degree HITS

P05627 P05412 481 104 197.35 612 290.27 0.71 0.69 0.01 0.26
P36898 P36894 725 28.13 222.85 90.66 576.51 0.35 0.77 0.01 3.06E-10
P39429 Q12933 870 48 126.18 150.47 187.45 0.79 0.11 0.01 1.20E-4

Table IV
KEGG ORTHOLOGS DETECTED USING THE ENSEMBLE CLASSIFIER UTILIZING ALL NETWORK FEATURES. THE ORTHOLOGS SHOWN IN THE ABOVE

TABLE WERE MISSED BY THE BLAST LOGISTIC REGRESSION CLASSIFIER.

ensemble classifier trained on the network features and figure
4 shows the network neighborhood for one of such pairs
(the TNF receptor-associated factor 2). This suggests that
the combination of sequence homology with network-derived
features may present a more reliable approach than simply
relying on reciprocal BLASTp hits in identifying orthologs.

IV. DISCUSSION AND FUTURE WORK

The availability of genomes from a wide range of organisms
has enabled the comparison and analysis of evolutionary
relationships among genes across organisms through the recon-
struction of phylogenies [39], common pathways [23], [27],
and comparing gene functions [33], [15]. Ortholog detection
methods present a powerful approach for finding genes that
participate in similar biological processes across different
organisms, extending our understanding of interactions be-
tween genes across different pathways, and understanding
the evolution of gene families. We have explored a set of
graph-based features that may be utilized for the detection of
orthologs among different genomes by combining sequence-
based evidence (such as BLAST-based sequence homology)
with the network alignment algorithms available as part of the
BiNA (Biomolecular Network Alignment) toolkit [38] as well
as graph features extracted from the aligned protein-protein
interaction networks such as degree distribution, BaryCenter
[41], betweenness [40] and HITS (Hubs and Authorities) [24]
centrality measures. The features may be used to score orthol-
ogous nodes in large biomolecular networks by comparing the
neighborhoods around each node and scoring the nodes based

on the similarity of their neighborhoods in the corresponding
protein-protein interaction networks. Classifiers can then be
trained using the scores to generate predictions as to whether
or not a given pair of nodes are orthologous. Our results
suggest that the algorithms that rely on orthology detection
methods (e.g., for genome comparison) can potentially benefit
from this approach to detecting orthologs (e.g., in the case
of the comparison between mouse and human). The proposed
method can also help identify proteins that have strong se-
quence homology but differ with respect to their interacting
partners in different species (i.e., proteins whose functions may
have diverged after gene-duplication).
Our experiments with the fly, yeast, mouse and human datasets
suggest that the accuracy of identification of orthologs using
the proposed method is quite competitive with that of recip-
rocal BLASTp method for detecting orthologs. The improve-
ments obtained using information about interacting partners in
the case of the mouse-human data (96.18% for the network-
based method as opposed to 90.31% AUC for the reciprocal
BLASTp method) suggest that the proposed technique could
be useful in settings that benefit from accurate identification
of orthologs (e.g., genome comparison).
The network neighborhood-based homology detection algo-
rithm is implemented in BiNA (http://www.cs.iastate.edu/
~ftowfic), an open source Biomolecular Network Alignment
toolkit. The current implementation includes variants of the
shortest path and random walk graph kernels for computing
orthologs between pairs of subnetworks and the computation
of various graph-based features available in the Java Universal
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Graph Framework library [32] such as the degree distribution,
BaryCenter [41], betweenness [40] and HITS (Hubs and
Authorities) [24] centrality measures. The modular design
of BiNA allows the incorporation of alternative strategies
for decomposing networks into subnetworks and alternative
similarity measures (e.g., kernel functions) for computing the
similarity between nodes. It would be interesting to explore
variants of methods similar to those proposed in this paper for
improving the accuracy of detection of orthologous genes or
proteins using other sources of data (e.g., gene co-expression
networks).
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