
Learning Ontology-Aware Classifiers

Jun Zhang, Doina Caragea, and Vasant Honavar

Artificial Intelligence Research Laboratory,
Department of Computer Science,

Iowa State University,
Ames, Iowa 50011-1040, USA

{jzhang, dcaragea, honavar}@cs.iastate.edu

Abstract. Many practical applications of machine learning in data-
driven scientific discovery commonly call for the exploration of data from
multiple points of view that correspond to explicitly specified ontolo-
gies. This paper formalizes a class of problems of learning from ontology
and data, and explores the design space of learning classifiers from at-
tribute value taxonomies (AVTs) and data. We introduce the notion of
AVT-extended data sources and partially specified data. We propose a
general framework for learning classifiers from such data sources. Two
instantiations of this framework, AVT-based Decision Tree classifier and
AVT-based Näıve Bayes classifier are presented. Experimental results
show that the resulting algorithms are able to learn robust high ac-
curacy classifiers with substantially more compact representations than
those obtained by standard learners.

1 Introduction

Current advances in machine learning have offered powerful approaches to ex-
ploring complex, a-priori unknown relationships or discovering hypotheses that
describe potentially interesting regularities from data. Data-driven knowledge
discovery in practice, occurs within a context, or under certain ontological com-
mitments on the part of the learner. The learner’s ontology (i.e., assumptions
concerning things that exist in the world) determines the choice of terms and
relationships among terms (or more generally, concepts) that are used to de-
scribe the domain of interest and their intended correspondence with objects
and properties of the world [22]. This is particularly true in scientific discovery
where specific ontological and representational commitments often reflect prior
knowledge and working assumptions of scientists [8][27].

Hierarchical taxonomies over attribute values or classes are among the most
common type of ontologies in practice. Examples of such ontologies include:
Gene Ontology [3] that is a hierarchical taxonomy for describing many aspects
of macromolecular sequence, structure and function; Hierarchical taxonomy built
for features of intrusion detection [25]; Hierarchical groupings of attribute values
for Semantic Web [5]; Hierarchies defined over data attributes in e-commerce
applications of data mining [16].
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Making ontological commitments (that are typically implicit in a data set)
explicit enables users to explore data from different points of view, and at differ-
ent levels of abstraction. Each point of view corresponds to a set of ontological
(and representational) commitments regarding the domain of interest. In scien-
tific discovery, there is no single perspective that can serve all purposes, and
it is always helpful to analyze data in different contexts and from alternative
representations. Hence, there is a need for ontology-aware learning algorithms
to facilitate the exploration of data from multiple points of view.

Exploring ontology-aware learning algorithms can provide us with a better
understanding of the interaction between data and knowledge. The availability
of user-supplied ontologies (e.g., taxonomies) presents the opportunity to learn
classification rules that are expressed in terms of familiar hierarchically related
concepts leading to simpler, easier-to-comprehend rules [26]. Moreover, learning
algorithms that exploit hierarchical taxonomies can potentially perform a built-
in regularization and thereby yielding robust classifiers [27].

Against this background, it is of significant practical interest to precisely
formulate the problem of learning from ontologies (as a form of background
knowledge or working assumptions) and data, and to explore the design space
of algorithms for data-driven knowledge acquisition using explicitly specified on-
tologies (such as taxonomies). In this paper, we formalize the problem of learning
pattern classifiers from Attribute Value Taxonomies, and propose a general learn-
ing framework that takes into account the tradeoff between the complexity and
the accuracy of the predictive models. According to this general framework, we
presents two well-founded AVT-based variants of machine learning algorithms,
including Decision Tree and Näıve Bayes classifiers. We present our experimental
results, and conclude with summary and discussion.

2 Problem Formulation

2.1 Ontology-Extended Data Source

In supervised classification learning problems, the data to be explored are typi-
cally available as a set of labelled training instances {(Xp, cXp)} where Xp is an
instance in instance space I, and cXp is the class label from C = {c1, c2, · · · , cM},
a finite set of mutually disjoint classes. Assume that D is the data set rep-
resented using an ordered set of attributes A = {A1, A2, · · · , AN}, and O =
{Λ1, Λ2, · · · , ΛN} be an ontology associated with the data set. The element
Λi ∈ O corresponds to the attribute Ai, and describes the type of that par-
ticular attribute. In general, the type of an attribute can be a standard type
(e.g., Integer or String) or a hierarchical type, which is defined as an ordering of
a set of terms (e.g., attribute values). The schema S of the data set D is given by
the set of attributes {A1, A2, · · · , AN} used to describe the data together with
their respective types {Λ1, Λ2, · · · , ΛN} described by the ontology O. Caragea et
al [8] defined ontology-extended data source to be expressed as D = 〈D, S, O〉,
where D is the data set, S is the schema of the data and O is the ontology
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Student Status Work Status 

Freshman

Undergraduate Graduate

JuniorSophomore

Senior

Master Ph.D

On-Campus Off-Campus

TA RA AA

Government Private

Federal State

Com Org

Student ID Student Status Work Status Hourly Income Internship

60-421 Freshman Org $10/hr. No

73-727 Master Com $30/hr. Yes

81-253 Ph.D RA $20/hr. No

75-455 Graduate On-Campus $20/hr. No

32-719 Sophomore AA $15/hr. No

42-139 Senior Government $25/hr. Yes

66-338 Undergraduate Federal $25/hr. Yes

…… …… …… …… ……

Fig. 1. Two attribute value taxonomies on student status and work status and a sample

data set based on the two corresponding AVTs

associated with the data source. The instance space I where D is sampled can
be defined as I = Λ1 × Λ2 × · · · × ΛN

In the discussion that follows, we focus on hierarchical ontologies in the form
of attribute value taxonomies (AVTs). Typically, attribute values are grouped
into a hierarchical structure to reflect actual or assumed similarities among the
attribute values in the domain of interest. We use T = {T1, T2, . . . , TN} to rep-
resent the ordered set of attribute value taxonomies associated with attributes
A1, A2, . . . , AN . Thus, an AVT defines an abstraction hierarchy over values of
an attribute. Figure 1 shows an example of two AVTs, together with a sample
data set collected by a university department based on the corresponding AVTs.

Specifically, we use AVT-extended data source D = 〈D, S, T 〉 to refer to the
special case of ontology-extended data source where ontology is a set of attribute
value taxonomies.s

2.2 AVT-Induced Instance Space

In many real world application domains, the instances from AVT-extended data
sources are often specified at different levels of precision. The value of a particular
attribute or the class label associated with an instance or both are specified at
different levels of abstraction with regard to the hierarchical taxonomies, leading
to partially specified instances [27]. Partially specified data require us to extend



Learning Ontology-Aware Classifiers 311

our definition of instance space. We give formal definitions on partially specified
data and AVT-induced instance space in the following.

Attribute value taxonomies enable us to specify a level of abstraction that
reflects learner’s perspective on the domain.

Definition 1 (Cut [14]). A cut γi is a subset of elements in Nodes(Ti) satisfy-
ing the following two properties: (1) For any leaf m ∈ Leaves(Ti), either m ∈ γi

or m is a descendant of an element n ∈ γi; and (2) For any two nodes f, g ∈ γi,
f is neither a descendant nor an ancestor of g.

Definition 2 (Global Cut). Let ∆i be the set of all valid cuts in Ti of attribute
Ai, and ∆ = ×N

i=1 ∆i be the cartesian product of the cuts through the individual
AVTs. Γ = {γ1, γ2, . . . , γN} defines a global cut through T = {T1, T2, . . . , TN},
where each γi ∈ ∆i and Γ ∈ ∆.

Any global cut Γ in ∆ specifies a level of abstraction for D = 〈D, S, T 〉.
We use AVT frontier to refer to a global cut that is specified by the learning
algorithm. In terms of a certain level of abstraction (i.e., a global cut Γ ), we can
precisely define fully specified instance and partially specified instance:

Definition 3 (Partially Specified Instance [27]). If Γ represents the cur-
rent level of abstraction in learner’s AVT and Xp = (v1p, v2p, ..., vNp) is an
instance from D, then Xp is:

– Fully specified with respect to Γ , if ∀i, vip is on or below the cut Γ .
– Partially specified with respect to Γ , if ∃vip ∈ Xp, vip is above the cut Γ .

When attribute value vip is below the specified cut Γ , it is fully specified
because there is always a corresponding value on the cut that can replace the
current value in the current level of abstraction. However, when vip is above
the cut, there are several descendant values on the cut. It is uncertain which
value will be the true attribute value, and hence partially specified. A particular
attribute value can dynamically switch between being a fully specified value
and being a partially specified value when the level of abstraction changes.
For example, the shaded instances in Figure 1 are partially specified if the
global cut Γ chooses to be all primitive attribute values in the corresponding
AVTs.

The original instance space I is an instance space relative to a global cut Γφ

with a domain of all primitive attribute values (all leaf-nodes in AVTs). Because
any choice Γ defines a corresponding instance space IΓ that is an abstraction
of the original instance space IΓφ

, we can formally define AVT-induced instance
space as follows.

Definition 4 (AVT-Induced Instance Space [28]). A set of AVTs T =
{T1 · · ·TN} associated with a set of attributes A = {A1 · · ·AN} induces an in-
stance space IT = ∪Γ∈∆IΓ (the union of instance spaces induced by all of the
cuts through the set of AVTs T ).
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Therefore, a partially specified data set DT is a collection of instances drawn
from IT where each instance is labeled with the appropriate class label from C.
Thus, DT ⊆ IT ×C. Taking into account partially specified data, AVT-extended
data source becomes D = 〈DT , S, T 〉.

2.3 Learning Classifiers from Ontology-Extended Data Source

The problem of learning classifiers from data can be described as follows: Given
a data set D, a hypothesis class H , and a performance criterion P , the classifier
learner L generates a hypothesis in the form of a function h : I → C, where
h ∈ H optimizes P . For example, we search for a hypothesis h that is most
likely given the training data D.

Learning classifiers from an ontology-extended data set is a generalization of
learning classifiers from data. The typical hypothesis class H has been extended
to HO, where the original hypothesis language has been enriched by ontology
O. The resulting hypothesis space HO is a much larger space. In the case where
the ontology is a set of attribute value taxonomies, the hypothesis space changes
to HT , a collection of hypothesis classes {HΓ |Γ ∈ ∆}. Each HΓ corresponds
a hypothesis class with regard to a global cut Γ in the AVTs. Because partial
ordering exists among global cuts, it is obvious that the resulting hypothesis
space HT also has partial ordering structure.

The problem of learning classifiers from AVT-extended data can be stated
as follows: Given a user-supplied set of AVTs T and a data set DT of (possibly)
partially specified labeled instances, construct a classifier h : IT → C for assign-
ing appropriate class labels to each instance in the instance space IT . It is the
structure of the hypothesis space HT that makes it possible to search the space
efficiently for a hypothesis h that could be both concise and accurate.

3 AVT-Based Classifier Learners

We describe in the following a general framework for designing algorithms to
learn classifiers from AVT-extended data sources. Base on this framework, we
demonstrate our approach by extending standard decision tree classifier and
Näıve Bayes classifier.

3.1 A General Learning Framework

There are essentially three elements in learning classifiers from AVT-extended
data sources: (1) A procedure for identifying estimated sufficient statistics on
AVTs from data; (2) A procedure for building and refining hypothesis; (3) A
performance criterion for making tradeoff between complexity and accuracy of
the generated classifiers. In what follows, we discuss each element in details.
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(1) Identifying Estimated Sufficient Statistics

Building a classifier only needs certain statistics (i.e., a function of data). A
statistic S(D) is called a sufficient statistic for a parameter θ if S(D) provides
all the information needed for estimating the parameter θ from data D. We can
formally define sufficient statistic for a learning algorithm.

Definition 5 (Sufficient Statistic for a Learning Algorithm [7]). We say
that SL(D) is a sufficient statistic for learning the hypothesis h using a learning
algorithm L if there exists a procedure that takes SL(D) as input and outputs h.

For many learning algorithms, sufficient statistics are frequency counts or
class conditional frequency counts for attribute values. Given a hierarchical
structured AVT, we can define a tree of frequency counts or class conditional
frequency counts as the sufficient statistics for the learning algorithms. More
specifically, with regard to an attribute value taxonomy Ti for attribute Ai, we
define a tree of class conditional frequency counts CCFC(Ti) (and similarly, a
tree of frequency counts FC(Ti)).

If all the instances are fully specified in AVT-extended data source, the class
conditional frequency counts associated with a non leaf node of CCFC(Ti)
should correspond to the aggregation of the corresponding class conditional
frequency counts associated with its children. CCFC(Ti) can be computed
in one upward pass. When data are partially specified in AVT-extended data
source, we can use a 2-step process for computing CCFC(Ti) [28]: First we
make an upward pass aggregating the class conditional frequency counts based
on the specified attribute values in the data set; Then we propagate the counts
associated with partially specified attribute values down through the tree, aug-
menting the counts at lower levels according to the distribution of values along
the branches based on the subset of the data for which the corresponding values
are fully specified. This procedure can be seen as a special case of EM (Expecta-
tion Maximization) algorithm [11] to estimate sufficient statistics for CCFC(Ti).

(2) Building and Refining Hypothesis

As we have mentioned earlier, for a particular global cut Γ there is a correspond-
ing hypothesis class HΓ , and we can learn a hypothesis h(θ|Γ ) with parameters
θ from this hypothesis class HΓ using a learning algorithm L. The total number
of global cuts |∆| grows exponentially with the scale of AVTs, and so does the
number of possible hypotheses. Since an exhaustive search over the complete
hypothesis space {HΓ |Γ ∈ ∆} is computationally infeasible, we need a strategy
to search through the resulting hypothesis space.

Following the definition of cut, we can define a refinement operation on cut
as follows:

Definition 6 (Cut Refinement [28]). We say that a cut γ̂i is a refinement
of a cut γi if γ̂i is obtained by replacing at least one attribute value v ∈ γi by its
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Student Status Work Status

Freshman

Undergraduate Graduate

JuniorSophomore

Senior

Master Ph.D

On-Campus Off-Campus

TA RA AA

Government Private 

Federal State

Com Org 
11 γ̂γ →

Γ̂

Γ

Fig. 2. Cut refinement. The cut γ1={Undergraduate, Graduate} in the student status

attribute has been refined to γ̂1={Undergraduate, Master, Ph.D}, and the global cut

Γ has been refined to Γ̂ .

descendant attribute values. A global cut Γ̂ is a refinement of a global cut Γ if
at least one cut in Γ̂ is a refinement of a cut in Γ .

Figure 2 shows a demonstrative cut refinement process based on the AVTs
shown in Figure 1. When Γ̂ is a cut refinement of Γ , the corresponding hypothesis
h(Γ̂ ) is a hypothesis refinement of h(Γ ). Hypothesis refinements in AVT-based
learning are conducted through cut refinements in AVTs.

Based on gathered sufficient statistics, our goal is to search for the optimal
hypothesis h(Γ ∗) from {HΓ |Γ ∈ ∆}, where Γ ∗ is an optimal level of abstraction
(i.e., an optimal cut) that is decided by the learning algorithm L using certain
performance measurement P .

We use a top-down refinement on the global cut to greedily explore the design
space of the corresponding classifier. Our general strategy is to start by building
a classifier that is based on the most abstract global cut and successively refine
the classifier (hypothesis) by cut refinement. Therefore, the learning algorithm
L generates a sequence of cut refinements Γ0, Γ1, · · · , Γ ∗, which corresponds
to a sequence of hypothesis refinements h(Γ0), h(Γ1), · · · , h(Γ ∗), until a final
optimal cut Γ ∗ and an optimal classifier h(Γ ∗) is obtained.

(3) Trading Off the Complexity Against the Error

For almost every learning algorithm L, there is a performance measurement
P that is explicitly or implicitly optimized by L. For example, some perfor-
mance measurements include predictive accuracy, statistical significance tests,
and many information criteria. However, the lack of good performance measure-
ment makes the learning algorithm to build over complex model as the classifier
that shows excellent performance on training data but poor performance on test
data. This problem is called overfitting, which is a general problem that many
learning algorithms seek to overcome.

Of particular interest to us are those criteria that can make tradeoffs between
the accuracy and the complexity of the model [2][21], thereby having a built-in
mechanism to overcome overfitting. For example, Minimum Description Length
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(MDL) principle [21] is to compress the training data D and encode it by a
hypothesis h such that it minimizes the length of the message that encodes both
h and the data D given h. By making this tradeoff, we are able to learn classifiers
that is both compact and accurate.

In order to perform hypothesis refinements effectively, we need a performance
criterion P that can decide if we need to make a refinement from h(Γ ) to h(Γ̂ ).
Also this criterion should be able to decide whether we should stop making
refinement and output a final hypothesis as the classifier.

The performance criterion P is applied in the calculation of sufficient statis-
tics for hypothesis refinement that is defined as follows.

Definition 7 (Sufficient Statistics for Hypothesis Refinement[7]). We
denote SL(D, hi→hi+1) as the sufficient statistic for hypothesis refinement from
hi to hi+1, if the learner L accepts hi and a sufficient statistic SL(D, hi→hi+1)
as inputs and outputs an updated hypothesis hi+1.

Different learning algorithms may use different performance criteria, and thus
may have different formats and expressions of refinement sufficient statistics.

By combining the three elements of AVT-based classifier learners, we can
write the following procedure to show this general learning framework.

1. Identify estimated sufficient statistics SL(D) for AVTs as counts {CCFC(Ti)
|i = 1, ..., N} or {FC(Ti)|i = 1, ..., N}.

2. Initialize the global cut Γ to the most abstract cut Γ0.
3. Based on the estimated sufficient statistic, generate a hypothesis h(Γ ) cor-

responding to the current global cut Γ and learn its parameters.
4. Generate a cut refinement Γ̂ on Γ , and construct hypothesis h(Γ̂ )
5. Calculate SL(D, h(Γ )→h(Γ̂ )) for hypothesis refinement from h(Γ ) to h(Γ̂ ).
6. Based on performance criterion P , if stopping criterion is met, then output

h(Γ ) as the final classifier; else if the condition for hypothesis refinement is
met, set current hypothesis to h(Γ̂ ) by replacing Γ with Γ̂ , else keep h(Γ ),
and goto step 4;

Next, we discuss two instantiations of this learning framework and identify
their corresponding elements within the same framework.

3.2 AVT-Based Näıve Bayes Learner (AVT-NBL)

AVT-NBL [28] is an extension of the standard Näıve Bayes learning algorithm
that effectively exploits user-supplied AVTs to construct compact and accurate
Näıve Bayes classifier from partially specified data. We can easily identify the
three elements in the learning framework for AVT-NBL as follows:

(1) The sufficient statistics SL(D) for AVT-NBL is the class conditional fre-
quency counts {CCFC(Ti)|i = 1, ..., N}.
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(2) The hypothesis refinements strictly follow the procedure of cut refine-
ments in the framework. When a global cut Γ is specified, there is a corre-
sponding Näıve Bayes classifier h(Γ ) that is completely specified by a set of
class conditional probabilities for the attribute values on Γ . Because each at-
tribute is assumed to be independent of others given the class, the search for
the AVT-based Näıve Bayes classifier (AVT-NBC) can be performed efficiently
by optimizing the criterion independently for each attribute.

(3) The performance criterion that AVT-NBL optimizes is the Conditional
Minimum Description Length (CMDL) score suggested by Friedman et al [12].
CMDL score can be calculated as follows:

CMDL(h(Γ )|D) =
(

log |D|
2

)
size(h(Γ )) − CLL(h(Γ )|D)

where, CLL(h(Γ )|D) = |D|
∑|D|

p=1 log Ph(cXp |v1p, · · · , vNp)

where, Ph(cXp |v1p, · · · , vNp) is the class conditional probability, size(h(Γ )) is
the number of parameters used by h(Γ ), |D| the size of the data set, and
CLL(h(Γ )|D) is the conditional log likelihood of the hypothesis h(Γ ) given the
data D. In the case of a Näıve Bayes classifier, size(h(Γ )) corresponds to the
total number of class conditional probabilities needed to describe h(Γ ).

The sufficient statistics for hypothesis refinement in AVT-NBL can be quan-
tified by the difference between their respective CMDL scores: sL(D, h(Γ ) →
h(Γ̂ )) = CMDL(h(Γ̂ )|D)−CMDL(h(Γ )|D). If sL(D, h(Γ ) → h(Γ̂ )) > 0, h(Γ )
is refined to h(Γ̂ ). This refinement procedure terminates when no further refine-
ment can make improvement in the CMDL score (i.e., the stoping criterion).

3.3 AVT-Based Decision Tree Learner (AVT-DTL)

AVT-DTL [27] implements a top-down AVT-guided search in decision tree hy-
pothesis space, and is able to learn compact and accurate decision tree classifier
from partially specified data. Similarly, we can identify the three elements in the
learning framework for AVT-DTL as follows:

(1) The sufficient statistics SL(D) for AVT-DTL is the frequency counts
{FC(Ti)|i = 1, ..., N}.

(2) The hypothesis refinement is incorporated into the process of decision tree
construction. The cut refinement is done by keeping track of “pointing vectors”
in the AVTs. Each “pointing vector” is a set of pointers, and each pointer points
to a values in an AVT. As an example, in Figure 3, the pointing vector points
to two high-level attribute values in the two corresponding taxonomies.

The union of the set of pointing vectors at all leaves of a partially constructed
decision tree corresponds to a global cut in AVTs. Obviously, any global cut in
the constructed decision tree has a corresponding global cut in AVTs. At each
stage of decision tree construction, we have a current set of pointing vectors
as the global cut Γ being explored, and a corresponding partially constructed
decision tree to be the hypothesis h(Γ ). AVT-DTL indirectly makes refinement
on Γ by updating each pointing vector, and hence makes hypothesis refinement
on h(Γ ) and grows the decision tree accordingly. AVT-DTL does not have the
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T1 T2

P

Fig. 3. Illustration of a Pointing Vector P

independent assumption on attributes given the class, the search is conducted
globally to make refinements on possible cuts.

(3) The performance criterion that AVT-DTL uses is the standard informa-
tion gain or gain ratio [20]. The sufficient statistic for hypothesis refinement is
exactly the information criterion: sL(D, h(Γ ) → h(Γ̂ )) = info(Γ → Γ̂ ), where
info(Γ → Γ̂ ) is the information gain (or gain ratio) when current decision tree
h(Γ ) has been extended to h(Γ̂ ). The stopping criterion for AVT-DTL is the
same for standard decision tree. For example, such stopping criterion can be χ2

test to test statistical significance on further split.

4 Experiments and Results

We summarize below, results of experiments that compare the performance of
standard learning algorithm (DTL, NBL) with that of their AVT-based counter-
parts (AVT-DTL/AVT-NBL) as well as the standard learning algorithms applied
to a propositionalized version of the data set (PROP-DTL/PROP-NBL) [27]. In
propositionalized method, the data set is represented using a set of Boolean

Table 1. Comparison of error rate and size of classifier generated by NBL, PROP-NBL

and AVT-NBL on benchmark data

% Error rates using 10-fold cross validation with 90% confidence interval; The size of the classifiers for 
each data set is constant for NBL and Prop-NBL, and for AVT-NBL, the size shown represents the 
average across the 10-cross validation experiments.

NBL PROP-NBL AVT-NBL DATA      
SET

ERROR SIZE ERROR SIZE ERROR SIZE

Audiology 26.55 (±5.31) 3696 27.87 (±5.39) 8184 23.01 (±5.06) 3600 

Breast-Cancer 28.32 (±4.82) 84 27.27 (±4.76) 338 27.62 (±4.78) 62

Car 14.47 (±1.53) 88 15.45 (±1.57) 244 13.83 (±1.50) 80

Dermatology 2.18 (±1.38) 876 1.91 (±1.29) 2790 2.18 (±1.38) 576 

Mushroom 4.43 (±1.30) 252 4.45 (±1.30) 682 0.14 (±0.14) 202 

Nursery 9.67 (±1.48) 135 10.59 (±1.54) 355 9.67 (±1.48) 125 

Soybean 7.03 (±1.60) 1900 8.19 (±1.72) 4959 5.71 (±1.45) 1729 

Zoo 6.93 (±4.57) 259 5.94 (±4.25) 567 3.96 (±3.51) 245 
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Table 2. Comparison of error rate and size of classifier generated by C4.5, PROP-C4.5

and AVT-DTL on benchmark data No printing. No pruning is applied.

% Error rates using 10-fold cross validation with 90% confidence interval; The size of the classifier for 
each data set represents the average across the 10-cross validation experiments.

C4.5 PROP- C4.5 AVT- DTL DATA      
SET

ERROR SIZE ERROR SIZE ERROR SIZE

Audiology 23.01 (±5.06) 37 23.01 (±5.06) 26 21.23 (±4.91) 30

Breast-Cancer 33.91 (±5.06) 152 32.86 (±5.03) 58 29.37 (±4.87) 38

Car 7.75 (±1.16) 297 1.79 (±0.58) 78 1.67 (±0.57) 78

Dermatology 6.83 (±2.38) 71 5.74 (±2.20) 19 5.73 (±2.19) 22

Mushroom 0.0 (±0.00) 26 0.0 (±0.00) 10 0.0 (±0.00) 10

Nursery 3.34 (±0.90) 680 1.75 (±0.66) 196 1.21 (±0.55) 172

Soybean 9.81 (±2.06) 175 8.20 (±1.90) 67 7.75 (±1.85) 90

Zoo 7.92 (±4.86) 13 8.91 (±5.13) 9 7.92 (±4.86) 7

Table 3. Comparison of error rate on data with 10%, 30% and 50% partially or totally

missing values. The error rates were estimated using 10-fold cross validation, and we

calculate 90% confidence interval on each error rate.

DATA PARTIALLYMISSING TOTALLYMISSING

METHODS NBL PROP-NBL AVT-NBL NBL PROP-NBL AVT-NBL

10% 4.65(±1.33) 4.69(±1.34) 0.30(±0.30) 4.65(±1.33) 4.76(±1.35) 1.29(±071)

30% 5.28 (±1.41) 4.84(±1.36) 0.64(±0.50) 5.28 (±1.41) 5.37(±1.43) 2.78(±1.04)

MU
SH

RO
OM

50% 6.63(±1.57) 5.82(±1.48) 1.24(±0.70) 6.63(±1.57) 6.98(±1.61) 4.61(±1.33)

10% 15.27(±1.81) 15.50(±1.82) 12.85(±1.67) 15.27(±1.81) 16.53(±1.86) 13.24(±1.70)

30% 26.84(±2.23) 26.25(±2.21) 21.19(±2.05) 26.84(±2.23) 27.65(±2.24) 22.48(±2.09)

NU
RS

ER
Y

50% 36.96(±2.43) 35.88(±2.41) 29.34(±2.29) 36.96(±2.43) 38.66(±2.45) 32.51(±2.35)

10% 8.76(±1.76) 9.08(±1.79) 6.75(±1.57) 8.76(±1.76) 9.09(±1.79) 6.88(±1.58)

30% 12.45(±2.07) 11.54(±2.00) 10.32(±1.90) 12.45(±2.07) 12.31(±2.05) 10.41(±1.91)

SO
YB

EA
N

50% 19.39(±2.47) 16.91(±2.34) 16.93(±2.34) 19.39 (±2.47) 19.59(±2.48) 17.97(±2.40)

attributes obtained from Ti of attribute Ai by associating a Boolean attribute
with each node (except the root) in Ti. Thus, each instance in the original data
set defined using N attributes is turned into a Boolean instance specified using
Ñ Boolean attributes where Ñ =

∑N
i=1(|Nodes(Ti)| − 1).

The data sets used in our experiments [27][28] were based on benchmark
data sets available in the UC-Irvine repository. AVTs were supplied by domain
experts for some of the data sets. For the remaining data sets, the AVTs were
generated using AVT-Learner, a Hierarchical Agglomerative Clustering (HAC)
algorithm for constructing AVTs [15].

Table 1 shows the estimated error rates of the Näıve Bayes classifiers gen-
erated by the AVT-NBL, NBL, and PROP-NBL on benchmark data sets [28].
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Table 2 shows the estimated error rates of the decision tree classifiers generated
by the AVT-DTL, C4.5 [20], and PROP-C4.5 on the same benchmark data sets.

Experiments were also run with synthetic data sets with different pre-
specified percentages of totally or partially missing attribute values generated
from the original benchmark data sets. Table 3 compares the estimated error
rates of AVT-NBL with that of NBL and PROP-NBL in the presence of varying
percentages of partially missing attribute values and totally missing attribute
values [28].

Our main results can be summarized as follows: (1) AVT-DTL and AVT-
NBL are able to learn robust high accuracy classifiers from data sets consisting
of partially specified data comparing to those produced by their standard coun-
terparts on original data and propositionalized data. (2) Both AVT-DTL and
AVT-NBL yield substantially more compact and comprehensible classifiers than
standard version and propositionalized version of standard classifiers.

5 Summary and Discussion

5.1 Summary

Ontology-aware classifier learning algorithms are needed to explore data from
multiple points of view, and to understand the interaction between data and
knowledge. By exploiting ontologies in the form of attribute value taxonomies
in learning classifiers from data, we are able to construct robust, accurate and
easy-to-comprehend classifiers within a particular domain of interest.

We provide a general framework for learning classifiers from attribute value
taxonomies and data. We illustrate the application of this framework in the
case of AVT-based variants of decision tree and Näıve Bayes classifiers. How-
ever, this framework can be used to derive AVT-based variants of other learning
algorithms, such as nonlinear regression classifiers, support vector machines, etc.

5.2 Related Work

Several authors have explored the use of attribute value taxonomies in learning
classifiers from data. [1][9][10][13][17][23][27][28]. The use of prior knowledge or
domain theories specified in first order logic or propositional logic to guide learn-
ing from data has been explored in ML-SMART [4], FOCL [19], and KBANN
[24] systems. However, the work on exploiting domain theories in learning has
not focused on the effective use of AVT to learn classifiers from partially speci-
fied data. McClean et al [18] proposed aggregation operators defined over partial
values in databases. Caragea et al have explained the use of ontologies in learning
classifiers from semantically heterogeneous data [8]. The use of multiple inde-
pendent sets of features has led to “multi-view” learning [6]. However, our work
focuses on exploring data with associated AVTs at multiple levels of abstraction,
which corresponds to multiple points of view of the user.

In this paper, we have described a general framework for deriving ontology-
aware algorithms for learning classifiers from data when ontologies take the form
of attribute value taxonomies.
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5.3 Future Work

Some promising directions for future work in ontology-guided data-driven learn-
ing include:

(1) Design of AVT-based variants of other machine learning algorithms. Specif-
ically, it would be interesting to design AVT and CT-based variants of algo-
rithms for construction Bag-of-words classifiers, Bayesian Networks, Nonlin-
ear Regression Classifiers, and Hyperplane classifiers (Perceptron, Winnow
Perceptron, and Support Vector Machines).

(2) Extensions that incorporate richer classes of AVT. Our work has so far fo-
cused on tree-structured taxonomies defined over nominal attribute values.
It would be interesting to extend this work in several directions motivated by
the natural characteristics of data: (a) Hierarchies of Intervals to handle nu-
merical attribute values; (b) Ordered generalization Hierarchies where there
is an ordering relation among nodes at a given level of a hierarchy (e.g., hier-
archies over education levels); (c) Tangled Hierarchies that are represented
by directed acyclic graphs (DAG) and Incomplete Hierarchies which can be
represented by a forest of trees or DAGs.
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