Analysis and Synthesis of Agents that Learn
from Distributed Dynamic Data Sources

Doina Caragea, Adrian Silvescu, and Vasant Honavar

Artificial Intelligence Research Laboratory, Department of Computer Science, Iowa
State University, Ames, Iowa 50011-1040, USA,
honavar@Qcs.iastate.edu,

WWW home page: http://www.cs.iastate.edu/ honavar/aigroup.html

Abstract. We propose a theoretical framework for specification and
analysis of a class of learning problems that arise in open-ended environ-
ments that contain multiple, distributed, dynamic data and knowledge
sources. We introduce a family of learning operators for precise specifica-
tion of some existing solutions and to facilitate the design and analysis of
new algorithms for this class of problems. We state some properties of in-
stance and hypothesis representations, and learning operators that make
exact learning possible in some settings. We also explore some relation-
ships between models of learning using different subsets of the proposed
operators under certain assumptions.

1 Learning from Distributed Dynamic Data

Many practical knowledge discovery tasks (e.g., learning the behavior of com-
plex computer systems from observations, computer-aided scientific discovery in
bioinformatics) present several new challenges in machine learning. The data
repositories in such applications tend to be very large, physically distributed,
often autonomously managed, and constantly growing over time (as new data
get added). Thus, there is a need for algorithms for learning from distributed
data by analysing the distributed data sets where they reside instead of shipping
large volumes of data across networks, in an incremental fashion, as the data
becomes available over time, without having to reprocess the already processed
data [5, 14].

Although some incremental and distributed learning algorithms have been
proposed in the literature, most of them [9, 4, 15], do not guarantee generalization
accuracies that are provably close to those obtainable in the batch or central-
ized learning scenario. Some notable exceptions include parallel and distributed
versions [1, 13,6, 12] and incremental versions [3] of batch algorithms that pre-
serve the underlying nature of the centralized algorithm. At present, with the
exception of some interesting results (e.g., mistake bounds) for the closely related
problem of online learning [7], a characterization of hypothesis classes that ad-
mit efficient exact or approximate distributed or incremental learning is lacking.
Yet from a practical standpoint, the design and implementation of such learning

agents is clearly of interest. Against this background, there is a need to address
incremental and distributed learning problems in their full generality.

This paper presents some tentative steps towards a framework for specifi-
cation, analysis, and synthesis of incremental and distributed learning agents.
We define some learning and information extraction operators to formally model
some existing learning algorithms. We explore some properties of instance and
hypothesis representations, and learning operators that guarantee the existence
of incremental and distributed learning algorithms with provable performance
guarantees relative to their batch or centralized counterparts. We offer some
examples to illustrate the use of this theoretical framework in designing new
incremental and distributed learning algorithms.

2 Incremental Learning and Distributed Learning

A generic incremental learning scenario is shown in Fig. 1. In an incremental

:
E/ I

Fig. 1. Incremental Learning

learning scenario, data sets Dy, Ds,---, D,, are assumed to become available to
the learner at discrete instants in time ¢1,to,---,t,. The learner starts with a
(possibly null) initial hypothesis hg which constitutes the prior knowledge of the
domain. We assume that the learner is typically unable to store the data in its
raw form. Thus, it can only maintain and update its hypothesis base as new
data becomes available. Thus, hg gets updated to hy on the basis of Dy, and hy
gets updated to hs on the basis of data Ds, and so on.

In a distributed learning scenario, the data set is assumed to be physically
distributed across multiple, possibly autonomous, data repositories D1, ---, D,,.
The learner can visit the repositories to gather the information necessary for gen-
erating knowledge (e.g., in the form of pattern classification rules) by processing
the data where it is stored. Alternatively, the data repositories may transmit
the information to the learner. In either case, we prohibit transport of raw data
among different sites. A distributed learning scenario is shown in Fig. 2.

A number of variations on these basic incremental and distributed learn-
ing scenarios can be envisioned under different assumptions concerning where
and when data processing is performed, what information is made available
to the learner, etc. More generally, we can consider incremental learning from

Fig. 2. Distributed Learning

distributed data sources. Space does not permit a detailed discussion of such
scenarios.

3 Horizontal and Vertical Data Fragmentation

In many applications, the data set consists of a set of tuples where each tuple
stores the values of relevant attributes. The distributed nature of such a data set
can lead to at least two common types of data fragmentation: horizontal frag-
mentation wherein subsets of data tuples are stored at different sites; and vertical
fragmentation wherein subtuples of data tuples are stored at different sites. As-
sume that a data set D is distributed among the sites 1,---,n containing data
set fragments D1, ---, D,. We assume that the individual data sets Dy,---, Dy,
collectively contain enough information to generate the complete dataset D. In
many applications, it might be the case that the individual data sets are au-
tonomously owned and maintained. Consequently, the access to the raw data
may be limited and only summaries of the data (e.g., number of instances that
match some criteria of interest) may be made available to the learner. Even in
cases where access to raw data may not be limited, the large size of the data sets
makes it infeasible to assemble the complete data set D at a central location.

3.1 Horizontal Fragmentation

In the distributed setting, the data is fragmented in such a manner that each
site contains a set of data tuples. The union of all these sets constitutes the com-
plete dataset. If the individual data sets (horizontal fragments) are denoted by
Dy,Ds,---,D,, and the corresponding complete data set by D, then Horizon-
tally Distributed Data (HDD) has the following property: DUD,...UD,, = D,
where U denotes set union. Hence, in this case, a distributed learning algorithm
L4 is exact with respect to the hypothesis inferred by a learning algorithm L if
it is the case that:

La(D1,Ds,-+-,Dy) = L(D1UD5U---UD,,). (1)

The challenge is to achieve this guarantee without providing L4 with simultane-
ous access to Dq,---D,,.

Similarly, we can envision horizontal fragmentation of data in the incremental
setting.

3.2 Vertical Fragmentation

In the distributed setting, each data tuple is fragmented into several subtuples
each of which shares a unique key or index. Thus, different sites store vertical
fragments of the data set. Each vertical fragment corresponds to a subset of the
attributes that describe the complete data set. It is possible for some attributes
to be shared (duplicated) across more than one vertical fragments, leading to
overlap between the corresponding fragments. Let Ay, As,---, A, indicate the
set of attributes whose values are stored at sites 1,---,n respectively, and let
A denote the set of attributes that are used to describe the data tuples of the
complete data set. Then in the case of Vertically Distributed Data (VDD), we
have: A1 U As---U A, = A. Let Dy,D5,---,D,, denote the fragments of the
dataset stored at sites 1,---,n respectively, and let D denote the complete data
set. Let the ith tuple in a data fragment D; be denoted as t,.. Let t}, .index

denote the unique index associated with tuple t"Dj and let x denote the join
operation. Then the following properties hold for VDD:

1. Dy ngxj--an=D, and
2. VDj, Dy, t’Dj Andex = t7, .index.

Thus, the subtuples from the vertical data fragments stored at different sites
can be put together using their unique index to form the corresponding data
tuples of the complete dataset. It is possible to envision scenarios in which a
vertically fragmented data set might lack unique indices. In such a case, it might
be necessary to use combinations of attribute values to infer associations among
tuples [1]. In what follows, we will assume the existence of unique indices in
vertically fragmented distributed data sets.

In the case of vertically fragmented data, a distributed learning algorithm
L4 is exact with respect to the hypothesis inferred by a learning algorithm L if
it is the case that:

Ld(Dl,Dg,"',Dn):L(DlXDQX"'XDH). (2)

The challenge is to guarantee this without providing L4 with simultaneous access
to Dy, Dy,.

Similarly, we can envision vertical fragmentation of data over time in the
incremental setting. This is of special relevance in applications where data rep-
resentation may be augmented over time by the addition of new attributes (e.g.,
measurements obtained using novel experiments in an ongoing scientific project).
It is possible to envision scenarios in which a vertically fragmented data set might
lack unique indices. In such a case, it will be necessary to combine the attribute
values to infer associations among tuples. We can also envision data sets that
are both horizontally and vertically fragmented in space, time, or both.

4 Learning Operators

Let X be a sample space where from the examples are drawn, and let D be
the set of all possible subsets of the sample space X. We can assume that the
subsets in D are obtained from X by sampling according to different probability
distributions. Let C be the space of all possible functions that we may want to
learn or approximate, and H the space of the functions that a learning agent can
draw on in order to construct approximations of the functions in C. In a typical
inductive learning scenario, H is a set of hypotheses. However, in the analysis
that follows, it is useful to allow H to include not only the hypotheses but also
other functions defined over D. Examples of such functions include those that
compute statistical summaries of a given data set, select subsets of a data set,
or in general, extract useful information from a given data set. In what follows,
we define some learning operators.

A learning operator is specified by L : D — H, where L denotes any induc-
tive learning algorithm or information extraction algorithm. It takes as input a
dataset D and returns a function h that satisfies some specified criterion with
respect to the data set. For example, if L is a consistent learner, it outputs a
hypothesis that is consistent with the data. In other scenarios, L might compute
relevant statistics from D.

The “nverse” learning operator is specified by L~! : H — D. As opposed
to the learning operator, it takes as input a function h and returns a dataset D
that satisfies some specified criterion with respect to L and the data set D. For
example, L~! might output when given h, a data set which when provided as
input to L, results in the output h.

The selection operator is specified by Sel : D — D. It generates a new
dataset D' based on an existing dataset D by selecting examples according to
a specified criterion (e.g., by sampling D according to some desired probability
distribution).

The union operator U : D x D — D takes as arguments two datasets D; and
D, and outputs a new dataset D = Dy U D5. It may represent the standard set
union, multi-set union, or any suitably well-defined operation.

The augmentation operator L : H xD — H augments or refines a function h
by incorporating new data D according to some specified criterion. For instance,
it may minimally modify a hypothesis so as to be consistent with new data.

The combination operator L : H™ — H produces a new function h by
exploiting the information provided by the given functions Ay, ha,- - -, hp.

This set of definitions is meant to be merely illustrative (and not exhaustive)
with respect to the types of operators that might be useful in incremental and
distributed learning settings. Because the augmentation and combination oper-
ators are more general in some sense than the learning operator, it is desirable
to enforce some consistency conditions among these operators. Let hy := L(¢).
Then we would like the following equalities to hold:

1. La(hg,D) = L(D),
2. La(h,¢) =h, and

3. L%(hg,h) = h.
As a consequence, the following less general equalities should also hold:

4. LA(h@,¢) = L(¢) = hq), and
5. L (hg, hg) = L(¢) = he.

The previous conditions basically ensure that the two more general operators
L4 and L% behave nicely when provided an empty dataset as one of the inputs.

5 Incremental and Distributed Learning Criteria

Batch learning algorithms have been the subject of extensive experimental and
theoretical analysis. Consequently, it is desirable to develop a theoretical frame-
work which allows us to gain useful insights into the performance of distributed
and incremental algorithms by relating them their batch or centralized counter-
parts.

In what follows, we define ezactness of a distributed or incremental learn-
ing algorithm. This definition is intended to illustrate the sorts of analysis that
are facilitated by the theoretical framework that is sketched out in this paper.
A similar analysis can be performed with respect to other performance criteria
that are motivated by the needs of specific applications.

Definition 1. Given two datasets D1 and D2, and a learning algorithm L for a
function class ‘H, we say that D1 U D2 is exact incremental-learnable and exact
distributed-learnable with respect to the algorithm L if the conditions

LA(L(Dl),DQ) = L(D1 U DQ), and (3)

L3(L(D1), L(Dy)) = L(Dy U D) (4)
hold (respectively).

Note that the union operator used above can have different meanings in different
scenarios. In some cases, it may denote standard set union; in some others, it may
stand for an operation that combines subtuples of a data tuple from different
data sets based on the unique index that helps associate the data subtuples (see
the discussion of horizontally and vertically fragmented data in the previous
section for details).

The conditions for exact incremental and exact distributed learning can be
easily generalized for the case where the complete data set is distributed among
n data sets. In many real world problems involving sufficiently expressive con-
cept classes, exact incremental or distributed learning may not be possible even
in principle. In other instances, although possible in principle, it may not be
feasible in practice for computational reasons. At present, a characterization

of hypothesis classes that lend themselves to exact or approximate distributed
or incremental learning is lacking. From a practical standpoint, the design and
implementation of data and hypotheses representations that can support compu-
tationally efficient and scalable distributed and incremental learning algorithms
is clearly of interest.

6 Models of Distributed and Incremental Learning

In this section we will explore relationships among some of the learning operators
introduced above and define them in term of the others. Then we will explore
some properties of instance and hypothesis representations and operators which
guarantee the existence of exact incremental and exact distributed learning under
certain assumptions. Provable equivalences among certain learning operators (or
combinations thereof) can help to transform the algorithms developed in one
setting (e.g. distributed learning) to another setting (e.g., incremental learning)
under certain well-defined conditions.

Consider the learning operators defined as follows:

1) La(h, D) := L(L-Y(h) U D)

2) L% (hy,hy) == L(L™"(hy) U L™ (hy))

3) Lg(ha, ho) —LA(LA(hm (hl))7L ' (h2))
4) LZ.(ha,ho) :== La(hy, L™ (h2))

5) La(h,D):= L¢(h, L(D))

Lemma 1. Assume that L(L~1(h)) = h. Then definition 3) is equivalent to
definition 4).

Proof. La(La(hg, L™ *(h1)), L' (h2)) = La(L(L*(h1))

“H(h2)) = La(hy, L7 (h2)).
The first equality follows from the consistency of L4 and the second one from
the assumption made.

Theorem 1. Assume that L~ 1(L(D)) = D. Then the operators given by defi-
nition 1) and definition 2) satisfy the exact learning criteria. That is,

(1) L(Dy U D3) = La(L(D1),D2) YD1, D5 € D (in the incremental setting)
(2) L(Dy U Dy) = LL(L(D1), L(D3)) VD1,Dy € D (in the distributed setting)

Proof. The proof of (1) above follows from the observation that L4 (L(Dy), D2) =
L(L=Y(L(D,))U D) = L(D; U D). The proof of (2) above follows from the ob-
servation L% (L(Dy), L(D»)) = L(L™'(L(D:1))UL™Y(L(D2))) = L(D1UDy).

Theorem 2. Assume that L=1(L(D)) = D and that La satisfies the Ezact
Learning criteria. Then the operator given by definition 4) also satisfies the

ezxact learning criteria in the distributed setting. That is,
L(Dl @] D2) = L%(L(Dl),L(D2)) VDl,Dz S D

Proof. Lg,(L(D1), L(D2)) = La(L(Dy), L7H(L(D2))) =
La(L(Dy), D) = L(Dy U Dy

Theorem 3. Assume that Lo satisfies the exact learning criteria. Then the
operator given by definition 5) also satisfies the exact learning criteria in the
incremental setting. That is, L(D1 U Dy) = La(L(D1),D3) VD1,Dy € D

PT‘OOf. We have: LA(L(Dl),DQ) = ch(L(Dl), (L(Dg))) = L(D1 U Dz)

The results of this section show how we can emulate some operators using other
operators so as to guarantee exact learning under certain assumptions. The con-
dition L=1(L(D)) = D is quite strong and is seldom met in practice. The next
section explores the design of exact incremental and distributed learning al-
gorithms under weaker assumptions. A more complete characterization of the
necessary and sufficient conditions for exact or approximate distributed and in-
cremental learning is a subject of our ongoing research.

7 Designing exact learning agents

One approach to devising distributed or incremental algorithms based on an ex-
isting batch or centralized learning algorithm is by identifying the information
requirements of the learner and designing efficient means of providing the neces-
sary information to it in the distributed or incremental setting. This decompo-
sition of the learning task into information extraction and hypothesis generation
phases offers a general approach to adapting some of the existing learning algo-
rithms to work in the distributed setting. The hypothesis generation component
of the algorithm can be thought of as the control part of the algorithm, which
triggers the execution of the information extraction part as needed. The execu-
tion of the two parts is typically interleaved in time. In this model of distributed
learning, only the information extraction component has to effectively cope with
the distributed nature of the data.

We illustrate this approach to design some incremental and distributed algo-
rithms based on existing batch algorithms (e.g., instance based learning, decision
tree learning, and support vector machines induction).

7.1 Incremental and distributed k-nearest neighbor classifiers

The k-nearest neighbor algorithm is an example of an instance based learning al-
gorithm that can be easily transformed into an exact algorithm for learning from
horizontally fragmented data in both incremental as well as distributed settings.
The learning phase of a k-NN algorithm consists simply in storing the data and
the information extraction is done during the classification phase. Thus, in the
k-NN case we have incremental /distributed classification as opposed to the most
algorithms where we have incremental /distributed learning, but centralized clas-
sification. The classification phase in a k-NN algorithm can be separated in two

phases L., for information extraction phase, which returns the k& closest neigh-
bors of a given example z, and Ly, for information processing phase which
will take a majority vote among the k closest neighbors. The representation of
the result of L., part will be the same as the representation of the instances.
In this case we can easily define an inverse operator L_}, as being the identity.
Therefore ngltr (Legtr(D)) = D', where D' contains the k closest points to the
point z which should be classified. We will get the following sufficient conditions

for exact incremental/distributed information extraction:

Incremental case:
Leatr(D1 U D3) = La(Leatr(D1), D2) := Leatr(Legir(Lextr(D1)) U D2). (5)
Distributed case:
Leatr(D1 U Dy) = LE (Legtr(D1), Leatr(D2)) :=

Lestr(Logsr(Leatr(D1)) U Ly (Leatr (D2))). (6)

We call these properties wu-closure properties. Suppose we have an algorithm
knn(D,z) which compute the k closest neighbors of a new instance x in the
set D (in the information extraction phase). The solution given by the k-NN
algorithm for the instance x can be written as follows:

h(z) = arg max Hyly € knn(z), h(y) = c}l,

where C is the set of possible classes. Given n datasets Dy,---,Dy and an
instance = to be classified, the information extraction algorithm works as fol-
lows: k_nn(k_nn(D1,z) U ---Uk_nn(D,,),). Similarly, incremental informa-
tion extraction (in the case of two data sets D; and Ds) works as follows:
knn(k-nn(D1,z) U Da, x).

Theorem 4. The following two equalities hold for arbitrary data sets Dy, -+, D,,
and a new instance x:

knn(k-nn(Dy,z2) U---Uknn(Dy,z),z) = konn(Dy U ---U Dy, x).

knn(knn(Dy,z) U Dy, x) = k_nn(Dy U Do,)

These two equalities guarantee the u-closure properties, and hence the resulting
algorithms are exact.

7.2 Incremental and Distributed Induction of Support Vector
Machines

Support Vectors Machines (SVM) [16] have proved to be a successful technique
for batch learning. SVM summarizes the data in a very compact form by identi-
fying the set of instances (the so-called support vectors) that specify the maximal

10

margin hyperplane separating the two classes. We can devise an algorithm for
exact learning of support vector machines from horizontally fragmented data in
both incremental as well as distributed settings by decomposing the learning task
into two phases: first extract some information about datasets using an algorithm
Ly for information extraction, and then process the information to generate a
hypothesis using Ly, as needed. The information extracted by L, will have
the same representation as the instances in the training set. More specifically, it
will select a subset of the training set that is sufficient for exact learning. Taking
again L7}, to be the identity operator (L.}, (Leztr (D)) = Legir (D)), we can get
similar conditions for incremental and distributed learning. Specifically, we can
guarantee exact incremental and distributed learning if the following u-closure
properties hold:

Leztr(Dl U D2) = LA(Leztr(Dl)a -DZ) = Leztr(Le_wltT(Leztr(Dl)) U D2) (7)
in the incremental setting, and
Lewtr(Dl U D2) = L%’(Lewtr(Dl)aLewtr(D2)) =

Leytr (L;zltr (Lewtr (Dl)) U Lgmltr (Lewtr (DZ))) (8)

in the distributed setting.

It can be easily seen that support vectors do not satisfy this property but the
convex hulls of the instances that belong to the two classes do. This observation
leads to exact incremental and distributed learning algorithms [3].

7.3 Distributed decision tree algorithms

An approach to exact learning of decision trees from horizontally and vertically
fragmented data is proposed in [12]. When data is horizontally distributed, ex-
amples for a particular value of a particular attribute are scattered at different
locations. For finding the count of examples for a particular node in tree, all
the sites are visited and count is accumulated. These counts are used by a deci-
sion tree construction algorithm [11] to find the best attribute among the set of
examples being considered.

The formal description of the algorithm in the case of HDD is the following;:

Lupp(D1,---,Dy) :==Ip(Ig(D1), -, Ig(Dy)). 9)

where Ig is an operator which collects statistics about attributes at different
sites and L% = Ip combines the information gained and constructs the decision
tree.

In vertically distributed datasets, each example has a unique index associ-
ated with it. Subtuples of an example are distributed among different datasets.
However, they can be related to each other using their shared index. While
constructing a branch of decision tree, the count of examples that satisfy the
constraints on attribute values along the branch is found using unique indices

11

to relate the subtuples of an example. To find the best attribute, a pass is made
through all data sites to compute the count of examples.
The formal description of the algorithm in the case of VDD is as follows:

Lypp(Dy,--+,Dy) = Ip(Ig(D1), -, Ig(Dy)). (10)

In this case, Ig collects statistics and finds the best attribute at each location,
and L% = Ip uses this information to construct the tree. Specifically the statis-
tics which are collected consist in counts for combinations of attribute values.
As shown in [12], this approach yields exact and efficient algorithms for learning
decision trees from horizontally, vertically, and both horizontally and vertically
fragmented data sets in the distributed setting.

8 Additional Algorithms

This section explores the specification of some additional algorithms that have
been proposed in the literature for distributed and incremental learning within
the proposed theoretical framework.

8.1 Bagging, Boosting and Stacked generalization

Bagging [2] and Stacked Generalization [17] are hypotheses combination tech-
niques used typically to improve the accuracy of a learning algorithm. Bagging
works as follows:

LBagging(D) :== Majority_Vote(L,(Sel(D)),---, L,(Sel(D))) (11)

where L,,---, L, are arbitrary learning algorithms, and the combination is done
using a majority vote. It is possible to develop similar characterizations of stacked
generalization, boosting, and related techniques. This opens up the possibility of
approximate constructing incremental and distributed learning algorithms based
on such techniques. The interested reader is refered to [8] for an example.

8.2 Meta-Learning

Meta-learning [9] is a technique which combines independent classifiers generated
from distributed databases into a single global classifier. The classifiers generated
from individual databases are integrated so as to improve the overall predictive
accuracy of the combined classifier. More specifically, the individual classifiers
are used to generate predictions on a separate validation test. The predictions
and the validation test are put together to form a new data set. The final classifier
is obtained by a new learning process applied to this dataset. This process can
be captured as follows:

Liteta(D1y+++y Dy Do) == L(L™(L1(D1)| Do) U---U L™ (L, (D,)|Do)) (12)

where D1 U--- D, = D and Dy is the validation set and L is a learning operator.

12

8.3 DAGGER

Another strategy to combine multiple learned models can be found in [4]. The
goal of DAGGER is to learn a single comprehensive model from distributed
data sets. The key idea is to learn the hypotheses hq,-- -, h, from the datasets
Ds,- -+, D, and use them to guide sampling of a new set of informative examples
from these datasets. Then the learning operator L generates a final model from
the union of the informative examples as follows:

Lpacger(D1,---,Dyp) :== L(L Y (L1(D1)) U---U L YL, (Dy,))), (13)

where the operators used are similar to those in meta-learning, and each hypoth-
esis h; = L;(D;).

8.4 Incremental tree induction

Incremental tree induction (ITI) [15] is an algorithm that sequentially restruc-
tures a hypothesis in the form of a decision tree as new examples are encountered
on the basis of some statistics that are maintained. Examples are processed one
at a time. Hence, each new set contains only one example. Let n be the number
of datasets (in this case, examples). We can describe this algorithm as follows:

Liri(D1,---Dy) :== La(La(--- (La(hg, D1)---,Dn_1), Dp), (14)

where L4 is the algorithm which updates the statistics and hg = L(@). This
algorithm does not guarantee exact learning in the incremental setting.

9 Summary and Future Research

The results presented in this paper constitute some useful (albeit tentative) first
steps toward the development of a theoretical framework for the specification
and analysis of a class of learning problems that arise in open-ended, dynamic
environments. Such learning tasks arise in many real-world applications involv-
ing knowledge acquisition from multiple, distributed, possibly autonomous data
and knowledge sources. We have introduced a family of learning operators and
illustrated their use to formally describe some existing approaches and to design
new distributed and incremental learning algorithms with provable performance
guarantees. We have identified some properties of instance and hypothesis rep-
resentations and learning operators that make exact learning possible in some
open-ended, dynamic environments under certain assumptions. Work in progress
is aimed at the elucidation of the necessary and sufficient conditions that guar-
antee the existence of exact or approximate cumulative multi-agent learning
systems in general, and different types of incremental and distributed learning
agents in particular, in terms of the properties of instance and hypothesis rep-
resentations and learning operators, communication operators, and knowledge
requirements of agents. Also of interest are PAC-style and mistake-bound analy-
sis of incremental and distributed learning in multi-agent learning systems under

13

different assumptions. Long term goals of this research include: design theoreti-
cally well-founded multi-agent systems for learning from interaction with open-
ended dynamic environments that include multiple data and knowledge sources
(including other agents) and application of such multi-agent learning systems to
large-scale data-driven knowledge discovery tasks in applications such as bioin-
formatics.

Acknowledgements

This research was funded in part by grants from the National Science Foundation
(9982341, 9972653, 0087152), the John Deere Foundation, and Pioneer Hi-Bred,
Inc. to Vasant Honavar.

References

1. Bhatnagar, R., Srinivasan, S.: Pattern Discovery in Distributed Databases. Proceed-
ings of AAAI, AAAI Press, 1997.

2. Breiman, L.: Arcing Classifiers. Annals of Statistics, Volume 26, 1998.

3. Caragea, D., Silvescu, A., Honavar, V.: Agents that Learn from Distributed Dynamic
Data Sources. Proceedings of the Workshop on Learning Agents, Agents-00/ECML-
00. Barcelona, Spain. June 2000.

4. Davies, W., Edwards, P.. DAGGER: A New Approach to Combining Multiple Mod-
els Learned from Disjoint Subsets. Machine Learning 2000.

5. Honavar, V., Miller, L., Wong, J.: Distributed Knowledge Networks. Proceedings of
the IEEE Conference on Information Technology, Syracuse, NY, 1998.

6. Kargupta, H., Park, B., Hershberger, D., Johnson, E.: Collective Data Mining: A
New Perspective Toward Distributed Data Mining. Advances in Distributed and
Parallel Knowledge Discovery, Eds: Hillol Kargupta and Philip Chan. AAAT Press.
2000.

7. Littlestone, N.: The weighted majority algorithm. Information and Computation,
108:212-261, 1994.

8. Polikar, R., Udpa, L., Udpa, S., Honavar, V.: Learn++: An Incremental Learning
Algorithm for Multilayer Perceptron Networks. Proceedings of the IEEE Conference
on Acoustics, Speech, and Signal Processing (ICASSP) 2000. Istanbul, Turkey. In
press.

9. Prodromidis, A.L., Chan, P.K.: Meta-learning in distributed data mining systems:
Issues and Approaches. Book on Advances of Distributed Data Mining, editors Hillol
Kargupta and Philip Chan, AAAT press, 2000.

10. Provost, F., Hennessy, D.: Scaling Up: Distributed Machine Learning with Cooper-
ation. Proceedings of the Fourteenth National Conference on Artificial Intelligence,
1996.

11. Quinlan, J.R.: Induction of Decision Trees. Machine Learning, vol. 1, pp 81-106,
1986.

12. Sharma, T., Silvescu, A., Andorf, C., Caragea, D., Honavar, V.: Algorithms for
Learning from Distributed Data Sets. Tech. Rep. ISU-CS-TR 2000-10. Department
of Computer Science, Iowa State University, Ames, IA, May 2000.

13. Srivastava, A., Han, E.H., Kumar, V., Singh V.: Parallel Formulations of Decision-
Tree Classification Algorithms. Data Mining and Knowledge Discovery: An Inter-
national Journal, vol. 3, no. 3, pp 237-261, September 1999.

14

14. Thrun, S., Faloutsos, C., Mitchell, M., Wasserman, L.: Automated Learning and
Discovery: State-of-the-art and research topics in a rapidly growing field. AI Mag-
azine, 1999.

15. Utgoff, P.E., Berkman, N.C., Clouse, J.A.: Decision Tree Induction Based on Effi-
cient Tree Restructuring. Machine Learning, 1997.

16. Vapnik, V.: Statistical Learning Theory. Springer-Verlag, New York, 1998.

17. Wolpert, D.H.: Stacked Generalization. Neural Networks, 5:241-259, 1992.

