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Abstract

Multi-layer networks of threshold logic units (TLU) o�er an attractive framework for the design of pattern clas-

si®cation systems. A new constructive neural network learning algorithm (DistAl) based on inter-pattern distance is

introduced. DistAl constructs a single hidden layer of hyperspherical threshold neurons. Each neuron is designed to

determine a cluster of training patterns belonging to the same class. The weights and thresholds of the hidden neurons

are determined directly by comparing the inter-pattern distances of the training patterns. This o�ers a signi®cant ad-

vantage over other constructive learning algorithms that use an iterative (and often time consuming) weight modi®-

cation strategy to train individual neurons. The individual clusters (represented by the hidden neurons) are combined by

a single output layer of threshold neurons. The speed of DistAl makes it a good candidate for datamining and

knowledge acquisition from large datasets. The paper presents results of experiments using several arti®cial and real-

world datasets. The results demonstrate that DistAl compares favorably with other learning algorithms for pattern

classi®cation. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Trainable pattern classi®ers ®nd a broad range of applications in data mining and knowledge
discovery [1,2], intelligent agents [3,4], diagnosis [5], computer vision [6], and automated know-
ledge acquisition [2,7±9] from data. Multi-layer networks of threshold logic units (TLU) [10±15]
o�er an attractive framework for the design of trainable pattern classi®cation systems for a
number of reasons including: potential for parallelism and fault and noise tolerance; represen-
tational and computational e�ciency over disjunctive normal form (DNF) expressions and de-
cision trees [11]; and simpler digital hardware implementations than their continuous counterparts
such as sigmoid neurons used in networks trained with error backpropagation algorithm [16,17].
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A TLU implements an (Nÿ1)-dimensional hyperplane which partitions-dimensional Euclidean
pattern space into two regions. A single TLU neural network is su�cient to classify patterns in
two classes if they are linearly separable. A number of learning algorithms that are guaranteed to
®nd a TLU weight setting that correctly classi®es a linearly separable pattern set have been
proposed in the literature [11,18±24]. However, when the given set of patterns is not linearly
separable, a multi-layer network of TLUs is needed to learn a complex decision boundary that is
necessary to correctly classify the training examples.

Broadly speaking, there are two approaches to the design of multi-layer neural networks for
pattern classi®cation:
· A priori ®xed topology networks: The number of layers, the number of hidden neurons in each

hidden layer, and the connections between each neuron are de®ned a priori for each classi®ca-
tion task. This is done on the basis of problem-speci®c knowledge (if available), or in ad hoc
fashion (requiring a process of trial and error). Learning in such networks usually amounts
to (typically error gradient guided) search for a suitable setting of numerical parameters,
weights in a weight space de®ned by the choice of the network topology.

· Adaptive topology networks: The topology of the target network is determined dynamically by
introducing new neurons, layers, and connections in a controlled fashion using generative or
constructive learning algorithms. In some cases, pruning mechanisms that discard redundant
neurons and connections are used in conjunction with the network construction mechanisms
[25,26].
Constructive algorithms o�er the following advantages over the conventional backpropagation

style learning approaches [12,15,27,28]:
· They obviate the need for an ad hoc, a priori choice of the network topology. Instead, they de-

termine the network topology dynamically to give high chance of producing optimal (or mini-
mal size) network.

· They are guaranteed to converge to zero classi®cation errors on all ®nite and non-contradictory
datasets.

· They use elementary TLU that are trained using the perceptron style weight update rules.
· They do not involve extensive parameter ®ne tuning.
· They provide a natural framework for exploiting problem-speci®c knowledge into the initial

network con®guration or heuristic knowledge (e.g., about the general topological constraints
on the network) into the network construction algorithm [29].

Several constructive algorithms that incrementally construct networks of threshold neurons
for 2-category pattern classi®cation tasks have been proposed in the literature. These include
the tower [30,31], pyramid [31], tiling [32], upstart [33], perceptron cascade [34], and sequential
[35]. Recently, provably correct extensions of these algorithms to handle multiple output classes
and real-valued pattern attributes were proposed (see [12±14]). With the exception of the se-
quential learning algorithm, these constructive learning algorithms are based on the idea of
transforming the hard task of determining the necessary network topology and weights to two
subtasks:
· Incremental addition of one or more threshold neurons to the network when the existing net-

work topology fails to achieve the desired classi®cation accuracy on the training set.
· Training the added threshold neuron(s) using some variant of the perceptron training algorithm

(e.g., the pocket algorithm [11]) to improve the classi®cation accuracy of the network.
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In the case of the sequential learning algorithm, hidden neurons are added and trained by an
appropriate weight training rule to exclude patterns belonging to the same class from the rest of
the pattern set. The time-consuming, iterative nature of the perceptron training algorithm (though
considerably faster than the corresponding error guided backpropagation training) often makes
the use of such algorithms impractical for very large datasets (e.g., in largescale datamining and
knowledge acquisition tasks), especially in applications where reasonably accurate classi®ers have
to be learned in almost real time. Similarly, hybrid learning systems that use neural network
learning as the inner loop of a more complex optimization process (e.g., feature subset selection
using a genetic algorithm where evaluation of ®tness of a solution requires training a neural
network based on a subset of input features represented by the solution and evaluating its clas-
si®cation accuracy [36±38]) call for a fast neural network training algorithm.

Instance-based learning (IBL) [39±42] is an approach to learning in which the learning algorithm
typically stores some or all of the training examples as prototypes. Each prototype is stored as an
ordered pair (X,c) where X is a pattern represented in some chosen instance language (typically, in
the form of a vector of attribute values), and c is the class to which X belongs. Such a system,
when used to classify a new pattern Y, uses some distance function (e.g., Euclidean distance in the
case of real-valued patterns) that computes the distance of Y from each stored prototype and
predicts the classi®cation of Y using the known classi®cation of the nearest prototype (or pro-
totypes). Such algorithms, also referred to as nearest neighbor techniques have been investigated
by researchers in pattern recognition [43±45], case-based reasoning [46±48], arti®cial neural net-
works [49], cognitive psychology [50,51], and text classi®cation [52]. Such distance-based tech-
niques are also related to radial basis function networks [28,53±55].

Rule induction algorithms [56,57] learn sets of rules corresponding to given sets of training
examples. They induce a rule to cover a subset of training examples. New rules are induced it-
eratively until all training examples are covered.

We present a new constructive neural network learning algorithm (DistAl), which can be
viewed as a variant of the instance-based, nearest-neighbor, radial-basis function-based, and rule
induction approaches to pattern classi®cation. DistAl replaces the iterative weight update of
neurons that is typically used in constructive learning algorithms by a comparison of pair-wise
distances among the training patterns. Since the inter-pattern distances are computed only once
during the execution of the algorithm our approach achieves a signi®cant speed advantage over
other constructive learning algorithms.

The rest of the paper is organized as follows: Section 2 describes DistAl. Section 3 presents the
results of various experiments designed to evaluate the performance of neural networks trained
using DistAl on some benchmark classi®cation problems. It also presents the results of experi-
ments using DistAl in conjunction with a genetic algorithm-based approach to feature subset
selection on several benchmark problems as well as a document classi®cation task. Section 4
concludes with a summary and discussion of some directions for future research.

2. DistAl: A new constructive learning algorithm

DistAl di�ers from other constructive learning algorithms mentioned above in two respects:
· It uses spherical threshold units ± a variant of the TLU ± as hidden neurons. The regions that

are de®ned (or separated) by TLUs are unbounded. This motivates us to use spherical threshold
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units that cover locally bounded regions [8]. A spherical threshold neuron i has associated with
it a weight vector Wi, two thresholds ± hi;low and hi;high, and a suitably de®ned distance metric d.
It computes the distance d�Wi;X

p� between a given input pattern Xp and Wi. The corresponding
output op

i �1 if hi;low6 d�Wi;X
p�6 hi;high and 0 otherwise. The spherical neuron thus identi®es a

cluster of patterns that lie in the region between two concentric hyperspherical regions. Wi rep-
resents the common center and hi;low and hi;high, respectively represent the boundaries of the two
regions.

· DistAl does not use an iterative algorithm for ®nding the weights and the thresholds. Instead, it
computes the inter-pattern distance once between each pair of patterns in the training set and
determines the weight values for hidden neurons by a greedy strategy (that attempts to correctly
classify as many patterns as possible with the introduction of each new hidden neuron). The
weights and thresholds are then set without the computationally expensive iterative process
(see Section 2.2 for details).

The use of one-time inter-pattern distance calculation instead of (usually) iterative, expensive
and time-consuming perceptron training procedure makes the proposed algorithm signi®cantly
faster than most other constructive learning algorithms. In fact, the time and space complexities
of DistAl can be shown to be polynomial in the size of the training set (see Section 2.6 for
details).

2.1. Distance metrics

Each hidden neuron introduced by DistAl essentially represents clusters of patterns that fall
in the region bounded by two concentric hyperspherical regions in the pattern space. The
weight vector of the neuron de®nes the center of the hyperspherical regions and the
thresholds determine the boundaries of the regions (relative to the choice of the distance
metric used). The choice of an appropriate distance metric for the hidden layer neurons is
critical to achieving a good performance. Di�erent distance metrics represent di�erent notions
of distance in the pattern space. They also impose di�erent inductive biases [7,8] on the
learning algorithm. Consequently, many researchers have investigated the use of alternative
distance functions for instance-based learning [6,44,52,58,59]. The number and distribution of
the clusters that result from speci®c choices of distance functions is a function of the dis-
tribution of the patterns as well as the clustering strategy used. Since it is di�cult to identify
the best distance metric in the absence of knowledge about the distribution of patterns in the
pattern space, we chose to explore a number of di�erent distance metrics proposed in the
literature.

The distance between two patterns is often skewed by attributes that have high values. Nor-
malization of individual attributes overcomes this problem in the distance computation. Nor-
malization can be achieved by dividing each pattern attribute by the range of possible values for
that attribute, or by 4 times the standard deviation for that attribute [59].

Normalization also allows attributes with nominal and/or missing values to be considered in
distance computation. The distance for attributes with nominal values (say with attribute values x
and y) is computed as follows:
· Overlap: dol�x; y� � 0 if x � y; 1 otherwise.
· Value di�erence
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dvd�x; y� �
XC

c�1

Na;x;c

Na;x

���� ÿ Na;y;c

Na;y

����q;
where Na;x�Na;y� is the number of patterns in the training set that have value x�y� for attribute a,
Na;x;c�Na;y;c� is the number of patterns in the training set that have value x�y� for attribute a and
output class c, C is the number of output classes, q is a constant (Euclidean: 2, Manhattan: 1).

If there is a missing value in either of the patterns, the distance for that component (of the entire
pattern vector) is taken to be 1.

Let Xp � �X p
1 ; . . . ;X p

n � and Xq � �X q
1 ; . . . ;X q

n � be two pattern vectors. Let maxi, mini and ri be
the maximum, minimum, and the standard deviation of values of the ith attribute of patterns in a
dataset, respectively. Then the distance between Xp and Xq, for di�erent choices of the distance
metric d is de®ned as follows:
1. Range, value-di�erence based Euclidean (point-to-point)�������������������������������������������������������������������������������Xn

i�1

X p
i ÿ X q

i

max
i
ÿmin

i

0@ 1A2

or dvd�X p
i ;X

q
i �2

24 35
vuuut :

2. Range, value-di�erence based Manhattan (citi-block)

Xn

i�1

X p
i ÿ X q

i

max
i
ÿmin

i

or dvd�X p
i ;X

q
i �

24 35:
3. Range, value-di�erence based Maximum Value

max
i

X p
i ÿ X q

ij j
max

i
ÿmin

i

or dvd�X p
i ;X

q
i �

24 35:
Similarly, 4 � ri can be used instead of maxi ÿ mini for standard deviation based metrics, and
dol�X p

i ;X
q
i � can be used instead of dvd�X p

i ;X
q
i � for overlap based metrics in above formulas.

4. Dice coe�cient

1ÿ 2
Pn

i�1 X p
i X q

iPn
i�1 X p

i� �2 �
Pn

i�1 X q
i� �2

:

5. Cosine coe�cient

1ÿ
Pn

i�1 X p
i X q

i���������������������������������������������Pn
i�1 X p

i� �2Pn
i�1 X q

i� �2
q :

6. Jaccard coe�cient

1ÿ
Pn

i�1 X p
i X q

iPn
i�1 X p

i� �2 �
Pn

i�1 X q
i� �2 ÿ

Pn
i�1 X p

i X q
i

:
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7. CamberraXn

i�1

X p
i ÿ X q

ij j
X p

i � X q
ij j :

Attribute based clustering: Occasionally, the values of a single attribute between two bounds (say
alo and ahi) might exclusively identify patterns belonging to a particular output class. Thus, a
hidden neuron that remembers the name of the attribute a and the two thresholds ( alo and ahi) can
be used to form a cluster of patterns belonging to the same class. We use the attribute based
comparison to obtain homogeneous clusters in conjunction with the inter-pattern distance based
clustering.

2.2. Network construction

DistAl determines a ``region'' (de®ned by a spherical hidden neuron) iteratively by a greedy
strategy (in terms of the number of training patterns). In other words, it ®nds a maximal subset of
training patterns that can be clustered in a region. The training patterns included in a region are
eliminated from further consideration. This set of ordered regions are generated until all patterns
are included in a region. The ®rst match is chosen for the classi®cation. If there is no match, the
closest region (by a distance metric) is chosen for the classi®cation. Fig. 1 shows how regions are
generated for a dataset of 15 patterns with two classes, O and X. R1, R2, R3, R4 and R5 are
determined sequentially to cover 5, 4, 3, 2 and 1 training patterns, respectively. (Another example
will be given in Section 2.4 with a detailed explanation of network construction.)

Let S � X1;X2; . . . ;XN
� 	

represents the N training patterns. DistAl calculates the pair-wise
inter-pattern distances for the training set (using the chosen distance metric d) and stores them in
the distance matrix D. Each row of D is sorted in ascending order. Thus, row k of D corresponds
to the training pattern Xk and the elements D�k; i� correspond to the distance of Xk to the other
training patterns. D�k; 0� is the distance to the closest pattern and D�k;N � is the distance to the
farthest pattern from Xk. Simultaneously, the attribute values of the training patterns are stored in
D0. D0 is essentially the entire training set with D0�k; i� representing the ith attribute value of the kth
training pattern. Each column (attribute) of D0 is sorted in ascending order.

The key idea behind DistAl is to generate a single layer of hidden neurons each of which
separates a subset of patterns in a training set using D (or D0). Then, they are fully connected to

Fig. 1. Regions induced by DistAl based on the pattern space.
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M output TLUs (1 for each output class) in an output layer. The representation of the patterns
at the hidden layer is linearly separable [35]. Thus, an iterative perceptron learning rule can be
used to train the output weights. However, the output weights can be directly set as follows: The
weights between output and hidden neurons are chosen such that each hidden neuron over-
whelms the e�ect of the hidden neurons generated later. If there are a total of h hidden neurons
(numbered 1; 2; . . . ; h from left to right) then the weight between the output neuron j and the
hidden neuron i is set to 2hÿi if the hidden neuron i excludes patterns belonging to class j and
zero otherwise.

Let Wh
l be the weights between the lth hidden neuron and inputs. Let Wo

m be the weights be-
tween the output neuron for class m and hidden neurons, and W o

ml be the weight between the
output neuron for class m and the lth hidden neuron, respectively. The following pseudo-code
summarizes the process of network construction:

Initialize the number of hidden neurons: h � 0;

while S is not empty

do
1. Double all existing weights (if any) between hidden and output neurons

Wo
m �Wo

m � 2;8m
2. Increment the number of hidden neurons: h � h� 1
3. Inter-pattern distance based: Identify a row k of D that excludes the largest subset of patterns

in S that belong to the same class m as follows:
(a) For each row r � 1; . . . ;N do

(i) Let ir and jr be column indices (corresponding to row r) for the matrix D such that the
patterns corresponding to the elements D�r; ir�;D�r; ir � 1�; . . . ;D�r; jr� all belong to the
same class and also belong to S.
(ii) Let cr � jr ÿ ir � 1 (the number of patterns excluded).

(b) Select k to be the one for which the corresponding ck is the largest: k � arg maxrcr

(c) Let Sk be the corresponding set of patterns that are excluded by pattern Xk; dk
low � D�k; ik�

(distance to the closest pattern of the cluster) and dk
high � D�k; jk� (distance to the farthest pat-

tern of the cluster).
4. Attribute based: Analogously, using D0 identify an attribute a that excludes the largest number

of patterns in S that belong to the same output class m (i.e., identify a for which ca is the largest
among all attributes.); Let Sa be the corresponding set of patterns from S that are excluded by
attribute a, da

low and da
high be the minimum and maximum values respectively for attribute a

among the patterns in set Sa.
5. if [Inter-pattern distance based] then

(a) De®ne a spherical threshold neuron with Wh � Xk; hlow � dk
low; hhigh � dk

high.
(b) S � S ÿ Sk

else
(a) De®ne a neuron corresponding to attribute a with hlow � da

low; h
a
high.

(b) S � S ÿ Sa.
6. Connect the new hidden neuron to output neurons: W o

mh � 1; W o
nh � 08n 6� m

end while
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2.3. Use of network in classi®cation

The outputs in the output layer are computed by the winner-take-all (WTA) strategy. The
output neuron m that has the highest net input produces 1 and all the other neurons produce 0's.
The WTA strategy and the weight setting explained in Sections 2.2 and 100 training accuracy for
any ®nite non-contradictory set of training patterns. (See Section 2.5 for detailed convergence
proof).

The generalization accuracy of a test set is computed by the same way. Each test pattern is fed
into the network and the outputs are computed by the WTA strategy. If there is one or more
hidden neurons that produce 1 (i.e., there exist one or more hidden neurons that include the test
pattern within their thresholds), the outputs are computed by the WTA strategy in the output
layer. Otherwise (i.e., all hidden neurons produce 0's and all output neurons produce 0's as well),
the distance between the test pattern and the thresholds of each hidden neuron is computed. The
hidden neuron that has the minimum distance is chosen to produce 1. Then the outputs are
computed again in the output layer to compare with the desired classi®cation.

2.4. Example

Although DistAl works on tasks with multi-category real-valued patterns, we will illustrate its
operation using the simple XOR problem. We will assume the use of Manhattan distance metric.
There are four training patterns �S � fX1;X2;X3;X4g�:

This yields the following distance matrix after sorted:

D �
0 1 1 2
0 1 1 2
0 1 1 2
0 1 1 2

The ®rst row of the matrix is the distance of X1;X2;X3 and X4 from pattern X1. The second row of
the matrix is the distance of X2;X1;X4 and X3 from X2. The third row of the matrix is the distance
of X3;X1;X4 and X2 from X3. The last row of the matrix is the distance of X4;X2;X3 and X1 from
X4.

X1 excludes the maximum number of patterns from a single class (i.e., Sk � fX2;X3g,
class � B). A hidden neuron is introduced for this cluster with Wh

1 � �00�; hlow � hhigh � 1;
W o

B1 � 1;W o
A1 � 0. X2 and X3 are now eliminated from further consideration (i.e., S � S ÿ Sk �

fX1;X4g). The remaining patterns (Sk � fX1;X4g, class � A) can be excluded by any pattern (say,
X1 again) with another hidden neuron with Wh

2 � �00�; hlow � 0; hhigh � 2;W o
A2 � 1;W o

B2 � 0;
W o

A1 � W o
A1 � 2 � 0, W o

B1 � W o
B1 � 2 � 2. Now the algorithm stops since the entire training set is

correctly classi®ed (i.e., S � S ÿ Sk � /). Fig. 2 shows the network construction process.

Input Class
X1: 0 0 A
X2: 0 1 B
X3: 1 0 B
X4: 1 1 A
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2.5. Convergence proof

Theorem. Given a ®nite non-contradictory set of training examples E, DistAl is guaranteed to con-
verge to zero classi®cation error after adding a ®nite number (h) of hidden neurons, where h6 jEj. (In
practice, h� jEj.)

Proof. Let Zi be the set of patterns that are excluded by ith hidden neuron. Each hidden neuron
®nds the largest subset of patterns to be excluded. DistAl keeps introducing a hidden neuron until
S becomes an empty set (i.e., S � S ÿ Zi). Since S � fX1; . . . ;XNg is the training set with the
cardinality of N, h � jZ1;Z2; . . . ; Zhj6N where Zh is the last subset of patterns to be eliminated. It
is clear that at least one pattern (Xp) can be excluded by a new hidden neuron i with Wh

i � Xp and
0 thresholds. 2 Since there are a ®nite number of patterns in the training set, and since each added
hidden neuron is guaranteed to correctly classify a non-empty subset of the training set which is
then eliminated from further consideration, no more than jEj hidden neurons are needed.

The internal representation of the hidden layer for a pattern Xp (which is a member of the ith
cluster) has the form

Hp � 0; 0; . . . ; 0; 1; �; . . . ; �� � �1�
(it has 0's in the ®rst iÿ 1 hidden neurons, 1 in the ith hidden neuron and either 0 or 1 in the
remaining hidden neurons) for a network with h hidden neurons. The weights from hidden to
output neurons are set directly as explained in Section 2.2 and Wo

ji � 2hÿi if j is the right class of
hidden neuron I, 0 otherwise. Consider a pattern Xp which belongs to the subset Zi of patterns
excluded by the ith hidden neuron that represents the pattern Xk. Let cj be the classi®cation of Xk.
Then W o

ji > W o
li8j 6� l. Also, the internal representation (1) guarantees the net input of output

neuron j to be larger than that of any other output neuron. Consequently, Xp is correctly classi®ed

2 Note that this is not always true for maximum value distance metric and attribute-based approach. That is because there can be

many patterns of di�erent classi®cations that have the same maximum values/attributes values. Therefore, the convergence proof given

here and the complexity analysis in Section 2.6 apply to distance-based approaches (excluding Maximum value metric), but not

attribute-based approach.

Fig. 2. Process of network construction for the example in DistAl.
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in the output layer by the WTA strategy. As an example, assume Hp � 1; 1; 1� � for a pattern Xp

belonging to class A, and the hidden neurons represent clusters for class A, B and B, respectively.
Then, when Xp is fed into input neurons, the net input to the output neuron for class A will be
23ÿ1 � 4 and that to the output neuron for class B will be 23ÿ2 � 23ÿ3 � 3. Thus, Xp will be
correctly classi®ed as class A.

Therefore, DistAl is guaranteed to converge to zero classi®cation error after adding a ®nite
number of hidden neurons for a ®nite non-contradictory set of training examples. �
2.6. Complexity analysis

This section presents the complexity analysis for DistAl. The complexity analysis assumes that
network construction is based on a single distance metric.

Let Npat be the number of training patterns and Natt be the number of attributes in a
dataset, respectively. Let Nout be the number of output neurons. Assume Npat > Natt and
Npat � max�Nout; h�.
2.6.1. Time complexity

Computing and sorting the distance matrix D takes O�max�N 2
pat � Natt;N 2

pat � logNpat��. 3 Now,
consider the pseudo-code given in Section 2.2. Step 1 takes O�Nout � h�. Step 2 takes O�1�. Step 3
takes O�N 2

pat� because we need to go through the entire matrix D to determine Sk. 4 Step 5 takes
O�Npat� to update S. Step 6 takes O�Nout�. Thus, the while loop takes O�N 3

pat� in the worst case.
Therefore, the overall worst-case time complexity is O�N 3

pat�. In practice, DistAl runs signi®cantly
faster than the worst-case time complexity because it eliminates a subset of elements from the
original training set instead of a single pattern. This makes DistAl particularly well-suited for
largescale datamining tasks.

2.6.2. Space complexity
The space requirement for the input patterns and their targets is O�Npat � �Natt � Nout��. The

weights require O�Nout � h� h � Nin�. The distance matrix requires O�N 2
pat�. Thus, the total space

complexity is O�N 2
pat�.

2.7. Improving the performance of DistAl using feature-subset selection

DistAl performs comparably to other learning algorithms on various real-world as well as
arti®cial datasets. (See Section 3 for detailed comparisons). This section describes a practical way
to improve the performance.

In pattern classi®cation tasks, the choice of features (or attributes) used to represent patterns
a�ect:
· Learning time: The attributes used to describe the patterns implicitly determine the search space

that needs to be explored by the learning algorithm. The larger the search space, the more time
the learning algorithm needs for learning a su�ciently accurate classi®cation function [7,60].

3 Computation of D0 in attribute-based approach takes only O�Natt � Npat logNpat�because distance computation is not necessary.
4 Step 4 is not considered here because it is used only with the attribute-based metric. The time required for Step 4 is comparable to

the time required for Step 3.
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· Number of examples needed: All other things being equal, the larger the number of attributes
used to describe the patterns, the larger is the number of examples need to learn a classi®cation
function to a desired accuracy [7,60].

· Cost of classi®cation: In many real-world pattern classi®cation tasks (e.g., medical diagnosis),
some of the attributes may be observable symptoms and others might require diagnostic tests.
Di�erent diagnostic tests might have di�erent costs as well as risks associated with them.

This presents us with a feature subset selection problem in automated design of pattern classi®ers.
The feature subset selection problem refers the task of identifying and selecting a useful subset of
attributes to be used to represent patterns from a larger set of attributes. Satisfactory solution of
this problem is particularly critical if instance-based, nearest-neighbor, or similarity-based
learning algorithms like DistAl are used to build the classi®er. This is due to the fact that such
classi®ers rely on the use of inter-pattern distances which are intricately linked to the choice of
features used to represent the patterns. Presence of irrelevant or misleading features (e.g., social
security numbers in a medical diagnosis task) can skew the distance calculation and hence ad-
versely a�ect the generalization performance of the resulting classi®er.

A detailed discussion of feature subset selection is beyond the scope of this paper. The inter-
ested reader is referred to [37,38] for discussion of a variety of alternative approaches to feature
subset selection. Since exhaustive search over all possible subsets of features is computationally
infeasible, most approaches make restrictive assumptions (e.g., monotonicity ± which states that
the addition of features does not worsen classi®cation accuracy) or use a variety of heuristics.
Genetic algorithms [61±63] o�er a particularly promising approach to feature subset selection for
a number of reasons [36±38]:
· They do not have to rely on the often unrealistic monotonicity assumption.
· They are particularly e�ective tools for exploring large search spaces for near-optimal solutions

[61±63].
The use of a genetic algorithm in any search or optimization problem requires:

· choice of a representation for encoding candidate solutions to be manipulated by the genetic
algorithm;

· de®nition of a ®tness function that is used to evaluate the candidate solutions;
· de®nition of a selection-scheme (e.g., ®tness-proportionate selection);
· de®nition of suitable genetic operators that are used to transform candidate solutions (and

thereby explore the search space);
· setting of user-controlled parameters (e.g., probability of applying a particular genetic operator,

size of the population, etc.).
In our use of genetic algorithm for feature subset selection for DistAl, each candidate solution

represented a subset of features used to encode patterns as input to DistAl. The ®tness of the
candidate solution was computed as the generalization accuracy (computed using a 10-fold cross-
validation) of a classi®er constructed using DistAl. Standard mutation and crossover operators
were used on a ®xed length binary vector representation of candidate solutions (with a 1 indi-
cating a selected feature). Experiments were run using the rank-based selection strategy with the
following parameter settings:

Population size is 50; Number of generation is 300; The probability of crossover is 0.5; The
probability of mutation is 0.01; The probability of selection of the highest ranked individual is 0.6.
(See [37,38] for detailed explanations on the experiments).
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3. Experimental evaluation of DistAl

This section presents results of experiments using DistAl on several benchmark problems both
with and without feature subset selection and compares them with the results of other learning
algorithms. It also presents the performance of DistAl on a real-world document classi®cation
task.

3.1. Datasets

Two arti®cial datasets (parity and two spirals) and a wide range of real-world datasets from the
machine learning data repository at the University of California at Irvine [64] were chosen to test
the performance of DistAl. DistAl is also used for classifying paper abstracts and news articles.
The paper abstracts were chosen from three di�erent sources: IEEE Expert magazine, Journal of
Arti®cial Intelligence Research and Neural Computation. The news articles were obtained from
Reuters dataset. Each document is represented in the form of a vector of numeric weights for each
of the words (terms) in the vocabulary. The weights correspond to the term frequency and inverse
document frequency (TFIDF) [65,66] values for the corresponding words. The training sets for
paper abstracts were generated based on the classi®cation of the corresponding documents into
two classes (interesting and not interesting) by two di�erent individuals, resulting in two di�erent
data sets (Abstract1 and Abstract2). The classi®cations for news articles were given based on their
topics (6, 4 and 8 classes) following [67], resulting in three di�erent datasets (Reuters1, Reuters2
and Reuters3), respectively. Table 1 summarizes the characteristics of the datasets selected for our
experiments.

3.2. Experimental results

DistAl is deterministic in the sense that its behavior is always identical for a given training set.
Most other constructive learning algorithms are non-deterministic because their behavior is not
always identical in di�erent runs with the same training set and even with the same learning
parameters due to the randomness in selecting initial weights, pattern presentations, and so on.
Therefore, just one run of DistAl per dataset is su�cient to study the performance.

3.2.1. Parity datasets
The seven, eight and nine-bit parity datasets (P7, P8, P9) were used to evaluate the perfor-

mance of DistAl in terms of the network size. The Manhattan distance metric was used to train the
entire set of patterns. Table 2 presents the size of the network generated by several algorithms. It
shows that DistAl is capable of generating compact networks comparable to other algorithms for
non-trivial tasks like the parity problem. Note that DistAl is also very fast. Since DistAl does not
require iterative perceptron training procedure and keeps eliminating a subset of patterns that are
not considered further in the learning process, it converges signi®cantly fast. 5

5 It is not feasible to make a fair, thorough comparison of speeds of di�erent algorithms. DistAl converged fairly quickly for almost

all datasets. (See Section 2.6 for detailed analysis of time complexity). GA-MLP [68] is based on a genetic algorithm and thus it usually

takes signi®cant amount of time to get a quality solution. Cascade correlation [69] uses Quickprop [71]. Quickprop uses an iterative

gradient descent method based on a second order heuristic.
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3.2.2. Various datasets from UCI repository
DistAl was run once for each distance metric to compare the performance in terms of the

generalization accuracy and the network size. A simple pruning technique was implemented to
produce compact networks: When a new hidden neuron is introduced, the generalization accuracy
of the network is computed. The current best generalization accuracy is stored in a pocketalong
with the network size. After the training is completed (i.e., 100% training accuracy is obtained) or
no further training is possible (i.e., the limit of allowable hidden neurons (currently set to 100) is
reached or no more patterns can be eliminated in Maximum value metric or attribute-based

Table 1

Datasets used in the experiments (Size is the number of patterns in the dataset, Dimension is the number of input attributes, Missing? is

whether there are any missing values, and Class is the number of output classes)

Dataset Size Dimension Attribute type Missing? Class

7-bit parity (P7) 128 7 Numeric No 2

8-bit parity (P8) 256 8 Numeric No 2

9-bit parity (P9) 512 9 Numeric No 2

Two spirals (2SP) 192 2 Numeric No 2

Annealing database (Annealing) 798 38 Numeric, nominal Yes 5

Audiology database (Audiology) 200 69 Nominal Yes 24

Pittsburgh bridges (Bridges) 105 11 Numeric, nominal Yes 6

Breast cancer (Cancer) 699 9 Numeric Yes 2

Credit screening (CRX) 690 15 Numeric, nominal Yes 2

Flag database (Flag) 194 28 Numeric, nominal No 8

Glass identi®cation (Glass) 214 9 Numeric No 6

Heart disease (Heart) 270 13 Numeric, nominal No 2

Heart disease [Cleveland] (HeartCle) 303 13 Numeric, nominal Yes 2

Heart disease [Hungarian] (HeartHun) 294 13 Numeric, nominal Yes 2

Heart disease [Long Beach] (HeartLB) 200 13 Numeric, nominal Yes 2

Heart disease [Swiss] (HeartSwi) 123 13 Numeric, nominal Yes 2

Hepatitis domain (Hepatitis) 155 19 Numeric, nominal Yes 2

Horse colic (Horse) 300 22 Numeric, nominal Yes 2

Ionosphere structure (Ionosphere) 351 34 Numeric No 2

Iris plants (Iris) 150 4 Numeric No 3

Liver disorders (Liver) 345 6 Numeric No 2

Monks problems (Monks-1,2,3) 432 6 Nominal No 2

Pima indians diabetes (Pima) 768 8 Numeric No 2

DNA sequences (Promoters) 106 57 Nominal No 2

Sonar classi®cation (Sonar) 208 60 Numeric No 2

Large soybean (Soylarge) 307 35 Nominal Yes 19

Small soybean (Soysmall) 47 35 Nominal No 4

Vehicle silhouettes (Vehicle) 846 18 Numeric No 4

House votes (Votes) 435 16 Nominal Yes 2

Vowel recognition (Vowel) 528 10 Numeric No 11

Wine recognition (Wine) 178 13 Numeric No 3

Zoo database (Zoo) 101 16 Numeric, nominal No 7

Paper abstracts 1 (Abstract1) 100 790 Numeric No 2

Paper abstracts 2 (Abstract2) 100 790 Numeric No 2

News articles 1 (Reuters1) 939 1568 Numeric No 6

News articles 2 (Reuters2) 139 435 Numeric No 4

News articles 3 (Reuters3) 834 1440 Numeric No 8
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approach), the network with the best generalization accuracy in the pocket is restored by pruning
the unnecessary hidden neurons.

A 10-fold cross-validation was performed for each dataset with all the distance metrics in-
troduced in Section 2.1. No single distance metric outperformed other metrics on all datasets.
That is because the performance depends on the distribution of the data. A particular distance
metric might be appropriate for certain kinds of datasets while it might not for others. The
Euclidean and Manhattan distance metrics outperformed other metrics in many datasets, and
gave comparable results to the best ones in other datasets considered.

It is impossible to do a thorough and fair comparison between various learning algorithms
since each algorithm has its own optimal parameter settings which is usually unknown and not
feasible to obtain within a reasonable amount of time. Also, the training and test sets that had
been generated and used are not identical in general under the assumption that the experiments
have been done a ®nite number of times. (An in®nite number of experiments with random par-
titions of training and test sets from the same distributions of data can increase the con®dence
level). Following comparisons should be interpreted in light of those considerations. The best
results of DistAl are compared with the best results produced by various learning algorithms in
the literature. In particular, the results in [59] are compared separately since they are recent and
also obtained by a nearest-neighbor algorithm with a 10-fold cross-validation. Table 3 summa-
rizes the comparison.

As we can see from Table 3, DistAl gave comparable results on most datasets (except Audio-
logy, Soylarge and Vehicle).

The network size of three algorithms (perceptron cascade [34], cascade correlation [69], upstart
[33]) for the two spirals problem is shown in [34]: 17.8 (perceptron cascade), 15.2 (cascade cor-
relation), 91.4 (upstart). DistAl generated more compact networks with 7.7 hidden neurons.

It is shown that the combination of DistAl and feature subset selection yield fairly good results.
The results indicate that the networks constructed using GA-selected subset of features compare
quite favorably with networks that use all of the features. In particular, feature subset selection
resulted in signi®cant improvement in generalization. Also, the number of selected features is
smaller than the entire set of features. For detailed explanation of implementation, results, related
work and comparisons with other approaches see [37,38].

Table 2

Comparison of the network size generated by di�erent algorithms for the parity datasets (Aÿ indicates that the result is not reported in

the corresponding reference)

Algorithm P7 P8 P9

DistAl 5 5 6

GA-MLP [68] 9 15 ÿ
Perceptron cascade [34] 3 4 4

Cascade correlation [69] 4±5 5±6 ÿ
Upstart [33] 6 7 8

Growth algorithm [70] 7 8 9

Sequential [35] 7 8 9

Tiling [32] 7 8 9

Tower [30,31] 3.5 4 4.5
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3.2.3. Document datasets
The same experimental setup was used as in Section 3.2.2. It is also veri®ed that DistAl gives

fairly good results for document classi®cation as well. It gave reasonably high (over 80%) gen-
eralization accuracy for all datasets. Also, the GA-selected subset of features produced improved
generalization accuracy, a much smaller subset of features selected with slightly larger network
size. For detailed explanation of implementation, related work and comparisons with other ap-
proaches see [38,66].

4. Summary and discussion

A fast inter-pattern distance-based constructive learning algorithm, DistAl, is introduced and
its performance on a number of datasets is demonstrated. DistAl is di�erent from other con-
structive learning algorithms in two aspects. First, it does not require an iterative perceptron style
weight update rules for determining the connections between neurons. Instead, it computes the

Table 3

Comparison of generalization accuracy between various algorithms. NN is the best results obtained by nearest neighbor algorithms in

[59] and Reported is the available best results reported in the literature [72±79]

Dataset DistAl NN Reported

2SP 83.7 ÿ ÿ
Annealing 96.6 96.1 95.6

Audiology 66.0 77.5 77.7

Bridge 63.0 60.6 56.0

Cancer 97.8 95.6 95.9

CRX 87.7 81.5 85.0

Flag 65.8 58.8 ÿ
Glass 70.5 72.4 66.3

Heart 86.7 83.0 74.8

HeartCle 85.3 80.2 77.0

HeartHun 85.9 81.3 77.0

HeartLB 80.0 71.5 79.0

HeartSwi 94.2 93.5 81.0

Hepatitis 84.7 82.6 83.0

Horse 86.0 76.8 80.9

Ionosphere 94.3 92.6 96.7

Iris 97.3 96.0 98.0

Liver 72.9 63.5 69.8

Monks-1 90.9 77.1 100

Monks-2 100 97.5 100

Monks-3 99.1 100 100

Pima 76.3 71.9 76.0

Promoters 88.0 92.4 96.2

Sonar 83.0 87.0 84.7

Soylarge 81.0 92.2 97.1

Soysmall 97.5 100 100

Vehicle 65.4 70.9 79.1

Votes 96.1 95.2 95.2

Vowel 69.8 99.2 61.0

Wine 97.1 97.8 100

Zoo 96.0 98.9 ÿ
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distance (using one of the pre-de®ned distance metrics) between each pattern pair and uses it to set
the weights (and the thresholds) between hidden neurons and inputs. The weights between the
hidden and output neurons are set using a one-shot (as opposed to iterative) learning algorithm.
Thus, DistAl is relatively fast compared in comparison with most neural network training algo-
rithms that rely on an iterative update of weights and consequently require multiple passes
through the training set. Furthermore, DistAl is guaranteed to converge to 100% classi®cation
accuracy on any non-contradictory training set for most of the distance metrics used in this paper.
Second, it generates a single hidden layer composed of hyperspherical threshold neurons instead of
TLU. Thus, the induced network can potentially discover natural clusters that exist in the data.

Despite its simplicity, experiments reported in this paper show that DistAl yields good per-
formance on almost all real-world datasets that were considered. It also produced good perfor-
mance on di�cult arti®cial tasks such as parity and the two spirals data which have been used by
numerous researchers for evaluation of supervised learning algorithms. In particular, DistAl is
suitable to problems that have well-formed clusters and/or certain regularity (e.g., parity) in the
pattern space.

DistAl, because of its reliance on inter-pattern distances, is sensitive to the presence of irrelevant
or misleading attributes in the pattern representation. Consequently, its classi®cation accuracy
can be further improved by incorporating a suitable feature subset selection algorithm. This is
borne out by the experiments using DistAl in conjunction with a genetic algorithm for feature
subset selection [37,38].

A potential disadvantage of DistAl is its need for maintaining the inter-pattern distance matrix
during learning. The memory needed to store this matrix grows quadratically with the size of the
training set. This problem can be mitigated by freeing the memory for those patterns that are
excluded by a new hidden neuron as learning progresses. It would be interesting to explore
variants of DistAl that can avoid the need for maintaining the entire inter-pattern distance matrix
during learning.

Because of its speed, DistAl is particularly well-suited to many real-world applications in-
volving large amount of data and/or requesting real-time response such as largescale datamining
and knowledge acquisition tasks and hybrid learning systems that use neural network learning as
the inner loop of a more complex knowledge discovery process. An interesting direction for future
research is the design of versions of DistAl that can be used to incremental learning and assim-
ilation of classi®cation knowledge from multiple, distributed, dynamic data sources. Some pre-
liminary results based on experiments using DistAl to design mobile agents for text classi®cation
and retrieval from distributed document collections are reported in [66].

Constructive algorithms in general provide a natural framework for exploration of cumulative
(life long) learning [80] and for knowledge-based theory re®nement [29,81]. An interesting di-
rection for future research would be to explore the use of DistAl for this task using real-world
datasets e.g., the genome data used in [29].
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