IDA

INTELLIGENT DATA ANALYSIS

ELSEVIER Intelligent Data Analysis 3 (1999) 55-73

www.elsevier.com/locate/ida

DistAl: An inter-pattern distance-based constructive learning
algorithm

Jihoon Yang *, Rajesh Parekh *, Vasant Honavar !

Department of Computer Science, Artificial Intelligence Research Group, lowa State University, 226 Atanasoff Hall, Ames, 14 50011,
US4

Received 3 May 1998; received in revised form 26 May 1998; accepted 2 November 1998

Abstract

Multi-layer networks of threshold logic units (TLU) offer an attractive framework for the design of pattern clas-
sification systems. A new constructive neural network learning algorithm (DistAl) based on inter-pattern distance is
introduced. DistAl constructs a single hidden layer of hyperspherical threshold neurons. Each neuron is designed to
determine a cluster of training patterns belonging to the same class. The weights and thresholds of the hidden neurons
are determined directly by comparing the inter-pattern distances of the training patterns. This offers a significant ad-
vantage over other constructive learning algorithms that use an iterative (and often time consuming) weight modifi-
cation strategy to train individual neurons. The individual clusters (represented by the hidden neurons) are combined by
a single output layer of threshold neurons. The speed of DistAl makes it a good candidate for datamining and
knowledge acquisition from large datasets. The paper presents results of experiments using several artificial and real-
world datasets. The results demonstrate that DistAl compares favorably with other learning algorithms for pattern
classification. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Neural networks; Constructive learning algorithms; Pattern classification

1. Introduction

Trainable pattern classifiers find a broad range of applications in data mining and knowledge
discovery [1,2], intelligent agents [3,4], diagnosis [5], computer vision [6], and automated know-
ledge acquisition [2,7-9] from data. Multi-layer networks of threshold logic units (TLU) [10-15]
offer an attractive framework for the design of trainable pattern classification systems for a
number of reasons including: potential for parallelism and fault and noise tolerance; represen-
tational and computational efficiency over disjunctive normal form (DNF) expressions and de-
cision trees [11]; and simpler digital hardware implementations than their continuous counterparts
such as sigmoid neurons used in networks trained with error backpropagation algorithm [16,17].

*Corresponding author. Current address: HRL Laboratories, 3011 Malibu Canyon Road, Malibu, CA 90265-4799, USA. E-mail:
yang@wins.hrl.com

¥ Current address: All State Research and Planning Center, Menlo Park, CA 94040, USA. E-mail: rpare@allstate.com

! Partially supported by the National Science Foundation (through grant TRI-9409580) and the John Deere Foundation.

1088-467X/99/$ — see front matter © 1999 Elsevier Science B.V. All rights reserved.
PI:S1088-467X(99)00005-0

56 J. Yang et al. | Intelligent Data Analysis 3 (1999) 55-73

A TLU implements an (N—1)-dimensional hyperplane which partitions-dimensional Euclidean
pattern space into two regions. A single TLU neural network is sufficient to classify patterns in
two classes if they are linearly separable. A number of learning algorithms that are guaranteed to
find a TLU weight setting that correctly classifies a linearly separable pattern set have been
proposed in the literature [11,18-24]. However, when the given set of patterns is not linearly
separable, a multi-layer network of TLUs is needed to learn a complex decision boundary that is
necessary to correctly classify the training examples.

Broadly speaking, there are two approaches to the design of multi-layer neural networks for
pattern classification:

o A priori fixed topology networks: The number of layers, the number of hidden neurons in each
hidden layer, and the connections between each neuron are defined a priori for each classifica-
tion task. This is done on the basis of problem-specific knowledge (if available), or in ad hoc
fashion (requiring a process of trial and error). Learning in such networks usually amounts
to (typically error gradient guided) search for a suitable setting of numerical parameters,
weights in a weight space defined by the choice of the network topology.

o Adaptive topology networks: The topology of the target network is determined dynamically by
introducing new neurons, layers, and connections in a controlled fashion using generative or
constructive learning algorithms. In some cases, pruning mechanisms that discard redundant
neurons and connections are used in conjunction with the network construction mechanisms
[25,26].

Constructive algorithms offer the following advantages over the conventional backpropagation
style learning approaches [12,15,27,28]:

e They obviate the need for an ad hoc, a priori choice of the network topology. Instead, they de-
termine the network topology dynamically to give high chance of producing optimal (or mini-
mal size) network.

e They are guaranteed to converge to zero classification errors on all finite and non-contradictory
datasets.

e They use elementary TLU that are trained using the perceptron style weight update rules.

e They do not involve extensive parameter fine tuning.

e They provide a natural framework for exploiting problem-specific knowledge into the initial
network configuration or heuristic knowledge (e.g., about the general topological constraints
on the network) into the network construction algorithm [29].

Several constructive algorithms that incrementally construct networks of threshold neurons

for 2-category pattern classification tasks have been proposed in the literature. These include

the tower [30,31], pyramid [31], tiling [32], upstart [33], perceptron cascade [34], and sequential

[35]. Recently, provably correct extensions of these algorithms to handle multiple output classes

and real-valued pattern attributes were proposed (see [12-14]). With the exception of the se-

quential learning algorithm, these constructive learning algorithms are based on the idea of
transforming the hard task of determining the necessary network topology and weights to two
subtasks:

o Incremental addition of one or more threshold neurons to the network when the existing net-
work topology fails to achieve the desired classification accuracy on the training set.

e Training the added threshold neuron(s) using some variant of the perceptron training algorithm
(e.g., the pocket algorithm [11]) to improve the classification accuracy of the network.

J. Yang et al. | Intelligent Data Analysis 3 (1999) 55-73 57

In the case of the sequential learning algorithm, hidden neurons are added and trained by an
appropriate weight training rule to exclude patterns belonging to the same class from the rest of
the pattern set. The time-consuming, iterative nature of the perceptron training algorithm (though
considerably faster than the corresponding error guided backpropagation training) often makes
the use of such algorithms impractical for very large datasets (e.g., in largescale datamining and
knowledge acquisition tasks), especially in applications where reasonably accurate classifiers have
to be learned in almost real time. Similarly, hybrid learning systems that use neural network
learning as the inner loop of a more complex optimization process (e.g., feature subset selection
using a genetic algorithm where evaluation of fitness of a solution requires training a neural
network based on a subset of input features represented by the solution and evaluating its clas-
sification accuracy [36-38]) call for a fast neural network training algorithm.

Instance-based learning (IBL) [39—42] is an approach to learning in which the learning algorithm
typically stores some or all of the training examples as prototypes. Each prototype is stored as an
ordered pair (X,c) where X is a pattern represented in some chosen instance language (typically, in
the form of a vector of attribute values), and c is the class to which X belongs. Such a system,
when used to classify a new pattern Y, uses some distance function (e.g., Euclidean distance in the
case of real-valued patterns) that computes the distance of Y from each stored prototype and
predicts the classification of Y using the known classification of the nearest prototype (or pro-
totypes). Such algorithms, also referred to as nearest neighbor techniques have been investigated
by researchers in pattern recognition [43-45], case-based reasoning [46-48], artificial neural net-
works [49], cognitive psychology [50,51], and text classification [52]. Such distance-based tech-
niques are also related to radial basis function networks [28,53-55].

Rule induction algorithms [56,57] learn sets of rules corresponding to given sets of training
examples. They induce a rule to cover a subset of training examples. New rules are induced it-
eratively until all training examples are covered.

We present a new constructive neural network learning algorithm (DistAl), which can be
viewed as a variant of the instance-based, nearest-neighbor, radial-basis function-based, and rule
induction approaches to pattern classification. DistAl replaces the iterative weight update of
neurons that is typically used in constructive learning algorithms by a comparison of pair-wise
distances among the training patterns. Since the inter-pattern distances are computed only once
during the execution of the algorithm our approach achieves a significant speed advantage over
other constructive learning algorithms.

The rest of the paper is organized as follows: Section 2 describes DistAl. Section 3 presents the
results of various experiments designed to evaluate the performance of neural networks trained
using DistAl on some benchmark classification problems. It also presents the results of experi-
ments using DistAl in conjunction with a genetic algorithm-based approach to feature subset
selection on several benchmark problems as well as a document classification task. Section 4
concludes with a summary and discussion of some directions for future research.

2. DistAl: A new constructive learning algorithm

DistAl differs from other constructive learning algorithms mentioned above in two respects:
e [t uses spherical threshold units — a variant of the TLU — as hidden neurons. The regions that
are defined (or separated) by TLUSs are unbounded. This motivates us to use spherical threshold

58 J. Yang et al. | Intelligent Data Analysis 3 (1999) 55-73

units that cover locally bounded regions [8]. A spherical threshold neuron 7 has associated with
it a weight vector W;, two thresholds — 0; jow and 0; pign, and a suitably defined distance metric d.
It computes the distance d(W;, X?) between a given input pattern X” and W;. The corresponding
output of =11if 0; 0w < d(W;, X?) < 0; nigh and 0 otherwise. The spherical neuron thus identifies a
cluster of patterns that lie in the region between two concentric hyperspherical regions. W; rep-
resents the common center and 0; 10w and 0; pign, respectively represent the boundaries of the two
regions.

¢ DistAl does not use an iterative algorithm for finding the weights and the thresholds. Instead, it
computes the inter-pattern distance once between each pair of patterns in the training set and
determines the weight values for hidden neurons by a greedy strategy (that attempts to correctly
classify as many patterns as possible with the introduction of each new hidden neuron). The
weights and thresholds are then set without the computationally expensive iterative process
(see Section 2.2 for details).

The use of one-time inter-pattern distance calculation instead of (usually) iterative, expensive

and time-consuming perceptron training procedure makes the proposed algorithm significantly

faster than most other constructive learning algorithms. In fact, the time and space complexities

of DistAl can be shown to be polynomial in the size of the training set (see Section 2.6 for

details).

2.1. Distance metrics

Each hidden neuron introduced by DistAl essentially represents clusters of patterns that fall
in the region bounded by two concentric hyperspherical regions in the pattern space. The
weight vector of the neuron defines the center of the hyperspherical regions and the
thresholds determine the boundaries of the regions (relative to the choice of the distance
metric used). The choice of an appropriate distance metric for the hidden layer neurons is
critical to achieving a good performance. Different distance metrics represent different notions
of distance in the pattern space. They also impose different inductive biases [7,8] on the
learning algorithm. Consequently, many researchers have investigated the use of alternative
distance functions for instance-based learning [6,44,52,58,59]. The number and distribution of
the clusters that result from specific choices of distance functions is a function of the dis-
tribution of the patterns as well as the clustering strategy used. Since it is difficult to identify
the best distance metric in the absence of knowledge about the distribution of patterns in the
pattern space, we chose to explore a number of different distance metrics proposed in the
literature.

The distance between two patterns is often skewed by attributes that have high values. Nor-
malization of individual attributes overcomes this problem in the distance computation. Nor-
malization can be achieved by dividing each pattern attribute by the range of possible values for
that attribute, or by 4 times the standard deviation for that attribute [59].

Normalization also allows attributes with nominal and/or missing values to be considered in
distance computation. The distance for attributes with nominal values (say with attribute values x
and y) is computed as follows:

o Querlap: dy(x,y) =0 if x =y; 1 otherwise.
o Value difference

J. Yang et al. | Intelligent Data Analysis 3 (1999) 55-73 59

C

da(x,y) =Y

c=1

q
Na,x,c i Na,y,c
N,

a.x N, ay

)

where N,,(N,,) is the number of patterns in the training set that have value x(y) for attribute a,
Nouxe(Ngye) 1s the number of patterns in the training set that have value x(y) for attribute ¢ and
output class ¢, C is the number of output classes, ¢ is a constant (Euclidean: 2, Manhattan: 1).

If there is a missing value in either of the patterns, the distance for that component (of the entire
pattern vector) is taken to be 1.

Let X = [X7,...,X?] and X! = [X{,..., XY] be two pattern vectors. Let max;, min; and g, be
the maximum, minimum, and the standard deviation of values of the ith attribute of patterns in a
dataset, respectively. Then the distance between X” and XY, for different choices of the distance
metric d is defined as follows:

1. Range, value-difference based Euclidean (point-to-point)

2

n
X - X!
i i P q\2
SO 22 or drxey?].
Py max — min
i

1

2. Range, value-difference based Manhattan (citi-block)

n
XP — x?
i i P q
Y | =" or du(XP,XY)
] max —min
- 1 1

3. Range, value-difference based Maximum Value

X7 — X!
max "7’.|or dva (X7, X
i | max — min
1 1

Similarly, 4 % ¢; can be used instead of max; — min; for standard deviation based metrics, and
doi(X?, X') can be used instead of dyq (X7, X/) for overlap based metrics in above formulas.
4. Dice coeflicient

2% i XX
S () + S ()
5. Cosine coefficient
N v 20) R
VS 0 S ()

6. Jaccard coefficient

2o XX

1 - :
S () + L () = L XX

60 J. Yang et al. | Intelligent Data Analysis 3 (1999) 55-73

7. Camberra

i X7 — X7
— 1XT+ X
Attribute based clustering: Occasionally, the values of a single attribute between two bounds (say
a, and ay;) might exclusively identify patterns belonging to a particular output class. Thus, a
hidden neuron that remembers the name of the attribute ¢ and the two thresholds (a;, and ay;) can
be used to form a cluster of patterns belonging to the same class. We use the attribute based
comparison to obtain homogeneous clusters in conjunction with the inter-pattern distance based
clustering.

2.2. Network construction

DistAl determines a “region” (defined by a spherical hidden neuron) iteratively by a greedy
strategy (in terms of the number of training patterns). In other words, it finds a maximal subset of
training patterns that can be clustered in a region. The training patterns included in a region are
eliminated from further consideration. This set of ordered regions are generated until all patterns
are included in a region. The first match is chosen for the classification. If there is no match, the
closest region (by a distance metric) is chosen for the classification. Fig. 1 shows how regions are
generated for a dataset of 15 patterns with two classes, O and X. R1, R2, R3, R4 and RS are
determined sequentially to cover 5, 4, 3, 2 and 1 training patterns, respectively. (Another example
will be given in Section 2.4 with a detailed explanation of network construction.)

Let S = {Xl,Xz, L XY } represents the N training patterns. DistAl calculates the pair-wise
inter-pattern distances for the training set (using the chosen distance metric) and stores them in
the distance matrix D. Each row of D is sorted in ascending order. Thus, row k of D corresponds
to the training pattern X* and the elements DIk, i] correspond to the distance of X* to the other
training patterns. D[k, 0] is the distance to the closest pattern and DIk, N] is the distance to the
farthest pattern from X*. Simultaneously, the attribute values of the training patterns are stored in
D'. D' is essentially the entire training set with D'[k, i] representing the ith attribute value of the kth
training pattern. Each column (attribute) of D’ is sorted in ascending order.

The key idea behind DistAl is to generate a single layer of hidden neurons each of which
separates a subset of patterns in a training set using D (or D). Then, they are fully connected to

Re
Fig. 1. Regions induced by DistAl based on the pattern space.

J. Yang et al. | Intelligent Data Analysis 3 (1999) 55-73 61

M output TLUs (1 for each output class) in an output layer. The representation of the patterns
at the hidden layer is linearly separable [35]. Thus, an iterative perceptron learning rule can be
used to train the output weights. However, the output weights can be directly set as follows: The
weights between output and hidden neurons are chosen such that each hidden neuron over-
whelms the effect of the hidden neurons generated later. If there are a total of /4 hidden neurons
(numbered 1,2,...,4 from left to right) then the weight between the output neuron j and the
hidden neuron i is set to 2"~ if the hidden neuron i excludes patterns belonging to class j and
zero otherwise.

Let W/ be the weights between the /th hidden neuron and inputs. Let W, be the weights be-
tween the output neuron for class m and hidden neurons, and ¢, be the weight between the
output neuron for class m and the /th hidden neuron, respectively. The following pseudo-code
summarizes the process of network construction:

Initialize the number of hidden neurons: & = 0;

while S is not empty

do
1. Double all existing weights (if any) between hidden and output neurons
W =W «2 Vm

2. Increment the number of hidden neurons: 2 =4 + 1

3. Inter-pattern distance based: Identify a row k of D that excludes the largest subset of patterns
in S that belong to the same class m as follows:

(a) For eachrow r=1,... N do
(1) Let i, and j, be column indices (corresponding to row r) for the matrix D such that the
patterns corresponding to the elements D[r,i.], D[r,i, + 1],...,D|r,j,] all belong to the
same class and also belong to S.
(ii) Let ¢, = j. — i, + 1 (the number of patterns excluded).
(b) Select k to be the one for which the corresponding ¢; is the largest: £ = arg max,c,
(c) Let S, be the corresponding set of patterns that are excluded by pattern X, i, = Dk,]
(distance to the closest pattern of the cluster) and d}’;gh = DIk, ji] (distance to the farthest pat-
tern of the cluster).

4. Attribute based: Analogously, using I identify an attribute « that excludes the largest number
of patterns in S that belong to the same output class m (i.e., identify a for which ¢, is the largest
among all attributes.); Let S, be the corresponding set of patterns from S that are excluded by
attribute a, di,, and dj,,, be the minimum and maximum values respectively for attribute a
among the patterns in set S,,.

5. if [Inter-pattern distance based] then

(a) Define a spherical threshold neuron with W = X*, 0,0, = df _, Onign = d{;gh.
(b)S=85-S5;

else

(a) Define a neuron corresponding to attribute a with Oio = dfi,,, O}
(b)yS=8-28..

6. Connect the new hidden neuron to output neurons: W2, = 1; W9 = 0Vn # m

end while

62 J. Yang et al. | Intelligent Data Analysis 3 (1999) 55-73
2.3. Use of network in classification

The outputs in the output layer are computed by the winner-take-all (WTA) strategy. The
output neuron m that has the highest net input produces 1 and all the other neurons produce 0’s.
The WTA strategy and the weight setting explained in Sections 2.2 and 100 training accuracy for
any finite non-contradictory set of training patterns. (See Section 2.5 for detailed convergence
proof).

The generalization accuracy of a test set is computed by the same way. Each test pattern is fed
into the network and the outputs are computed by the WTA strategy. If there is one or more
hidden neurons that produce 1 (i.e., there exist one or more hidden neurons that include the test
pattern within their thresholds), the outputs are computed by the WTA strategy in the output
layer. Otherwise (i.e., all hidden neurons produce 0’s and all output neurons produce 0’s as well),
the distance between the test pattern and the thresholds of each hidden neuron is computed. The
hidden neuron that has the minimum distance is chosen to produce 1. Then the outputs are
computed again in the output layer to compare with the desired classification.

2.4. Example

Although DistAl works on tasks with multi-category real-valued patterns, we will illustrate its
operation using the simple XOR problem. We will assume the use of Manhattan distance metric.
There are four training patterns (S = {X', X X*, X*}):

Input Class
X' 0 0 A
X2 0 1 B
x> 1 0 B
X*: 1 1 A

This yields the following distance matrix after sorted:

01 1 2
01 1 2
D=4y 11 2
01 1 2

The first row of the matrix is the distance of X', X*, X* and X* from pattern X'. The second row of
the matrix is the distance of X, X', X* and X® from X?. The third row of the matrix is the distance
ot; X*, X' X* and X? from X°. The last row of the matrix is the distance of X*,X?,X* and X' from
X",

X' excludes the maximum number of patterns from a single class (i.e., S, = {X* X°},
class = B). A hidden neuron is introduced for this cluster with W” = [00], 0,y = Ohigh = 1,
Wg = 1,W¢ =0. X* and X® are now eliminated from further consideration (i.e., S =S —S; =
{X' X*1). The remaining patterns (S, = {X', X*}, class = A) can be excluded by any pattern (say,
X' again) with another hidden neuron with Wg =[00], Oiow = 0, Onigh =2, W3, = 1, Wy, =0,
W =WR «2=0, Wy, = Wg, *2=2. Now the algorithm stops since the entire training set is
correctly classified (i.e., S = S — S, = ¢). Fig. 2 shows the network construction process.

J. Yang et al. | Intelligent Data Analysis 3 (1999) 55-73 63

output A B
0
s
hidden () [,
0
input

(a)after the first neuron (b)after the second
is introduced neuron is infroduced

Fig. 2. Process of network construction for the example in DistAl.
2.5. Convergence proof

Theorem. Given a finite non-contradictory set of training examples E, DistAl is guaranteed to con-
verge to zero classification error after adding a finite number (h) of hidden neurons, where h < |E|. (In
practice, h < |E|.)

Proof. Let Z; be the set of patterns that are excluded by ith hidden neuron. Each hidden neuron
finds the largest subset of patterns to be excluded. DistAl keeps introducing a hidden neuron until
S becomes an empty set (i.e., S =S — Z). Since § = {X',...,X"} is the training set with the
cardinality of N, h = |Z,2,, ..., Z,| <N where Z, is the last subset of patterns to be eliminated. It
is clear that at least one pattern (X”) can be excluded by a new hidden neuron i with Wf = X’ and
0 thresholds. ? Since there are a finite number of patterns in the training set, and since each added
hidden neuron is guaranteed to correctly classify a non-empty subset of the training set which is
then eliminated from further consideration, no more than |E| hidden neurons are needed.

The internal representation of the hidden layer for a pattern X” (which is a member of the ith
cluster) has the form

H? = (0,0,...,0,1,%,...,%) (1)

(it has 0’s in the first i — 1 hidden neurons, 1 in the ith hidden neuron and either 0 or 1 in the
remaining hidden neurons) for a network with 4 hidden neurons. The weights from hidden to
output neurons are set directly as explained in Section 2.2 and W}, = 2"=14f j is the right class of
hidden neuron /7, 0 otherwise. Consider a pattern X” which belongs to the subset Z; of patterns
excluded by the ith hidden neuron that represents the pattern X. Let ¢; be the classification of X~
Then W37 > WiVj # 1. Also, the internal representation (1) guarantees the net input of output
neuron j to be larger than that of any other output neuron. Consequently, X? is correctly classified

2 Note that this is not always true for maximum value distance metric and attribute-based approach. That is because there can be
many patterns of different classifications that have the same maximum values/attributes values. Therefore, the convergence proof given
here and the complexity analysis in Section 2.6 apply to distance-based approaches (excluding Maximum value metric), but not
attribute-based approach.

64 J. Yang et al. | Intelligent Data Analysis 3 (1999) 55-73

in the output layer by the WTA strategy. As an example, assume H” = (1,1, 1) for a pattern X”
belonging to class A, and the hidden neurons represent clusters for class A, B and B, respectively.
Then, when X? is fed into input neurons, the net input to the output neuron for class A will be
23-! = 4 and that to the output neuron for class B will be 2372 + 233 = 3. Thus, X” will be
correctly classified as class A.

Therefore, DistAl is guaranteed to converge to zero classification error after adding a finite
number of hidden neurons for a finite non-contradictory set of training examples. [

2.6. Complexity analysis

This section presents the complexity analysis for DistAl. The complexity analysis assumes that
network construction is based on a single distance metric.

Let Np, be the number of training patterns and N, be the number of attributes in a
dataset, respectively. Let N, be the number of output neurons. Assume Np, > N, and
Npat > max[Noy, h].

2.6.1. Time complexity

Computing and sorting the distance matrix D takes O(max[N,,, - Naw, Ny, - 10gNpa]). 3 Now,
consider the pseudo-code given in Section 2.2. Step 1 takes O(Nyy - /). Step 2 takes O(1). Step 3
takes O(Ngat) because we need to go through the entire matrix D to determine S;. * Step 5 takes
O(Npat) to update S. Step 6 takes O(Noy). Thus, the while loop takes O(N;,) in the worst case.
Therefore, the overall worst-case time complexity is O(N;’at). In practice, DistAl runs significantly
faster than the worst-case time complexity because it eliminates a subset of elements from the
original training set instead of a single pattern. This makes DistAl particularly well-suited for

largescale datamining tasks.

2.6.2. Space complexity

The space requirement for the input patterns and their targets is O(Npaq - [Nart + Nowt|). The
weights require O(Noy - £ + & - Niy). The distance matrix requires O(leat). Thus, the total space
complexity is O(N,,,).

2.7. Improving the performance of DistAl using feature-subset selection

DistAl performs comparably to other learning algorithms on various real-world as well as
artificial datasets. (See Section 3 for detailed comparisons). This section describes a practical way
to improve the performance.

In pattern classification tasks, the choice of features (or attributes) used to represent patterns
affect:

o Learning time: The attributes used to describe the patterns implicitly determine the search space
that needs to be explored by the learning algorithm. The larger the search space, the more time

the learning algorithm needs for learning a sufficiently accurate classification function [7,60].

3 Computation of D' in attribute-based approach takes only O(Ny - Npat log Ny) because distance computation is not necessary.
4 Step 4 is not considered here because it is used only with the attribute-based metric. The time required for Step 4 is comparable to
the time required for Step 3.

J. Yang et al. | Intelligent Data Analysis 3 (1999) 55-73 65

o Number of examples needed. All other things being equal, the larger the number of attributes
used to describe the patterns, the larger is the number of examples need to learn a classification
function to a desired accuracy [7,60].

o Cost of classification: In many real-world pattern classification tasks (e.g., medical diagnosis),
some of the attributes may be observable symptoms and others might require diagnostic tests.
Different diagnostic tests might have different costs as well as risks associated with them.

This presents us with a feature subset selection problem in automated design of pattern classifiers.
The feature subset selection problem refers the task of identifying and selecting a useful subset of
attributes to be used to represent patterns from a larger set of attributes. Satisfactory solution of
this problem is particularly critical if instance-based, nearest-neighbor, or similarity-based
learning algorithms like DistAl are used to build the classifier. This is due to the fact that such
classifiers rely on the use of inter-pattern distances which are intricately linked to the choice of
features used to represent the patterns. Presence of irrelevant or misleading features (e.g., social
security numbers in a medical diagnosis task) can skew the distance calculation and hence ad-
versely affect the generalization performance of the resulting classifier.

A detailed discussion of feature subset selection is beyond the scope of this paper. The inter-
ested reader is referred to [37,38] for discussion of a variety of alternative approaches to feature
subset selection. Since exhaustive search over all possible subsets of features is computationally
infeasible, most approaches make restrictive assumptions (e.g., monotonicity — which states that
the addition of features does not worsen classification accuracy) or use a variety of heuristics.
Genetic algorithms [61-63] offer a particularly promising approach to feature subset selection for
a number of reasons [36-38]:

e They do not have to rely on the often unrealistic monotonicity assumption.

e They are particularly effective tools for exploring large search spaces for near-optimal solutions
[61-63].

The use of a genetic algorithm in any search or optimization problem requires:

e choice of a representation for encoding candidate solutions to be manipulated by the genetic
algorithm;

e definition of a fitness function that is used to evaluate the candidate solutions;

¢ definition of a selection-scheme (e.g., fitness-proportionate selection);

e definition of suitable genetic operators that are used to transform candidate solutions (and
thereby explore the search space);

e setting of user-controlled parameters (e.g., probability of applying a particular genetic operator,
size of the population, etc.).

In our use of genetic algorithm for feature subset selection for DistAl, each candidate solution
represented a subset of features used to encode patterns as input to DistAl. The fitness of the
candidate solution was computed as the generalization accuracy (computed using a 10-fold cross-
validation) of a classifier constructed using DistAl. Standard mutation and crossover operators
were used on a fixed length binary vector representation of candidate solutions (with a 1 indi-
cating a selected feature). Experiments were run using the rank-based selection strategy with the
following parameter settings:

Population size is 50; Number of generation is 300; The probability of crossover is 0.5; The
probability of mutation is 0.01; The probability of selection of the highest ranked individual is 0.6.
(See [37,38] for detailed explanations on the experiments).

66 J. Yang et al. | Intelligent Data Analysis 3 (1999) 55-73
3. Experimental evaluation of DistAl

This section presents results of experiments using DistAl on several benchmark problems both
with and without feature subset selection and compares them with the results of other learning
algorithms. It also presents the performance of DistAl on a real-world document classification
task.

3.1. Datasets

Two artificial datasets (parity and two spirals) and a wide range of real-world datasets from the
machine learning data repository at the University of California at Irvine [64] were chosen to test
the performance of DistAl. DistAl is also used for classifying paper abstracts and news articles.
The paper abstracts were chosen from three different sources: IEEE Expert magazine, Journal of
Artificial Intelligence Research and Neural Computation. The news articles were obtained from
Reuters dataset. Each document is represented in the form of a vector of numeric weights for each
of the words (terms) in the vocabulary. The weights correspond to the term frequency and inverse
document frequency (TFIDF) [65,66] values for the corresponding words. The training sets for
paper abstracts were generated based on the classification of the corresponding documents into
two classes (interesting and not interesting) by two different individuals, resulting in two different
data sets (Abstractl and Abstract2). The classifications for news articles were given based on their
topics (6, 4 and 8 classes) following [67], resulting in three different datasets (Reutersl, Reuters2
and Reuters3), respectively. Table 1 summarizes the characteristics of the datasets selected for our
experiments.

3.2. Experimental results

DistAl is deterministic in the sense that its behavior is always identical for a given training set.
Most other constructive learning algorithms are non-deterministic because their behavior is not
always identical in different runs with the same training set and even with the same learning
parameters due to the randomness in selecting initial weights, pattern presentations, and so on.
Therefore, just one run of DistAl per dataset is sufficient to study the performance.

3.2.1. Parity datasets

The seven, eight and nine-bit parity datasets (P7, P8, P9) were used to evaluate the perfor-
mance of DistAl in terms of the network size. The Manhattan distance metric was used to train the
entire set of patterns. Table 2 presents the size of the network generated by several algorithms. It
shows that DistAl is capable of generating compact networks comparable to other algorithms for
non-trivial tasks like the parity problem. Note that DistAl is also very fast. Since DistAl does not
require iterative perceptron training procedure and keeps eliminating a subset of patterns that are
not considered further in the learning process, it converges significantly fast. >

5 It is not feasible to make a fair, thorough comparison of speeds of different algorithms. DistAl converged fairly quickly for almost
all datasets. (See Section 2.6 for detailed analysis of time complexity). GA-MLP [68] is based on a genetic algorithm and thus it usually
takes significant amount of time to get a quality solution. Cascade correlation [69] uses Quickprop [71]. Quickprop uses an iterative
gradient descent method based on a second order heuristic.

J. Yang et al. | Intelligent Data Analysis 3 (1999) 55-73 67

Table 1
Datasets used in the experiments (Size is the number of patterns in the dataset, Dimension is the number of input attributes, Missing? is
whether there are any missing values, and Class is the number of output classes)

Dataset Size Dimension Attribute type Missing? Class
7-bit parity (P7) 128 7 Numeric No 2
8-bit parity (P8) 256 8 Numeric No 2
9-bit parity (P9) 512 9 Numeric No 2
Two spirals (2SP) 192 2 Numeric No 2
Annealing database (Annealing) 798 38 Numeric, nominal Yes 5
Audiology database (Audiology) 200 69 Nominal Yes 24
Pittsburgh bridges (Bridges) 105 11 Numeric, nominal Yes 6
Breast cancer (Cancer) 699 9 Numeric Yes 2
Credit screening (CRX) 690 15 Numeric, nominal Yes 2
Flag database (Flag) 194 28 Numeric, nominal No 8
Glass identification (Glass) 214 9 Numeric No 6
Heart disease (Heart) 270 13 Numeric, nominal No 2
Heart disease [Cleveland] (HeartCle) 303 13 Numeric, nominal Yes 2
Heart disease [Hungarian] (HeartHun) 294 13 Numeric, nominal Yes 2
Heart disease [Long Beach] (HeartLB) 200 13 Numeric, nominal Yes 2
Heart disease [Swiss] (HeartSwi) 123 13 Numeric, nominal Yes 2
Hepatitis domain (Hepatitis) 155 19 Numeric, nominal Yes 2
Horse colic (Horse) 300 22 Numeric, nominal Yes 2
Tonosphere structure (Ionosphere) 351 34 Numeric No 2
Iris plants (Iris) 150 4 Numeric No 3
Liver disorders (Liver) 345 6 Numeric No 2
Monks problems (Monks-1,2,3) 432 6 Nominal No 2
Pima indians diabetes (Pima) 768 8 Numeric No 2
DNA sequences (Promoters) 106 57 Nominal No 2
Sonar classification (Sonar) 208 60 Numeric No 2
Large soybean (Soylarge) 307 35 Nominal Yes 19
Small soybean (Soysmall) 47 35 Nominal No 4
Vehicle silhouettes (Vehicle) 846 18 Numeric No 4
House votes (Votes) 435 16 Nominal Yes 2
Vowel recognition (Vowel) 528 10 Numeric No 11
Wine recognition (Wine) 178 13 Numeric No 3
Zoo database (Zoo) 101 16 Numeric, nominal No 7
Paper abstracts 1 (Abstractl) 100 790 Numeric No 2
Paper abstracts 2 (Abstract2) 100 790 Numeric No 2
News articles 1 (Reutersl) 939 1568 Numeric No 6
News articles 2 (Reuters2) 139 435 Numeric No 4
News articles 3 (Reuters3) 834 1440 Numeric No 8

3.2.2. Various datasets from UCI repository

DistAl was run once for each distance metric to compare the performance in terms of the
generalization accuracy and the network size. A simple pruning technique was implemented to
produce compact networks: When a new hidden neuron is introduced, the generalization accuracy
of the network is computed. The current best generalization accuracy is stored in a pocketalong
with the network size. After the training is completed (i.e., 100% training accuracy is obtained) or
no further training is possible (i.e., the limit of allowable hidden neurons (currently set to 100) is
reached or no more patterns can be eliminated in Maximum value metric or attribute-based

68 J. Yang et al. | Intelligent Data Analysis 3 (1999) 55-73

Table 2
Comparison of the network size generated by different algorithms for the parity datasets (A — indicates that the result is not reported in
the corresponding reference)

Algorithm P7 P8 P9
DistAl 5 5 6
GA-MLP [68] 9 15 -
Perceptron cascade [34] 3 4 4
Cascade correlation [69] 4-5 5-6 —
Upstart [33] 6 7 8
Growth algorithm [70] 7 8 9
Sequential [35] 7 8 9
Tiling [32] 7 8 9
Tower [30,31] 3.5 4 4.5

approach), the network with the best generalization accuracy in the pocket is restored by pruning
the unnecessary hidden neurons.

A 10-fold cross-validation was performed for each dataset with all the distance metrics in-
troduced in Section 2.1. No single distance metric outperformed other metrics on all datasets.
That is because the performance depends on the distribution of the data. A particular distance
metric might be appropriate for certain kinds of datasets while it might not for others. The
Euclidean and Manhattan distance metrics outperformed other metrics in many datasets, and
gave comparable results to the best ones in other datasets considered.

It is impossible to do a thorough and fair comparison between various learning algorithms
since each algorithm has its own optimal parameter settings which is usually unknown and not
feasible to obtain within a reasonable amount of time. Also, the training and test sets that had
been generated and used are not identical in general under the assumption that the experiments
have been done a finite number of times. (An infinite number of experiments with random par-
titions of training and test sets from the same distributions of data can increase the confidence
level). Following comparisons should be interpreted in light of those considerations. The best
results of DistAl are compared with the best results produced by various learning algorithms in
the literature. In particular, the results in [59] are compared separately since they are recent and
also obtained by a nearest-neighbor algorithm with a 10-fold cross-validation. Table 3 summa-
rizes the comparison.

As we can see from Table 3, DistAl gave comparable results on most datasets (except Audio-
logy, Soylarge and Vehicle).

The network size of three algorithms (perceptron cascade [34], cascade correlation [69], upstart
[33]) for the two spirals problem is shown in [34]: 17.8 (perceptron cascade), 15.2 (cascade cor-
relation), 91.4 (upstart). DistAl generated more compact networks with 7.7 hidden neurons.

It is shown that the combination of DistAl and feature subset selection yield fairly good results.
The results indicate that the networks constructed using GA-selected subset of features compare
quite favorably with networks that use all of the features. In particular, feature subset selection
resulted in significant improvement in generalization. Also, the number of selected features is
smaller than the entire set of features. For detailed explanation of implementation, results, related
work and comparisons with other approaches see [37,38].

J. Yang et al. | Intelligent Data Analysis 3 (1999) 55-73 69

Table 3
Comparison of generalization accuracy between various algorithms. NN is the best results obtained by nearest neighbor algorithms in
[59] and Reported is the available best results reported in the literature [72-79]

Dataset DistAl NN Reported
2SP 83.7 - —
Annealing 96.6 96.1 95.6
Audiology 66.0 77.5 71.7
Bridge 63.0 60.6 56.0
Cancer 97.8 95.6 95.9
CRX 87.7 81.5 85.0
Flag 65.8 58.8 -
Glass 70.5 72.4 66.3
Heart 86.7 83.0 74.8
HeartCle 85.3 80.2 77.0
HeartHun 85.9 81.3 77.0
HeartLB 80.0 71.5 79.0
HeartSwi 94.2 93.5 81.0
Hepatitis 84.7 82.6 83.0
Horse 86.0 76.8 80.9
Ionosphere 94.3 92.6 96.7
Iris 97.3 96.0 98.0
Liver 72.9 63.5 69.8
Monks-1 90.9 77.1 100
Monks-2 100 97.5 100
Monks-3 99.1 100 100
Pima 76.3 71.9 76.0
Promoters 88.0 92.4 96.2
Sonar 83.0 87.0 84.7
Soylarge 81.0 92.2 97.1
Soysmall 97.5 100 100
Vehicle 65.4 70.9 79.1
Votes 96.1 95.2 95.2
Vowel 69.8 99.2 61.0
Wine 97.1 97.8 100
Zoo 96.0 98.9 —

3.2.3. Document datasets

The same experimental setup was used as in Section 3.2.2. It is also verified that DistAl gives
fairly good results for document classification as well. It gave reasonably high (over 80%) gen-
eralization accuracy for all datasets. Also, the GA-selected subset of features produced improved
generalization accuracy, a much smaller subset of features selected with slightly larger network
size. For detailed explanation of implementation, related work and comparisons with other ap-
proaches see [38,66].

4. Summary and discussion

A fast inter-pattern distance-based constructive learning algorithm, DistAl, is introduced and
its performance on a number of datasets is demonstrated. DistAl is different from other con-
structive learning algorithms in two aspects. First, it does not require an iterative perceptron style
weight update rules for determining the connections between neurons. Instead, it computes the

70 J. Yang et al. | Intelligent Data Analysis 3 (1999) 55-73

distance (using one of the pre-defined distance metrics) between each pattern pair and uses it to set
the weights (and the thresholds) between hidden neurons and inputs. The weights between the
hidden and output neurons are set using a one-shot (as opposed to iterative) learning algorithm.
Thus, DistAl is relatively fast compared in comparison with most neural network training algo-
rithms that rely on an iterative update of weights and consequently require multiple passes
through the training set. Furthermore, DistAl is guaranteed to converge to 100% classification
accuracy on any non-contradictory training set for most of the distance metrics used in this paper.
Second, it generates a single hidden layer composed of Ayperspherical threshold neurons instead of
TLU. Thus, the induced network can potentially discover natural clusters that exist in the data.

Despite its simplicity, experiments reported in this paper show that DistAl yields good per-
formance on almost all real-world datasets that were considered. It also produced good perfor-
mance on difficult artificial tasks such as parity and the two spirals data which have been used by
numerous researchers for evaluation of supervised learning algorithms. In particular, DistAl is
suitable to problems that have well-formed clusters and/or certain regularity (e.g., parity) in the
pattern space.

DistAl, because of its reliance on inter-pattern distances, is sensitive to the presence of irrelevant
or misleading attributes in the pattern representation. Consequently, its classification accuracy
can be further improved by incorporating a suitable feature subset selection algorithm. This is
borne out by the experiments using DistAl in conjunction with a genetic algorithm for feature
subset selection [37,38].

A potential disadvantage of DistAl is its need for maintaining the inter-pattern distance matrix
during learning. The memory needed to store this matrix grows quadratically with the size of the
training set. This problem can be mitigated by freeing the memory for those patterns that are
excluded by a new hidden neuron as learning progresses. It would be interesting to explore
variants of DistAl that can avoid the need for maintaining the entire inter-pattern distance matrix
during learning.

Because of its speed, DistAl is particularly well-suited to many real-world applications in-
volving large amount of data and/or requesting real-time response such as largescale datamining
and knowledge acquisition tasks and hybrid learning systems that use neural network learning as
the inner loop of a more complex knowledge discovery process. An interesting direction for future
research is the design of versions of DistAl that can be used to incremental learning and assim-
ilation of classification knowledge from multiple, distributed, dynamic data sources. Some pre-
liminary results based on experiments using DistAl to design mobile agents for text classification
and retrieval from distributed document collections are reported in [66].

Constructive algorithms in general provide a natural framework for exploration of cumulative
(life long) learning [80] and for knowledge-based theory refinement [29,81]. An interesting di-
rection for future research would be to explore the use of DistAl for this task using real-world
datasets e.g., the genome data used in [29].

References

[1] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy, Advances in Knowledge Discovery and Data Mining, MIT Press,
Cambridge, MA, 1996.

J. Yang et al. | Intelligent Data Analysis 3 (1999) 55-73 71

[2] V. Honavar, Machine learning: Principles and applications, in: J. Webster (Ed.), Encyclopedia of Electrical and Electronics
Engineering, Wiley, New York, to appear.
[3] J. Bradshaw, Software Agents, MIT Press, Cambridge, MA, 1997.
[4] V. Honavar, Intelligent agents, in: J. Williams, K. Sochats (Eds.), Encyclopedia of Information Technology, Marcel Dekker, New
York, to appear.
[5] K. Balakrishnan, V. Honavar, Intelligent diagnosis systems, International Journal of Intelligent Systems (1998).
[6] R. Duda, P. Hart, Pattern Classification and Scene Analysis, Wiley, New York, 1973.
[7] T. Mitchell, Machine Learning, McGraw-Hill, New York, 1997.
[8] P. Langley, Elements of Machine Learning, Morgan Kaufmann, Palo Alto, CA, 1995.
[9] V. Honavar, Toward learning systems that integrate multiple strategies and representations, in: V. Honavar, L. Uhr (Eds.),
Artificial Intelligence and Neural Networks: Steps Toward Principled Integration, Academic Press: New York, 1994, pp. 615-644.
[10] C-H. Chen, R. Parekh, J. Yang, K. Balakrishnan, V. Honavar, Analysis of decision boundaries generated by constructive neural
network learning algorithms, in: Proceedings of WCNN95, July 17-21, Washington DC, vol. 1, 1995, pp. 628-635.
[11] S. Gallant, Neural Network Learning and Expert Systems, MIT Press, Cambridge, MA, 1993.
[12] R. Parekh, J. Yang, V. Honavar, Constructive neural network learning algorithms for multi-category real-valued pattern
classification, Technical Report ISU-CS-TR97-06, Department of Computer Science, lowa State University, 1997.
[13] R. Parekh, J. Yang, V. Honavar, Mupstart-a constructive neural network learning algorithm for multi-category pattern
classification, in: Proceedings of the IEEE/INNS International Conference on Neural Networks, ICNN’97, 1997, pp. 1924-1929.
[14] J. Yang, R. Parekh, V. Honavar, MTiling- a constructive neural network learning algorithm for multi-category pattern
classification, in: Proceedings of the World Congress on Neural Networks’96, San Diego, 1996, pp. 182-187.
[15] V. Honavar, Structural learning, in: J. Webster (Ed.), Encyclopediaof Electrical and Electronics Engineering, Wiley, New York, to
appear.
[16] D. Rumelhart, G. Hinton, R. Williams, Learning internal representations by error propagation, in: Parallel Distributed
Processing: Explorations into the Microstructure of Cognition, vol. 1 (Foundations). MIT Press, Cambridge, MA, 1986.
[17] P. Werbos, Beyond regression: New tools for prediction and analysis in behavioral sciences, Ph.D. Thesis, Harvard University,
1974.
[18] F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain, Psychological Rev. 65
(1958) 386-408.
[19] N. Nilsson, The Mathematical Foundations of Learning Machines, McGraw-Hill, New York, 1965.
[20] W. Krauth, M. Mezard, Learning algorithms with optimal stability in neural networks, J. Phys. A: Math. Gen. 20 (1987) L745-
L752.
[21] J. Anlauf, M. Biehl, Properties of an adaptive perceptron algorithm, in: Parallel Processing in Neural Systems and Computers.
1990, pp. 153-156.
[22] M. Frean, Small nets and short paths: Optimizing neural computation, Ph.D. Thesis, Center for Cognitive Science, Edinburgh
University, UK, 1990.
[23] H. Poulard, Barycentric correction procedure: A fast method of learning threshold units, in: Proceedings of WCNN’95, July 17—
21, Washington DC 1 (1995) 710-713.
[24] B. Raffin, M. Gordon, Learning and generalization with minimerror, a temperature-dependen learning algorithm, Neural
Comput. 7 (1995) 1206-1224.
[25] R. Reed, Pruning algorithms — a survey, IEEE Trans. Neural Networks 4 (5) (1993) 740-747.
[26] R. Parekh, J. Yang, V. Honavar, Pruning strategies for constructive neural network learning algorithms. in: Proceedings of the
IEEE/INNS InternationalConference on Neural Networks, ICNN’97, 1997. pp. 1960-1965.
[27] V. Honavar, Generative Learning structures and processes for generalized connectionist networks, Ph.D. Thesis, University of
Wisconsin, Madison, 1990.
[28] V. Honavar, L. Uhr, Generative learning structures for generalized connectionist networks, Inform. Sci. 70 (1-2) (1993) 75-108.
[29] R. Parekh, V. Honavar, Constructive theory refinement in knowledge based neural networks, in: Proceedings of the International
Joint Conference on Neural Networks, Anchorage, Alaska, 1998, pp. 2318-2323.
[30] J. Nadal, Study of a growth algorithm for a feedforward network, Internat. J. Neural Systems 1 (1) (1989) 55-59.
[31] S. Gallant, Perceptron based learning algorithms, IEEE Trans. Neural Networks 1 (2) (1990) 179-191.
[32] M. Mezard, J. Nadal, Learning feed-forward networks: The tiling algorithm, J. Phys. A: Math. Gen. 22 (1989) 2191-2203.
[33] M. Frean, The upstart algorithm: A method for constructing and training feedforward neural networks, Neural Comput. 2 (1990)
198-209.
[34] N. Burgess, A constructive algorithm that converges for real-valued input patterns, Internat. J. Neural Systems 5 (1) (1994) 59-66.
[35] M. Marchand, M. Golea, P. Rujan, A convergence theorem for sequential learning in two-layer perceptrons, Europhys. Lett. 11
(6) (1990) 487-492.
[36] J. Yang, V. Honavar, Feature subset selection using a genetic algorithm. in: Proceedings of the Genetic Programming Conference,
GP’97, Stanford University, CA, 1997, pp. 380-385.

72 J. Yang et al. | Intelligent Data Analysis 3 (1999) 55-73

[37] J. Yang, V. Honavar, Feature subset selection using a genetic algorithm, IEEE Intell. Systems 13 (2) (1998) 44-49.

[38] J. Yang, V. Honavar, Feature subset selection using a genetic algorithm, in: Feature Extraction, Construction and Selection- A
Data Mining Perspective. Kluwer Academic, New York, 1998.

[39] D. Aha, Incremental constructive induction: An instance-based approach, in: Proceedings of the Eighth International Workshop
on Machine Learning, Evanston, 1L, Morgan Kaufmann, 1991, pp. 117-121.

[40] D. Aha, D. Kibler, M. Albert, Instance-based learning algorithms, Mach. Learning 6 (1991) 37-66.

[41] P. Turney, Theoretical analyses of cross-validation error and voting in instance-based learning. J. Experimental and Theoretical
Artificial Intell. 1994, pp. 331-360.

[42] P. Domingos, Rule induction and instance-based learning: A unified approach, in: Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI-95), 1995.

[43] T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE Trans. Information Theory 13 (1967) 21-27.

[44] E. Diday, Recent progress in distance and similarity measures in pattern recognition, in: Proceedings of the Second International
Joint Conference on Pattern Recognition, 1974, pp. 534-539.

[45] B. Dasarathy, Nearest Neighbor (NN) Norms: NN Pattern Classification Techiniques, IEEE Computer Society Press, Los
Alamitos, CA, 1991.

[46] C. Stanfill, D. Waltz, Toward memory-based reasoning, Commun. ACM 29 (12) (1986) 1213-1228.

[47] S. Cost, S. Salzberg, A weighted nearest neighbor algorithm for learning with symbolic features, Mach. Learning 10 (1) (1993) 57—
78.

[48] J. Kolodner, Case-Based Reasoning, Morgan Kaufmann, San Francisco, 1993.

[49] G. Carpenter, S. Grossberg, Pattern Recognition by Self-Organizing Neural Networks, MIT Press, Cambridge, MA, 1991.

[50] A. Tversky, Features of similiarity, Psychological Rev. 84 (1977) 327-352.

[51] R. Nosofsky, Attention, similarity, and the identification-categorization relationship, J. Experimental Psychology: General 115
(1986) 39-57.

[52] G. Salton, M. McGill, Introduction to modern information retrieval, McGraw-Hill, New York, 1983.

[53] D. Broomhead, D. Lowe, Multivariable functional interpolation and adaptive networks, Complex Systems 2 (1988) 321-355.

[54] M. Powell, Radial basis functions for multivariable interpolation: A review, in: J. Mason, M. Cox (Eds.), Algorithms for
Approximation, Clarendon Press, Oxford, 1987, pp. 143-167.

[55] F. Girosi, M. Jones, T. Poggio, Regularization theory and neural networks architectures, Neural Computation 7 (1995) 219-269.
[56] R. Michalski, I. Mozetic, J. Hong, H. Lavrac, The multi-purpose incremental learning system aql5 and its testing application to
three medical domains, in: Proceedings of the Fifth National Conference on Al. Morgan Kaufmann, 1986, pp. 1041-1045.

[57] P. Clark, R. Niblett, The cn2 induction algorithm, Mach. Learning 3 (1989) 261-284.

[58] B. Batchelor, Pattern Recognition: Ideas in Practice, Plenum Press, New York, 1978.

[59] D. Wilson, T. Martinez, Improved heterogeneous distance functions, J. Artificial Intell. Res. 6 (1997) 1-34.

[60] B. Natarajan, Machine Learning: A Theoretical Approach, Morgan Kauffman, San Mateo, CA, 1991.

[61] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, New York, 1989.

[62] M. Mitchell, An Introduction to Genetic algorithms, MIT Press, Cambridge, MA, 1996.

[63] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, 3rd ed., Springer, New York, 1996.

[64] P. Murphy, D. Aha, Repository of machine learning databases, Department of Information and Computer Science, University of
California, Irvine, CA, 1994.

[65] G. Salton, Developments in automatic text retrieval, Science 53 (1991) 974-979.

[66] J. Yang, P. Pai, V. Honavar, L. Miller, Mobile intelligent agents for document classification and retrieval: A machine learning
approach, in: 14th European Meeting on Cybernetics and Systems Research, Symposium on Agent Theory to Agent
Implementation, Vienna, Austria, 1998.

[67] D. Koller, M. Sahami, Hierarchically classifying documents using very few words, in: International Conference on Machine
Learning, 1997, pp. 170-178.

[68] H. Andersen, A. Tsoi, A constructive algorithm for the training of a multilayer perceptron based on the genetic algorithm,
Complex Systems 7 (1993) 249-268.

[69] S. Fahlman, C. Lebiere, The cascade correlation learning algorithm, in: D. Touretzky (Ed.), Neural Information Systems 2,
Morgan-Kauffman, 1990, pp. 524-532.

[70] M. Golea, M. Marchand, A growth algorithm for neural network decision trees, Europhysics Letters 12 (3) (1990) 205-210.

[71] S. Fahlman, Faster-learning variations on backpropagation: an empirical study, in: D. Touretzky, G. Hinton, T. Sejnowsky
(Eds.), Proceedings of the 1988 Connectionist Models Summer School, Morgan-Kauffman, 1988, pp. 38-51.

[72] R. Kohavi, Feature subset selection as search with probabilistic estimates, in: AAAI Fall Symposium on Relevance, 1994.

[73] M. Richeldi, P. Lanzi. Performing effective feature selection by investigating the deep structure of the data, in: Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining. AAAI Press, 1996, pp. 379-383.

[74] J. Yang, V. Honavar, Experiments with the cascade-correlation algorithm, in: Proceedings of the Fourth UNB Al Symposium,
Frederiction, Canada, 1991, pp. 369-380.

J. Yang et al. | Intelligent Data Analysis 3 (1999) 55-73 73

[75] R. Parekh, Constructive learning: Inducing grammars and neural networks, Ph.D. Thesis, Department of Computer Science, [owa
State University, Ames, 1A, 1998.

[76] T. Andersen, T. Martinez The effect of decision surface fitness on dynamic multi-layer perceptron networks (dmpl), in:
Proceedings of the World Congress on Neural Networks’96, pp. 177-181, San Diego, 1996, pp. 369-380.

[77] D. Lowe, Similarity metric learning for a variable-kernel classifier, Neural Computation 7 (1995) 72-85.

[78] S. Weiss, 1. Kapouleas, An empirical comparison of pattern recognition, neural nets, and machine learning classification methods,
in: Proceedings of the 11th International Joint Conference on Artificial Intelligence, 1989.

[79] C. Merz, P. Murphy, UCI Repository of Machine Learning Databases, 1998.

[80] S. Thrun, Lifelong learning: A case study, Technical Report CMU-CS-95-208, Carnegie Mellon University, 1995.

[81] J.W. Shavlik, A framework for combining symbolic and neural learning, in: Artificial Intelligence and Neural Networks: Steps
Toward Principled Integration, Academic Press, Boston, 1994.

