
Towards Collaborative Environments for Ontology Construction and Sharing
Jie Bao, Doina Caragea and Vasant Honavar
Artificial Intelligence Research Laboratory

Computer Science Department
Iowa State University, Ames, IA USA 50010

Email: {baojie, dcaragea, honavar}@cs.iastate.edu

ABSTRACT

Ontologies that explicitly identify objects, properties, and
relationships in specific domains are essential for collab-
orations that involve sharing of data, knowledge, or re-
sources among autonomous individuals. Against this back-
ground, this paper motivates the need for collaborative en-
vironments for ontology construction, sharing, and usage;
identifies the desiderata of such environments; and pro-
poses package based description logics (P-DL) that extend
classic description logic (DL) based ontology languages to
support modularity and (selective) knowledge hiding. In
P-DL, each ontology consists of packages (or modules)
with well-defined interfaces. Each package encapsulates
a closely related set of terms and relations between terms.
Together, these terms and relations represent the ontolog-
ical commitments about a small, coherent part of the uni-
verse of discourse. Packages can be hierarchically nested,
thereby imposing an organizational structure on the ontol-
ogy. Package-based ontologies also allow creators of pack-
ages to exert control over the visibility of each term or rela-
tion within the package thereby allowing the selective shar-
ing (or conversely, hiding) of ontological commitments cap-
tured by a package.

KEYWORDS: Modular Ontology, Collaborative On-
tology, Ontology Building, Package-based Description
Logics

1. INTRODUCTION

Ontologies that explicitly identify objects, properties, and
relationships of interest in specific domains of inquiry are
essential for collaborations that involve sharing of data,
knowledge, or resources (e.g., web services) among au-
tonomous individuals or groups in open environments, such
as the Semantic Web [4]. Consequently, there has been a
significant body of recent work on languages for specify-
ing ontologies, software environments for editing ontolo-
gies, algorithms for reasoning with, aligning, and merging
ontologies [13]. However, the lack of collaborative envi-
ronments for construction, sharing, and usage of ontologies
is a major hurdle to the large-scale adoption and use of

ontology-based approaches to sharing of information and
resources, which is needed to realize the full potential of
Semantic Web.

Semantic Web ontologies or, in general, knowledge bases,
have several important characteristics, as follows:

1. Constructing large ontologies typically requires col-
laboration among multiple individuals or groups with
expertise in specific areas, with each participant con-
tributing only a part of the ontology. Therefore, in-
stead of a single, centralized ontology, in most do-
mains, there are multiple distributed ontologies cov-
ering parts of the domain.

2. Because no single ontology can meet the needs of all
users under every conceivable scenario, the ontology
that meets the needs of a user or a group of users needs
to be assembled from several independently developed
ontology modules. Since different ontologies or differ-
ent modules of a single ontology are developed by peo-
ple with diverse points of view, semantic inconsisten-
cies or conflicts between such modules are inevitable.
Consequently, in collaborative ontology environments,
there is a need for mechanisms for resolving or manag-
ing such semantic conflicts to ensure that the resulting
ontology is not internally inconsistent.

3. While ontologies are often used to facilitate sharing of
knowledge, data, and resources, many real-world sce-
narios also call for selectively hiding certain parts of
an ontology (or conversely, selectively sharing certain
parts of an ontology). The need for knowledge hiding
may arise due to privacy and security concerns, or for
managing and knowledge engineering purposes.

In contrast, the current state of the art in ontology engineer-
ing is reminiscent of the state of programming languages
nearly four decades ago: unstructured, with no support for
restricting the scope of variables, and limited or no sup-
port for program modules, leading to horrendously com-
plex, hard to maintain, seldom reusable code. This needs
to be changed in order for the full potential of the Semantic
Web to be realized in practice. We need to come to terms

with the characteristics of web ontologies. Specifically, next
generation ontology languages need to support collabora-
tive construction, selective sharing and use of ontologies.
Against this background, this paper introduces the frame-
work of package-based ontologies to meet this need.

The rest of the paper is organized as follows: Section 2 elab-
orates further on the problems that need to be addressed by
collaborative environments for ontology construction, shar-
ing, and use. Section 3 presents basic elements of package-
based ontologies and, in particular, package-based descrip-
tion logics (P-DL). Section 4 discusses the semantics of P-
DL. Section 5 discusses related work. Section 6 summa-
rizes the paper and presents several ideas for future work.

2. PROBLEM DESCIPTION

As already noted, ontologies that are useful in practice of-
ten need to be assembled by selectively combining parts of
interrelated, possibly inconsistent modules. For example,
an ongoing effort aimed at developing an animal ontology
involves a group of individuals, each focused on a specific
sub domain of animal knowledge, such as the general an-
imal knowledge, knowledge about pet animals (dogs, cats,
etc.), knowledge about poultry, knowledge about livestock,
etc. We use this application to introduce some issues that
need to be addressed in such a setting.

2.1. Local Semantics vs. Global Semantics

Unrestricted use of entities and relationships from differ-
ent ontologies can result in serious semantic conflicts, espe-
cially when the ontologies in question represent local views
of the ontology producers. For example, the general ani-
mal ontology module may assert that a dog is a carnivore,
a carnivore only eats animals, and an animal is not a plant
(given in description logic):

Dog v Carnivore
Carnivore v ∀eats.Animal
Animal v ¬Plant

However, in the pet ontology module it asserts that a sick
dog sometimes eats grass, which is plant:

SickDog v Dog u ∃eats.Grass
Grass v Plant

There is an inconsistency if the two modules are inte-
grated without proper reconciliation of the semantic con-
flicts. Each module represents what is believed to be true
from a local point of view and is locally consistent. How-
ever, their combination is not globally consistent. It is un-
realistic to expect that the author of the general animal on-
tology module can anticipate all possible ‘exceptions’ that

might arise in specific contexts. A potential user of the pet
ontology module should not have to discard the general an-
imal ontology module entirely just because of a few incon-
sistencies that could be managed, if sufficient care is taken
to do so.

2.2. Partial Reuse vs. Total Reuse

In creating a ‘MyPet’ ontology, one may want to import
the knowledge about pets from the comprehensive ‘Animal’
ontology. However, current ontology languages only allow
one to import the ‘Animal’ ontology in its entirety, although
only a small part of it is needed. If an ontology had a mod-
ular structure, it would be more flexible and efficient to par-
tially reuse that ontology. Thus, if the ‘Animal’ ontology
was modular, as shown in Fig. 1, only the relevant parts
of the whole ‘Animal’ ontology would be imported into
‘MyPet’ ontology, thereby avoiding the need to import un-
wanted ontology fragments. This is especially useful when
some modules would make ‘MyPet’ ontology inconsistent
if the entire ‘Animal’ ontology was imported, whereas lim-
iting the reuse of ‘Animal’ ontology to selected modules
would avoid this difficulty.

General Pet

Poultry Livestock

Semantic importing

General

Animal Ontology
(Centralized)

Pet

Poultry

Livestock

MyPet

MyPet

Animal Ontology
(Package-extended)

Semantics incorporated in MyPet ontology

Semantics not presented in MyPet ontology
Legend:

Figure 1: Total Reuse vs. Partial Reuse

2.3. Organizational Structure vs. Semantic
Structure

It is useful to distinguish between two types of structures in
ontologies: organizational structure and semantic structure.
Organizational structure of an ontology consists of an ar-
rangement of terms which is aimed at making the ontology
easy to use. Domain-specific dictionaries, such as a com-
puter science dictionary or a life science dictionary, where
knowledge is organized in different modules offer examples
of settings where the organizational structure of an ontol-
ogy is exploited. Semantic structure of an ontology on the
other hand, deals with the relationship between meanings
of terms in an ontology: for instance, mouse is an animal or
mouse is a part of a computer. Fig. 2 illustrates the differ-
ences between the two types of structures in the case of an
animal ontology.

 Animal Ontology
Animal Plant Life

Pet Ontology
 Pet Animal, Dog Pet, Cat Pet

 My Pet Ontology
 Dog(goofy), Cat(tom), Robot(sony)
 MyPet (Robot Pet) FamilyMember

Semantic
Hierarchy

Organizational
Hierarchy

Life

Animal Plant

Pet

Dog CatMyPet

FamilyMember

Robot

Figure 2: Organizational Structure vs. Semantic Struc-
ture

The distinction between organizational and semantic hier-
archies can be understood through an analogy with object-
oriented programming languages such as Java and C#. In
such languages, new classes can be derived from (and hence
semantically related to) existing classes. Such class hierar-
chies offer an example of semantic structure. Modern object
oriented languages like Java also have a notion of packages,
which are organized in a package hierarchy. Semantically
unrelated classes can be organized into packages that bun-
dle together the classes that are used in a specific class of
applications (e.g., graphics).

2.4. Knowledge Hiding vs. Knowledge Sharing

In many applications, the provider of an ontology may not
wish (because of copyright, privacy, security, or commercial
concerns) to make the entire ontology visible to the outside,
while being willing to expose certain parts of the ontology
to selected subsets of users. In other cases, an ontology
component may only provide a limited query interface, as
the details of the component are not important to users or
to other ontology components. Both cases call for partial
knowledge hiding.

For example, the ‘Animal’ ontology, when completed, may
contain a detailed taxonomy of animals. However, the
owner of the ontology only exposes a coarse-grained and
less professional version to the public, while the fine-
grained knowledge is open only for selected scope (e.g.,
paid users). For instance, the ontology includes such vis-
ible and invisible terms and axioms:

visible:
terms: Dog,Carnivore,Mammals,Animal
axioms:

Mammals v Animal
invisible:

terms: Mammalia,Eutheria, Carnivora,
Canis, CanisFamiliaris

axioms:
Mammalia ≡ Mammals

Eutheria v Mammalia
Carnivora v Eutheria
Carnivora ≡ Carnivore
Canis v Carnivora
CanisFamiliaris v Canis
Dog ≡ CanisFamiliaris

The public user may learn by querying the ontology that
Dog v Carnivore, Carnivore v Animal if the infer-
ence procedures associated with the ontology can use the
invisible (i.e., hidden) part of the ontology in answering
user queries, while not exposing the explicit semantics of
the hidden axioms. This is an instance of partial knowledge
hiding.

Modularity and knowledge hiding are also needed in the
case of semantic encapsulation. The previous example
shows a type of semantic encapsulation where detailed in-
formation is hidden in order to provide a simpler query in-
terface. As another example of semantic encapsulation, we
can consider a scenario in which two persons, e.g., Alice
and Bob, create ontologies for their pets. These ontologies
might be queried by software agents of other individuals,
e.g., their pet doctors. For example, a doctor may pose a
query against the two ontologies, asking if a pet y has eaten
grass. This query can be denoted by ?(∃eats.Grass)(y) in
description logic. There is no requirement that both Alice
and Bob use the same type of agents to manage their pet
ontologies - after all, they might buy their ontology agents
from different software shops - as long as both agents imple-
ment the same query interface. For instance, Alice’s agent
can use a TBox of the ontology language ALCOI

X v Grass, X is nominal
{y} v Cat
{y} v ∃eats.X

while Bob’s agent can use an ontology written in ALCI
with an ABox:

Grass(x)
Dog(y)
eats(y, x)

Both approaches guarantee that the instance class member-
ship query ?(∃eats.Grass)(y) has the same behavior, al-
though the underlying implementations are different. Since
implementation details are of no interest to users who query
the ontologies, they can be easily hidden from such users.

2.5. Proposed Approach

Current ontology languages like OWL (http://www.w3.org/
TR/2004/REC-owl-ref-20040210/) and the corresponding

description logics [15] fail to fully support modular-
ity, localized semantics, and knowledge hiding. OWL
partially allows ontology modularization and reuse with
owl:imports. However, the OWL import mechanism
has serious drawbacks. First, it directly introduces both
terms and semantics of the imported module into the re-
ferring modules, therefore providing no way for local se-
mantics. Second, it reveals either all or no part of a module
to another module. The result is lack of support for partial
reuse and selective knowledge sharing.

Package based ontology language extensions [2], offer a
way to overcome these limitations. The resulting ontology
language allows the representation of ontology modules us-
ing components called packages. Each package typically
consists of a set of highly related terms and relationships
between them; packages can be nested in other packages,
forming a package hierarchy; the visibility of a term is con-
trolled by scope limitation modifiers, such as public and
private. A package has a clearly defined access inter-
face. Semantics can be localized by hiding semantic details
of a package by defining appropriate interfaces.

Packages provide an attractive framework for the neces-
sary compromise between the need for knowledge sharing
and the need for knowledge hiding in collaborative design
and use of ontologies. Although each package constitutes
an internally consistent ontology, there is no requirement
that an arbitrary set of packages to be globally consistent.
The structured organization of ontology entities in pack-
ages bring to ontology design and reuse, the same benefits
as those provided by packages in software design and reuse
in software engineering.

3. PACKAGE-BASED ONTOLOGIES

3.1. Packages as Ontology Organization Units

In a package-based ontology, the whole ontology is com-
posed of a set of packages. Terms (such as Dog,Animal)
and axioms (such as Dog v Animal) are defined in spe-
cific home packages.

Definition 1 (Package) Let O = (S,A) be an ontology,
where S is the set of terms and A is the set of axioms over
terms in S. A package P = (∆S ,∆A) of the ontology O is
a fragment of O, such that ∆S ⊆ S, ∆A ⊆ A. The set of
all possible packages is denoted as ∆P .

A term t ∈ ∆S or an axiom t ∈ ∆A is called a member of
P , denoted as t ∈ P . P is called the home package of t,
denoted as HP(t) = P .

Terms can be names of classes (i.e., concepts), properties
(i.e., roles), or instances (i.e., individuals). For example, for

an ontology that states that tom (individual) is a Cat (con-
cept) and a Cat (concept) eats (role) Mouse (concept), the
terms of the ontology include tom,Cat, eats,Mouse.

We assume that each package, each term and each axiom
has a unique identifier, such as a URI. For example, for a
term t and package P , t ∈ P , both t and P are actually
represented by some URIs.

A package can use terms defined in another package. In
other words, an existing package can be reused by or im-
ported into another package.

Definition 2 (Foreign Term and Importing) A term that
appears in a package P , but has a different home package
Q is called a foreign term in P . We say that P imports Q
and we denote this as P 7→ Q.

The importing closure I7→(P) of a package P contains all
packages that are directly or indirectly imported into P ,
where direct and indirect importing are defined as:

• (direct importing) R 7→ P ⇒ R ∈ I7→(P)

• (indirect importing) Q 7→ R and R ∈ I7→(P) ⇒ Q ∈
I7→(P)

A Package-based Description Logic ontology, or a P-DL
ontology consists of multiple packages, each of them ex-
pressed in DL.

For example, the animal ontology O has two packages:

PAnimal

Terms: 1 : Dog, 1 : Carnivore, 1 : Animal, 1 : eats
Axioms:

(1a) 1 : Dog v 1 : Carnivore
(1b) 1 : Carnivore v 1 : Animal
(1c) 1 : Carnivore v ∀1 : eats.1 : Animal

PPet

Terms: 2 : PetDog, 2 : Pet, 2 : DogFood
Foreign Terms: 1 : Dog, 1 : Animal, 1 : eats ∈ Panimal

Axioms:
(2a) 2 : PetDog v 1 : Dog u 2 : Pet
(2b) 2 : Pet v 1 : Animal
(2c) 2 : PetDog v ∃1 : eats.2 : DogFood

We will omit the prefix “1:” and “2:” when there is no con-
fusion. Here, PPet imports PAnimal, since a term defined
in PAnimal is referred in PPet. The package domain in
this example ∆P is {PAnimal, PPet}. PPet extends the
ontology in PAnimal with assertions that a Dog may also
be a Pet.

3.2. Package Hierarchy

Axioms in the packages of an ontology specify the term se-
mantic structure of the ontology. However, real-world on-
tologies also call for fine-grained organizational structure
due to several reasons (see also the previous section):

• For flexible partial reuse of an ontology;

• For organization of terms and axioms in a structure dif-
ferent from the semantic structure;

• For the management of an ontology in collaborative
environments, where ontology modules are created
and maintained by different people with different lev-
els of privileges.

We allow the imposition of a hierarchical organizational
structure over the ontology in a package based ontology. A
package can be declared as a sub package of another pack-
age. The resulting ontology has associated with it, an orga-
nizational hierarchy, in addition to the semantic structure.
Formally, we define package nesting as follows:

Definition 3 (Package Nesting) A package P1 can be
nested in one and only one other package P2. This is de-
noted by P1 ∈N P2. P1 is said to be a sub package of
P2 and P2 is the super package of P1. The collection of
all package nesting relations in an ontology constitutes the
organizational hierarchy of the ontology.

Transitive nesting ∈∗
N is defined as follows:

• P1 ∈N P2 → P1 ∈∗
N P2 (or short as ∈N→∈∗

N)

• P1 ∈∗
N P2 and P2 ∈∗

N P3 → P1 ∈∗
N P3 (or short as

∈∗
N= (∈∗

N)+)

For example, we can declare that the Pet package is a sub
package of the general Animal package: PPet ∈N PAnimal,
and ‘MyPet’ package is a sub package of the ‘Pet’ package
PMyPet ∈N PPet, therefore PMyPet ∈∗

N PAnimal.

3.3. Scope Limitation Modifiers

In classical ontology languages such as OWL, all terms
and axioms are globally visible and reusable. However,
an open and collaborative environment for ontology con-
struction and sharing requires support for selective limit-
ing of term and axiom scopes to ensure localized semantics,
knowledge hiding and safe collaboration.

These considerations lead us to associating scope limitation
modifiers (SLM) with terms and axioms defined in a pack-
age. An SLM controls the visibility of the corresponding
term or axiom to entities on the web, in particular, to other

P3

protected

P1

P2

public

private

P1

P2

public

private

The ontology has three packages P1, P2, P3. P3 is nested in P2. A public term
in P1 is visible to P2, while a private term in P1 is only visible in the home package
P1.

Figure 3: Package-based Ontology

packages. For example, a term with SLM ‘public’ can be
visited from any package (see Fig. 3).

Formally, a SLM is defined as follows:

Definition 4 (SLM) The scope limitation modifier of a
term or an axiom tK in package K is a boolean function
f(p, tK), where p is a URI, the entity identified by p can
access tK iff f(p, t) = TRUE. We denote tK ∈f K.

An entity on the web can be a user (e.g.
emailto://baojie@cs.iastate.edu), a web program (e.g.
http://www.foo.com/query.jsp), or another package (e.g.
http://boole.cs.iastate.edu/animal/pet.powl)

In particular, we define three default SLMs as follows:

• ∀p, public(p, t) := TRUE, means t is accessible ev-
erywhere.

• ∀p, protected(p, t) := (t ∈ p) ∨ (p ∈∗
N HP(t)),

means t is visible to its home package and all its de-
scendant packages on the organizational hierarchy.

• ∀p, private(p, t) := (t ∈ p), means t is visible only to
its home package.

We can also define other types of SLMs as needed. For ex-
ample, ∀p, friend(p, t) := (p = P1) will grant the access
of t to a particular package P1. An SLM can also be a com-
plex function such as:

∀p, f(p, t) := (p = HP(t)) ∨ (p LIKE
′∗CS.IASTATE.EDU′)

where LIKE is a string comparison operator. It guarantees
the access of t to its home package and any entity in the
cs.iastate.edu domain.

When SLMs are also included in the package definition, a
package is defined as (∆S ,∆A, SLMP), where for any t ∈
∆S ∪ ∆A, there is one and only one SLM ∈ SLMP for t.

For example, the general animal package can be refined as:

PAnimal

public:
terms: Dog,Carnivore,Animal
axioms:

(1a) Carnivore v Animal
(1b) Carnivore v ∀eats.Animal

protected:
terms: Carnivora, CanisFamiliaris
axioms:

(1c) Carnivora ≡ Carnivore
(1d) Dog ≡ CanisFamiliaris

private:
terms: Canis
axioms:

(1e) Canis v Carnivora
(1f) CanisFamiliaris v Canis

The scope limitation is designed to support both semantic
encapsulation and knowledge hiding. The public terms and
axioms represent high abstraction level knowledge, while
the fine-grained knowledge is hidden. Furthermore, since
the knowledge about Canis is not intended to be further
refined by any sub packages (such as the PPet package), it
is available only locally.

A scope limitation modifier has several features:

• It aims at partial hiding of semantics. The hiding is
partial not only because there is only a selected part of
a module that is hidden, but also because the hidden
semantics may still be used in inference, as long as the
hidden part is not exposed. For example, Canis v
Carnivore is hidden, but a user may be able to infer
indirectly that Dog v Animal;

• It enables ontology polymorphism, in the sense that
one ontology can be browsed and queried differently
from different points of view. For example, the same
‘Animal’ ontology exposes different sets of terms and
axioms to the public domain and to the private domain
(e.g., paid users). Therefore, the same ontology can be
partially reused in different ways by different people.

The aforementioned definitions of package-based ontology
are summarized in Table 1. Here, ∆S is the ontology term
domain, which is the set of all possible names in the ontol-
ogy; ∆A is the set of all possible axiom identifiers; ∆P is
the domain of all possible packages.

4. SEMANTICS OF PACKAGE-BASED ON-
TOLOGY

In the previous section, we have defined the language ele-
ments of package-based ontology. This section will further

investigate the semantics of package-based ontology, in par-
ticular, P-DL.

4.1. Local Interpretation

DL languages have model theoretical interpretation [1] for
their semantics:

Definition 5 (Interpretation) An interpretation of a de-
scription logic is a pair I =< 4I , (.)I >, where 4I con-
tains a nonempty set of objects and (.)I is a function that
maps each class name C to CI ⊆ 4I; each role name P
to P I ⊆ 4I ×4I , and each instance name i to iI ∈ 4I .

In other words, an interpretation of a DL ontology con-
structs a world consisting of a set of objects, and maps each
term in the ontology into an object (individual), a set of ob-
jects (concept) or a binary relation of objects (role). For
example, consider a very simple description logic in which
there are only concept inclusions and atomic roles, as be-
low:

Dog v Animal
role: eats
individual: Dog(goofy)

This description logic ontology could have an interpreta-
tion I, such that ∆I = {a, b}, (.)I maps concept Dog to
DogI = {a} ⊆ ∆I , Animal to AnimalI = {a, b} ⊆ ∆I ,
role eats to eatsI = {(a, b)} ⊆ ∆I × ∆I , and indi-
vidual goofy to goofyI = a ∈ ∆I . In this interpre-
tation, DogI ⊆ AnimalI , therefore the inclusion axiom
Dog v Animal in the ontology is satisfied.

For each package in a P-DL, we can define the local inter-
pretation of the package.

Definition 6 (Local Interpretation) A local interpretation
of a package P is a pair IP =< ∆IP , (.)IP >, where
4IP the set of all objects and (.)IP is a function that maps
each concept name C to CIP ⊆ ∆IP ; each role name
R to RIP ⊆ ∆IP × 4IP , and each individual name i to
iIP ∈ ∆IP .

Note that in this definition, the term (concept, role or indi-
vidual) name can be either defined in P or is a foreign term
defined in other packages. For example, given the ‘Animal’
ontology (page 4) with packages PAnimal and PPet, we
have possible local interpretations for the two packages as
in Fig. 4 (a) and (b). Foreign terms are represented by dot-
ted lines in the figure.

Some characteristics of these mappings are worth noting:

Table 1: Syntax and Semantics of Package-based Ontology
Constructor Syntax Semantics
package P P ∈ ∆P

membership t ∈ P or member(t, P) member ⊆ (∆S ∪ ∆A) × ∆P

home package HP(t) HP(t) = P , where t ∈ P
nesting ∈N ∈N∈ ∆P × ∆P

transitive nesting ∈∗
N ∈N→∈∗

N , ∈∗
N= (∈∗

N)+

SLM SLM(p, t) p can access t ∈ (∆S ∪ ∆A) iff SLM(p,t)=TRUE
public(p, t) ∀p, public(p, t) := TRUE
private(p, t) ∀p, private(p, t) := (t ∈ p)

protected(p, t) ∀p, protected(p, t) := (t ∈ p) or (p ∈∗
N HP(t))

AnimalI

CarnivoreI

DogI

goofyI

fooI

DogI

PetIPetDogI

plutoI

AnimalI

CarnivoreI

DogI

I

PetDogI

goofyI

PetI

eatsI

eatsI

(a) (b)

(c)

1

1

1

1
2

2

2

2

2

2

g

g

g

g

g

g

g

DogFoodI2

fooIg

DogFoodIg

AnimalI2

I1 I2

Ig

Figure 4: Local and Global Interpretation of the Animal
Ontology

(a) I1 is a local interpretation of PAnimal;
(b) I2 is a local interpretation of PPet;

(c) Ig is a global interpretation of the ontology consisting of the two packages.

• Since a local interpretation explains everything in the
local domain, the semantics of foreign terms are not
‘imported’ into the local domain. For example, Dog
and Animal have interpretations in both I1 and I2.
While in the domain of I1 (PAnimal), DogI1 ⊆
AnimalI1 must be true, it is not required from the lo-
cal point of view of I2 (PPet). Therefore, the seman-
tics of PAnimal is not imported into PPet for local
interpretations.

• The same term can be interpreted differently in
two packages. For example, the two interpretations
DogI1 = {goofy} and DogI2 = {pluto} are not
necessarily identical; they may differ with respect to
the individual names or even numbers of individuals.

We assume that a package always has a local interpreta-
tion, since local consistency is a natural and necessary re-
quirement for web ontologies. Indeed, if local consistency
cannot be guaranteed, integrity of any information that is
based on the package cannot be guaranteed, making such
a package useless. On the other hand, global consistency
is a much stronger requirement, and in practice, cannot be
guaranteed in light of the fact that individual ontology mod-

ules may be developed by independent groups. For exam-
ple, if the package PPet has two more axioms DogFood v
CannedFood and CannedFood v ¬Animal, no possi-
ble interpretation exists for the global ontology obtained by
combining the two packages.

4.2. Global Interpretation

A global interpretation is a possible interpretation for all
packages in an ontology. It interprets the ontology not from
the local point of view of a single package, but from the
global point of view of all packages. Formally, the global
interpretation of an ontology is defined as follows:

Definition 7 (Global Interpretation) A global interpreta-
tion of a set of packages {Pi} with local interpretations
Ii = 〈∆Ii , (.)Ii〉 , i = 1, · · ·m is Ig = 〈∆Ig , (.)Ig 〉 ,
where ∆Ig = ∪m

i=1∆
Ii and (.)Id maps each concept name

C to CIg ⊆ ∆Ig ; each role name R to RIg ⊆ ∆Ig ×∆Ig ,
and each individual name i to iIg ∈ ∆Ig .

Each Ii is called a projection of Ig. We have: (1) ∆Ii ⊆
∆Ig ; and (2) for each concept or role name t, tIi ⊆ tIg

and for each individual name t, tIi = tIg . Such a relation
is denoted as (.)Ii ⊆ (.)Ig .

For example, a possible global interpretation for the ‘Ani-
mal’ ontology is given in Fig. 4 (c). The package-based
ontology is consistent if and only if a global interpretation
exists. The global interpretation is consistent with the se-
mantics from all packages that are used. When a global
interpretation exists, it corresponds to the ‘global’ point of
view of the combined ontology and each local interpreta-
tion is a proper subset of it. For example, if we define
goofyI1 = plutoI2 = goofyIg , fooI2 = fooIg , we have
∆I1 ⊆ ∆Ig , (.)I1 ⊆ (.)Ig and ∆I2 ⊆ ∆Ig , (.)I2 ⊆ (.)Ig .

4.3. Distributed Interpretation

While all packages can share the same global interpreta-
tion, they may also have different ‘distributed’ interpreta-

tions, which are integrated but local points of view over a
set of ontology modules. For example, consider the pack-
age PLivestock in the ‘Animal’ ontology containing the fol-
lowing knowledge: a domestic animal is an animal and it
will never eat another domestic animal, livestock is a type
of domestic animal, dog and horse are types of livestock.

PLivestock

Terms: DomesticAnimal, Livestock,Horse
Foreign Terms: Dog,Animal, eats ∈ Panimal

Axioms:
DomesticAnimal v Animal
DomesticAnimal v ∀eats.¬DomesticAnimal
Livestock v DomesticAnimal
Dog t Horse v Livestock

Although the three packages (PAnimal, PPet, PLivestock)
are consistent and a global interpretation exists, they still
represent different views on the domain. For example, the
satisfiability query Dogu∃eats.Dog (if a dog may possibly
eat another dog) will be answered YES in PPet, but NO in
PLivestock. Formally, a distributed interpretation is defined
as follows:

Definition 8 (Distributed Interpretation) A distributed
interpretation of a set of packages {Pi|i = 1, ...,m}
witnessed from one package Pk, 1 ≤ k ≤ m, is a pair
Id = 〈∆Id , (.)Id〉, where ∆Id is the set of all possi-
ble individuals, and for each term in (Pk ∪ I7→(Pk))∩
({Pi|i = 1, ...,m}), (.)Id maps each concept name C to
CId ⊆ ∆Id; each role name R to RId ⊆ ∆Id × ∆Id ,
and each individual name i to iId ∈ ∆Id . Pk is called the
witness of Id.

Thus, a distributed interpretation witnessed by a package P
represents the semantics of axioms in P and axioms in all
of its recursively imported packages. Note that a distributed
interpretation is different from:

• a local interpretation of P in that the later only rep-
resents semantics of local axioms in P and all foreign
term are treated only as symbols.

• a global interpretation of the entire package-based on-
tology in that the later is a model for the integrated
knowledge base of all packages, while a distributed
interpretation is a model for some (not necessarily all)
packages in the ontology. For a certain package, a dis-
tributed interpretation may exist even when the whole
ontology has no global interpretation.

The intuition behind the distinction among the three inter-
pretations can be illustrated using the US legal system:

1. Each specific act of state legislature has its own set of
rules representing the point of view (local interpreta-
tion) of the state legislature, e.g., speed limit is 65mph.

2. The laws of each state, when taken together with the
applicable federal laws, represent a distributed inter-
pretation for that particular state, and this interpreta-
tion may be different from those of other states (be-
cause of possible differences between state laws, e.g.,
differences with respect to the speed limit).

3. The consensus (the global interpretation) of laws of all
states may not exist, since different states may have
incompatible attitudes on the same issue (e.g., death
penalty).

5. RELATED WORK

5.1. Distributed Description Logics

Several distributed logic systems have been studied during
the recent years. Examples include Distributed First Order
Logic (DFOL) [10], which emphasize local semantics and
the compatibility relations among local models. Inspired
by DFOL, Borgida and Serafini [5] extend the description
logic to obtain a distributed description logic (DDL) sys-
tem. A DDL system consists of a set of distributed TBoxes
and ABoxes connected by “bridge rules”. Bridge rules are
unidirectional, thereby ensuring that there is no ”back-flow”
of information among modules connected by a bridge rule.
This framework is combined with OWL into a syntax C-
OWL [6]. Reasoning procedure is available for DDL [17].

DDL and P-DL share some similarities:

• A global ontology is composed of multiple modules in
both formalisms.

• There is no imposed universal global semantic. In-
stead, local semantics are expressed with respect to lo-
cal points of view.

• Semantic connections between modules are always di-
rectional.

However, there are also several differences between DDL
and P-DL:

• P-DL is more expressive than DDL. Bridge rules, such
as

v−→(INTO) and
w−→(ONTO) connect only atomic

concepts. For example, the DDL version of the an-
imal ontology (see page 4) will have a bridge rule
1 : Dog

w−→ 2 : PetDog. However, if a relation in-
volves both role names and concept names from dif-
ferent ontology modules, e.g. 2 : PetDog v ∃1 :

eats.2 : DogFood, this can not be expressed with
bridge rules.

• P-DL and DDL differ in the way they handle incon-
sistencies among ontology modules. DDL allows lo-
cal ontologies to be internally inconsistent and fo-
cuses on preventing propagation of local inconsisten-
cies. If a module is locally inconsistent, the entire
module is sacrificed. On the other hand, our approach
assumes that each module is locally consistent, and
discards only those axioms that are inconsistent with
other modules. Since the ontology modules are usu-
ally autonomous, it is more natural (and easier) to en-
sure local consistency.

• DDL and P-DL differ in how they handle imported se-
mantics. In DDL, directed semantic importing is done
by bridge rules, therefore there are no foreign terms in
an ontology. In P-DL, a foreign term can be directly
used by a module.

• DDL emphasizes connecting existing ontologies,
where existing modules are articulated with semantic
mapping. On the other hand, P-DL emphasizes collab-
orative ontology construction, wherein new modules
are constructed from existing modules.

• P-DL further introduces knowledge hiding for local-
ized semantics, which is missing in DDL.

5.2. Other Modular Ontology Proposals

The Modular Ontology [18] offers a way to exploit mod-
ularity in reasoning. It defines an architecture that sup-
ports local reasoning by compiling implied subsumption re-
lations. It also provides a way to maintain the semantic
integrity of an ontology when it undergoes local changes.
In the ”view-based” approach to integrating ontologies, all
external concept definitions are expressed in the form of
queries. However, A-Box is missing in the query definition,
and the mapping between modules is unidirectional making
it difficult to preserve local semantics.

Grau et al. [14] explore using E-connections to extend OWL
or SHIQ and this approach is straightforward to imple-
ment on existing tableau OWL reasoners. E-connections
are said more expressive than DDL bridge rules in that a
role can have domain and range from different modules.
However, due to its domain disjointness assumption, E-
connections can not be used for cross-ontology concept
subsumption. P-DL is strictly more expressive than E-
connections in that it supports concept subsumption, con-
junction, disjunction across ontology modules.

Serafini et al. [16] give a survey of existing ontology map-
ping languages, such as DDL and E-connections, by trans-
lating them into distributed first order logic. None of those
approaches provides scope limitation, therefore they are
limited on ontology partial reuse and avoidance of unin-
tended coupling.

5.3. Knowledge Hiding in Ontology

Fikes et al. [9] mentioned integration of modular ontolo-
gies in the Ontolingua system and restricting symbol access
to public or private. The major difference between our ap-
proach and their approach is that we use packages not only
as modular ontology units, but also in organizational hier-
archies, therefore enabling the hierarchical management of
modules in collaborative ontology building. The scope lim-
itation modifier idea is an extension of the idea of symbol
access restriction, but it is more flexible and expressive.

Efforts aimed at developing formal languages to control
ontology access scope include Extensible Access Control
Markup Language (XACML) [12] and policy languages
[7,19]. Giereth [11] studied hiding part of RDF, where sen-
sitive data in an RDF-graph is encrypted for a set of recipi-
ents, while all non-sensitive data remain publicly readable.
However, those efforts are aimed at safe access on language
or syntactic level. On the other hand, SLM in P-DL aims
at knowledge hiding on semantic level, where the hiding is
not total, but partial, i.e., hiding semantics can still be used
in safe indirect inferences.

Farkas [8] studied unwanted inferences problem in seman-
tic web data on XML, RDF or OWL level. Our approach
to SLM and concealable reasoning is a more principled for-
malism to avoid unwanted inferences and with better de-
fined localized semantics.

6. SUMMARY AND DISCUSSIONS

In this paper, we have explored package-based description
logic and its semantics. The major contributions of this pa-
per include:

• The introduction of package-based ontologies as a
framework for collaborative ontology construction,
sharing, and use.

• The introduction of scope limitation of ontology terms
to support partial knowledge hiding in knowledge shar-
ing. SLMs help avoid unintended coupling between
parts of ontologies, help ensure prevention of unin-
tended disclosure of hidden knowledge, and support
semantic encapsulation.

• The formal semantics of package-based ontology and

the differentiation between local interpretation, global
interpretation and distributed interpretation.

Our current work is focused on the problem of reasoning in
P-DL, which differs from the standard reasoning problem
in DL in the following respects:

• Reasoning in P-DL is a distributed, as opposed to be-
ing centralized. The global reasoner is built on local
reasoning services that are offered by each of the indi-
vidual packages.

• Reasoning in P-DL needs to contend with possible in-
consistencies among different ontology modules, in-
stead of always assuming a single consistent ontology.

• Reasoning in P-DL needs to accomodate the privacy
of ontology modules. If a package only exposes a part
of its knowledge base, the other ontology packages
should be prevented from reconstructing the hidden
knowledge by using the reasoning service supported
by the package in question.

Work in progress also includes the improvement to exist-
ing tools to edit package-based ontologies, such as INDUS
DAG-Editor [3].

ACKNOWLEDGMENT

This research is supported in part by grants from the Na-
tional Science Foundation (0219699) and the National In-
stitutes of Health (GM 066387) to Vasant Honavar

REFERENCES

[1] Baader, F., and W. Nutt. Basic description logics. In
F. Baader, D. Calvanese, and D. M. et.al., (Eds.), THE DE-
SCRIPTION LOGIC HANDBOOK: THEORY, IMPLEMEN-
TATION, AND APPLICATIONS, pp. 43–95. Cambridge Uni-
versity Press, 2003.

[2] Bao, J., and V. Honavar. Ontology language extensions to
support localized semantics, modular reasoning, and collabo-
rative ontology design and ontology reuse. Technical report,
TR-341, Computer Sicence, Iowa State University, 2004.

[3] Bao, J., and V. Honavar. Collaborative package-based on-
tology building and usage. In IEEE Workshop on Knowl-
edge Acquisition from Distributed, Autonomous, Semantically
Heterogeneous Data and Knowledge Sources, in ICDM2005.
2005.

[4] Berners-Lee, T., J. Hendler, and O. Lassila. The semantic
web. Scientific American, 284(5):34–43, May 2001.

[5] Borgida, A., and L. Serafini. Distributed description logics:
Directed domain correspondences in federated information
sources. In CoopIS/DOA/ODBASE, pp. 36–53, 2002.

[6] Bouquet, P., F. Giunchiglia, and F. van Harmelen. C-OWL:
Contextualizing ontologies. In Second International Semantic
Web Conference, volume 2870 of Lecture Notes in Computer
Science, pp. 164–179. Springer Verlag, 2003.

[7] Damiani, E., S. D. C. di Vimercati, C. Fugazza, and P. Sama-
rati. Extending policy languages to the semantic web. In
ICWE, pp. 330–343, 2004.

[8] Farkas, C. Web and Information Security, chapter Data Confi-
dentiality on The Semantic Web: Is There an Inference Prob-
lem? Chapter IV, pp. 73–91. Idea Group Inc, 2006.

[9] Fikes, R., A. Farquhar, and J. Rice. Tools for assembling
modular ontologies in ontolingua. In AAAI/IAAI, pp. 436–
441, 1997.

[10] Ghidini, C., and L. Serafini. Frontiers Of Combining Systems
2, Studies in Logic and Computation, chapter Distributed First
Order Logics, pp. 121–140. Research Studies Press, 1998.

[11] Giereth, M. On partial encryption of rdf-graphs. In Y. Gil,
E. Motta, V. R. Benjamins, and M. A. Musen, editors, Inter-
national Semantic Web Conference, volume 3729 of Lecture
Notes in Computer Science, pp. 308–322. Springer, 2005.

[12] Godik, S., and T. Moses. Oasis extensible access control
markup language (xacml). OASIS Committee Secification cs-
xacml-specification-1.0, November 2002, http://www.oasis-
open.org/committees/xacml/, 2002.

[13] Gomez-Perez, A., J. Angele, M. Fernandez-Lopez,
V. Christophides, A. Stutt, and Y. Sure. On-
toweb deliverable 1.3: A survey on ontology tools,
http://ontoweb.org/about/deliverables/d13 v1-0.zip/. 2002.

[14] Grau, B. C., B. Parsia, and E. Sirin. Working with multiple
ontologies on the semantic web. In International Semantic
Web Conference, pp. 620–634, 2004.

[15] Horrocks, I., P. F. Patel-Schneider, and F. van Harmelen.
From SHIQ and RDF to OWL: the making of a web ontol-
ogy language. J. Web Sem., 1(1):7–26, 2003.

[16] Serafini, L., H. Stuckenschmidt, and H. Wache. A formal
investigation of mapping language for terminological knowl-
edge. In IJCAI, pp. 576–581, 2005.

[17] Serafini, L., and A. Tamilin. Drago: Distributed reasoning
architecture for the semantic web. In ESWC, pp. 361–376,
2005.

[18] Stuckenschmidt, H., and M. Klein. Modularization of on-
tologies - wonderweb: Ontology infrastructure for the seman-
tic web. http://wonderweb.semanticweb.org/
deliverables/documents/D21.pdf, 2003.

[19] Tonti, G., J. M. Bradshaw, R. Jeffers, R. Montanari, N. Suri,
and A. Uszok. Semantic web languages for policy representa-
tion and reasoning: A comparison of kaos, rei, and ponder. In
International Semantic Web Conference, pp. 419–437, 2003.

http://wonderweb.semanticweb.org/deliverables/documents/D21.pdf
http://wonderweb.semanticweb.org/deliverables/documents/D21.pdf

	. INTRODUCTION
	. PROBLEM DESCIPTION
	. Local Semantics vs. Global Semantics
	. Partial Reuse vs. Total Reuse
	. Organizational Structure vs. Semantic Structure
	. Knowledge Hiding vs. Knowledge Sharing
	. Proposed Approach

	. PACKAGE-BASED ONTOLOGIES
	. Packages as Ontology Organization Units
	. Package Hierarchy
	. Scope Limitation Modifiers

	. SEMANTICS OF PACKAGE-BASED ONTOLOGY
	. Local Interpretation
	. Global Interpretation
	. Distributed Interpretation

	. RELATED WORK
	. Distributed Description Logics
	. Other Modular Ontology Proposals
	. Knowledge Hiding in Ontology

	. SUMMARY AND DISCUSSIONS

