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Abstract

Relational Causal Models (RCM) generalize
Causal Bayesian Networks so as to extend causal
discovery to relational domains. We provide a
novel and elegant characterization of the Markov
equivalence of RCMs under path semantics. We
introduce a novel representation of unshielded
triples that allows us to efficiently determine
whether an RCM is Markov equivalent to an-
other. Under path semantics, we provide a sound
and complete algorithm for recovering the struc-
ture of an RCM from conditional independence
queries. Our analysis also suggests ways to im-
prove the orientation recall of algorithms for
learning the structure of RCM under bridge burn-
ing semantics as well.

1 INTRODUCTION

The discovery of causal relationships from observational
and, when available, experimental data is a central prob-
lem in artificial intelligence. Of particular interest is causal
discovery in real-world settings consist of inherently inter-
related entities and the resulting data exhibit a rich re-
lational (Chen, 1976) structure. The past three decades
have seen major advances in causal discovery (Pearl, 2000;
Spirtes et al., 2000). However, the vast majority of this
work has focused on Causal Bayesian Networks (CBN),
directed graphical models that model causal relationships
between a set of random variables of interest. Such models
lack the expressive power to model causal relationships in
relational domains.

Maier et al. (2010) showed that the Directed Acyclic Prob-
abilistic Entity-Relationship model (DAPER) (Heckerman
et al., 2007) which generalizes both Probabilistic Rela-
tional Models (PRM) (Friedman et al., 1999) and plate
models (Buntine, 1994) is sufficient to represent causal-
ity in relational domains. Maier et al. (2010) proposed Re-

lational PC (RPC), a relational extension of the PC algo-
rithm (Spirtes et al., 2000) for learning the structure of Re-
lational Causal Model (RCM), which is a particular class
of DAPER, under bridge burning semantics (BBS). How-
ever, RPC is not complete, and is prone to erroneous ori-
entation of edges (Maier et al., 2013a). To overcome the
limitations of RPC, Maier et al. (2013a) introduced the Re-
lational Causal Discovery (RCD) algorithm which reduces
learning the structure of an RCM to learning the structure
of Abstract Ground Graph (AGG, Maier et al., 2013b), a
directed acyclic graph that is intended to correctly abstract
the ground instances of the RCM, and Lee and Honavar
(2016) proposed RCD-Light, a more efficient alternative
to RCD. However, all of existing algorithms for learning
RCM are provably not complete (Lee and Honavar, 2016).

Against this background, we characterize the Markov
equivalence of RCMs, an essential step in specifying a
provably complete constraint-based algorithms for learning
the structure of RCM under path semantics, a more elegant
alternative to BBS. The key idea is to show that two RCMs
are Markov equivalent if and only if their corresponding
sets of ground instances are Markov equivalent. We intro-
duce canonical unshielded triples, a novel graphical con-
struct that can be used to test the Markov equivalence of
two RCMs. We provide an efficient algorithm to enumer-
ate a subset of canonical unshielded triples of an RCM that
suffice for testing whether an RCM is Markov equivalent
to another. Finally, we provide an algorithm to construct a
completed partially-directed RCM, a unique compact rep-
resentation of the Markov equivalence class of an RCM.

The main contributions of this paper are: (i) a novel charac-
terization of Markov equivalence of RCMs, using a novel
representation of the relational counterparts of unshielded
triples and efficient identification thereof; (ii) revelation of
problematic behaviors of BBS (Maier et al., 2013a,b; Lee
and Honavar, 2015, 2016), and proposal of a viable alter-
native, namely, path semantics, which is more intuitive and
retains the desirable properties of BBS while avoiding its
drawbacks; and (iii) the first sound and complete algorithm
for learning the structure of an RCM under path semantics.
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Figure 1: An example of an RCM drawn over its underlying relational schema together with a relational skeleton, ground
graph, and class dependency graph (both bridge burning and path semantics yield the same ground graph.)

2 PRELIMINARIES

We follow the notational conventions for Causal Bayesian
Networks (Pearl, 2000; Spirtes et al., 2000) and the litera-
ture on RCM (Maier et al., 2013a; Lee and Honavar, 2015).
A graph is specified by a set of vertices and the edges
that connect them. An edge may be directed (→) or undi-
rected (−), but not both. A partially directed acyclic graph
(PDAG) includes undirected as well as directed edges but
no directed cycles. A directed acyclic graph (DAG) is a
PDAG with no undirected edges. Let G be a PDAG and
X be a vertex in G, i.e., X ∈ V (G). Then, parents of X ,
pa (G, X), are vertices that have a direct edge towards X .
Children (ch) are analogously defined. Neighbors (ne) of
X are vertices connected toX via an undirected edge while
adjacencies (adj) of X are those connected to X via an
edge either directed or undirected. A walk on a graph is an
ordered sequence of vertices where consecutive vertices in
the sequence are adjacent to each other in the graph, and a
path is a walk in which every vertex is distinct.

Relational Domain A relational domain comprises of
entities that are interdependent through relationships. The
specification of such relational domain is called a relational
schema (schema for short). A schema, denoted by S , is a tu-
ple of entity classes, relationship classes, attribute classes,
and cardinality constraints, denoted by E , R, A, and card,
respectively. For example, Employee and Product are entity
classes in a business domain (Figure 1). Develops is a re-
lationship class between them. Employee has Salary as an
attribute class. Each employee may develop multiple prod-
ucts; and each product may be developed by multiple em-
ployees. We collectively call E and R item classes. Every
item class is associated with a set of attribute classes. We
denoteA (I) a set of attribute classes associate with an item
class I . A relationship class consists of participating entity
classes. We denote E∈R if E is a participating entity class
of a relationship class R. For simplicity, we drop role indi-
cators (as in other literature on RCM), which allow partic-
ipation of an entity class in a relationship class in multiple
ways. A cardinality constraint defines how many relation-
ships an entity can participate in. Following RCM litera-
ture, card is a partial function fromR×E to {one,many}.

A relational skeleton (skeleton for short) is a particular re-
alization of a schema, which is an undirected graph where
vertices are items (i.e., instances of item classes). An edge
is defined between a relationship and an entity if the entity
participates in the relationship. We denote a skeleton by σ,
a member of all possible skeletons ΣS . We denote by σ (I)
the set of items of item class I .

2.1 RELATIONAL CAUSAL MODEL

A relational causal model (RCM) (Maier et al., 2010,
2013a) consists of a set of cause-effect relationships and
parameters where the cause and the effect are related in
the given relational schema. For example, “the success of
a product depends on the skills of employees who develop
the product” is encoded as a relational dependency, “[Prod-
uct, Develops, Employee].Skill→[Product].Success”. We
elaborate on each component of an RCM more precisely
in what follows.

A relational path is an alternating sequence of entity and
relationship classes. The relational path corresponds to a
walk (with some restrictions) in the given schema where
item classes are vertices and the participation of an en-
tity class to a relationship class is an undirected edge be-
tween them. A relational path is similar to a slot chain in
PRM (Friedman et al., 1999) and a first-order constraint
in DAPER (Heckerman et al., 2007). The first and the last
item class of a relational path is called base and terminal
item class, respectively. The path explains the relation of
the terminal item class from the perspective of the base
item class. Hence the base item class is also called the per-
spective. A relational path is canonical if it is of unit length.
A relational variable is a pair of a relational path and an at-
tribute class, which belongs to the terminal item class of
the path. For example, a relational variable P.X consists of
a path P and an attribute class X where X is an attribute
class associated with the terminal item class of P . Then, an
RCMM = (S,D,Θ) is a set of relational dependencies
D along with parameters Θ given a schema S. A relational
dependency P.Y → Q.X consists of two relational vari-
ables as an effect and its cause where the effect relational
variable is canonical, Q = [I] where X ∈ A(I), and the
base of P is I . To emphasize the use of canonical relational
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Figure 2: Schematic showing a relational schema, an RCM,
and their respective instantiations, i.e., relational skeleton,
and ground graphs and the independence relations of the
RCM entailed from the independence relations admitted by
the ground graphs.

variable, we denote a canonical relational variable with an
attribute class X by VX .

An RCM is said to be acyclic if its class dependency graph
GMA , (A, {Y →X | P.Y →VX ∈ D}) is a DAG (see
Figure 1(d)). Hence, A is a partially-ordered set where we
denote Z ≺A X if there exists a directed path from Z to
X in GMA . This implies that dependencies of the same pair
of attribute classes must have the same orientation (i.e., it
is impossible to have both P.Y → VX and Q.X → VY ).

An RCM (or its partially directed variant) is not a tradi-
tional graphical model defined over relational variables:
edges (i.e., relational dependencies) are only well-defined
between a pair of relational variables where one of them is
canonical. Hence, graphical relation (i.e., adj, ch, pa, and
ne) is well-defined only if its argument is a canonical re-
lational variable. For example, if P.Y → VX ∈ M, then
pa(M,VX) = {P.Y } but ch(M, P.Y ) is undefined if P
is not canonical.

Relational d-separation An RCM defines a set of de-
pendencies at the schema level. Given a skeleton σ, the
RCM M is realized as a ground graph GMσ (see Figure
1(c)), which is a DAG where vertices are attributes of
items in the skeleton (e.g., i.X for X ∈ A(I) of an item
i ∈ σ(I)) and each directed edge is interpreted as a direct
cause (e.g., j.Y → i.X). If the RCM is an actual model of
given relational data, then the ground graph will correspond
to the underlying causal process that governs the attribute
values of the items in the skeleton (i.e., relational data).
An edge j.Y → i.X exists if there exists a dependency
P.Y → VX ∈ D such that j is reachable (which we will
formally define in Section 3) from i along P in the skeleton.
We denote by P |σi a terminal set, a set of reachable items
from i along P in σ, which is determined according to the
chosen semantics, e.g., BBS (Maier et al., 2013a; Maier,
2014). For simplicity, we drop σ if it is either unnecessary
or can be inferred without ambiguity.

In RCM, we are especially interested in conditional inde-
pendence between relational variables. We might ask, for
example, is the success of a product independent of its de-

velopers’ salaries given their skills? This conditional inde-
pendence query can be represented as [Product].Success⊥⊥
[Product, Develops, Employee].Salary | [Product, Devel-
ops, Employee].Skill. If true, this implies that each prod-
uct’s success is independent of its developers’ salary given
their skills (in every company). Formally, an independence
query is of the form U ⊥⊥ V | W where {U, V } ∪W
is a set of relational variables of the same perspective, say
B ∈ E ∪ R. Then, the query is equivalent to checking

∀σ∈ΣS∀i∈σ(B) U |σi ⊥⊥ V |σi |W|σi , (1)

in all of the instantiations of the RCM (Maier et al., 2013b)
(see Figure 2). In other words, the existence of a relational
skeleton σ ∈ ΣS and a base item i ∈ σ(B) such that
U |σi 6⊥⊥V |σi | W|σi in a ground graph GMσ is the necessary
and sufficient condition for U 6⊥⊥ V |W.

3 RCM SEMANTICS

We proceed to describe two alternative semantics for in-
terpreting relational paths, and hence translating relational
dependencies of an RCM into causal relationships on at-
tributes of items of a skeleton. Let P be a relational path
of n item classes. We denote the length of P by |P |, the
reverse of the path P by P̃ , the `th item class of P by P `,
and the subpath of P from ` to m (inclusive) by P `:m. We
might omit the beginning or ending index if the subpath is
from the beginning (i.e., prefix) or to the end of the path
(i.e., suffix). i.e., P :m = P 1:m and P `: = P `:n.

We first introduce path semantics, where the term path ex-

actly means what path is defined in graph theory. Let i
P,σ
 j

denote the fact that items i and j are connected by a path
of items p from i to j in the given skeleton σ, where the
item class of `th item of p is the `th item class of P for
1 ≤ ` ≤ |P |. Then, under path semantics, the terminal set
P |σi is simply defined as,

P |σi , {j | i
P,σ
 j}.

Bridge burning semantics (BBS) (Maier et al., 2013b;
Maier, 2014) computes P |σi as the set of leaves of the tree
obtained by traversing the given skeleton σ along P in
breadth-first order starting at i. Formally, BBS defines P |σi
iteratively as P :1|σi , {i} and

P :m|σi , {k∈σ(Pm) ∩ ne(σ, j) | j∈P :m−1|σi } \
⋃
`<m

P :`|σi

The choice of BBS has following implications, which are
not fully considered in the existing RCM literature. First,
given a more complex relational skeleton, BBS may yield,
counterintuitively, a sparser ground graph because, as we
can clearly see in the definition, if P ′ is a proper prefix
of P and j ∈ P ′|i, then j /∈ P |i even though there ex-
ists a path of items from i to j along P . Compare Fig-
ure 3(f) with 3(c). The addition of two edges e1–r′1–e′2
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Figure 3: Comparison of ground graphs under bridge burning semantics and path semantics. Let S be a schema with
E = {E1, E2, E3}, X ∈ A(E1), Y ∈ A(E2), and R = {R1, R2} where E1, E2 ∈ R1 and E2, E3 ∈ R2 with cardinality
greater than 1. D = [E2, R2, E3, R2, E2, R1, E1].X → [E2].Y. Both semantics yield the same ground graphs (b), (c), and
(e) for the relational skeleton σ. However, the two semantics yield different ground graphs (f,), (g) forM = (S, {D̃}) for
relational skeleton σ′.

in σ′ compared to σ make e′2 ∈ [E1, R1, E2]|σ′

e1 and,
hence, e′2 /∈ [E1, R1, E2, R2, E3, R2, E2]|σ′

e1 . Second, the
two RCMs that differ only with respect to the directionality
of their dependencies may have different (undirected) adja-
cencies in their ground graphs (compare Figure 3(f) with
3(e)). This is because j ∈P |i does not entail i∈ P̃ |j under
BBS since the fact that Q is a prefix of P does not neces-
sarily imply that Q̃ is a prefix of P̃ .

In this paper, we consider RCMs under path semantics,
which is an elegant and more intuitive alternative to BBS.
Further, path semantics shares the desirable properties of
BBS (Maier, 2014): both semantics do not permit revisit-
ing the base item. However, path semantics does not suffer
from the counter-intuitive consequences of BBS and easier
to analyze as we will see in the rest of paper.

4 MARKOV EQUIVALENCE OF RCMS
UNDER PATH SEMANTICS

Recall that, in general, there can be Markov equivalent
CBNs that represent a given set of independence rela-
tions (Pearl, 2000). Because RCMs are essentially rela-
tional counterparts of CBNs, it follows that there can be
multiple RCMs that encode a given set of independence re-
lations in relational domains.

Definition 1 (Markov Equivalence of RCMs). Two RCMs
are Markov equivalent if they entail the same set of rela-
tional d-separation conditions.

The previous attempts to characterize the Markov equiv-
alence of RCMs under BBS (Maier et al., 2013a; Mara-
zopoulou et al., 2015) had relied on analyses of the Ab-
stract Ground Graph (AGG) representation of an RCM.
However, Lee and Honavar (2015) have shown that AGGs
cannot faithfully represent the independence relations en-
coded by RCMs under BBS. Consequently, the RCD algo-
rithm (Maier et al., 2013a), which relies on AGGs to learn
the structure of an RCM under BBS is not complete Lee
and Honavar (2016). Hence, we proceed to characterize the
Markov equivalence of RCMs under path semantics.
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Figure 4: An example of a DAG, its pattern, and its CPDAG
where (W,X, Y ) is an unshielded collider and (V,W,X)
and (W,X,Z) are unshielded non-colliders.

Recall that the relational d-separation U ⊥⊥ V | W in an
RCM is equivalent to U |i ⊥⊥ V |i | W|i for every base
item i in every ground graph of the RCM. Hence, a suffi-
cient condition for two RCMs to be Markov equivalent is
that, for every relational skeleton, the corresponding sets of
ground graphs of the two RCMs be Markov equivalent:

∀σ∈ΣS [GMσ ]=[GM
′

σ ] ⇒ [M]=[M′] (2)

where [M] and [G] denote the Markov equivalence class
of an RCM and a DAG G, respectively. In Section 4.1, we
will demonstrate that the converse of Equation 2 holds as
well, thereby establishing a necessary and sufficient condi-
tion for two RCMs to be Markov equivalent.

Markov equivalence of DAG First, we recall the char-
acterization of Markov equivalence of DAG (see Figure 4,
Verma and Pearl, 1990; Andersson et al., 1997). Let G be a
DAG with random variables V as vertices. LetX , Y , andZ
be in V. A triple (X,Y, Z) is an unshielded triple if bothX
and Z are adjacent to Y but X and Z are not adjacent. It is
an unshielded collider if they are oriented as X→Y ← Z
in the given DAG. Let G′ be a DAG that share the same
vertices of G. Then, G and G′ are said to be Markov equiv-
alent if they entail identical independence relations among
V. Two DAGs are Markov equivalent if and only if their
patterns are the same (Verma and Pearl, 1990). The pattern
of a DAG is a PDAG where all unshielded colliders are ori-
ented and the only oriented edges are unshielded colliders.
A Markov equivalence class is represented by a completed
PDAG (CPDAG or essential graph), a PDAG in which a
directed edge X → Y implies that every DAG in the class
shares the edge X → Y (compelled edge) while an undi-
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rected edge X − Y implies that there exist two DAGs in
the class where one has X → Y and the other has X ← Y
(reversible edge).

There are at least two systematic methods to discover the
CPDAG from a pattern: The first method uses orientation
rules (Meek, 1995) (Figure 5). The three rules (R1–R3) are
sufficient to discover CPDAG from a pattern, and an addi-
tional rule R4 can deal with background knowledge (i.e.,
known orientations other than those implied by the pat-
tern), if available. The second method exploits an algorithm
for extensibility of a PDAG (Dor and Tarsi, 1992), which
examines whether there exists a DAG which is a consis-
tent extension of the PDAG, that is, the DAG shares the
same sets of adjacencies, unshielded colliders, and oriented
edges (if any) of the PDAG. We proceed to characterize
Markov equivalence of RCM by generalizing the notions
of unshielded triples, pattern, and CPDAG from the setting
of CBNs to the (relational) setting of RCMs.

4.1 THE PATTERN OF AN RCM

We consider unshielded triples in ground graphs of an
RCM and relate them to the RCM under path semantics.
Let i.X , j.Y , and k.Z be three different vertices in the
ground graph GMσ of an RCMM for an arbitrary skeleton
σ ∈ ΣS . Then, (i.X, j.Y, k.Z) is an unshielded triple in
GMσ only if P.Y ∈ adj (M,VX) and Q.Z ∈ adj (M,VY )
where j∈P |σi and k∈Q|σj for i.X and k.Z to be connected
to j.Y . Furthermore, R.Z must not be in adj (M,VX) for
every path R such that k ∈R|σi for i.X and k.Z to be dis-
connected in GMσ . Then, we define a canonical unshielded
triple as follows:

Definition 2 (Canonical Unshielded Triple). Let M be
an RCM defined on a relational schema S. Suppose
(i.X, j.Y, k.Z) is an unshielded triple (UT) in the ground
graph GMσ for some σ ∈ ΣS . There must be two (not nec-
essarily distinct) dependencies P.Y − VX and Q.Z − VY
ofM (ignoring directions) such that j ∈ P |σi and k ∈ Q|σj .
Then, we say that (VX , P.Y, R.Z) is a canonical un-
shielded triple (CUT) ofM for every R ∈ {T | k ∈ T |σi }
where P = {T | j ∈ T |σi }.

Since whenever (i.X, j.Y, k.Z) is a UT in GMσ , so is

(k.Z, j.Y, i.X), it follows that whenever (VX ,P.Y, R.Z)
is a CUT of M, there exists a CUT (VZ ,Q.Y, R̃.X) for
some relational paths Q.

Theorem 3. Two RCMs defined over the same relational
schema are Markov equivalent if and only if their ground
graphs are Markov equivalent for every relational skeleton
of the relational schema:

[M]=[M′] ⇔ ∀σ∈ΣS [GMσ ]=[GM
′

σ ].

Proof. (If part) By the definition of relational d-separation.
(Only if part) Let [GMσ ] 6= [GM′

σ ] for some σ ∈ ΣS . Then,
the two ground graphs GMσ and GM′

σ differ either in their (i)
adjacencies or in their (ii) unshielded colliders.
Case (i): There must exist a relational dependency P.Y →
VX in M while both P.Y → VX and P̃ .X → VY are
not in M′ (or vice versa). Then, either P.Y ⊥⊥ VX |
pa(M′,VX) or P̃ .X ⊥⊥ VY | pa(M′,VY ) hold in M′
by causal Markov condition. However, both tests will be
false inM since there exists a relational skeleton σ yield-
ing i.X → j.Y in GMσ where {P} = {T | i ∈ T |σj } while
P.Y /∈ pa(M′,VX) and P̃ .X /∈ pa(M′,VY ).
Case (ii): There must exist a CUT (VX , P.Y, R.Z) corre-
sponding to an unshielded triple (i.X, j.Y, k.Z), which is
an unshielded collider in GMσ and unshielded non-collider
in GM′

σ (or vice versa). Because R.Z /∈ adj (M,VX) for
every R ∈ {T | k∈T |σi }, there must exist a separating set
S ⊆ adj(M,VX) such that VX ⊥⊥ R.Z | S in M as-
suming X 6≺A Z without loss of generality.1 By the def-
inition of relational d-separation, S must be disjoint with
P.Y . However, inM′, VX 6⊥⊥ R.Z | S since S is disjoint
from P.Y , and i.X and k.Z are d-connected with j.Y un-
blocked.

We derive the definition of the pattern of an RCM taking
into account the fact that acyclicity of an RCM is defined
at an attribute class level.

Definition 4 (Pattern of RCM). Let M = (S,D) be an
RCM and CM be all canonical unshielded colliders ofM.
We define the set of attribute class level colliders as

CMA , {(X,Y, Z) | (VX , P.Y, R.Z) ∈ CM}.

Then, the pattern of M, pattern (M), is a partially-
directed RCM (S,D′ ∪D′′) where D′ = {Q.X → VY ∈
D | (X,Y, Z) ∈ CMA } and D′′ = {P.Y −VX | P.Y →
VX ∈ D \D′}.
Lemma 5. [M]=[M′]⇔ pattern(M)=pattern(M′).

Proof. The proof follows from Theorem 3.

1Otherwise, the proof can be obtained using
(VZ , Q̃.Y, R̃.X).
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Figure 6: Illustration of key concepts used to characterize CUTs for a hypothetical RCMM with P.Y ∈ adj (M,VX)
and Q.Z ∈ adj (M,VY ) yielding a UT (i.X, j.Y, k.Z) in GMσ where P and Q correspond to item classes of p and q,
respectively.

Unlike in the case of DAGs, it is not immediately obvious
how to identify all CUTs of an RCM. Fortunately, to dis-
cover the pattern of an RCM, it suffices to identify only
one CUT from the set of CUTs for each triple of attribute
classes if exists.

4.1.1 Characterization of Canonical Unshielded
Triples for Pattern of RCM

How can we identify a subset of CUTs of an RCM that
is sufficient to identify the pattern of the RCM? One ap-
proach is to enumerate all relational skeletons, identify the
UTs in the corresponding ground graphs, and the corre-
sponding CUTs. Because such an approach is not compu-
tationally tractable, we consider the following alternative:
enumerate the skeletons that are just large enough to in-
clude a UT in the corresponding ground graph, and the
corresponding CUT. We first investigate conditions under
which a relational skeleton includes a UT in the corre-
sponding ground graph, and then provide a characteriza-
tion of CUTs in terms of such UTs, which leads to an ef-
ficient CUT enumeration algorithm whose time complex-
ity is polynomial in the number of dependencies, |D|, and
max{|P | | P.X → VY ∈ D} (the maximum length of
dependencies, which is typically bounded by a small con-
stant).

Relational Skeleton of an Unshielded Triple Each
shielded or unshielded triple of item-attributes associates
with two dependencies non-exclusively. Consider a triple
(i.X, j.Y, k.Z) in some skeleton σ ∈ ΣS . Let P.Y ∈
adj (M,VX) and Q.Z ∈ adj (M,VY ) (the two are the
same if Q.Z = P̃ .X) that admit the triple, that is, j ∈ P |σi
and k ∈ Q|σj . Let p = [i, . . . , j] and q = [j, . . . , k] be
paths of items from i to j along P and j to k along Q, re-
spectively. Since p and q must share at least one item j,
there must be a non-empty set of items shared by p and q.
We define anchors, denoted by Jp,q, to be the set of pairs
of indices of items shared by p and q:

Jp,q , {(a, b) | pa = qb}.

For example, Jp,q = {(2, 4) , (4, 8) , (6, 2) , (7, 1)} in Fig-
ure 6. Anchors permit us to construct a small relational
skeleton made of items for P and Q. Thus, we can enu-
merate the candidate anchors and verify if they are indeed
anchors by constructing a relational skeleton that conforms
to the equalities implied by Jp,q.

Characteristic Anchors We consider anchors that allow
us to efficiently enumerate a subset of CUTs that suffice
to identify the pattern of an RCM M. We identify three
special anchors (ar, br), (as, bs), and (at, bt) among the
anchors in Jp,q, and derive three relational paths Rr, Rs,
and Rt from the special anchors.

Consider the item j that is the last shared item of p and the
first shared item of qsuch that (|P | , 1) ∈ Jp,q. Since Jp,q

is not empty, there must be a last shared item for q at the
following anchor:

(ar, br) , arg max(a,b)∈Jp,q
b.

No item in p:ar and qbr: is shared other than the item at the
anchor (ar, br) and, hence, there exists a path of items from
i to k. We define Rr , P :ar on Qbr: where the symbol
“on” is a path concatenation operator (e.g., [E1, R1, E2] on
[E2, R2] = [E1, R1, E2, R2]). We can infer that Rr.Z /∈
adj (M,VX) since i.X and k.Z are disconnected. Next,
we define an anchor for the first shared item of p:

(as, bs) , arg min(a,b)∈Jp,q
a.

We characterize the given unshielded triple by considering
following two cases where (as, bs) is identical to (ar, br)
and where it is not.

Case (ar, br) = (as, bs): A path of items corresponding to
Rr is the only path from i to k that consists of items only
in p and q, and {Rr}⊆{T | k∈T |σi }.

Case (ar, br) 6= (as, bs): In a similar manner we define Rr
with (ar, br), we define Rs , P :as on Qbs:, which satis-
fies k ∈ Rs|σi . Note that Rr = Rs if P as:ar = Qbs:br .
Observing that as < ar ≤ |P | and 1 ≤ bs < br,
we infer that (|P | , 1) can be neither (ar, br) nor (as, bs).



Hence, there must exist at least three distinct anchors in
Jp,q: {(|P | , 1) , (ar, br) , (as, bs)} ⊆ Jp,q. The existence
of characteristic anchors further implies that there must be
an anchor (a, b) such that ar < a ≤ |P | and 1 ≤ b < bs.
Among such anchors, if par:a:−1 and qb:bs:−1 do not share
any items except the item at (a, b), then there exists a path
of items from i to k, p:as on qb:bs:−1 on par:a:−1 on qbr:,
where the subpath with “: −1” represents the reverse of the
subpath. There do exist such anchors:

(at, bt) , arg max(a,b)∈Jp,q,ar<a,b<bs b,

and we likewise define Rt , P :as on Qbt:bs:−1 on
P ar:at:−1 on Qbr:. We call such a set of anchors,
characteristic anchors. Given the characteristic anchors
{(ar, br) , (as, bs) , (at, bt)} ⊆ Jp,q, we retrieve three re-
lational paths, Rr, Rs, and Rt, such that {Rr, Rs, Rt} ⊆
{T | k∈T |σi }. See Figure 6(d) for characteristic anchors
(as, bs) = (2, 4), (ar, br) = (4, 8), and (at, bt) = (6, 2),
and for paths of items corresponding to Rr, Rs, and Rt.

Construction of CUTs with Characteristic Anchors
The characteristic anchors permit the construction of a
relational skeleton σ such that the corresponding ground
graph GMσ includes a UT. First, since all triples charac-
terized by a given characteristic anchor share common re-
lational path(s) from i to k, the existence of a depen-
dency Rr.Z − VX (ignoring its direction) makes the triple
“shielded” if (ar, br) = (as, bs). Similarly, we can test
“shieldedness” in the case of (ar, br) 6= (as, bs) by check-
ing adj (M,VX)∩{Rr, Rs, Rt} .Z is non-empty. Second,
we can devise an efficient and complete procedure that (vir-
tually) constructs a relational skeleton σ that includes an
unshielded triple in GMσ . Hence, characteristic anchors can
be used to identify the CUTs of an RCM without enumer-
ating the entire set of anchors Jp,q.

We proceed to outline an algorithm (see supplementary
material for details) that, given a pair of dependencies of
an RCM, constructs a CUT. The algorithm initialize can-
didate anchors Jp,q by checking pairs of indices (a, b)
where P a = Qb. Then, the algorithm picks an anchor
as (ar, br), checks whether (ar, br) can be (as, bs) and
yields a UT. Then, it outputs a CUT (VX , {P.Y, (P :ar on
Q:br:−1).Y }, Rr.Z) where the (virtually constructed) re-
lational skeleton σ′ satisfies {Rr} = {T | k ∈ T |σ′

i } and
{P, P :ar on Q:br:−1} = {T | j ∈ T |σ′

i }. If (ar, br) must
differ from (as, bs), then the algorithm explores valid can-
didates for (as, bs) and (at, bt). If all necessary conditions
are passed, then it yields a CUT from among the following:
(VX ,P.Y, Rr.Z), (VX ,P.Y, Rs.Z), and (VX ,P.Y, Rt.Z)
where σ′ satisfies {Rr, Rs, Rt} = {T | k ∈ T |σ′

i } and
P = {T | j ∈ T |σ′

i }, which consists of at most six re-
lational paths2. For example, paths of items in Figure 6(e)
correspond to three distinct relational paths of P.

2P , P :aw on Q:bw :−1, P :as on Q:bs:−1, P :as on Qbt:bs:−1 on

4.2 COMPLETED PARTIALLY-DIRECTED RCM

The pattern of an RCM is a partially-directed RCM
(PRCM) wherein each directed dependency is covered by
some CUT of the RCM. Completed PRCM (CPRCM) is a
PRCM where a dependency is directed if and only if all
valid RCMs with the same pattern have the dependency
oriented in the same direction as in the CPRCM. Since
acyclicity of RCM is defined at the attribute class level,
we orient edges on a partially-directed class dependency
graph GA (initialized with Gpattern(M)

A ) with a set of at-
tribute class level non-colliders, denoted by NMA (N for
short), derived from canonical unshielded non-colliders ob-
tained as a byproduct of discovering the pattern of an RCM.
Then, orientations from completed partially-directed CDG
are used to orient undirected dependencies in the pattern of
RCM resulting the CPRCM.

Given a canonical unshielded non-collider
(VX ,P.Y, R.Z), corresponding attribute class level
non-collider is (X,Y, Z). It is the case that X = Z, that
is, (X,Y,X) ∈ N. Then, we can orient as Y → X , which
corresponds to Relational Bivariate Orientation (RBO,
Maier et al., 2013a). For simplicity, we assume that all
edges of GA that can be oriented using RBO have been
oriented, and we exclude them (e.g., (X,Y,X)) from N.
Otherwise if X 6= Z, then X and Z may be connected
making (X,Y, Z) shielded. This is why the term “un-
shielded” is dropped in attribute class level non-colliders.
To obtain the CPRCM given the pattern of an RCM, we
provide a sound set of rules and a sound and complete
extensibility-based method. The former can be used even
when the set of non-colliders is not complete whereas the
latter requires a complete set of non-colliders. Before we
proceed, we characterize Gpattern(M)

A and NMA :

Proposition 6. Let (X,Y, Z) be an unshielded collider in
GMA , then X → Y ← Z in Gpattern(M)

A .

Proof. This follows from Lemma 4.4.1 in (Maier, 2014)
for the existence of a triple. Since there is no dependency
between X and Z, the triple must be unshielded.

Corollary 7. For every unshielded non-collider
(X,Y, Z) ∈ GMA , (X,Y, Z) ∈ NMA .

Hence, N is simply a set of non-colliders that includes all
unshielded non-colliders.

Sound Rules The four rules in Figure 5 can be used to
correctly orient the edges in a partially-directed CDG GA
(Corollary 7). We provide three additional rules that make
use of N. First, if (X,Y, Z) ∈ N and X → Y , then
Y → Z. This can be viewed as a generalization of R1 that

P at:, P :as on Qbs:br on P ar :, and P :as on Qbs:br on P ar :aw on
Q:bw :−1 with aw , at − γ + 1 and bw , bt − γ + 1 where
γ = LLRSP (P ar :at:−1, Q:bt:−1) (see Lee and Honavar, 2015).



Algorithm 1 Completing a PDAG given non-colliders.
1: procedure completes(PDAG G, non-colliders N)
2: U := {X→Y, Y →X}X−Y ∈G
3: for X→Y in U do
4: G′ := (G \ {X − Y }) ∪ {X → Y }
5: if ∀V ∈pa(G,Y )(X,Y, V ) 6∈ N and ext (G′,N) then
6: remove edges of G′ from U
7: else orient Y →X in G, remove Y →X from U

8: procedure ext(G, N)
9: H := copy (G)

10: repeat
11: for X in V (H) such that ch(H, X)=∅ do
12: if (V1, X, V2) /∈N for every V1, V2 ∈ adj (H, X)
13: orient Y →X in G for every Y ∈ne (H, X)
14: H := H \ {X}
15: break
16: else return False
17: untilH is empty
18: return True

avoids checking unshieldedness. Second, if (X,Y, Z) ∈ N
and X → Z, then Y → Z. This is similar to R4 in the
sense that Y → Z is a common orientation among possible
orientations of a non-collider that does not create a directed
cycle. Finally, we can identify a shielded collider from the
fact that there must be a sink in any undirected cycle. If
there exists an undirected cycle of length n ≥ 3 where ev-
ery subsequent triple in the cycle except one is non-collider,
then the triple that is not a non-collider must be a collider.
The preceding rules are clearly sound. However, without
further characterization of non-colliders N in a partially-
directed CDG, we cannot prove that they are complete for
learning the structure of an RCM.

Extensibility with Shielded Non-Colliders We general-
ize the algorithm for determining whether a PDAG admits
an oriented extension (PDAG extensibility) (Dor and Tarsi,
1992) to work with a set of non-colliders that may be, but
not necessarily, shielded. The original PDAG extensibility
algorithm finds a vertex without outgoing edges where all
undirected edges on the vertex can be oriented towards the
vertex (i.e., sinkable) without creating new unshielded col-
liders. If such a vertex is found, the undirected edges be-
tween it and its neighbors are oriented towards it. The pre-
ceding steps are repeated after removing the vertex from
the PDAG. The algorithm returns failure if some edges re-
main undirected in the PDAG and no sinkable vertex can
be found. The original algorithm exploits the observation
that a sinkable vertex cannot be “the middle of unshielded
non-colliders”, which we generalize to “the middle of non-
colliders N”. Because the unshieldedness of non-colliders
plays no role in the proof of correctness of the original al-
gorithm, the proof holds for the modified algorithm (Algo-
rithm 1).

Theorem 8. Let G be a PDAG. Let N be a set of non-
colliders which includes all unshielded non-colliders in G.

Then, algorithm ext correctly decides whether there exists
a DAG that is a consistent extension of G satisfying con-
straints imposed by N.

Proof. Let ce (G,N) be a set of DAGs that consistently ex-
tend G for a given set of attribute level non-colliders N.
Let N (G) = {(X,Y, Z) ∈ N | {X,Y, Z} ⊆ V(G)} be a
set of induced non-colliders. Whenever there exists a DAG
G′ ∈ ce (G,N), there must exist X , a sink of G, such that
ce (G −X, N (G −X)) is non-empty since G′ − X satis-
fies N (G −X). Thus the algorithm 1 will maximally ori-
ent the PDAG and return True.

Let G′′ be a DAG in ce (G −X, N (G −X)) and G′′′ be a
reconstructed graph G′′∪{X}∪{Y →X | Y ∈ne (G, X)}.
Then, G′′′ is in ce (G,N): (i) G′′′ is a DAG since adding
a vertex as a sink to a DAG results a DAG; and (ii)
G′′′ satisfies N (G) \ N (G −X) since, for every recon-
structed (shielded or unshielded) collider Y → X ← Z,
(Y,X,Z) /∈ N (by the definition of sinkable vertex).
Therefore, ext finds a DAG in ce (G,N) and returns True
whenever G is extensible; and returns False otherwise.

5 CAUSAL DISCOVERY ALGORITHM

We proceed to present RpCD, a sound and complete causal
discovery algorithm for RCM under path semantics under
the usual assumptions namely, causal Markov condition,
sufficiency, and faithfulness (Spirtes et al., 2000), that al-
low us to interpret every ground graph of RCM as a CBN.
We also assume access to an independence oracle that cor-
rectly answers independence queries with respect to the
RCM. We further assume, as in (Maier et al., 2013a), that
the maximum hop length of dependencies is known a pri-
ori which ensures that only a finite number of candidate
dependencies need to be considered.

RpCD (see Algorithm 2) extends the key ideas of the PC
algorithm (Spirtes et al., 2000) to the relational domain.
Phase I of RpCD identifies adjacencies (Lines 1–11) and
phase II orients the dependencies (Lines 12–23). The phase
I is nearly identical to that of RCD (Maier et al., 2013a).
Given a maximum hop threshold h, all candidate depen-
dencies are enumerated. Then, spurious dependencies are
removed through conditional independence tests. In Lines
12–23, it orients undirected dependencies through condi-
tional independence tests on CUTs. Redundant tests are
avoided by skipping (i) already known non-colliders (Line
15), (ii) already oriented edges (Line 16), and (iii) inactive
non-colliders (Line 17). At an attribute class level, edges
are oriented if forming a collider (Line 19) or forming a
non-collider having the same attribute classes on its flank-
ing elements (Line 20, RBO). All orientations that can be
inferred from the sound orientation rules (see Section 4.2)
are enforced (Line 22). Finally, Line 23 maximally-orients
partially-directed class dependency graph with a complete



Algorithm 2 RpCD
Input: S schema, O independence tester, h hop threshold
1: initialize D with candidate dependencies up to h hops.
2: initialize an undirected graph G with undirected D.
3: ` := 0
4: repeat
5: for every ordered pair (P.Y, VX) s.t. P.Y −VX ∈G do
6: for every S ⊆ ne(G,VX) \ {P.Y } s.t. |S| = ` do
7: if VX ⊥⊥ P.Y | S then
8: remove {P.Y −VX , P̃ .X−VY } from G.
9: break

10: ` := `+ 1
11: until |ne(G,VX)| − 1 < ` for every X ∈ A

12: initialize U with canonical unshielded triples from G.
13: N := ∅,H := 〈A, {X − Y | P.Y − VX ∈ G}〉
14: for every (VX ,P.Y,R.Z) ∈ U do
15: continue if (X,Y, Z)∈N or
16: {X,Z} ∩ ne(H, Y ) = ∅ or
17: {X,Z} ∩ ch(H, Y ) 6= ∅
18: if exists S⊆adj(G,VX) s.t. R.Z⊥⊥VX | S then
19: if S ∩P.Y = ∅ then orient X→Y ←Z inH
20: else if X=Z then orient Y →X inH
21: else add (X,Y, Z) to N

22: orient edges inH with sound rules with N.
23: completes (H,N)

24: return
⋃
P.Y−VX∈G

{
P.Y →VX Y → X ∈ H
P.Y −VX Y −X ∈ H

set of attribute class level non-colliders N (except the inac-
tive ones that play no role in the orientation of the edges).
RpCD outputs undirected and directed dependencies re-
flecting orientations recovered from Phase II (Line 24).

Theorem 9 (Soundness and Completeness). LetM be an
RCM whose maximum hop length of dependencies is less
than or equal to h. Given access to an independence or-
acle and h, RpCD is sound and complete for learning the
structure of the RCM under path semantics.

Proof. The proof follows from (Maier et al., 2013a) for
Phase I and, for Phase II, from the Markov equivalence
of RCMs (Theorem 3) with the completeness of (i) CUTs
for UTs, (ii) the CUT-enumerating algorithm for (non-
)colliders (CMA and NMA ), and (iii) generalized extensibility
(Theorem 8).

Causal Discovery of RCM under BBS It is easy to see
that a modification of RCD (Maier et al., 2013a) to take ad-
vantage of valid CUTs under BBS will improve the orien-
tation recall of RCD. Given the implications of BBS (Sec-
tion 3), one can check whether a CUT of an RCM under
path semantics correspond to a UT in some ground graph
of the RCM under BBS. The “valid” CUTs under BBS can
then replace UTs of AGG (Maier et al., 2013b; Lee and
Honavar, 2016) used by RCD for orientating the edges.
Note that each UT of AGG is a special case of CUT where
(ar, br) = (as, bs) with P ar: = Q:br:−1.

6 SUMMARY AND DISCUSSION

Relational causal models (RCM) offer an attractive ap-
proach to modeling causality in real world settings that are
modeled by relational domains. Previous studies of RCM
have assumed bridge burning semantics (BBS). A care-
ful examination of RCM under BBS reveals its counter-
intuitive behavior. We consider RCM under path seman-
tics which offers a viable alternative to BBS while preserv-
ing its desirable properties while avoiding its counterin-
tuitive consequences. We introduced canonical unshielded
triples, a novel graphical construct that we use to charac-
terize Markov equivalence of RCM under path semantics.
We described RpCD, a sound and complete algorithm for
recovering the structure of an RCM under path semantics
from conditional independence queries. We also suggested
ways to improve the orientation recall of algorithms for
learning the structure of RCM under BBS.

We conclude by listing some promising directions for fur-
ther research: (i) Our analysis is based on perfect in-
dependence tests. In practice, the reliability of indepen-
dence tests depends on the accuracy of parametric as-
sumption for the underlying distribution, and the quan-
tity of available data. Many methods have been devel-
oped to make the structure learning algorithm for causal
Bayesian networks (CBNs) robust to such errors including
adjacency-conservative (Lemeire et al., 2012), orientation-
conservative (Ramsey et al., 2006) and order-independent
(Colombo and Maathuis, 2014) PC algorithms. It would
be interesting to consider variants of RpCD that incorpo-
rate such approaches in the relational setting. (ii) There are
variants of CBN that relax some of its restrictive assump-
tions (Richardson and Spirtes, 2002). Similar extensions of
RCMs would be interesting to consider. (iii) It would be in-
teresting to consider methods for estimating a spillover ef-
fect in the presence of interference (Tchetgen Tchetgen and
VanderWeele, 2012) due to violation of stable unit treat-
ment variable assumption. (iv) RCM currently does not al-
low class dependency graph level cycles even if such cy-
cles are guaranteed to not introduce a cycle in any of the
ground graphs of the model. For example, a person’s traits
are inherited from those of his/her biological parents. We
can consider relaxing the acyclicity assumptions underly-
ing RCM to permit such cycles.
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