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Abstract In this paper, we describe a machine learning
approach for sequence-based prediction of protein-pro-
tein interaction sites. A support vector machine (SVM)
classifier was trained to predict whether or not a surface
residue is an interface residue (i.e., is located in the
protein-protein interaction surface), based on the iden-
tity of the target residue and its ten sequence neighbors.
Separate classifiers were trained on proteins from two
categories of complexes, antibody-antigen and protease-
inhibitor. The effectiveness of each classifier was evalu-
ated using leave-one-out (jack-knife) cross-validation.
Interface and non-interface residues were classified with
relatively high sensitivity (82.3% and 78.5%) and spec-
ificity (81.0% and 77.6%) for proteins in the antigen-
antibody and protease-inhibitor complexes, respectively.
The correlation between predicted and actual labels was
0.430 and 0.462, indicating that the method performs
substantially better than chance (zero correlation).
Combined with recently developed methods for identi-
fication of surface residues from sequence information,

this offers a promising approach to predict residues
involved in protein-protein interactions from sequence
information alone.

1 Introduction

Identification of protein-protein interaction sites and
detection of specific amino acid residues that contribute
to the specificity and strength of protein interactions is
an important problem with applications ranging from
rational drug design to analysis of metabolic and signal
transduction networks. Because the number of experi-
mentally determined structures of protein-protein com-
plexes is small, computational methods for identifying
amino acids that participate in protein-protein interac-
tions are becoming increasingly important (reviewed in
[26, 28]). This paper addresses the following question:
given the fact that a protein interacts with another
protein, can we predict which amino acids are located in
the interaction site?

Many investigators have analyzed the characteristics
of protein-protein interaction sites to gain insight into
the molecular determinants of protein recognition, and
to identify characteristics predictive of protein-protein
interfaces [4, 11, 18, 22]. In these studies, different as-
pects of interaction sites such as hydrophobicity, residue
propensities, size, shape, solvent accessibility, and resi-
due pairing preferences, have been examined. Although
each of these parameters provides some information
indicative of protein interaction sites, none of them
perfectly differentiates the interface from the rest of the
protein surface.

Based on different characteristics of known protein-
protein interaction sites, several methods have been
proposed for predicting interface residues using a com-
bination of protein sequence and structural information.
For example, based on their observation that proline
residues occur frequently near interfaces, Kini and Evans
[17] predicted potential protein-protein interaction sites
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bydetecting the presence of ‘‘proline brackets.’’Using this
strategy, they identified the interaction sites between
fibrinogen and 9E9, a monoclonal antibody which
inhibits fibrin polymerization. Building on their system-
atic patch analysis of interaction sites, Jones and Thorn-
ton [14, 15] successfully predicted interfaces in a set of 59
structures using a scoring function based on six parame-
ters: solvation potential, residues interface propensity,
hydrophobicity, planarity, protrusion, and accessible
surface area. Gallet et al. [9] identified interacting residues
using an analysis of sequence hydrophobicity based on a
method previously developed by Eisenberg et al. [6] for
detectingmembrane and surface segments of proteins. Lu
et al. [18] have developed statistical potentials for inter-
faces and used them in a structure-based multimeric
threading algorithm to assign quaternary structures and
predict protein interaction partners for proteins in the
yeast genome.

Several groups have used neural networks to predict
protein-protein interaction sites. Zhou and Shan [32]
and Fariselli et al. [7] have independently used neural
network algorithms to predict whether or not a residue is
located in an interaction site using the spatial neighbors
of the target residues as input, and achieved accuracy of
70% and 73%, respectively. Ofran and Rost [23] have
successfully predicted protein-protein interaction sites
using a neural network method based on their obser-
vations that the majority of protein-protein interaction
residues are clustered on a sequence and that the pro-
tein-protein interfaces differ from the rest of the protein
surface in residue composition.

We have recently reported that a support vector
machine (SVM) classifier can predict whether a surface
residue is located in the interaction site using the
sequence neighbors of the target residue [31]. Interface
residues were predicted with specificity of 71%, sensi-
tivity of 67%, and correlation coefficient of 0.29 on a set
of 115 proteins belonging to six different categories of
complexes: antibody-antigen; protease-inhibitor; en-
zyme complexes; large protease complexes; G-proteins,
cell cycle, signal transduction; and miscellaneous [31].
The results presented in this paper show that the SVM
classifiers perform even better when trained and tested
on proteins belonging to each category separately, sug-
gesting that the design of specialized classifiers for each
major class of known protein-protein complexes will
significantly improve sequence-based prediction of pro-
tein-protein interaction sites.

2 Methods

2.1 Protein complexes, proteins, and amino acid
residues

In our previous study [31], we extracted individual
proteins from a set of 70 protein-protein complexes used
in the study of Chakrabarti and Janin [4]. After the
removal of redundant proteins and proteins with fewer

than ten residues, we obtained a data set of 115 proteins
belonging to six different categories of complexes. The
six categories and the number of proteins in each cate-
gory are: antibody-antigen (31), protease-inhibitor (19),
enzyme complexes (14), large protease complexes (8),
G-proteins, cell cycle, signal transduction (22), and
miscellaneous (21). In the study described here, we
focused on the proteins from two categories: 19 proteins
from protease-inhibitor complexes and 31 proteins
from antibody-antigen complexes (the protein list is
available at http://www.public.iastate.edu/�chhyan/
isda2003/sup.htm). The surface areas of residues in
contact with solvent molecules (ASA) were computed
for each residue in the unbound molecule and in the
complex using the DSSP program [16]. The relative ASA
of a residue is its ASA divided by its nominal maximum
area, as defined by Rost and Sander [25]. A residue is
defined to be a surface residue (a residue on a protein
surface) if its relative ASA is at least 25% of its nominal
maximum area (the overall surface area of the residue
that can be contacted by solvent). A surface residue is
defined to be an interface residue if its calculated ASA in
the complex is less than that in the monomer by at least
1Å2 [13]. Using this method, we obtained 360 interface
residues and 832 non-interface residues from the 19
proteins from the protease-inhibitor complexes and 830
interface residues and 3370 non-interface residues from
the 31 proteins from the antibody-antigen complexes.

2.2 Support vector machine algorithm

Our study used the SVM in the Weka package from the
University of Waikato, New Zealand (http://
www.cs.waikato.ac.nz/�ml/weka/) [30]. The package
implements John C. Platt’s [24] sequential minimal
optimization (SMO) algorithm for training a support
vector classifier using scaled polynomial kernels. The
SVM learning algorithm [29] finds a linear boundary,
i.e., a hyperplane in a high-dimensional Euclidean space,
that separates the training data so that patterns of class
1 fall on one side of the hyperplane and patterns of class
)1 fall on the other side of the hyperplane. If the pat-
terns are not separable in the original n-dimensional
pattern space, a suitable non-linear kernel function is
used to implicitly map the patterns in the n-dimensional
input space into a higher (finite or even infinite)
dimensional feature space in which the patterns become
separable. SVM selects the hyperplane that maximizes
the margin of separation between the two classes from
among all separating hyperplanes. The maximum mar-
gin separating hyperplane is fully specified by a weighted
combination of the training patterns in the feature space
and a bias (threshold term). Suppose the training set
consists of a sequence of examples:

X1; y1ð Þ; X2; y2ð Þ; . . . ; Xp; yp
� �� �

;

where each Xi ¼ xi1; xi2; . . . ; xin½ � is a training sample,
and yi 2 �1; 1f g its known classification. The classifier
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constructed by the SVM learning algorithm is of the
form:

f xð Þ ¼ sign
X

i

aiyihU Xið ÞU Xð Þi � b

 !

where F (X) is the image of an n-dimensional pattern
vector X in a high-dimensional feature space induced by
the chosen kernel function; hABi denotes the dot product
between two vectors A and B; X ¼ x1; x2; . . . ; xn½ � is a
pattern to be classified; each Xi is a training sample;
yi 2 �1; 1f g the corresponding class label; ai the corre-
sponding weight determined by the SVM learning algo-
rithm; and b the threshold or bias term (also determined
by the SVM learning algorithm). Note that sign(Z)=1 if
Z £ 0 and sign(Z)=)1 if Z<0.

In this study, the SVM was trained to predict whether
or not a surface residue is in the interaction site. It is fed
with a window of 11 contiguous residues, corresponding
to the target residue and five neighboring residues on
each side. Following the approach used in a previous
study by Fariselli et al. [7], each amino acid in the 11-
residue window is represented using 20 values obtained
from the HSSP profile (http://www.cmbi.kun.nl/gv/
hssp) of the sequence. The HSSP profile is based on a
multiple alignment of the sequence and its potential
structural homologs [5]. Thus, in our experiments, each
target residue is associated with a 220-element vector.
The learning algorithm generates a classifier which
takes, as input, a 220-element vector that encodes a
target residue to be classified, and outputs a class label.

2.3 Evaluation measures for assessing
the performance of classifiers

Measures including correlation coefficient, accuracy,
sensitivity (recall), specificity (precision), and false alarm
rate, as discussed by Baldi et al. [1], are investigated to
evaluate the performance of the classifier. Let TP denote
the number of true positives-residues predicted to be
interface residues that actually are interface residues; TN
the number of true negatives-residues predicted not to be
interface residues that are, in fact, not interface residues;
FP the number of false positives-residues predicted to be
interface residues that are not, in fact, interface residues;
FN the number of false negatives-residues predicted not
to be interface residues that actually are interface resi-
dues. Let N=TP+TN+FP+FN. Sensitivity (recall),
specificity (precision), and false alarm rate were defined
for the positive (+) class as well as the negative ()) class:

Sensitivityþ ¼ TP
TPþFN ;

Sensitivity� ¼ TN
TNþFP ;

Specificityþ ¼ TP
TPþFP ;

Specificity� ¼ TN
TNþFN ;

False alarm rateþ ¼ FP
FPþTN ;

False alarm rate� ¼ FN
FNþTP :

Overall sensitivity, specificity, false alarm rate, and
correlation coefficient are calculated as follows:

Correlationcoefficient

¼ TP�TNð Þ� FP�FNð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFNð Þ TPþFPð Þ TNþFPð Þ TNþFNð Þ

p ;

Overall sensitivity¼ TPþFN

N

� �
Sensitivityþ

þ TNþFP

N

� �
Sensitivity�;

Overall specificity¼ TPþFN

N

� �
Specificityþ

þ TNþFP

N

� �
Specificity�;

Overall false alarmrate

¼ TPþFN

N

� �
False alarmrate+
� 	

þ TNþFP

N

� �
False alarmrate�ð Þ:

The sensitivity for a class is the probability of correctly
predicting an example of that class. The specificity for a
class is the probability that a positive prediction for the
class is correct. The false positive rate for a class is
the probability that an example which does not belong to
the class is classified as belonging to the class. The
accuracy is the overall probability that the prediction is
correct. The correlation coefficient is a measure of how
predictions correlate with actual data, ranging from )1 to
1; when predictions match actual data perfectly, the cor-
relation coefficient is 1; when predictions are totally
opposite with actual data, the correlation coefficient is)1.
Random predictions yield a correlation coefficient of 0.
We chose not to emphasize the traditional measure of
prediction accuracy because it is not a useful measure for
evaluating the effectiveness of a classifier when the dis-
tribution of samples over different classes is unbalanced
[1]. For instance, in the antibody-antigen category, there
are 830 interface residues and 3370 non-interface residues
in total, a predictor that always predicts a residue to be a
non-interaction residue will have an accuracy of 0.80
(80%). However, such a predictor is useless for correct
identification of interface residues.

3 Results

3.1 Classification of surface residues into interface
and non-interface residues

Leave-one-out cross-validation (jack-knife) was used to
evaluate the performance of the SVM classifier in each
category of proteins separately. For the antibody-
antigen category, 31 such jack-knife experiments were
performed. In each experiment, an SVM classifier was
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trained using a training set consisting of interface resi-
dues and non-interface residues from 30 of the 31 pro-
teins. The resulting classifier was used to classify the
surface residues from the remaining protein into inter-
face residues (i.e., the amino acids located in the inter-
action surface) and non-interface residues (i.e., residues
not in the interaction surface). Similarly, 19 jack-knife
experiments were performed for the protease-inhibitor
category. The results reported in Table 1 represent the
averages for the experiments on the antibody-antigen
and protease-inhibitor categories. Detailed results for
individual proteins are available at http://www.pub-
lic.iastate.edu/�chhyan/isda2003/sup.htm.

For proteins from the antibody-antigen complexes,
the SVM achieved a relatively high sensitivity (82.3%)
and specificity (81.0%), with a correlation coefficient of
0.430 between the predicted and actual class labels,
indicating that the method performs substantially bet-
ter than random guessing (which would correspond to
a correlation coefficient equal to zero). For proteins
from the protease-inhibitor complexes, the SVM clas-
sifiers performed with a sensitivity of 78.5% and
specificity of 77.6%, and with a correlation coefficient
of 0.462. For comparison, Table 1 also summarizes
results obtained in our previous study using an SVM
classifier trained and tested on a combined set of 115
proteins from six categories [31]. Note that the corre-
lation coefficients obtained in the current study for
antibody-antigen complexes (0.430) and protease-
inhibitor complexes (0.462), are significantly higher
than those obtained for a single classifier trained using
a combined data set of all six types of protein-protein
complexes (0.290).

3.2 Recognition of interaction sites

We also investigated the performance of the SVM clas-
sifier in terms of overall recognition of interaction sites.
This was done by examining the distribution of sensi-
tivity+ (the sensitivity for positive class, i.e., interface
residues class). The sensitivity+ value corresponds to the
percentage of interface residues that are correctly iden-
tified by the classifier.

Figure 1a shows the distribution of sensitivity+ val-
ues for the 31 experiments in the antibody-antigen cat-
egory. In 54.8% (17 of 31) of the proteins, the classifier
recognized the interaction surface by identifying at least
half of the interface residues, and, in 87.1% (27 of 31) of
the proteins, at least 20% of the interface residues were
correctly identified. Figure 1b shows the distribution of
sensitivity+ values for the 19 experiments in the prote-
ase-inhibitor category. In 63.2% (12 of 19) of the pro-
teins, the classifier recognized the interaction surface by
identifying at least half of the interface residues, and, in
84.2% (16 of 19) of the proteins, at least 20% of the
interface residues were correctly identified. Distributions
of other performance measures for the experiments are
available in supplementary materials (http://www.pub-
lic.iastate.edu/�chhyan/isda2003/sup.htm).

3.3 Evaluation of the predictions in the context
of 3D structures

To further evaluate the performance of the SVM clas-
sifier, we examined predictions in the context of the 3D
structures of heterocomplexes. In the antigen-antibody
category, in the ‘‘best’’ example (correlation coefficient
0.87, sensitivity+ 96%), 22 out of 23 interface residues
were correctly identified as such (i.e., there was only one
false negative) and five non-interface residues were
incorrectly classified as belonging to the interface (false
positives).

17
16 16

14

12

9

4

1 1

0

5

10

15

20

Range of Sensitivity+

N
u

m
b

er
 o

f 
p

ro
te

in
s

≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥

Fig. 1a, b Interaction site recognition: distribution of sensitivity+

(sensitivity for predicting interface residues) values. The bars on the
graphs illustrate the fraction of the experiments (vertical axis) that
fall into the performance categories named below the horizontal
axis. a The distribution of sensitivity+ values for 31 experiments in
the antibody-antigen category. b The distribution of sensitivity+

values for 19 experiments in the protease-inhibitor category

Table 1 Performance of the SVM classifier

Antibody-antigen
complexesa

Protease-inhibitor
complexesa

Six categories
of complexesb

Correlation
coefficient

0.430 0.462 0.290

Sensitivity 82.3% 78.5% 66.9%
Specificity 81.0% 77.6% 70.8%
False alarm
rate

41.0% 35.7% 35.9%

aThe SVM classifiers were trained and evaluated separately on
proteins from the antibody-antigen complexes and protease-
inhibitors complexes
bThe performance of the SVM trained and tested on a combined set
of 115 proteins from six different categories [31]
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Figure 2a illustrates results obtained for another
example in the antigen-antibody complex category,
murine Fab N10 bound to Staphylococcal nuclease
(SNase) [3]. Note that the predicted interface residues
are shown only for Fab N10, and not for its interaction
partner (wireframe) to avoid confusion in the figure.
The Fab N10 ‘‘target’’ protein shown in this example
ranked ninth out of 31 proteins in the antibody-antigen
category in terms of prediction performance, based on
its correlation coefficient. True positive predictions are
shown in gray. The classifier correctly identified 20
interface residues in Fab N10 (sensitivity+ 83.3%), and
failed to detect four of them (false negatives, white).
Note that several residues that were incorrectly
predicted to be interface residues (false positives, black)
are located in close proximity to the interaction site.
In this example, the SVM classifier correctly identi-
fied interface residues from all six complementarity
determining regions (CDRs) known to be involved in
epitope recognition [3].

Figure 2b, c illustrates results obtained for two pro-
teins from the protease-inhibitor complex category, the
‘‘best’’ example (correlation coefficient 0.83) and ‘‘fourth
best’’ (correlation coefficient 0.70). In the best example
(Fig. 2b), the target protein is a serine protease, bovine
a-chymotrypsin (1acb E), in complex with the leech
protease-inhibitor eglin c (1acb I; [8]). Only one interface
residue in chymotrypsin was not identified as such
(Gly59, white) and only one false positive residue (Leu
123, black) is not located near the actual interface.
Figure 2c shows results obtained for the fourth ranked

target protein in this category, porcine pancreatic elas-
tase (1fle E) in complex with the inhibitor elafin (1fle I;
[27]). In elastase, seven interface residues were not
identified (false negatives, white), but there were four
false positives (black).

4 Discussion

Protein-protein interactions play a central role in protein
function. Hence, sequence-based computational ap-
proaches for the identification of protein-protein inter-
action sites, identification of specific residues likely to
participate in protein-protein interfaces, and, more
generally, the discovery of sequence correlations of
specificity and affinity of protein-protein interactions
have major implications in a wide range of applications,
including drug design, and analysis and engineering of
metabolic and signal transduction pathways. The results
reported here demonstrate that an SVM classifier can
reliably predict interface residues and recognize protein-
protein interaction surfaces in proteins of antibody-
antigen and protease-inhibitor complexes. In this study,
interface and non-interface residues were identified with
relatively high sensitivity (82.3% and 78.5%) and spec-
ificity (81.0% and 77.6%). With this level of success,
predictions generated using this approach should be
valuable for guiding experimental investigations into the
roles of specific residues of a protein in its interaction
with other proteins. Detailed examination of the pre-
dicted interface residues in the context of the known 3D

Fig. 2a-c Interaction site
recognition: visualization of 3D
structures of representative
heterocomplexes. The target
protein in each complex is
shown in strands, with residues
of interest shown in space fill
and color-coded as follows:
gray, true positives (interface
residues identified as such by
the classifier); white, false
negatives (interface residues
missed by the classifier); black,
false positives (residues
incorrectly classified as
interface). The interaction
partner is shown in gray
wireframe. a FabN10 in the
1nsn complex. b a-
chymotrypsin in the 1acb
complex. c Elastase in the 1fle
complex. Structure diagrams
were generated using RasMol
(http://www.openrasmol.org/)
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structures of the complexes suggests that the degree of
success in predicting interface residues achieved in this
study is due to the ability of the SVM classifier to
‘‘capture’’ important sequence features in the vicinity of
the interface.

Our previous work [31] used a similar approach to
predict interaction site residues in 115 proteins
belonging to six categories (antibody-antigen; protease-
inhibitor; enzyme complexes; large protease complexes;
G-proteins, cell cycle, signal transduction; and miscel-
laneous). In each jack-knife experiment, the classifier
was trained using examples from 114 proteins and
tested on the remaining protein. The resulting classifier
performed with a specificity of 71%, sensitivity of 67%,
and with a correlation coefficient of 0.29. In contrast,
the results reported in this paper were obtained using
separate classifiers for the antibody-antigen category
and the protease-inhibitor category. The correlation
between the actual and predicted labeling of residues as
interface vs. non-interface residues in this case, 0.430
and 0.462, respectively, is substantially better than the
correlation of 0.29 obtained using a single classifier
trained on the combined data set from all six categories
of protein-protein complexes. This indicates that there
may be significant differences in sequence correlates of
protein-protein interfaces among proteins that partici-
pate in different broad categories of protein-protein
interfaces. In this context, systematic computational
exploration of such sequence features, combined with
directed experimentation with specific proteins, would
be of interest.

Because interaction sites consist of clusters of residues
on the protein surface, some false positives (black resi-
dues) in our experiments can be eliminated from con-
sideration if the structure of target protein is known. For
example, in Fig. 2b, Leu 123 is predicted to be an
interface residue. From the structure of the target pro-
tein, we can see that Leu 123 is isolated from the other
predicted interface residues. Thus, it is highly unlikely
that Leu 123 participates in the interface; Leu 123 can be
removed from the set of predicted interface residues.
Similarly, two false positives in Fig. 2c can be removed.
Therefore, the performance of the SVM classifier can be
further improved if the structure of a target protein (but
not the complex) is available. (If the structure of the
complex is available, then there is no need to predict
interface residues as they can be determined by analysis
of the structure of the complex).

Recently, Zhou et al. [32] and Fariselli et al. [7] used
neural-network-based approaches to predict interaction
sites with accuracies of 70% and 73%, respectively.
Ofran and Rost [23] also used a neural network algo-
rithm to predict interaction sites with a precision of
70% and sensitivity of 20%. It would be particularly
interesting to directly compare the results obtained in
our study and theirs. Unfortunately, such a direct
comparison is not possible due to differences in
the choice of data sets and methods for accessing
performance.

A notable difference between our study and the oth-
ers is that the only structural information we used is
knowledge of the set of surface residues of the target
proteins. Knowledge of surface topology and the geo-
metric neighbors of residues used in the other studies
were not used in our study. Several authors have
reported success in predicting surface residues from the
amino acid sequence [2, 10, 12, 19, 20, 21]. This raises
the possibility of first predicting surface residues based
on sequence information, and then using the predicted
surface residue information to predict the interaction
sites using an SVM classifier. The classifier resulting
from this combined procedure would be able to predict
interaction sites using amino acid sequence information
alone. We are also exploring the use of phylogenetic
information for this purpose. Other work in progress is
aimed at the design and implementation of a server for
the identification of protein-protein interaction sites and
interface residues from sequence information. The server
will provide classifiers that are based on all protein-
protein complexes available in the most current release
of the PDB.
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