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ABSTRACT 
 
The paper explores the use of reduced alphabet representations of protein sequences in the data-driven discovery of data-driven discovery of 
sequence motif-based decision trees for classifying protein sequences into functional families. A number of alternative representations of 
protein sequences (using a variety of reduced alphabets based on groupings of amino acids in terms of their physico -chemical properties were 
explored in addition to the 20-letter amino acid alphabet. Classifiers were constructed using motifs generated using a multiple sequence 
alignment based motif discovery tool (MEME). Results of experiments on a data set of eleven protease families show that the classification 
performance of the resulting decision trees based on several reduced alphabets (e.g., a 7-letter alphabet based on groupings of amino acids 
based on their mass and charge, a 5-letter alphabet based on a random grouping of the 20 amino acids into 5 groups) is comparable to that of 
trees based on the 20-letter amino acid alphabet. The results also show that the sequence motifs based on different alphabets capture 
regularities in different portions of the sequences. This raises the possibility that the use of different alphabets might provide different, but 
complementary insights into protein structure-function relationships. 
  
1. BACKGROUND AND INTRODUCTION 
 
Assigning putative functions to protein sequences remains one of the most challenging problems in functional genomics. Our previous work 
[Wang et al., 2001; 2002] has shown that decision trees generated from sequence motif based representation of protein sequences successfully 
perform protein function classification. The success of motif based approaches to construction of protein function classifiers raises several 
interesting questions: What makes specific motifs or combinations of motifs serve as good predictors of protein function? Can we explain 
their success in terms of specific physico-chemical properties of the amino acids involved? Can we gain some useful insights into protein 
structure -- function relationships by exploring sequence regularities that are good predictors of function?  

All data-driven knowledge acquisition techniques including the techniques for discovery of protein structure-function relationships 
outlined above have one thing in common: They search for patterns in the data that are predictive of specific classes of interest (e.g., 
functional families). The regularities that are found depend on: the choice of the data representation (e.g., representation of proteins by their 
amino acid sequences or their motif composition); knowledge representation  (e.g., rules that capture the presence or absence of combinations 
of motifs); and the criteria used to select specific regularities from among a large number of candidates [Mitchell, 1997].  Thus, it is 
interesting to explore alternative alphabets for representation of the protein sequences to be classified. 

There are several examples of the use of reduced alphabet representations of protein sequences based on alphabets that correspond 
to groupings of the 20 amino acids into categories based on specific physico-chemical properties of amino acids (e.g., hydrophobicity) in 
studies of   protein recognition and protein folding [Chan, 1999; Murphy et al., 2000], protein synthesis [Riddle et al., 1997], phylogeny 
[Naylor and Brown, 1998], sequence matching and retrieval [Smith and Smith, 1990], among others.  

Against this background, this paper explores data-driven construction of motif-based decision trees for protein function 
classification using motifs discovered from reduced alphabet representations of protein sequences. Different reduced alphabets correspond to 
groupings of the 20 amino acids into categories based on specific physico-chemical properties (e.g., hydrophobicity, charge, volume, surface 
area, solubility), or combinations of properties of amino acids or evolutionary information. 
 
2. AUTOMATED DISCOVERY OF PROTEIN FUNCTION CLASSIFIERS USING REDUCED ALPHABET PROTEIN SEQUENCE REPRESENTATIONS 
 
Data Set Used  
 
Protease families were chosen for this study because many of them are well-characterized, with known structures and functions [Barrett et al., 
1998]. The data set used in this study consisted of proteins from eleven families of proteases (S1, S2A, S2B, S2C, S3, S6, S8, S9A, S9B, S9C, 
and S10) in the MEROPS database (http://www.merops.co.uk/) [Rawlings and Barrett, 1993].  The eleven families represent a subset of serine-
type peptidases (proteases) from MEROPs and include a total of 206 proteins.  The largest family, S1, contained 66 proteins and the smallest 
family S8 contained 5 proteins The protein sequences for members of each of the eleven protease families were obtained from the SWISS-
PROT protein knowledgebase (http://www.expasy.ch/sprot/sprot-top.html) [Barioch and Apweiler, 2000]. 



 
Reduced Alphabet Representations of Protein Sequences 
 
We tested four different types of reduced alphabets, corresponding to:  
1. Groupings of amino acids based on a single physico-chemical characteristic of each amino acid (one-tuple representation) e.g., 

hydrophobicity; 
2. Groupings of amino acids based on simultaneous consideration of two amino acid characteristics  for each amino acid (two-tuple 

representation) e.g., mass and volume; 
3. Groupings defined by Murphy et al., [2000] based on a Blosum50 substitution matrix [Henikoff and Henikoff, 1992 
4. Groupings based on randomly generated partitions of the set of amino acids  
 
Amino Acid Alphabet Hydrophobicity  Charge  Volume  Mass  
A (Alanine) 
C (Cysteine) 
D (Aspartic Acid) 
E (Glutamic Acid) 
F (Phenylalanine) 
G (Glycine) 
H (Histidine) 
I (Isoleucine) 
K (Lysine) 
L (Leucine) 
M (Methionine) 
N (Asparagine) 
P (Proline) 
Q (Glutamine) 
R (Arginine) 
S (Serine) 
T (Threonine) 
V (Valine) 
W(Tryptophan) 
Y (Tyrosine) 

Hydrophobic 
Hydrophobic 
Hydrophilic 
Hydrophilic 
Hydrophobic 
Hydrophobic 
Hydrophilic 
Hydrophobic 
Hydrophilic 
Hydrophobic 
Hydrophobic 
Hydrophilic 
Hydrophobic 
Hydrophilic  
Hydrophilic 
Hydrophilic 
Hydrophilic 
Hydrophobic 
Hydrophobic 
Hydrophobic 

No Charge 
No Charge 
Negative 
Negative 
No Charge 
No Charge 
Positive 
No Charge 
Positive 
No Charge 
No Charge 
No Charge 
No Charge 
No Charge 
Positive 
No Charge 
No Charge 
No Charge 
No Charge 
No Charge 

Small 
Medium 
Medium 
Medium-Large 
Large 
Small 
Medium-Large 
Medium-Large 
Medium-Large 
Medium-Large 
Medium-Large 
Medium 
Medium 
Medium-Large 
Medium-Large 
Small 
Medium 
Medium-Large 
Large 
Large 

Small 
Medium 
Medium-Large 
Medium-Large 
Large 
Small 
Medium-Large 
Medium-Large 
Medium-Large 
Medium-Large 
Medium-Large 
Medium-Large 
Medium 
Medium-Large 
Large 
Medium 
Medium 
Medium 
Large 
Large 

  
Table 1:  A table of physico-chemical properties of amino acids [Kyte and Doolittle; 1982, Taylor 1986; Zamyatin, 1972; Lide, 2001] used to 
generate reduced alphabets. 
 
An one-tuple representation is a many-to-one mapping of amino acids to a new alphabet corresponding to a single amino acid characteristic.  
Physico-chemical properties of amino acids (e.g., hydrophobicity, charge, volume, mass, surface area, solubility) are often used as the basis 
for generating reduced alphabets [Taylor 1986]. To generate a one-tuple representation based on these properties, we must assign each amino 
acid a discrete value for the property chosen. A simple way to do this is to cluster the amino acids based on their (continuous) values for that 
property.  For example, amino acids can be divided into two groups on the basis of their hydrophobicity (hydrophobic and hydrophilic) or 
four groups on the basis of mass (small, medium, medium large, and large). To create the new representation, each amino acid is mapped to 
its corresponding value for the chosen property.  For simplicity, we represented each amino acid in the “hydrophobic” group with the letter R 
(the single letter code for Arginine, the most hydrophobic amino acid) and each amino acid in the “hydrophilic” group with the letter H (for 
Histidine, the most hydrophilic amino acid). Thus, for hydrophobicity, the 20-letter amino acid alphabet was replaced with a new 2-letter 
alphabet {H,R} for representing protein sequences. For grouping the amino acids based on one-tuple physico-chemical properties, we 
considered four properties:  hydrophobicity, charge, volume, and mass.  Table 1 shows the one-tuple physico-chemical property assignments 
for each of the 20 naturally occurring amino acids. Amino acids were divided into two groups on the basis of hydrophobility [Kyte and 
Doolittle,1982], forming a new two-letter alphabet {H,R}.  Three groups were generated on the basis of charge [Taylor, 1986]:  positively 
charged, negatively charged, and uncharged, creating a three letter alphabet {P,N,U}.  Volume [Zamyatin, 1972] and mass [Lide, 2001] were 
each mapped to four discrete values: small, medium, medium large, and large, creating four letter alphabet {S, M, A , L} based on these 
properties.  The discrete values were determined by clustering [Sokal and Michener, 1958].  

A two-tuple representation is a many-to-one mapping of amino acid identities to a new alphabet corresponding to two of its 
characteristics.  We used a procedure analogous to that described above to create new alphabets based on two physico-chemical properties for 
each amino acid.  For example, a new alphabet created using the properties hydrophobicity  {H,R} and mass {S,M,A,L} has eight characters 
(|H| × |M| = 2 × 4 = 8). For example, alanine has the properties of being hydrophilic and small, so it would be mapped to (R-S).   When the 
twenty amino acids are mapped according to these two properties, and alphabet of actual size seven is generated (shown in Table 2a)  because 
no amino acid is both hydrophobic and small. Sequence representations based on partitions of amino acids using combinations of values for 
any k characteristics can be generated in a similar fashion. However, when k exceeds 2, the resulting alphabets approach the original 20-letter 
amino acid alphabet.  Table 2b shows a list of the six possible two-tuple alphabets (based on the four physico-chemical properties), along with 
their sizes and compositions. 

Amino acid substitution matrices based on multiple sequence alignments from large databases are very widely used in sequence 
analysis.  The Blosum50 substitution matrix [Henikoff and Henikoff, 1992] was used to generate reduced amino acid alphabets that of sizes 
ranging from two to fifteen for protein fold recognition using global sequence alignment [Murphy et al., 2000].  Table 3 shows the Blossum50 
matrix-based amino acid groupings used in our study, which correspond to the reduced alphabets defined in the Murphy study [Murphy et al., 
2000].  



 
Amino Acid Alphabet Hydrophobicity/Mass Alphabet 
  
C (Cystine) 
S (Serine) 
T (Threonine) 

(R-M) (Hydrophobic – Medium) 
 
 

D (Aspartic Acid) 
E (Glutamic Acid) 
H (Histidine) 
K (Lysine) 
N (Asparagine) 
Q (Glutamine) 

 (R-ML) (Hydrophobic-Medium/Large) 

R (Arginine) 
Y (Tyrosine) 

 (R-L) (Hydophobic –Large) 

A (Alanine) 
G (Glycine) 

 (H-S) (Hydrophilic – Small) 

P (Proline) 
V (Valine) 

 (H-M) (Hydrophilic – Medium) 

I (Isoleucine) 
L (Leucine) 
M (Methioine) 

 (H-ML) (Hydrophilic – Medium/Large) 

F (Phenylalanine) 
W(Tryptophan) 

 (H-L) (Hydrophilic – Large) 

 
Table 2a: Many-to-one mapping of amino acid identity to Hydrophobic/Hydrophilic – Mass Alphabet. 
 
Two-tuple Alphabet Alphabet  
Hydrophobicity – Charge 
Size = 6, Size in practice = 4 
 
Hydrophobicity – Volume 
Size = 8, Size in practice =8 
 
 
Hydrophobicity – Mass 
Size = 8, Size in practice =7 
 
 
Charge – Volume 
Size = 12, Size in practice =7 
 
 
Charge – Mass 
Size = 12, Size in practice =7 
 
 
Volume – Mass 
Size = 16, Size in practice =8 

{Hydrophobic-Positive, Hydrophobic-Negative, Hydrophobic-Uncharged, 
Hydrophilic-Positive, Hydrophilic-Negative, Hydrophilic- Uncharged}  
 
{Hydrophobic- Small, Hydrophobic-Medium, Hydrophobic-Medium/Large, 
Hydrophobic-Large, Hydrophilic-Small, Hydrophilic-Medium, Hydrophilic-
Medium/Large, Hydrophilic-Large} 
 
{Hydrophobic- Small, Hydrophobic-Medium, Hydrophobic-Medium/Large, 
Hydrophobic-Large, Hydrophilic-Small, Hydrophilic-Medium, Hydrophilic-
Medium/Large, Hydrophilic-Large} 
 
{Positive-Small, Positive-Medium, Positive-Medium/Large, Positive-Large, Negative-
Small, Negative-Medium, Negative-Medium/Large, Negative-Large, Uncharged-
Small, Uncharged-Medium, Uncharged-Medium/Large, Uncharged-Large} 
 
{Positive-Small, Positive-Medium, Positive-Medium/Large, Positive-Large, Negative-
Small, Negative-Medium, Negative-Medium/Large, Negative-Large, Uncharged-
Small, Uncharged-Medium, Uncharged-Medium/Large, Uncharged-Large} 
 
{Small- Small, Small-Medium, Small-Medium/Large, Small-Large, Medium-Small, 
Medium-Medium, Medium-Medium/Large, Medium-Large, Medium/Large-Small, 
Medium/Large-Medium, Medium/Large-Medium/Large, Medium/Large-Large, 
Large- Small, Large-Medium, Large-Medium/Large, Large-Large} 

 
Table 2b:  A table of the two-tuple alphabets and their size.  Size refers to the actual size if every two-tuple combination is used.  Size in 
practice is the size of the two-tuple combinations that actually occur in the data set.   
 
The fourth method for creating reduced alphabets is based on random partitioning of the set of 20 amino acids into a number of groups. The 
number of groups corresponds to the alphabet size. Once alphabet size (and hence number of groups in the partition) is fixed, each amino acid 
is randomly assigned to one of the groups with a probability equal to the reciprocal of the number of groups. A representative subset of the 
randomly generated reduced alphabets are shown in Table 4. 
 
Datasets based on reduced alphabet representations of the original data set were generated using each of the reduced alphabets described 
above. 
 
 
 
 
 



 Alphabet size  
Amino Acid Alphabet 15 10 8 4 2 

L (Leucine) 
V (Valine) 
I (Isoleucine) 
M (Methioine) 
C (Cystine) 
A (Alanine) 
G (Glycine) 
S (Serine) 
T (Threonine) 
P (Proline) 
F (Phenylalanine) 
Y (Tyrosine) 
W(Tryptophan) 
E (Glutamic Acid) 
D (Aspartic Acid) 
N (Asparagine) 
Q (Glutamine) 
K (Lysine) 
R (Arginine) 
H (Histidine) 

Group 1 
Group 1 
Group 1 
Group 1 
Group 2 
Group 3 
Group 4 
Group 5 
Group 6 
Group 7 
Group 8 
Group 8 
Group 9 
Group 10 
Group 11 
Group 12  
Group 13 
Group 14 
Group 14 
Group15 

Group 1 
Group 1 
Group 1 
Group 1 
Group 2 
Group 3 
Group 4 
Group 5 
Group 5 
Group 6 
Group 7 
Group 7 
Group 7 
Group 8 
Group 8 
Group 8 
Group 8 
Group 9 
Group 9 
Group 10 

Group 1 
Group 1 
Group 1 
Group 1 
Group 1 
Group 2 
Group 2 
Group 3 
Group 3 
Group 4 
Group 5 
Group 5 
Group 5 
Group 6 
Group 6 
Group 6 
Group 6 
Group 7 
Group 7 
Group 8 

Group 1 
Group 1 
Group 1 
Group 1 
Group 1 
Group 2 
Group 2 
Group 2 
Group 2 
Group 2 
Group 3 
Group 3 
Group 3 
Group 4 
Group 4 
Group 4 
Group 4 
Group 4 
Group 4 
Group 4 

Group 1 
Group 1 
Group 1 
Group 1 
Group 1 
Group 1 
Group 1 
Group 1 
Group 1 
Group 1 
Group 1 
Group 1 
Group 1 
Group 2 
Group 2 
Group 2 
Group 2 
Group 2 
Group 2 
Group 2 

 
Table 3:  Reduced alphabets of Murphy et al., 2000, based on Blosum50 substitution matrix [Henikoff and Henikoff, 1992]. 
 
Motif-based Representation of Protein Sequences  
 
A majority of algorithms for data-driven induction of pattern classifiers represent instances to be classified using a fixed set of attributes. 
Hence, we first map each protein sequence into a corresponding attribute-based representation. We represent protein sequences using a 
suitable vocabulary of sequence motifs [Wang et al., 2001a; Wang  et al., 2001b]. We encode each sequence as an N-bit binary pattern where 
the ith bit is 1 if the corresponding motif is present in the sequence; otherwise the corresponding bit is 0.  Each N-bit sequence is associated 
with a label  which identifies the functional family of the sequence (if known). A data set is simply a collection of N-bit binary patterns, each 
of which has associated with it a label that identifies the function of the corresponding protein. In this study, the set of sequence motifs (the 
vocabulary) was obtained by running MEME – a multiple alignment based motif discovery program [Bailey, et.al., 1998] on sequence data for 
each of the peptidase families. The MAST (Motif Alignment and Search Tool) program was used to determine the motif composition of a 
protein sequence. Several perl scripts were used to transform the MAST output into the data format that can be used by the C4.5 program 
[Quinlan, 1992] for construction of decision trees for assigning protein sequences to the corresponding families.   
 

Alphabet Size Mappings Mean 
Error 

 
Random 2a 
Random 2e 
Random 3a 
Random 3d 
Random 4a 
Random 4e 
Random 5a 
Random 5e 
Random 6a 
Random 6c 
Random 7a 
Random 7e 
Random 8a 
Random 8b 
Random 9a 
Random 9c 
Random 10a 
Random 10e 

 
2 

   2 
 3 

   3 
4 
4 
5 

   5 
6 
6 
7 
7 
8 
8 
9 
9 

10 
10 

 
{P,T,V,E,H,I,K,Q,R,F,W,Y} ; {A,G,S,C,D,N,L,M} 
{G,I,Q,H,D,N,R,A,F,C} ; {T,K,S,P,M,V,W,L,Y,E} 

{T,D,N,L,W} ;  {C,V,E,H,I,K,M,F,Y} ; {A,G,S,P,Q,R}  
                           {N,I,K,Q,H,D,M} ; {P,S,V,A,C,F} ; {L,Y,G,W,E,T,R} 

{G,T,H,R} ; {S,E,Q,F,Y} ; {D,N,I,K,L,M} ; {A,C,P,V,W} 
{W,Q,S,V,N,E} ; {A,P,Y,C} ; { F,I,G,L,M} ;{H,R,K,D,T} 

{H,M} ; {P,T,D,N,K,L,R,F,W} ; {A,G,S} ; {Q,Y} ; {C,V,E,I} 
{G,Q,H,S,P} ; {D,Y,R} ; {I,N,C,L,E} ; {F,K,M,V} ; {A,W,T} 

{D,N,M,R,F} ; {S,H,K} ; {A,G,V,Q,W,Y} ; {C,T} ; {P,E,I} ; {L} 
{M,Q} ; {C,T,L,W,A} ; {P,N,V} ; {H,Y,K,D,E} ; {R,F} ; {G,S,I} 

{T,V,E,I} ; {A,K,Q} ; {G,C} ; {P} ; {S,W} ; {N,H,L,M,Y} ; {D,R,F} 
{N,I,W,E} ; {P,L,G} ; {Q,T,R} ; {C,F,D} ; {M} ; {K,S,V,Y} ; {H,A} 

{W,Y,A,C} ; {V,Q,S,N} ; {F} ; {P,H,K,R,D} ; {T,I,G} ; {M} ; {E} ; {L} 
{Q,N,K} ; {H,I,M} ; {T,Y,A} ; {D} ; {W,V} ; {R,G} ; {E} ; {C,S,F,P,L} 

{T} ; {Q} ; {V,E,Y,G,N} ; {I,R,W,A} ; {C} ; {H,F} ; {P,K,M} ; {S} ; {D,L} 
{R} , {H,T} ; {G,D,L} ; {I,P} ; {Q,Y,A} ; {N,M} ; {W,F,V} ; {S} , {C,K,E} 

{I,K} ;  {N} ; {W,C} ; {G} ; {Q,A} ; {R} ; {T,V} ; {E,F,D,M} ; {P,Y,S,L} ; {H} 
{V} ; {H,D,R} ; {P,T} ; {N,S,E} ; {Q,G} ; {L} ; {M,W} ; {I,C} ; {A,F} ; {K,Y} 

 
57.08 

      62.56 
39.80 

      41.98 
 5.02 
14.24 
 4.23 
 8.41 
 8.64 
 9.73 
 8.06 
 6.88 
4.19 
8.82 
8.77 
6.89 

10.71 
5.37 

 
Table 4:  A table of the random alphabets. The size of the alphabet, groupings of amino acids that define the corresponding alphabet, the 
mean error of the decision tree classifier based on the alphabet are shown for several representative randomly generated reduced alphabets. 
Size refers to the actual number of different partitions of the twenty  letter amino acid alphabet. The reported error estimates are based on 50 
independent runs of the decision tree learning algorithm using a randomly sampled 2/3 of the data set for training and the remaining 1/3 for 
testing.  
 



 
Because different choices of alphabet result in different representations of protein sequences, and motifs are constructed from aligned 
sequences, we generated a distinct data set corresponding to each reduced alphabet. Once a data set is constructed, a subset of the data set 
(training set) can be used to train a classifier which can then be used to assign sequences to one of the several functional families represented 
in the training set.  
 
Data Driven Generation of Decision Tree Classifiers 
 
In this study, we used the C4.5 family of decision tree algorithms [Quinlan, 1992] for building protein sequence classifiers. It uses a greedy 
procedure that selects the attributes that yield the maximum information gain to recursively partition the training set.  It also uses post-pruning 
to compensate for any over fitting that may have occurred.  The decision trees were then converted into rules for further analysis. Each rule is 
of the form ``if condition then class’’ where condition checks for a combination of motifs which need to be present (or absent) to reliably 
predict the classification of the corresponding protein. 
 
3 EXPERIMENTS AND RESULTS 
 
The computational experiments were motivated by the following questions: 

• How do the protein function classifiers based on reduced alphabet representations of protein sequences compare with those based 
on the original 20-letter amino acid alphabet in terms of classification accuracy? How do the different reduced alphabet 
representations of protein sequences compare with one another? 

• Do the motifs identified by the decision tree learning algorithms correspond to more or less the same portions of the sequences in 
the data set independent of the alphabet used to represent the sequences? Or can different choices of the alphabet uncover sequence 
regularities useful for function prediction from different parts of the sequences? 

• Can different choices of alphabet for sequence representation provide different insights regarding the underlying protein structure 
function relationships? Are some reduced alphabets more natural than others in capturing sequence regularities that are predictive of 
protein function? 

 
We used the estimated error of classification (on test data not used for 
training the classifiers) as the primary performance measure to evaluate 
protein function classifiers generated using alternative alphabets for 
protein sequence representation. Estimated error of a classifier is 
computed as the percentage of instances in a test data set that are classified 
incorrectly. The error estimates were averaged over 50 independent runs 
of the algorithm, for each choice of the alphabet. Each run randomly 
selected two thirds of the instances in data for training the classifier and 
the remaining one third of the data as for testing the classifier (and 
estimating error).  The error estimates (mean and standard deviations) 
computed from 50 independent runs for each choice of alphabet are 
summarized in Table 6.  
 
Using the standard 20-letter amino acid alphabet resulted in an average 
error rate of about 5.9%. At alphabet sizes of two or three, the 
classification error is at least 5-fold higher than that of the 20-letter 
alphabet. In contrast, several alphabet choices where the alphabet size is 
greater than or equal to 4 result in fairly low error rates. For example, a 4-
letter alphabet based on volume results in an error rate of 7%.  A 7-letter 
alphabet based on charge and mass yields an error rate of approximately 
4%. Interestingly, several of the best-performing randomly generated 
alphabets (e.g., Random 8a, Random 5a) resulted in error rates 
comparable to those based on physico-chemical properties or the 
BLOSUM-50 matrix. In particular, note that several reduced alphabets 
(i.e., those based on charge-mass, Blosum-10 and Blosum-15, and some of 
the better-performing random alphabets) gave error rates that were 
compared favorably with that obtained using the 20-letter amino acid 
alphabet (5.9%). Preliminary examination of some of the best-performing 
random alphabets suggests that the corresponding amino acid groupings 
do not have an obvious relationship to the groupings based on physico-
chemical properties or the BLOSUM-50 matrix. A more thorough analysis 
of the properties shared by the amino acids is in progress. 
 

 
 
Table 6:  The size, mean error, and standard deviation for each of the different alphabets. Size refers to the actual number of different partions 
of the twenty letter amino acid alphabet.  Mean error shows the mean error over 50 individual runs of building decision trees using motifs of 
these reduced random alphabets.  Standard deviation refers to the standard deviation between the 50 individual runs. 
 

Alphabet Size Mean 
Error 

Standard 
Deviation 

Hydrophobicity 
Charge 
Volume 
Mass 
 
Hyrophobicity-Charge 
Hyrophobicity-Mass 
Charge-Volume 
Charge-Mass 
Volume-Mass 
Hyrophobicity-Volume 
 
Random 2 
Random 3 
Random 4 
Random 5 
Random 6 
Random 7 
Random 8 
Random 9 
Random 10 
 
Blosum50 2 
Blosum50 4 
Blosum50 8 
Blosum50 10 
Blosum50 15 
 
Amino Acid 

2 
3 
4 
4 
 
4 
7 
7 
7 
8 
8 
 
2 
3 
4 
5 
6 
7 
8 
9 

10 
 
2 
4 
8 

10 
15 
 

20 

43.16 
32.18 
7.18 
10.13 

 
12.03 
8.22 
7.07 
4.14 
10.7 
7.61 

 
55.34 
40.23 
10.52 
9.45 
8.60 
8.02 
7.84 
7.73 
7.59 

 
48.46 
10.06 
6.74 
4.93 
4.12 

 
5.87 

10.2 
8.21 
3.17 
4.54 

 
7.70 
2.51 
2.69 
3.91 
3.80 
2.81 

 
4.01 
3.41 
3.65 
3.76 
3.94 
2.91 
2.37 
4.32 
3.43 

 
13.4 
4.00 
3.25 
2.75 
2.46 

 
3.89 

Average  15.05 4.49 



Figure 2 shows how the error rate of the decision trees varies with alphabet size. The classification error drops rapidly as alphabet size reaches 
4 (regardless of the particular choice of the alphabet). 
 

Figure 2:  Plot of alphabet size versus error for 
different alphabet types.  The purple line shows the 
results for the random alphabets.  The pink line 
shows the results for alphabets constructed using 
biological knowledge.  The yellow line shows the 
results for the alphabets that resulted in the lowest 
error rate for each alphabet size. 
 
In light of the results presented above, it is 
interesting to examine whether different alphabet 
choices yield sequence motifs that essentially cover 
the same or different parts of the protein sequences 
in question. If the motifs picked out by the decision 
trees resulting from different choices of alphabet 
cover relatively disjoint portions of the sequences 
in question, it raises the possibility that different 
alphabets might provide different complementary 

insights into the underlying structure-function relationships. Hence, we examined the distribution of motifs that show up most often in 
decision trees for several different choices of alphabet.   
 
Figure 3 shows the 3-dimensional structure of Serine Protease 2, from the S2A family.  Motifs identified by the decision trees generated using 
3 different alphabets (the 4-letter hydrophobicity-charge, 4-letter mass, and a 4-letter random alphabet, each of which had an error rate of 
approximately 10% in classifying proteins into one of the 11 families) are shown superimposed on the structure. Note that the sequence 
motifs picked out by the decision trees with comparable error rates but based on different alphabets cover different parts of the sequence and 
correspond to different parts of the structure. 

The hydrophobiciy-charge alphabet picked a motif that extended into the core of the protein (Figure 3-a), the mass alphabet chose a 
motif that was located on the surface of the protein (Figure 3-b), and the random alphabet picked a motif that corresponds to a site that is 
distinct from the previous two (Figure 3-c). Yet each of these three decision trees correctly classified 100% of the S2A proteins (although 
their overall error rate for the 11 families was approximately 10%).  These results make sense in light of our knowledge of protein structures: 
hydrophobicity is a critical property for the core of the protein; properties such as volume and mass affect the surface shape of the protein 
which plays a critical role in protein function (since it largely determines binding and docking). This suggests that different choices of the 
alphabet can uncover different sequence regularities that are predictive of protein function based on different properties or combinations of 
physico-chemical properties of amino acids that are conserved to different degrees at different portions of the proteins. 
 

 
 

Figure 3-a    Figure 3-b   Figure 3-c 
 
Figure 3a-c:  Three different motifs from  Serine Protease 2 from the S2A family (PDB ID: 2SFA).  See 
www.cs.iastate.edu/~honavar/papers/carson-cbgi02.pdf for the color image. Red indicates the starting and end terminal positions . Yellow 
indicates the active site, starting in position 31 with a length of 6.  Blue indicates the motif.  Figure 3-a shows the motif from the 
Hydrophicity-Charge alphabet.  It starts in position 138 and has a length of 12 amino acids.  Figure 3-b shows the moitf from the Mass 
alphabet.  It starts in position 119 and has a length of 12 amino acids. Figure 3-cshows the motif from the Random 4 alphabet.  It starts in 
position 13 and has a length of 12 amino acids. 
 
3. SUMMARY AND DISCUSSION 
 
Conserved sequence motifs in protein families constitute an important source of information for understanding protein structure-function 
relationships. Reduced amino acid alphabets constructed by grouping amino acids on the basis of the values of their physico-chemical 
properties have proven useful in studies of proteins in a number of different contexts. For instance, reduced alphabets have been shown to be 
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useful in studies of protein folding and protein recognition [Chan, 1999; Murphy et al., 2000], protein design [Riddle et al., 1997], phylogeny 
[Naylor and Brown, 1998], sequence matching and retrieval [Smith and Smith, 1990], among others. Schafmeister et al. [1997] showed that 
a 108 amino acid, 4 helix bundle protein could be synthesized using a 7-letter reduced alphabet sequence. Riddle et al. [1997] showed that a 
functional β-sheet protein (the SH3 domain) can be largely encoded by a 5-letter reduced amino acid alphabet but not by a 3-letter alphabet.  
Murphy et al. [2000] estimate that foldable sequences for most proteins can be represented using a 10 or 12 letter reduced alphabet. Using 
information-theoretic arguments, Romero et al. [1999] show that the minimal alphabet size necessary for specifying globular proteins that 
occur in nature is 10. Interestingly, it is also believed that early protein evolution operated on a universe of proteins based on a relatively 
small alphabet of amino acids [Riddle et al., 1997]. The results presented in this paper demonstrate that sequence motif-based protein 
classifiers reduced alphabet representations of constructed from protein sequences can match and in some cases even outperform those 
constructed from the 20-letter amino acid representations of sequences. In particular, we find that alphabet sizes of 4 or 5 suffice for reliably 
assigning protease sequences into one of the 12 protease families.  Surprisingly, we find that on the data set used in this study, some of the 
random alphabets (based on random partitions of the 20-letter alphabet) perform at rates near those based on physico-chemical properties.  
Alphabet size, regardless of the particular choice of the alphabet, is strongly correlated with the performance of the decision tree classifier. 
Preliminary results show that different choices of the alphabet might provide different, but complementary insights into the principles that 
underlie protein-structure relationships.  
 
Some directions for future work include: 
• Exploration of additional alphabets for protein sequence representation based on properties of amino acids other than the ones examined 

in this paper.  Some obvious properties include: surface area, solubility, bulkiness, refractivity, polarity, three-dimensional structure, etc.  
In the case of continuous valued properties, it would be interesting to systematically vary the the alphabet size as well as the scheme used 
for quantization of the continuous value into discrete bins. 

• Systematic study of structure-function relationships discovered from reduced alphabet representations of protein sequences over a much 
broader set of protein families to examine the general applicability of the results reported here based on a study of 11 protease families. 

• More in-depth examination of the results, addressing questions such as: Why are certain properties more conserved at particular sites and 
not others? Why are some active regions being picked out by decision trees generated using some alphabets and not others? 

• Application of approaches similar to those used in this study to the discovery of sequence features based on different reduced alphabet 
representations of protein sequences that correspond to functionally significant 3-dimensional structural features of proteins 

• Integration of the resulting tools with visualization routines for exploratory analysis of macro-molecular structure-function relationships. 
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