
Learning classifiers from distributed, semantically heterogeneous, autonomous

data sources

by

Doina Caragea

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:
Vasant Honavar, Major Professor

Dianne Cook
Drena Dobbs

David Fernandez-Baca
Leslie Miller

Iowa State University

Ames, Iowa

2004

Copyright c© Doina Caragea, 2004. All rights reserved.

ii

Graduate College
Iowa State University

This is to certify that the doctoral dissertation of

Doina Caragea

has met the dissertation requirements of Iowa State University

Major Professor

For the Major Program

iii

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

ACKNOWLEDGMENTS . xiv

ABSTRACT . xvi

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Traditional Machine Learning Limitations . 4

1.3 Our Approach . 5

1.4 Literature Review . 8

1.4.1 Distributed Learning . 9

1.4.2 Information Integration . 16

1.4.3 Learning Classifiers from Heterogeneous Data 18

1.5 Outline . 20

2 LEARNING CLASSIFIERS FROM DATA 23

2.1 Machine Learning Systems . 23

2.2 Learning from Data . 26

2.3 Examples of Algorithms for Learning from Data 27

2.3.1 Naive Bayes Classifiers . 27

2.3.2 Decision Tree Algorithm . 30

2.3.3 Perceptron Algorithm . 31

2.3.4 Support Vector Machines and Related Large Margin Classifiers 33

2.3.5 k Nearest Neighbors Classifiers . 40

iv

2.4 Decomposition of Learning Algorithms into Information Extraction and Hy-

pothesis Generation Components . 42

2.5 Sufficient Statistics . 43

2.6 Examples of Sufficient Statistics . 47

2.6.1 Sufficient Statistics for Naive Bayes Classifiers 47

2.6.2 Sufficient Statistics for Decision Trees 47

2.6.3 Sufficient Statistics for Perceptron Algorithm 48

2.6.4 Sufficient Statistics for SVM . 50

2.6.5 Sufficient Statistics for k-NN . 51

2.7 Summary and Discussion . 51

3 LEARNING CLASSIFIERS FROM DISTRIBUTED DATA 54

3.1 Learning from Distributed Data . 54

3.2 General Strategy for Learning from Distributed Data 58

3.3 Algorithms for Learning Classifiers from Distributed Data 60

3.3.1 Learning Naive Bayes Classifiers from Distributed Data 61

3.3.2 Learning Decision Tree Classifiers from Distributed Data 68

3.3.3 Horizontally Fragmented Distributed Data 68

3.3.4 Learning Threshold Functions from Distributed Data 78

3.3.5 Learning Support Vector Machines from Distributed Data 84

3.3.6 Learning k Nearest Neighbor Classifiers from Distributed Data 92

3.4 Statistical Query Language . 99

3.4.1 Operator Definitions . 100

3.5 Summary and Discussion . 104

4 LEARNING CLASSIFIERS FROM SEMANTICALLY HETERO-

GENEOUS DATA . 106

4.1 Integration of the Data at the Semantic Level 107

4.1.1 Motivating Example . 107

4.1.2 Ontology Definition . 109

v

4.1.3 Ontology Integration . 110

4.1.4 Ontology-Extended Data Sources . 119

4.2 Ontology-Extended Query Operators . 123

4.2.1 Ontology-Extended Primitive Operators 124

4.2.2 Ontology-Extended Statistical Operators 126

4.3 Semantic Heterogeneity and Statistical Queries 127

4.4 Algorithms for Learning Classifiers from Heterogeneous Distributed Data . . . 129

4.4.1 Naive Bayes Classifiers from Heterogeneous Data 132

4.4.2 Decision Tree Induction from Heterogeneous Data 133

4.4.3 Support Vector Machines from Heterogeneous Data 133

4.4.4 Learning Threshold Functions from Heterogeneous Data 135

4.4.5 k-Nearest Neighbors Classifiers from Heterogeneous Data 135

4.5 Summary and Discussion . 136

5 SUFFICIENT STATISTICS GATHERING 139

5.1 System Architecture . 139

5.2 Central Resource Repository . 140

5.3 Query Answering Engine . 143

5.4 Query Optimization Component . 146

5.4.1 Optimization Problem Definition . 146

5.4.2 Planning Algorithm . 148

5.5 Sufficient Statistics Gathering: Example . 151

5.6 Summary and Discussion . 154

6 INDUS: A FEDERATED QUERY-CENTRIC APPROACH TO

LEARNING CLASSIFIERS FROM DISTRIBUTED HETERO-

GENEOUS AUTONOMOUS DATA SOURCES 156

6.1 Overview . 156

6.2 From Weka to AirlDM to INDUS . 158

6.3 Case Study . 161

vi

6.3.1 Data Sources . 161

6.3.2 Learning NB Classifiers from Distributed Data 162

6.3.3 Learning NB Classifiers from Heterogeneous Distributed Data 163

6.4 Summary and Discussion . 167

7 CONCLUSIONS . 169

7.1 Summary . 169

7.2 Contributions . 170

7.3 Future Work . 171

GLOSSARY . 175

INDEX . 183

BIBLIOGRAPHY . 183

vii

LIST OF TABLES

2.1 Data set D: Decide EnjoySport based on Weather Data 47

4.1 Data set D1: Weather Data collected by company C1 108

4.2 Data set D2: Weather Data collected by the company C2 108

4.3 Mappings from H1(is-a) and H2(is-a) (corresponding to the data sets

D1 and D2) to HU(is-a) found using name matching strategy 118

4.4 Mappings from H1(is-a) and H2(is-a) (corresponding to the data sets

D1 and D2, respectively) to HU(is-a) found from equality constraints . 118

6.1 Learning from distributed UCI/CENSUS-INCOME data sources . . . 163

6.2 Learning from heterogeneous UCI/ADULT data sources 167

viii

LIST OF FIGURES

1.1 Example of a scenario that calls for knowledge acquisition from au-

tonomous, distributed, semantically heterogeneous data source - dis-

covery of protein sequence-structure-function relationships using infor-

mation from PROSITE, MEROPS, SWISSPROT repositories of pro-

tein sequence, structure, and function data. O1 and O2 are two user

ontologies . 3

1.2 Learning revisited: identify sufficient statistics, gather the sufficient

statistics and generate the current algorithm output 6

1.3 Exact learning from distributed data: distribute the statistical query

among the distributed data sets and compose their answers 6

1.4 Learning from semantically heterogeneous distributed data: each data

source has an associated ontology and the user provides a global on-

tology and mappings from the local ontologies to the global ontology . 7

1.5 INDUS: INtelligent Data Understanding System 8

2.1 Learning algorithm (Up) Learning component (Down) Classification

component . 27

2.2 Naive Bayes classifier . 29

2.3 ID3 algorithm - greedy algorithm that grows the tree top-down, by

selecting the best attribute at each step (according to the information

gain). The growth of the tree stops when all the training examples are

correctly classified . 32

2.4 Linearly separable data set . 33

ix

2.5 The Perceptron algorithm . 34

2.6 Maximum margin classifier . 35

2.7 Non-linearly separable data mapped to a feature space where it be-

comes linearly separable . 37

2.8 Support Vector Machines algorithm 38

2.9 The Dual Perceptron algorithm . 39

2.10 Decision boundary induced by the 1 nearest neighbor classifier 41

2.11 The k Nearest Neighbors algorithm 42

2.12 Learning revisited: identify sufficient statistics, gather the sufficient

statistics and generate the current algorithm output 43

2.13 Naive Bayes classifiers learning as information extraction and hypoth-

esis generation: the algorithm asks a joint count statistical query for

each attribute in order to construct the classifier 48

2.14 Decision Tree learning as information extraction and hypothesis gener-

ation: for each node, the algorithm asks a joint count statistical query

and chooses the best attribute according to the count distribution . . 49

2.15 The Perceptron algorithm as information extraction and hypothesis

generation: at each iteration i + 1, the current weight wi+1(D) is up-

dated based on the refinement sufficient statistic s(D,wi(D)) 50

2.16 The SVM algorithm as information extraction and hypothesis genera-

tion: the algorithm asks for the support vectors and their associated

weights) and the weight w is computed based on this information . . 51

2.17 k-NN Algorithm as information extraction and hypothesis generation:

for each example x the algorithm asks for the k nearest neighbors

and computes the classification h(x) taking a majority vote over these

neighbors . 52

3.1 Data fragmentation: (Left) Horizontally fragmented data (Right) Ver-

tically fragmented data . 54

x

3.2 Multi relational database . 55

3.3 Exact distributed learning: distribute the statistical query among the

distributed data sets and compose their answers.(a) Eager learning (b)

Lazy learning . 59

3.4 Distributed statistics gathering: (Left) Serial (Right) Parallel 59

3.5 Learning Naive Bayes classifiers from horizontally distributed data:

the algorithm asks a joint count statistical query for each attribute in

order to construct the classifier. Each query is decomposed into sub-

queries, which are sent to the distributed data sources and the answers

to sub-queries are composed and sent back to the learning algorithm 62

3.6 Naive Bayes classifier from horizontally fragmented data 63

3.7 Naive Bayes classifier from vertically fragmented data 66

3.8 Learning Decision Tree classifiers from horizontally fragmented dis-

tributed data: for each node, the algorithm asks a joint count statis-

tical query, the query is decomposed into sub-queries and sent to the

distributed data sources, and the resulting counts are added up and

sent back to the learning algorithm. One iteration is shown 70

3.9 Decision Tree classifiers: finding the best attribute for split when data

are horizontally fragmented . 71

3.10 Decision Tree classifiers: finding the best attribute for split when data

are vertically fragmented . 75

3.11 Learning Threshold Functions from horizontally distributed data: the

algorithm asks a statistical query, the query is decomposed into sub-

queries which are subsequently sent to the distributed data sources, and

the final result is sent back to the learning algorithm. One iteration i

is shown . 79

3.12 The Perceptron algorithm when data is horizontally fragmented . . . 80

xi

3.13 Learning SVM from horizontally distributed data: the algorithm asks

a statistical query, the query is decomposed into sub-queries which are

sent to the distributed data sources, the results are composed, and the

final result is sent back to the learning algorithm 85

3.14 Naive SVM from horizontally fragmented distributed data 85

3.15 Counterexample to naive SVM from distributed data 86

3.16 Convex hull based SVM learning from horizontally fragmented dis-

tributed data . 88

3.17 Exact and efficient LSVM learning from horizontally fragmented dis-

tributed data . 91

3.18 Learning k-NN classifiers from horizontally fragmented distributed data:

the algorithm asks a statistical query, the query is decomposed into

sub-queries which are sent to the distributed data sources, results are

composed, and the final result is sent to the learning algorithm 93

3.19 Algorithm for learning k Nearest Neighbors classifiers from horizontally

fragmented distributed data . 94

3.20 Algorithm for k Nearest Neighbors classifiers from vertically fragmented

distributed data . 97

4.1 Learning from semantically heterogeneous distributed data: each data

source has an associated ontology and the user provides a user ontology

and mappings from the data source ontologies to the user ontology . . 106

4.2 The ontology (part-of and is-a hierarchies) associated with the data

set D1 . 111

4.3 The ontology (part-of and is-a hierarchies) associated with the data

set D2 . 112

4.4 User ontology OU , which represents an integration of the hierarchies

corresponding to the data sources D1 and D2 in weather domain . . . 113

xii

4.5 Algorithm for finding mappings between a set of data source hierarchies

and a user hierarchy . 116

4.6 Algorithm for checking the consistency of a set of partial injective

mappings with a set of an interoperation constraints and with the

order preservation property . 117

4.7 The AVTs corresponding to the Prec attribute in the ontologies O1,

O2 and OU , associated with the data sources D1 and D2 and a user,

respectively (after the names have been matched) 129

5.1 The architecture of a system for gathering sufficient statistics from

distributed heterogeneous autonomous data sources 140

5.2 Central resource repository: data sources, learning algorithms, itera-

tors and users registration . 141

5.3 Simple user workflow examples . 143

5.4 Internal translation of the workflows in Figure 5.3 according to the

semantic imposed by the user ontology 143

5.5 Example of RDF file for a data source (Prosite) described by name,

URI, schema and operators allowed by the data source 144

5.6 Query answering engine . 145

5.7 Query optimization (planning) algorithm 149

5.8 Operator placement algorithm . 150

5.9 (Left) User workflow Naive Bayes example (Right) User workflow in-

ternal translation . 151

5.10 The four plans found by the query optimizer for Naive Bayes example.

The operators below the dotted line are executed at the remote data

sources, and the operators above the dotted line are executed at the

central place . 153

xiii

6.1 INDUS: Intelligent Data Understanding System. Three data sources

are shown: PROSITE, MEROPS and SWISSPROT together with

their associated ontologies. Ontologies O1 and O2 are two different

user ontologies . 156

6.2 AirlDM: Data source independent learning algorithms through the

means of sufficient statistics and wrappers 159

6.3 Taxonomy for the attribute Ocupation in user (test) data. The filled

nodes represent the level of abstraction specified by the user 164

6.4 Taxonomy for the attribute Ocupation in the data set Dh
1 . The filled

nodes represent the level of abstraction determined by the user cut.

Values Priv-house-serv, Other-service, Machine-op-inspct, Farming-

fishing are over specified with respect to the user cut 165

6.5 Taxonomy for the attribute Ocupation in the data set Dh
2 . The filled

nodes represent the level of abstraction determined by the user cut.

The value (Sales+Tech-support) is underspecified with respect to the

user cut . 166

xiv

ACKNOWLEDGMENTS

I express my gratitude to my advisor Dr. Vasant Honavar for guiding the research presented

in this dissertation throughout my Ph.D. student years. He has been a constant source of

motivation and encouragement. He helped me to develop my own views and opinions about

the research I undertook. I thank him for being always accessible and for providing invaluable

feedback on my work. I also thank him for providing funding for my research and for helping

me to receive an IBM Fellowship two years in a row. Thanks for organizing the AI seminar

which brought up thoughtful discussions and helped me to broaden my views about Artificial

Intelligence. Most importantly, I thank him for his friendship and for his encouragement when

I felt confused or overwhelmed.

I give my warm thanks to Dr. Dianne Cook for introducing me to the wonderful world

of visualization, for being a close collaborator and a model for me, as well as well as a good

friend. Thanks also go to Dr. Drena Dobbs for introducing me to the world of molecular

biology and motivating me to pursue a minor in bioinformatics, and to Dr. Leslie Miller

and Dr. David Fernandez-Baca for being the first two people that I interacted with in my

first semester at Iowa State University. They both helped me overcome my fears of graduate

school. I thank everybody in my committee for fruitful interactions and for their support.

I am grateful to Adrian Silvescu for motivating me to go to graduate school, for collabo-

rating with me on several projects, for his great ideas and enthusiasm, and for being one of

my best friends ever.

Thanks to all the students who were present in the Artificial Intelligence lab at Iowa State

University while I was there. They were great colleagues and provided me with a friendly

environment to work in. Thanks to Jyotishman Pathak for closely collaborating with me on

ontology-extended data sources and ontology-extended workflow components during the last

xv

year of my Ph.D. studies. Thanks to Facundo Bromberg for interesting discussions about

multi-agent systems. Thanks to Dae-Ki Kang for letting me use his tools for generating tax-

onomies and for teaching me about AT&T graphviz. Thanks to Jun Zhang for the useful

discussions about partially specified data. Thanks to Jie Bao for discussions and insights

about ontology management. Thanks to Changui Yan and Carson Andorf for useful dis-

cussions about biological data sources. Thanks to Oksana Yakhnenko for helping with the

implementation of AirlDM. Finally, thanks to Jaime Reinoso-Castillo for the first INDUS

prototype.

It has been an honor to be part of the Computer Science Department at Iowa State

University. There are many individuals in Computer Science Department that I would like to

thank for their direct or indirect contribution to my research or education. Special thanks to

Dr. Jack Lutz for introducing me to the fascinating Kolmogorov Complexity. I thoroughly

enjoyed the two courses and the seminars I took with Dr. Lutz.

I also thank the current as well as previous staff members in Computer Science Department,

especially Linda Dutton, Pei-Lin Shi and Melanie Eckhart. Their kind and generous assistance

with various tasks was of great importance during my years at Iowa State University.

I am grateful to Dr. John Mayfield for financial support from the Graduate College and

to Sam Ellis from IBM Rochester for his assistance in obtaining the IBM graduate fellowship.

The research described in this thesis was supported in part by grants from the National

Science Foundation (NSF 0219699) and the National Institute of Health (NIH GM066387) to

Vasant Honavar.

Above all, I am fortunate to have family and friends that have provided so much sup-

port, encouragements and love during my Ph.D. years and otherwise. Thanks to my parents,

Alexandra and Paul Caragea, to my sister Cornelia Caragea and to my cousin Petruta Caragea.

Thanks to my friends Pia Sindile, Nicoleta Roman, Simona Verga, Veronica Nicolae, Calin

Anton, Liviu Badea, Mircea Neagu, Marius Vilcu, Cristina and Marcel Popescu, Petrica and

Mirela Vlad, Anna Atramentova, Laura Hamilton, Carol Hand, Barbara Gwiasda, Emiko Fu-

rukawa, Shireen Choobineh, JoAnn Kovar, Mike Collyer, and especially to Charles Archer for

helping me believe that I was able to complete this thesis.

xvi

ABSTRACT

Recent advances in computing, communications, and digital storage technologies, together

with development of high throughput data acquisition technologies have made it possible to

gather and store large volumes of data in digital form. These developments have resulted in

unprecedented opportunities for large-scale data-driven knowledge acquisition with the poten-

tial for fundamental gains in scientific understanding (e.g., characterization of macromolecular

structure-function relationships in biology) in many data-rich domains. In such applications,

the data sources of interest are typically physically distributed, semantically heterogeneous

and autonomously owned and operated, which makes it impossible to use traditional machine

learning algorithms for knowledge acquisition.

However, we observe that most of the learning algorithms use only certain statistics com-

puted from data in the process of generating the hypothesis that they output and we use this

observation to design a general strategy for transforming traditional algorithms for learning

from data into algorithms for learning from distributed data. The resulting algorithms are

provably exact in that the classifiers produced by them are identical to those obtained by the

corresponding algorithms in the centralized setting (i.e., when all of the data is available in

a central location) and they compare favorably to their centralized counterparts in terms of

time and communication complexity.

To deal with the semantical heterogeneity problem, we introduce ontology-extended data

sources and define a user perspective consisting of an ontology and a set of interoperation

constraints between data source ontologies and the user ontology. We show how these con-

straints can be used to define mappings and conversion functions needed to answer statistical

queries from semantically heterogeneous data viewed from a certain user perspective. That

is further used to extend our approach for learning from distributed data into a theoretically

xvii

sound approach to learning from semantically heterogeneous data.

The work described above contributed to the design and implementation of AirlDM, a col-

lection of data source independent machine learning algorithms through the means of sufficient

statistics and data source wrappers, and to the design of INDUS, a federated, query-centric

system for knowledge acquisition from distributed, semantically heterogeneous, autonomous

data sources.

1

1 INTRODUCTION

1.1 Motivation

Recent advances in computing, communications, and digital storage technologies, together

with development of high throughput data acquisition technologies have made it possible

to gather and store large volumes of data in digital form. For example, advances in high

throughput sequencing and other data acquisition technologies have resulted in gigabytes of

DNA, protein sequence data, and gene expression data being gathered at steadily increasing

rates in biological sciences; organizations have begun to capture and store a variety of data

about various aspects of their operations (e.g., products, customers, and transactions); com-

plex distributed systems (e.g., computer systems, communication networks, power systems)

are equipped with sensors and measurement devices that gather and store a variety of data

for use in monitoring, controlling, and improving the operation of such systems.

These developments have resulted in unprecedented opportunities for large-scale data-

driven knowledge acquisition with the potential for fundamental gains in scientific understand-

ing (e.g., characterization of macro-molecular structure-function relationships in biology) in

many data-rich domains. To exploit these opportunities scientists at different institutions

need to collaborate and share information and findings in a field or across various research

fields [Hendler, 2003]. Thus, researchers working at one level of a problem may benefit from

data or results developed for a different level of that problem or even for a different problem.

However, more often than not, it is not easy for a scientist to be able to use the information

obtained from a different scientific community. Furthermore, even scientists working on the

same problem at different institutions find it difficult to combine their results. These difficul-

ties arise because of the large volume of information that would need to be moved around or

2

because of the constraints imposed by the autonomy of the data collected by a particular in-

stitution (e.g., privacy constraints). Even in cases when data can be shared, the heterogeneity

of the data collected by different scientific communities or organizations brings several diffi-

culties. This heterogeneity could be in terms of structure (relational databases, flat files, etc.)

or content (different ontological commitments, which means different assumptions concerning

the objects that exist in the world, the properties or attributes of the objects, the possible

values of attributes, and their intended meaning) [Levy, 2000]. Thus, the current technology is

not sufficient for the need of collaborative and interdisciplinary “e-Science” [e-Science, 2001],

but fortunately, new technologies are emerging with the potential to revolutionize the ability

of scientists to do collaborative work [Hendler, 2003].

Among these, a new generation of Web technology, the Semantic Web [Berners-Lee et al.,

2001], aims to support seamless and flexible access and use of semantically heterogeneous,

networked data, knowledge, and services. Thus, the Semantic Web is supposed to improve

communication between people using differing terminologies, to extend the interoperability

of databases, and to provide new mechanisms for the support of agent-based computing in

which people and machines work more interactively, making possible a new level of interaction

among scientific communities [Hendler, 2003].

Examples of scientific domains that have started to use the Semantic Web include biological

[AMIAS, 2002], environmental [SWS, 2002] and astronomical [Szalay, 2001] domains, which are

trying to link together various heterogeneous resources. Even mathematical sciences [MONET,

2004] are exploring the use of the Semantic Web for making mathematical algorithms Web-

accessible from a variety of software packages.

The e-Science initiative in the UK [e-Science, 2001] brings together research scientists and

information technologists in an effort to make possible the Semantic Web vision in science, and

recently resulted in an initiative to unite the Semantic Web and Grid computing [Euroweb,

2002] as a step towards achieving the goals of the collaborative e-Science.

It is worth noting that the Semantic Web vision cannot be achieved without exploiting

artificial-intelligence technologies in addition to the Semantic Web [Berners-Lee et al., 2001].

Hence, there has been significant interest in Semantic Web “agents” that can answer queries

3

based on information from Web pages and heterogeneous databases and pass them to programs

for analysis [Hendler, 2003].

Against this background, this dissertation explores the problem of automated or semi-

automated data driven knowledge acquisition (discovery of features, correlations, and other

complex relationships and hypotheses that describe potentially interesting regularities from

large data sets) from distributed semantically heterogeneous autonomous data sources (see

Figure 1.1).

2

PROSITE, OPROSITE MEROPS, O
MEROPS SWISSPROT, O

SWISSPROT

?

Exploration, Analysis, Learning, Discovery

Ontology O
1

Ontology O

Figure 1.1 Example of a scenario that calls for knowledge acquisition
from autonomous, distributed, semantically heterogeneous data
source - discovery of protein sequence-structure-function rela-
tionships using information from PROSITE, MEROPS, SWIS-
SPROT repositories of protein sequence, structure, and function
data. O1 and O2 are two user ontologies

The major contributions of this dissertation include:

• A general strategy for design of algorithms for learning classifiers from dis-

tributed data [Caragea et al., 2004d]

• A general framework for design of algorithms for learning classifiers from

semantically heterogeneous data [Caragea et al., 2004b]

• Design of a query answering engine [Caragea et al., 2004a]

4

• An open source package containing data source independent machine learn-

ing algorithms [Silvescu et al., 2004b]

1.2 Traditional Machine Learning Limitations

Machine learning algorithms [Mitchell, 1997; Duda et al., 2000] offer some of the most

cost-effective approaches to automated or semi-automated knowledge acquisition in scientific

domains. However, the applicability of current approaches to machine learning in emerging

data rich applications in practice is severely limited by a number of factors:

• Distributed Data Sources: As mentioned above, data repositories are large in size,

dynamic, and physically distributed. Consequently, it is neither desirable nor feasible

to gather all of the data in a centralized location for analysis. Hence, there is a need for

knowledge acquisition systems that can perform the necessary analysis of data at the

locations where the data and the computational resources are available and transmit the

results of analysis (knowledge acquired from the data) to the locations where they are

needed [Honavar et al., 1998]. In other domains, the ability of autonomous organizations

to share raw data may be limited due to a variety of reasons (e.g., privacy considerations)

[Agrawal and Srikant, 2000]. In such cases, there is a need for knowledge acquisition

algorithms that can learn from statistical summaries of data (e.g., counts of instances

that match certain criteria) that are made available as needed from the distributed data

sources in the absence of access to raw data.

• Heterogeneous Data Sources: According to the Semantic Web [Berners-Lee et al.,

2001], the ontological commitments associated with a data source are determined by the

intended use of the data repository (at design time). Furthermore, data sources that are

created for use in one context often find use in other contexts or applications. Semantic

differences among autonomously designed, owned, and operated data repositories are

simply unavoidable. Effective use of multiple sources of data in a given context requires

reconciliation of such semantic differences from the user’s point of view. Because users

often need to analyze data in different contexts from different perspectives, there is no

5

single privileged ontology that can serve all users, or for that matter, even a single user,

in every context. Hence, there is a need for methods that can dynamically and efficiently

extract and integrate information needed for learning (e.g., statistics) from distributed,

semantically heterogeneous data based on user-specified ontologies and mappings be-

tween ontologies.

• Autonomous Data Sources: Data sources of interest are autonomously owned and

operated. Consequently, they differ in their structure and organization (relational

databases, flat files, etc.) and the operations that can be performed on the data source

(e.g., types of queries: relational queries, restricted subsets of relational queries, statis-

tical queries, keyword matches; execution of user-supplied code to compute answers to

queries that are not directly supported by the data source; storing results of computa-

tion at the data source for later use) and the precise mode of allowed interactions can

be quite diverse. Hence, there is a need for theoretically well-founded strategies for effi-

ciently obtaining the information needed for learning within the operational constraints

imposed by the data sources.

1.3 Our Approach

Our approach to the problem described above comes from revisiting the traditional formu-

lation of the problem of learning from data and observing that most of the learning algorithms

use only certain statistics computed from the data in the process of generating the hypotheses

that they output [Kearns, 1998]. This yields a natural decomposition of a learning algorithm

into two components: an information extraction component that formulates and sends a sta-

tistical query to a data source and a hypothesis generation component that uses the resulting

statistic to modify a partially constructed hypothesis (and further invokes the information

extraction component as needed) (see Figure 1.2).

In the light of this observation, an algorithm for learning from distributed data can be

also decomposed into two components: (1) information extraction from distributed data and

(2) hypothesis generation.

6

Result

Statistical Query

Formulation

 D

Data

Learner

Hypothesis Generation

Query

Figure 1.2 Learning revisited: identify sufficient statistics, gather the suffi-
cient statistics and generate the current algorithm output

The information extraction from distributed data entails decomposing each statistical

query q posed by the information extraction component of the learner into sub-queries q1, · · · , qK

that can be answered by the individual data sources D1, · · · , DK , respectively, and a proce-

dure for combining the answers to the sub-queries into an answer for the original query q

(see Figure 1.3). This yields a general strategy for transforming algorithms for learning from

centralized data into exact algorithms for learning from distributed data (an algorithm Ld for

learning from distributed data sets D1, · · · , DK is exact relative to its centralized counterpart

L if the hypothesis produced by Ld is identical to that obtained by L from the complete data

set D obtained by appropriately combining the data sets D1, · · · , DK).

...

Statistical Query

Decomposition
Query

Answer
Composition

D

D

D

1

2

q

q

q

1

2

Query Formulation

KK

Hypothesis Generation

Learner

q

Result of q

Figure 1.3 Exact learning from distributed data: distribute the statistical
query among the distributed data sets and compose their an-
swers

We consider two types of data fragmentation: horizontal fragmentation wherein (possi-

bly overlapping) subsets of data tuples are stored at different sites and vertical fragmenta-

tion wherein (possibly overlapping) sub-tuples of data tuples are stored at different sites and

we apply this strategy to design exact algorithms for learning Naive Bayes, Decision Trees,

Threshold Functions, Support Vector Machines and k-NN classifiers from distributed data.

7

We compare the resulting algorithms with the traditional algorithms in terms of time and

communication complexity.

In order to extend our approach to learning from distributed data (which assumes a com-

mon ontology that is shared by all of the data sources) into effective algorithms for learning

classifiers from semantically heterogeneous distributed data sources, we develop techniques for

answering the statistical queries posed by the learner in terms of the learner’s ontology O from

the heterogeneous data sources (where each data source Dk has an associated ontology Ok)

(see Figure 1.4). Thus, we solve a variant of the problem of integrated access to distributed

data repositories, the data integration problem [Levy, 2000], in order to be able to use machine

learning approaches to acquire knowledge from semantically heterogeneous data.

...

Statistical Query

Decomposition
Query

Answer
Composition

q

q

1

2

Query Formulation

User Ontology O

D

D
2

1

User Ontology O

, O

, O

1

2

O1

O2

Mappings

D , O
K K

OK
q

K

Hypothesis Generation Result

Oq

Learning Algorithm

M(Oi−>O)

Figure 1.4 Learning from semantically heterogeneous distributed data:
each data source has an associated ontology and the user pro-
vides a global ontology and mappings from the local ontologies
to the global ontology

It can be seen that learning from distributed heterogeneous autonomous data sources re-

duces to the problem of developing sound and complete techniques for answering statistical

queries from semantically heterogeneous data sources under a variety of constraints and as-

sumptions motivated by application scenarios encountered in practice.

We define a statistical query language based on operators that are needed to formulate

and manipulate statistical queries, and we design a query answering engine, that has access

to a resource repository where all the information available in the system is registered. The

engine uses these resources to decompose a query q into sub queries q1, · · · , qK that can be

answered by the individual data sources D1, · · · , DK respectively, finding an optimal plan for

8

executing each of the sub queries qi, and also a procedure for combining the answers to the

sub queries into an answer for the original query q.

This builds on recent work on INDUS (see Figure 1.5), an ontology based federated, query-

centric approach to information integration and learning from distributed, heterogeneous data

sources. INDUS offers the functionality necessary to flexibly integrate information from multi-

ple heterogeneous data sources and structure the results according to a user-supplied ontology.

Learning algorithms are linked to the information integration component in INDUS, and thus

users can perform learning from distributed heterogeneous data sources in a transparent way.

Learning Algorithms

PROSITE, OPROSITE MEROPS, O
MEROPS SWISSPROT, O

SWISSPROT

Ontology O
1

Ontology O2

INDUS Query Answering Engine

Figure 1.5 INDUS: INtelligent Data Understanding System

1.4 Literature Review

The work related to the research in this dissertation belongs to one of the following three

categories: distributed learning [Liu et al., 2004], information integration [Levy, 2000], or the

combination of distributed learning and information integration, which we call learning from

semantically heterogeneous data [Caragea et al., 2004d].

9

1.4.1 Distributed Learning

Distributed learning (a.k.a., distributed data mining) has received considerable attention in

literature [Liu et al., 2004] in recent years. Work in this area can be reviewed from three points

of view: distributed learning algorithms, architectures and systems for distributed learning and

applications of distributed learning to real world problems [Park and Kargupta, 2002b]. We

discuss each of them in what follows.

1.4.1.1 Distributed Learning Algorithms

Most of the distributed learning algorithms in the literature deal with homogeneous data.

Among these, most of the existent algorithms work for horizontal data distributions, with a

few exceptions that will be pointed out below.

Many of the approaches to distributed learning come from the desire to scale up algo-

rithms to large data sets [Provost and Kolluri, 1999; Provost, 2000]. Conceptually there is a

big difference between approaches to distributed learning coming from scaling up algorithms,

where the data are distributed by the algorithm in order to increase the overall efficiency, and

approaches that assume that data are inherently distributed and autonomous, and thus re-

strictions and constrains may need to be taken into account. The work in this dissertation falls

in the second category. We say “learning from distributed data” as opposed to “distributed

learning” to point out this difference.

Parallel Data Mining

Early work on distributed data mining appeared as a need to scale up learning algorithms

to large data set [Provost and Kolluri, 1999]. Among other approaches to the problem of learn-

ing from large data sets, high performance parallel computing (a.k.a. parallel data mining)

distinguishes itself as very useful for distributed settings as well.

Srivastava et al. [1999] proposed methods for distributing a large centralized data set to

multiple processors to exploit parallel processing to speed up learning. Provost and Kolluri

[1999] and Grossman and Guo [2001] surveyed several methods that exploit parallel processing

for scaling up data mining algorithms to work with large data sets.

10

There has been a lot of research focused on parallelizing specific algorithms. For example,

in [Amado et al., 2003; Andrade et al., 2003; Jin and Agrawal, 2003] the authors showed how

the decision tree algorithm can be parallelized. In [Dhillon and Modha, 1999; Foti et al., 2000;

Samatova et al., 2002] parallel clustering algorithms were considered. In [Tveit and Engum,

2003; Poulet, 2003] the authors proposed parallel solutions to some SVM algorithm variants. A

lot of work [Agrawal and Shafer, 1996; Manning and Keane, 2001] has focused on parallelizing

association rules [Agrawal and Shafer, 1996; Manning and Keane, 2001; Park et al., 1995;

Parthasarathy et al., 2001; Wolff et al., 2003; Zaiane et al., 2001; Zaki, 1999].

Ensembles Approach to Distributed Learning

Several distributed learning algorithms have their roots in ensemble methods [Dietterich,

2000]. Thus, Domingos [1997] and Prodromidis et al. [2000] used ensemble of classifiers

approaches to learning from horizontally fragmented distributed data, which involves learning

separate classifiers from each data set and combining them typically using a weighted voting

scheme. In general, this combination requires gathering a subset of data from each of the data

sources at a central site to determine the weights to be assigned to the individual hypotheses

(or alternatively shipping the ensemble of classifiers and associated weights to the individual

data sources where they can be executed on local data to set the weights), which is not

desirable. Other ensemble approaches were proposed in [Fern and Brodley, 2003; Hall and

Bowyer, 2003; Jouve and Nicoloyannis, 2003; Tsoumakas and Vlahavas, 2002]. Besides the

need to transmit some subset of data to the central site, there is another potential drawback of

the ensemble of classifiers approach to learning from distributed data, mainly that the resulting

ensemble of classifiers is typically much harder to comprehend than a single classifier. Another

important limitation of the ensemble classifier approach to learning from distributed data is

the lack of guarantees concerning generalization accuracy of the resulting hypothesis relative

to the hypothesis obtained in the centralized setting.

Cooperation-based Distributed Learning

Although learning with cooperation scenarios could be very often met in real world sit-

uations, there are not many distributed learning algorithms that use the cooperation in an

active way to obtain the final result, with a few notable exceptions.

11

Provost and Hennessy [1996] proposed a powerful, yet practical distributed rule learning

(DRL) algorithm using cooperation. They make use of several criteria to estimate the proba-

bility that a rule is correct (and in particular to evaluate a rule), and define what it means for

a rule to be satisfactory or acceptable over a set of examples (a rule can be acceptable for a

local learner but not satisfactory for the batch learner). The algorithm tries to find acceptable

local rules that are also satisfactory as global rules. In [Leckie and Kotagiri, 2002] the authors

proposed an algorithm for learning to share distributed probabilistic beliefs. Morinaga et al.

described another approach to collaborative data mining.

As opposed to collaboration by exchanging models (e.g. rules) between learners, in [Turin-

sky and Grossman, 2000] data could be moved from one site to another in order to fully

exploit the resources of the network. One practical example of a learning algorithm that uses

cooperation to exchange data is described in [Kargupta et al., 1999] (this approach works for

vertically distributed data as it will be described below).

Learning from Vertically Distributed Data

Although most of the distributed learning algorithms assume horizontal data fragmenta-

tion, there are a few notable exceptions. Bhatnagar and Srinivasan [1997] proposed algorithms

for learning decision tree classifiers from vertically fragmented distributed data. WoRLD

system [Aronis et al., 1996] is a collaborative approach to concept learning from vertically

fragmented data. It works by computing the cardinal distribution of feature values in the in-

dividual data sets, followed by propagation of this distribution across different sites. Features

with strong correlations to the concept to be learned are identified based on the first order sta-

tistical approximation to the cardinal distribution. Being based on first order approximations,

this approach is impractical for problems where higher order statistics are needed.

Tumer and Ghosh [2000] proposed an ensemble approach to combine local classifiers. They

used an order statistics-based technique for combining high variance models generated from

heterogeneous sites.

Park and his colleagues [Park and Kargupta, 2002a] observed that inter-site patterns can-

not be captured by aggregating heterogeneous classifiers. To deal with this problem, at each

site, they construct a subset of the data that a the particular classifier cannot classify with

12

high confidence and ship such subsets of data at the central site, where a classifier is build.

This classifier is used when data at one site is classified with low confidence by the classifier at

that site. Although this approach gives better results than simply aggregating the classifiers,

it requires data shipping and its performance is sensitive to the sample size.

Kargupta and his group proposed a framework to address the problem of learning from

heterogeneous data, called Collective Data Mining (CDM) [Kargupta et al., 1999]. Given a set

of labeled data, CDM learns a function that approximates it. CDM relies on the observation

that any function can be represented in a distributed fashion using an appropriate set of basis

functions. Thus, at each data source, the learner estimates the Fourier coefficients from the

local data, and transmits them to a central site. These estimates are combined to obtain

a set of Fourier coefficients for the function to be learned (a process which may require a

subset of the data from each source to be transmitted to the central site). At present, there

are no guarantees concerning the performance of the hypothesis obtained in the distributed

setting relative to that obtained in the centralized setting. Furthermore, a given set of Fourier

coefficients can correspond to multiple hypothesis.

Based on CDM framework, Kargupta et al. [1999] described an algorithm for learning

decision trees from vertically fragmented distributed data using a technique proposed by

Mansour [1994] for approximating a decision tree using Fourier coefficients corresponding

to attribute combinations whose size is at most logarithmic in the number of nodes in the

tree. The CDM framework is also used to design distributed clustering algorithms based

on collective principal component analysis [Kargupta et al., 2001] or to designed distributed

algorithms for Bayesian network learning (structure or parameters) [Chen et al., 2001; Chen

and Krishnamoorthy, 2002; Chen et al., 2003b; Sivakumar et al., 2003].

Relational Learning

The task of learning from relational data has received significant attention in the literature

in the last few years. One of the first approaches to relational learning was based on Inductive

Logic Programming (ILP) [Muggleton, 1992]. Inductive Logic Programming is a broad field

which evolved from the development of algorithms for the synthesis of logic programs from

examples and background knowledge to the development of algorithms for classification, re-

13

gression, clustering, and association analysis [Dzeroski and Lavrac, 2001]. Due to its flexible

and expressive way of representing background knowledge and examples, the field considers

not only single-table representations of the data but also multiple-table representations, which

makes it a good candidate for relational learning [Blockeel and Raedt, 1997]. However, the

ILP techniques are limited in their capability to work with relational databases. Attempts to

link ILP techniques with relational databases have been made in [Lindner and Morik, 1995;

Blockeel and Raedt, 1997].

Knobbe et al. [1999] outlined a general framework for multi-relational data mining which

exploits structured query language (SQL) to gather the information needed for constructing

classifiers (e.g., decision trees) from multi-relational data. Based on this framework, multi-

relational decision tree learning algorithms have been developed [Leiva et al., 2002; Atramentov

et al., 2003] .

Probabilistic models, especially Bayesian Networks (BN) [Pearl, 2000], are similar to ILP

approaches, but specify a probability distribution over a fixed set of random variables. Several

approaches for combining first order logic and Bayesian Networks have been proposed in

the literature. The most representative ones are Probabilistic Logic Programs (PLP) [Ngo

and Haddawy, 1997], Relational Bayesian Networks (RBN) [Jaeger, 1997], and Probabilistic

Relational Models (PRM) [Koller, 1999; Getoor et al., 2001; Friedman et al., 1999]. In spite of

their different backgrounds, they all seem to share the commonalities represented by Bayesian

Logic Programs (BLP) as shown in [Kersting and De Raedt, 2000].

Approaches for mining structural data in form of graph have been also proposed in [Cook

and Holder, 2000; Gonzalez et al., 2002]. In this framework, objects in the data correspond to

vertices in the graph, and relationships between objects correspond to directed or undirected

edges in the graph. A search for patterns embedded in graphs is performed. Once a pattern

(substructure) is found, it is added to the graph in order to simplify it, by replacing instances

of the substructure with the substructure itself.

Privacy Preserving Distributed Data Mining

Several approaches to distributed data mining appeared from the need to preserve the

privacy of the information that is mined [Lindell and Pinkas, 2002]. In such case summaries

14

of the data need to be used instead of raw data. Clifton et al. [2002] proposed a set of tools

that can be used to learn from data while preserving the privacy. Du and Atallah [2001]

designed ways to do privacy-preserving collaborative scientific computations.

Some work has focused on specific algorithms design in the presence of privacy constraints:

Du and Zhan [2002] introduced an algorithm for building decision trees on private data;

Kantarcioglu and Clifton [2002] and Schuster et al. [2004] dealt with privacy-preserving dis-

tributed mining of association rules from horizontally partitioned data, while Vaidya and

Clifton [2002] proposed an algorithm that works when data are vertically partitioned; Kar-

gupta et al. [2003] proposed an algorithm for computing correlations in a vertically distributed

scenario while preserving privacy; Lin et al. [2003] and Merugu and Ghosh [2003] presented

algorithms for privacy preserving clustering using EM mixture modeling and generative mod-

els, respectively, from horizontally distributed data, while Vaidya and Clifton [2003] proposed

a K-Means clustering over vertically partitioned data.

1.4.1.2 Architectures and Systems for Distributed Learning

Agent-oriented software engineering [Jennings and Wooldridge, 2001; Honavar et al., 1998;

Weiß, 1998] offer an attractive approach to implementing modular and extensible distributed

computing systems. Each data site has one or more associated agents that process the local

data and communicate the results to the other agents or to a central supervising agent that

controls the behavior of the local agents. Java Agents for Meta-Learning [Stolfo and oth-

ers, 1997] (distributed agent-based data mining system that uses meta-learning technique),

BODHI [Kargupta et al., 1999] (hierarchical agent-based distributed system for collective data

mining), PADMA [Kargupta et al., 1997] (tool for document analysis that works on a dis-

tributed environment based on cooperative agents) systems follow the agent-based architecture

approach.

Another approach to address scalable distributed data mining is based on clusters of high-

performance workstations connected by a network link. Papyrus [Grossman et al., 2000] is a

system for mining distributed data sources on a local and wide area cluster and a super cluster

scenario. It is designed to find optimal strategies for moving results or models or data over the

15

network. The architecture in [Ashrafi et al., 2002] is similar to JAM, PADMA and Papyrus,

except that data sources can be heterogeneous. XML technique is used for data translation.

Chattratichat et al. [1999] proposed Kensington architecture based on a distributed com-

ponent environment. Components are located on different nodes on a generic network like

Intranet or Internet. Kensington is divided into client (provides interactive creation of data

mining tasks), application server (responsible for task coordination and data management)

and third level servers (provide high performance data mining services). PaDDMAS [Rana

et al., 2000] is another component-based system similar to Kensington. As opposed to Kens-

ington, PaDDMAS allows easy insertion of custom-based components. Each component has

an interface and the connection of two components is allowed only if they have compatible

interfaces.

Krishnaswamy et al. [2003] noted that distributed data mining has evolved towards em-

bracing the paradigm of application service providers, which allows small organizations or indi-

viduals to access software on demand. They proposed an architecture that demonstrates how

distributed data mining can be integrated in application service providers in an e-commerce

environment. A user is billed based on estimated costs and response times. The architecture

proposed is based on integrating client-server and agent technologies. Sarawagi and Nagaralu

[2000] explored a similar idea.

The Knowledge grid [Cannataro et al., 2001; Cannataro and Talia, 2003; Talia, 2003;

Sunderam, 2003; Du and Agrawal, 2002] is a reference software architecture for geographically

distributed parallel and distributed knowledge application applications. It is built on top of

a computational grid that provides dependable, consistent, and pervasive access to high-end

computational resources. The Knowledge Grid uses the basic grid services and defines a set

of additional layers to implement the services of distributed knowledge discovery on world

wide connected computers where each node can be a sequential or a parallel machine. The

Knowledge Grid enables the collaboration of scientists that must mine data that are stored in

different research centers as well as analysts that must use a knowledge management system

that operates on several data warehouses located in the different company establishments

[Chervenak et al., 1999].

16

Discovery Net project [Curcin et al., 2002; Guo, 2003] introduced the idea that complex

applications can make use of Grid technologies only if an application specific layer is intro-

duced. Thus, in the Discovery Net architecture, there exists a layer that provides support for

constructing and publishing Knowledge Discovery Services.

1.4.1.3 Distributed Learning Real World Applications

Distributed data mining algorithms can be applied to problems in various real world do-

mains, such as: network intrusion detection [Bala et al., 2002; Kumar, 2003], credit fraud

detection [Chan et al., 1999], text classification [Kuengkrai and Jaruskulchai, 2002], chain

store database of short transactions [Lin et al., 2002], geoscientific data [Shek et al., 1996],

financial data mining from mobile devices [Kargupta et al., 2002], sensor-network-based dis-

tributed databases [Bonnet et al., 2001], car-health diagnostics analysis [Wirth et al., 2001],

etc.

1.4.2 Information Integration

Information integration is another problem related to the work presented in this disser-

tation. Davidson et al. [2001] and Eckman [2003] surveyed alternative approaches to data

integration. Hull [1997] summarized theoretical work on data integration. Because of our fo-

cus on knowledge acquisition from autonomous, semantically heterogeneous distributed data

sources, query-centric, federated approaches to data integration are of special interest. A

federated approach lends itself much better to settings where it is desirable to postpone spec-

ification of user ontology and the mappings between data source specific ontologies and user

ontology until when the user is ready to use the system. The choice of a query centric approach

enables users the desired flexibility in querying data from multiple autonomous sources in ways

that match their own context or application specific ontological commitments (whereas in a

source centric approach, what the data from a source should mean to a user are determined

by the source).

Early work on multi-database systems [Sheth and Larson, 1990; Barsalou and Gangopad-

hyay, 1992; Bright et al., 1992] focused on relational or object-oriented database views for

17

integrated access to data from several relational databases. However, these efforts were not

concerned with autonomous semantically heterogeneous data sources. More recent work [Tsai

et al., 2001] used ontologies to integrate domain specific data sources. Wiederhold and Gene-

sereth [1997] proposed mediator programs to integrate heterogeneous data sources. Some

efforts at building such mediators for information integration from multiple data repositories

(including semi-structured and unstructured data) include the TSIMMIS project at Stanford

University [Garcia-Molina et al., 1997; Chang and Garcia-Molina, 1999] the SIMS project

[Arens et al., 1993] and the Ariadne project [Knoblock et al., 2001] at the University of South-

ern California, the Hermes project at the University of Maryland [Lu et al., 1995], Information

Manifold, a system developed at ATT Bell labs for querying WWW documents [Levy, 1998],

and NIMBLE – a commercial system based on research at the University of Washington

[Draper et al., 2001]. Several data integration projects have focused specifically on integration

of biological data: The SRS (Sequence Retrieval System) [Etzold et al., 2003] developed at

the European Molecular Biology Laboratory and marketed by LION Bioscience, IBM’s Dis-

coveryLink [Haas et al., 2001], the TAMBIS project in UK [Stevens et al., 2003], the Kleisli

project [Chen et al., 2003a] and its successor K2 [Tannen et al., 2003] at the University of

Pennsylvania

These efforts addressed, and to varying degrees, solved the following problems in data

integration: design of query languages and rules for decomposing queries into sub queries

and composing the answers to sub queries into answers to the initial query. In related work,

Tomasic et al. [1998] proposed an approach to scaling up access to heterogeneous data sources.

Haas et al. [1997] investigated optimization of queries across heterogeneous data sources.

Rodriguez-Martinez and Roussoloulos [2000] proposed a code shipping approach to the design

of an extensible middleware system for distributed data sources. Lambrecht et al. [1999]

proposed a planning framework for gathering information from distributed sources.

However, each of the systems summarized above has several significant limitations. SRS

provides flexible ways to navigate and aggregate information, but offers fairly limited facilities

for querying, and semantically integrating information from diverse sources. DiscoveryLink

goes a step further than SRS in that it includes an explicit data model, the relational model,

18

which allows users to perform SQL queries over remote sources. Kleisli does not include

a model of the available data sources, but does offer a query language and a collection of

wrappers (Kleisli drivers) for accessing biological data sources. The K2 system incorporates

some of the ideas from Kleisli, but includes some features absent in Kleisli notably, data

dictionaries (for information retrieval), and a complex value model of the data which allows

data values to be constructed by arbitrarily nesting tuples, collections (sets, bags, lists) and

variants. The TAMBIS system uses a description logic formalism for representing its ontology

which facilitates subsumption reasoning. User queries in TAMBIS are formulated in terms of

the TAMBIS ontology. However, the mapping between TAMBIS ontology and data sources

is quite restrictive. It does not allow multiple sources for the same kind of data (e.g., the use

of both Swiss-Prot and PIR as sources of protein data) and it does not allow users to impose

their own ontologies on the data sources.

Few of the systems mentioned above take into account semantic relationships between

values of attributes used to describe instances (e.g., taxonomies over attribute values) in

individual data sources.

1.4.3 Learning Classifiers from Heterogeneous Data

The combination of information integration with distributed learning algorithms is still

a relatively new idea and thus there has not been much research focused on that yet. The

work in this dissertation exploits this combination. In what follows, we describe two previous

attempts to combine information integration and distributed learning, followed by an overview

of our approach in this context.

InfoGrid [Giannadakis et al., 2003] is a flexible Grid system that developed on top of Kens-

ington [Chattratichat et al., 1999] in order to answer the needs of the scientific community.

It provides data publishing and integration mechanisms for a large range of different scien-

tific applications in a generic way, while allowing specific queries for individual application

domains, as opposed to the common middleware systems where all users are supposed to use

the same language. InfoGrid achieves this functionality by introducing a layer of Informa-

tion Integration Services where the querying middleware supports language parameterization

19

allowing specific application areas to maintain their own querying model while enabling hetero-

geneous information resources to be queried effectively. InfoGrid does not change the learning

algorithms, it only prepares the data that they need. Hence, once the data required by an

algorithm is collected, it is passed to the learning algorithm.

The work in [McClean et al., 2002] brings the information integration problem a step

closer to the learning problem by providing a way for the user to pose statistical queries in

the user ontology. Each data source has a specific ontology and meta-data that describes the

ontology and the relationship with other ontologies in the system. The authors do not assume

that a global ontology exists, as most integration systems do. However, they assume that

there exist mappings between local data source ontologies and one or several global ontologies

stored in an ontology server, as well as mappings between global ontologies. Thus, mappings

from data source ontologies to the user ontology can be found using intermediary mappings

between global ontologies. They are provided by a negotiation agent that computes them

dynamically in an automated way by searching the meta-data in the system, making the

problem of answering queries more flexible.

In related work, McClean et al. [2003] use the mappings found by the negotiation agent

to answer aggregate queries over heterogeneous distributed databases in the presence of data

inconsistencies or imprecise data (data specified at different levels of granularity) that are

likely to appear in such distributed scenarios. Thus, after a global ontology is constructed

dynamically by analyzing the meta-data that relates the heterogeneous databases, the aggre-

gates are derived by minimization of the Kullback-Leibler information divergence using the

EM (Expectation-Maximization) algorithm. Depending on the global ontology a user query

can be assessed as answerable, partially answerable, or unanswerable in advance of computing

the answer itself.

The focus of the proposed research is on learning classifiers from a set of heterogeneous

autonomous distributed data sources. The autonomous nature of the data sources implies

that the learner has little control over the manner in which the data are distributed among

the different sources. The heterogeneous nature of the data opens up a new direction that

links data mining and information integration.

20

Unlike the papers summarized above, our approach [Caragea et al., 2004d] offers a general

approach to the design of algorithms for learning from distributed data that is provably exact

with respect to its centralized counterpart. Central to our approach is a clear separation

of concerns between hypothesis construction and extraction of sufficient statistics from data.

This separation makes it possible to explore the use of sophisticated techniques for query

optimization that yield optimal plans for gathering sufficient statistics from distributed data

sources under a specified set of constraints describing the query capabilities and operations

permitted by the data sources (e.g., execution of user supplied procedures). The proposed ap-

proach also lends itself to adaptation to learning from heterogeneous distributed data sources

when the ontologies associated with the individual data sources are different from each other

[Caragea et al., 2004b]. Thus, provided well-defined mappings between ontologies can be

specified, the proposed approach to learning from distributed data can be extended to yield

an approach to learning from heterogeneous distributed data of the sort encountered in many

large scale scientific applications.

In terms of information integration, our approach proposes a clear separation between

ontologies used for data integration (which are supplied by users) and the procedures that use

ontologies to perform data integration. This allows users to replace ontologies used for data

integration on the fly, making it attractive for data integration tasks that arise in exploratory

data analysis wherein scientists might want to experiment with alternative ontologies.

1.5 Outline

The rest of the dissertation is organized as follows:

• Chapter 2: A brief introduction to machine learning systems is given together with ways

to evaluate such systems. Several classical machine learning algorithms are presented.

A careful look at these algorithms leads to the observation that only certain statistics

about data are used in the process of generating the algorithm output, which in turn

leads to a reformulation of a learning algorithm in terms of information extraction and

21

hypothesis generation. Sufficient statistics for the learning algorithms presented are

identified.

• Chapter 3: The problem of learning from distributed data is formally defined and a

general strategy, based on the decomposition of the algorithm into information extrac-

tion from distributed data and hypothesis generation, is proposed. We show how this

strategy can be applied to transform the algorithms introduced in Chapter 2 into ef-

ficient algorithms for learning from distributed data. We also introduce a statistical

query language for formulating and manipulating statistical queries involved in learning

algorithms.

• Chapter 4: The approach used for learning from distributed data sources is extended

to yield an approach to learning from semantically heterogeneous data sources. We

formally define ontologies and show how we can extend data sources and statistical

query operators with ontologies in order to get sound and complete answers to statistical

queries. The problem of answering queries from partially specified data is also addressed

and a solution is proposed.

• Chapter 5: A system for answering queries from distributed heterogeneous autonomous

data sources is designed. At the core of this system there is a query answering en-

gine, which receives queries, decomposes them into sub-queries corresponding to the

distributed data sources, finds optimal plans for execution, executes the plans and com-

poses the individual answers it gets back from the distributed data sources into a final

answer to the initial query.

• Chapter 6: We give an overview of INDUS, a federated, query centric approach to

learning classifiers from distributed data sources and present AirlDm, a collection of

machine learning algorithms, which are data source independent by means of sufficient

statistics and data source wrappers. We show how AirlDM can be combined with INDUS

to obtain implementations for algorithms for learning from distributed heterogeneous

autonomous data sources. A case study is presented in the end of the chapter.

22

• Chapter 7: We conclude with a summary, a list of contributions that this dissertation

makes and several directions for future work.

23

2 LEARNING CLASSIFIERS FROM DATA

In this Chapter we define the problem of learning from data and describe five learning

algorithms (Naive Bayes, Decision Tree Algorithm, Perceptron Algorithm, Support Vector

Machines and k-Nearest Neighbors algorithm). We show that any learning algorithm can be

decomposed into two components: an information extraction component in which sufficient

statistics for learning are collected and a hypothesis generation component in which sufficient

statistics are used to construct a hypothesis. For each of the algorithms described, we will

identify the sufficient statistics for learning.

2.1 Machine Learning Systems

Machine Learning is a multidisciplinary field that brings together scientists from artificial

intelligence, probability and statistics, computational complexity, information theory, etc. A

key objective of Machine Learning is to design and analyze algorithms that are able to improve

the performance at some task through experience [Mitchell, 1997].

Definition 2.1. A machine learning system is specified by several components:

• Learner: An algorithm or a computer program that is able to use the experience to

improve the performance. Usually the learner have finite resources (e.g. time and

memory), so it should be able to use them efficiently.

• Task: A description of the task that the learner is trying to accomplish (e.g., learn a

concept, a function, a language, etc.).

• Experience source: Specification of the information that the learner uses to perform the

learning. The experience can take various forms such as:

24

– Examples: The learner is presented with labeled examples about a particular task.

Sometimes we refer to examples as instances

– Queries: The learner can pose queries about a task to a knowledgeable teacher.

– Experiments: The learner is allowed to experience with the task and learn from the

effects of its actions on the task.

• Background knowledge: The information that the learner has about the task before the

learning process (e.g. ”simple” answers are preferable over ”complex” answers). This

information may simplify the learning process.

• Performance Criteria: Measure the quality of the learning output in terms of accuracy,

simplicity, efficiency etc.

Definition 2.2. Let X be a sample space from where the examples are drawn and let D be

the set of all possible subsets of the sample space X . In general, we assume that the examples

are randomly chosen from an unknown distribution. A collection of examples D ∈ D is called

a data set or a data source.

Definition 2.3. Let C be the space of all possible models that we may want to learn or

approximate, and H the space of the models that a learner can draw on in order to construct

approximations of the models in C. Thus, a learning algorithm outputs an element h ∈ H,

called the hypothesis about the data.

Definition 2.4. A classification task is a task for which the learner is given experience in

the form of labeled examples, and it is supposed to learn to classify new unlabeled examples.

Thus, in a classification task, the data D typically consists of a set of training examples

. Each training example x is described by a set of attribute values < a1, · · · , an >. The

class label of an example can take any value from a finite set C = {c1, · · · , cm}. Hence,

D = {(x1, y1), · · · , (xt, yt)}, where yi ∈ C for all i ∈ {1, · · · , t}. In a classification task, the

learned hypothesis h ∈ H is called a classifier (e.g., a decision tree, a support vector machine,

etc. or even the data in the case of lazy learning).

25

Note: In this dissertation, we will concentrate on classification tasks.

Definition 2.5. For a classification task, we say that a hypothesis h is consistent with a set of

training examples if it correctly classifies all the examples in the set. The classification error

(a.k.a. sample error or empirical error) of a hypothesis with respect to a set of examples is the

fraction of examples in the set that are misclassified by h. The true error of a hypothesis h is

the probability that the hypothesis h will misclassify an example randomly chosen according

to the underlying distribution.

As the underlying distribution is unknown, we cannot measure the true error of a hypoth-

esis, but we can measure the classification error on a data set. If this is a good estimate of

the true error, we can get a good estimate for the probability of misclassifying new unlabeled

examples.

Definition 2.6. We say that a learner L is consistent if it outputs a hypothesis which is

consistent with the set of training examples.

Definition 2.7. If H is a hypothesis space that a learner L is called upon to learn and D

is a training set for the learner L, then the most probable hypothesis h ∈ H given the data

D is called a maximum a posteriori (MAP) hypothesis. According to the Bayesian theory

hMAP = arg maxh∈H P (D|h)P (h), where P (h) is the prior probability of h and P (D|h) (called

likelihood) is the probability to observe the data D given the hypothesis h. If we assume

that all the hypotheses h ∈ H are equally likely a priori, then any hypothesis that maximizes

P (D|h) is called maximum likelihood (ML) hypothesis.

We are interested in finding maximum a posteriori hypotheses since they are optimal in

the sense that no other hypothesis is more likely. The following theorem gives us conditions

that ensure that a maximum a posteriori hypothesis is found.

Theorem 2.8. [Mitchell, 1997] “Every consistent learner outputs a MAP hypothesis, if we

assume a uniform prior probability distribution over H (i.e., P (hi) = P (hj) for all i, j), and if

we assume deterministic, noise-free training data (i.e., P (D|h) = 1 if D and h are consistent,

and 0 otherwise).”

26

The Minimum Description Length (MDL) principle [Rissanen, 1978] provides a way to

implement Occam’s razor (“Prefer the simplest hypothesis that fits the data.”), thus making

it possible to take the complexity of a hypothesis into account when choosing the optimal

hypothesis. It achieves this by performing a trade off between the complexity of the hypothesis

and the number of errors of the hypothesis. Shorter hypotheses that make a few errors are

preferred to longer consistent hypotheses. This also ensures that the problem of over-fitting

the data is avoided.

In the next section, we will formally define the problem of learning from data by referring

back to the definitions introduced in this section.

2.2 Learning from Data

Definition 2.9. The problem of learning from data can be summarized as follows: Given

a data set D, a hypothesis class H, and a performance criterion P , the learning algorithm

L outputs a classifier h ∈ H that optimizes P . If D = {(x1, y1), · · · , (xt, yt)}, then the

training examples xi for i = 1, n represent inputs to the classifier h, while the labels yi for

i = 1, n represent outputs of the classifier h. The goal of learning is to produce a classifier that

optimizes the performance criterion of minimizing some function of the classification error

(on the training data) and the complexity of the classifier (e.g., MDL). Under appropriate

assumptions, this is likely to result in a classifier h that assigns correct labels to new unlabeled

instances.

Thus, a learning algorithm for a classification task consists of two components: a learn-

ing component when the hypothesis is learned from training examples and a classification

component when the learned hypothesis is used to classify new test examples (see Figure 2.1).

The boundary that defines the division of labor between the learning and the classification

components depends on the particular learning algorithm used. Some learning algorithms do

most of the work in the training phase (eager learning algorithms) while others do most of the

work during the classification phase (lazy learning algorithms).

While in the case of eager learning a hypothesis is constructed during the learning phase,

27

Classification Example
x

Classifier
h

Class
c

Data
D

Learner
L

Classifier
h

Learning

Figure 2.1 Learning algorithm (Up) Learning component (Down) Classifi-
cation component

based on the training examples, in the case of lazy learning the training examples are simply

stored and the generalization is postponed until a new instance needs to be classified. One

advantage that lazy learning algorithms have over eager learning algorithms is that the target

function is estimated locally (and thus it can be different for any new instance to be classified)

as opposed to being estimated once for all the training examples. The main disadvantage is

that the cost of classification in the case of lazy learning is higher than the cost of classification

in the case of in eager learning, where most of the work is done once during the learning phase.

2.3 Examples of Algorithms for Learning from Data

In this section, we will describe a few popular eager learning algorithms (Naive Bayes

Algorithm, Decision Tree Algorithm, Perceptron Algorithm, and Support Vector Machines)

and also a well known lazy learning algorithm (k Nearest Neighbors).

2.3.1 Naive Bayes Classifiers

Naive Bayes is a highly practical learning algorithm [Mitchell, 1997], comparable to pow-

erful algorithms such as decision trees or neural networks in terms of performance in some

domains. In Naive Bayes framework, each example x is described by a conjunction of attribute

values, i.e. x =< a1, · · · , an >. The class label of an example can take any value from a finite

set C = {c1, · · · , cm}. We assume that the attribute values are conditionally independent

given the class label. A training set of labeled examples,

D = {< x1, y1 >, · · · , < xt, yt >}, is presented to the algorithm. During the learning phase,

a hypothesis h is learned from the training set. During the evaluation phase, the learner is

28

asked to predict the classification of new instances x.

If the new instance that needs to be classified is x =< a1, · · · , an >, then according to

Bayesian decision theory, the most probable class is given by

cMAP = arg max
cj∈C

P (cj|a1, · · · , an)

Using the Bayes theorem, we have:

cMAP (x) = arg max
cj∈C

P (a1, · · · , an|cj)P (cj)

P (a1, · · · , an)
= arg max

cj∈C
P (a1, · · · , an|cj)P (cj)

Under the assumption that the attribute values are conditionally independent given the class

label, the probability of observing the attribute values a1, · · · , an given a class cj is equal

to the product of the probabilities for the individual attribute values for that class. Thus,

P (a1, · · · , an|cj) =
n

∏

i=1

p(ai|cj), which gives the following naive Bayes classification for the

instance x =< a1, · · · , an >:

cNB(x) = arg max
cj∈C

P (cj)
n

∏

i=1

P (ai|cj),

where the probabilities P (cj) and P (ai|cj) can be estimated based on their frequencies over

the training data. These estimates collectively specify the learned hypothesis h, which is used

to classify new instances x according to the formula for cNB(x). The pseudocode for the Naive

Bayes classifier is shown in Figure 2.2.

We mentioned before that the probabilities P (cj) and P (ai|cj) are computed based on their

frequencies in the training data. For example, for a class c, P (c) = tc
t
, where tc is the number

of training examples in class c and t is the total number of training examples. Although

this estimate is good in general, it could be poor if tc is very small. The Bayesian approach

adopted in this case is to use a k-estimate (a.k.a. Laplace estimate) of the probability, defined

as tc+kp

t+k
[Mitchell, 1997]. Here p is a prior estimate of the probability we want to compute

(e.g., p = 1/m if there are m possible classes), and k is a constant called the equivalent sample

size (it can be thought of as an augmentation of the set of t training examples by an additional

29

Naive Bayes Classifier

Learning Phase:
For each class cj and each attribute value ai compute the probabilities P (cj)
and P (ai|cj) based on their frequencies over the training data.

Classification Phase:
Given a new instance x =< a1, · · · , an > to be classified

Return cNB(x) = arg max
cj∈C

P (cj)
n

∏

i=1

P (ai|cj)

Figure 2.2 Naive Bayes classifier

k virtual examples distributed according to p).

We have seen that the Naive Bayes classifier relies on the assumption that the values of

the attributes a1, · · · , an are conditionally independent given the class value c. When this

assumption is met, the output classifier is optimal. However, in general this assumption is not

valid. Bayesian Networks [Pearl, 2000] relax this restrictive assumption by making conditional

independence assumptions that apply to subsets of the variables. Thus, a Bayesian network

[Pearl, 2000] models the probability distribution of a set of variables (attributes) by specifying

a set of conditional independence assumptions and a set of conditional probabilities. Let

A1, · · · , An be random variables whose possible values are given by the sets V (Ai), respectively.

We define the joint space of the set of variables A1, · · · , An to be the cross product V (A1) ×

· · · × V (An), which means that each element in the joint space corresponds to one of the

possible assignments of values to the variables A1, · · · , An. The probability distribution over

these space is called joint probability distribution. A Bayesian Network describes the joint

probability distribution for a set of variables. As in the case of Naive Bayes, each probability

in the joint probability distribution can be estimated based on frequencies in the training

data. Therefore, the results presented for Naive Bayes in the next chapters can be applied to

Bayesian Networks as well.

30

2.3.2 Decision Tree Algorithm

Decision tree algorithms [Quinlan, 1986; Breiman et al., 1984] are among some of the most

widely used machine learning algorithms for building pattern classifiers from data. Their

popularity is due in part to their ability to:

• select from all attributes used to describe the data, a subset of attributes that are

relevant for classification;

• identify complex predictive relations among attributes; and

• produce classifiers that are easy to comprehend for humans.

The ID3 (Iterative Dichotomizer 3) algorithm proposed by Quinlan [Quinlan, 1986] and its

more recent variants represent a widely used family of decision tree learning algorithms. The

ID3 algorithm searches in a greedy fashion, for attributes that yield the maximum amount of

information for determining the class membership of instances in a training set D of labeled

instances. The result is a decision tree that correctly assigns each instance in D to its respective

class. The construction of the decision tree is accomplished by recursively partitioning D

into subsets based on values of the chosen attribute until each resulting subset has instances

that belong to exactly one of the m classes. The selection of an attribute at each stage of

construction of the decision tree maximizes the estimated expected information gained from

knowing the value of the attribute in question.

Consider a set of instances D which is partitioned based on the class values c1, · · · , cm

into m disjoint subsets C1, C2, ..., Cm such that D =
m
⋃

i=1

Ci and Ci

⋂

Cj = ∅ ∀i 6= j. The

probability that a randomly chosen instance x ∈ D belongs to the subset Cj is denoted by

pj. The entropy of a set D measures the expected information needed to identify the class

membership of instances in D, and is defined as follows: entropy(D) = −
∑

j pj · log2 pj. Given

some impurity measure, the entropy [Quinlan, 1986] or Gini index [Breiman et al., 1984], or

any other measure that can be defined based on the probabilities pj [Buja and Lee, 2001],

we can define the information gain for an attribute a, relative to a collection of instances

D as follows: IGain(D, a) = I(D) −
∑

v∈V alues(a)
|Dv |
|D|

I(Dv), where V alues(a) is the set of

31

all possible values for attribute a, Dv is the subset of D for which attribute a has value v,

and I(D) can be entropy(D), Gini index, or any other suitable measure. As in the case of

Naive Bayes, the probabilities pj can be estimated based on frequencies in the training data,

as follows: pj =
|Cj |

|D|
, where we denote by | · | the cardinality of a set, and thus, the entropy

can be estimated as follows: entropy(D) = −
∑

j

|Cj |

|D|
· log2

(

|Cj |

|D|

)

. The pseudocode of the

algorithm is shown if Figure 2.3.

To keep things simple, we assume that all the attributes are discrete or categorical. How-

ever, this discussion can be easily generalized to continuous attributes by using techniques for

discretizing the continuous-values attributes (e.g., by dividing the continuous interval where

the attribute takes values into sub-intervals that correspond to discrete bins) [Fayyad and

Irani, 1992; Witten and Frank, 1999].

Often, decision tree algorithms also include a pruning phase to alleviate the problem of

over-fitting the training data [Mitchell, 1997; Esposito et al., 1997]. For the sake of simplicity

of exposition, we limit our discussion to decision tree construction without pruning. However,

it is relatively straightforward to modify the algorithm to incorporate a variety of pruning

methods.

2.3.3 Perceptron Algorithm

Let D = {(xi, yi)|i = 1, t} be a set of training examples, where yi ∈ C = {0, 1}. We denote

by D+ = {(xi, yi)|yi = 1}, D− = {(xi, yi)|yi = 0} the sets of positive and negative examples,

respectively. We assume that they are linearly separable, which means that there exists a

linear discrimination function which has zero training error, as illustrated in Figure 2.4.

The learning task is to finding a vector, w∗, called weight vector, such that:

∀xi ∈ D+,w∗ · xi > 0 and ∀xi ∈ D−,w∗ · xi < 0. The perceptron algorithm [Rosenblatt,

1958] can be used for this purpose. Perceptrons are computing elements inspired by the

biological neurons [McCulloch and Pitts, 1943; Minksy and Papert, 1969]. The pseudocode

of the algorithm is presented in Figure 2.5.

Thus, we can see the perceptron weight vector as representing a separating hyperplane in

the instance space. The perceptron outputs 1 if the instances lie on one side of the hyperplane

32

Decision Tree algorithm

Learning Phase
ID3(D,A) (D set of training examples, A set of attributes).
Create a Root node for the tree.
if (all the examples in D are in the same class ci)
{

return (the single node tree Root with label ci)
}
else
{

Let a ← BestAttribute(D)
for (each possible value v of a) do
{

Add a new tree branch below Root corresponding to the test a = v.
if (Dv is empty)
{

Below this branch add a new leaf node with
label equal to the most common class value in D.

}
else
{

Below this branch add the subtree ID3(Dv, A − a).
}

}
}
return Root.

end-learning-phase

Classification Phase
Given a new instance x, use the decision tree having root Root to classify x, as follows:

• Start at the root node of the tree, testing the attribute specified by this node
• Move down the tree branch corresponding to the value of the attribute in the given example
• Repeat the process for the subtree rooted at the new node,
until this node is a leaf which provides the classification of the instance.

Figure 2.3 ID3 algorithm - greedy algorithm that grows the tree top-down,
by selecting the best attribute at each step (according to the
information gain). The growth of the tree stops when all the
training examples are correctly classified

33

wx+b=0

o
o

o
o

o

o

o

o

o
oo

11
1

1

11 1

1

1

1

1

o

Separating

Hyperplane

Figure 2.4 Linearly separable data set

and 0 if they lie on the other side. The intuition behind the update rule is to “step” in

the direction that reduces the classification error. The value η, called learning rate, specifies

the step size. The Perceptron Convergence Theorem [Minksy and Papert, 1969] guarantees

that if the data are linearly separable the algorithm will find the separating hyperplane in

a finite number of steps for any η > 0. The update rule of the Perceptron has the same

mathematical form as the gradient descent rule, which is the basis for the Backpropagation

[Rumelhart et al., 1986] algorithm. The Backpropagation algorithm is in turn, the basis for

many learning algorithms that search through spaces containing many types of hypotheses.

Therefore, the discussion related to the Perceptron algorithm applies to a large class of neuron-

based algorithms.

2.3.4 Support Vector Machines and Related Large Margin Classifiers

The Support Vector Machines (SVM) algorithm [Vapnik, 1998; Cortes and Vapnik, 1995;

Scholkopf, 1997; Cristianini and Shawe-Taylor, 2000] is a binary classification algorithm. If the

data are linearly separable, it outputs a separating hyperplane which maximizes the “margin”

between classes. If data are not linearly separable, the algorithms works by (implicitly)

mapping the data to a higher dimensional space (where the data become separable) and

a maximum margin separating hyperplane is found in this space. This hyperplane in the

high dimensional space corresponds to a nonlinear surface in the original space. Because

they find a maximum margin separation, SVM classifiers are sometimes called “large margin

34

Perceptron Algorithm

Learning Phase
Initialize w ← [0, · · · , 0]
do
{

1. for every example (xi, yi), compute w · xi. The output of the neuron is

oi =

{

1 if w · xi > 0
0 if w · xi ≤ 0

2. w ← w + η(yi − oi)xi

}
until(a complete pass through all the data sets results in no weight updates).
w∗ ← w

Classification Phase
For a new instance x

• assign x to the positive class if x · w∗ > 0;
• otherwise assign x to the negative class.

Figure 2.5 The Perceptron algorithm

classifiers”. Large margin classifiers are very popular due to theoretical results that show that

a large margin ensures a small generalization error bound [Vapnik, 1998] and also because they

proved to be very effective in practice. As we will see below, SVM algorithm involves solving a

quadratic optimization problem, which makes it inefficient for large data problems and difficult

to implement. This is why algorithms that lead to the same solution as SVM, but are more

efficient and easy to implement have received a lot of attention in recent years [Graepel and

Herbrich, 2000; Zhang et al., 2003a; Cesa-Bianchi et al., 2001; Freund and Schapire, 1998;

Friess et al., 1998]. In what follows, we will describe the SVM algorithms and also two

gradient-based algorithms that guarantee the same error bounds as SVM and are easier to

use in practice.

2.3.4.1 Support Vector Machines

Let D = {(x1, y1), · · · , (xt, yt)}, where xi ∈ Rn and yi ∈ {−1, 1} be a set of training

examples for a 2-category classifier. Let D+ = {xi|(xi, yi) ∈ D & yi = +1}, and D− =

{xi|(xi, yi) ∈ D & yi = −1} be the set of positive and negative examples, respectively.

Suppose the training data are linearly separable. Then it is possible to find a hyperplane

35

h that partitions the n-dimensional pattern space into two half-spaces R+ and R− such that

D+ ⊂ R+ and D− ⊂ R−. Each solution hyperplane can be specified by a pair (w, b) such that:

w ·xi + b ≥ 1 ∀xi ∈ D+, and w ·xi + b ≤ −1 ∀xi ∈ D−. A solution hyperplane which satisfies

the additional constraint min
i=1,··· ,t

|w · xi + b| = 1 is called the canonical hyperplane and defines

an one-to-one correspondence between the hyperplanes space and the set of pairs (w, b).

We call margin of the hyperplane h defined by a pair (w, b) with respect to a points x

from the training set, the distance between the hyperplane h and the point x, defined by:

d(x, (w, b)) = |w·x+b|
‖w‖

. Thus, the margin of a canonical hyperplane is equal to
1

‖w‖
. It can be

seen that the larger the margin of a hyperplane with respect to an example, i.e., the further

away the example is from the discriminant, the easier to classify the example. Thus, we

are interested in finding a “maximum margin” classifier that tries to maximize the distance

between examples and the decision boundary as illustrated in Figure 2.6

o

(a) Large Margin (b) Small Margin

x

x x

x

x
x

x

o
o

o

o
o

oo

x

x x

x

x
x

x

o
o

o

o
o

o

Figure 2.6 Maximum margin classifier

Among the hyperplanes that correctly classify the training set, SVM selects the one that

minimizes ‖w‖2, which involves solving the following quadratic programming problem:

min
w,b

Φ(w) =
1

2
‖w‖2

subject to yi(w · xi + b) ≥ 1 ∀i = 1, · · · , t.

The hyperplane which minimize ‖w‖2 is the same as the hyperplane for which the margin

of separation between the two classes, measured along a line perpendicular to the hyperplane,

36

is maximized. In order to solve the quadratic programming problem above, the dual problem

(defined below) is considered and the technique of Lagrange multipliers is used. Thus, instead

of solving the original problem, we solve the dual problem:

max
λ≥0

θ(λ) =
∑

i

λi −
1

2

∑

i

∑

j

λiλjyiyjx
′

ixj

subject to
∑

i λiyi = 0

The optimal solution will be w∗ =
∑t

i=1 λ∗
i yixi, where λ∗

i ’s are the non-negative Lagrange

multipliers corresponding to the constraints in the primal problem, and b∗ = yi−w∗xi for any

i = 1, t such that λ∗
i > 0. Thus the decision function can be written as f(x) = sign(

∑t

i=1 yiλ
∗
i x·

xi + b∗).

If the goal of the classification problem is to find a linear classifier for a non-separable

training set, a new set of weights, called slack weights (measuring the extent to which the

constraints are violated) can be introduced to define the following optimization problem:

min
x,b,ξ

Φ(w, ξ) =
1

2
‖w‖2 + C(

i=t
∑

i=1

ξi)
k

subject to

yi(w · xi + b) ≥ 1 − ξi ∀i = 1, · · · , t,

ξi ≥ 0 ∀i = 1, · · · , t,

where C and k are proportional to the penalty for constraints violation. The decision function

is similar to the one for the linearly separable case.

If the training examples are not linearly separable, the SVM algorithm works by mapping

the training set into a higher dimensional feature space using an appropriate kernel function

φ (Figure 2.7). The kernel function is chosen to ensure that the data become linearly

separable in the feature space. Therefore the problem can be solved using linear decision

surfaces in the higher dimensional space. Any consistent training set can be made separable

with an appropriate choice of a feature space of a sufficiently high dimensionality [Vapnik,

1998]. However, in general, this can cause the learning algorithm to overfit the training data

resulting in poor generalization. SVM avoids this problem by choosing the maximal margin

hyperplane from the set of all separating hyperplanes [Vapnik, 1998]. The solution given by

the SVM in this case will be of the following form:

37

F(X)

x φ()x

φ()x

φ()x

φ(ο)
φ(ο)

φ(ο)

φ(ο)

 Xφ()X −−−−>

o
x

x
x

o o o

X

x

φ()

Figure 2.7 Non-linearly separable data mapped to a feature space where it
becomes linearly separable

f(x) = sign(w∗ · φ(x) + b∗) = sign(
∑t

i=1 yiλ
∗
i φ(x) · φ(xi) + b∗)

where (w∗, b∗) defines the solution hyperplane.

If we interpret λ∗
i ’s as weights assigned to training instances xi’s, we can represent the

maximum margin separating hyperplane as a weighted sum of the training patterns. In this

weighted sum, the training patterns that lie far from this hyperplane receive weights of zero

and only those patterns that lie close to the decision boundary between the two classes have

non-zero weights. The training patterns that have non-zero weights are called the support

vectors. The number of support vectors is usually a small fraction of the size of the training

set. The pseudocode of the algorithm is shown in Figure 2.8.

Observation 2.10. It can be seen that the SVM algorithm uses the inner product between

mapped data vectors φ(xi)·φ(xj) = K(xi,xj) for all i, j, instead of the data vectors themselves.

Thus, we can learn SVM classifiers if we are given only the matrix K = φ(D)φ(D)
′

instead

of the data D. However, in order to classify new instances x, the inner products between the

instance x and the set of support vectors SV must be known as well.

Thus, as the kernel matrix is the object of interest, we characterize a kernel matrix using

Mercer’s Theorem 2.11 as follows:

Theorem 2.11. [Gradshteyn and Ryzhik, 1979] A symmetric function K(x,y) can be ex-

38

SVM Algorithm

Learning Phase
SVM(D:data, K:kernel)
Solve the optimization problem:

max
λ≥0

θ(λ) =
t

∑

i=1

(1 − ξi)λi −
1

2

t
∑

i=1

t
∑

j=1

λiλjyiyj · K(xi,xj) + C(
t

∑

i=1

ξi)
k

subject to
∑t

i=1 λiyi = 0
ξi ≥ 0 ∀i = 1, · · · , t

Let λ∗ be the solution of this optimization problem.

Classification Phase
For a new instance x

assign x to the class f(x) = sign(
∑t

i=1 yiλ
∗
i · K(x,xi) + b∗)

Figure 2.8 Support Vector Machines algorithm

pressed as an inner product K(x,y) =< φ(x), φ(y) > for some φ if and only if K(x,y) is

positive semidefinite, i.e.
∫

K(x,y)g(x)g(y)dxdy for any g, or equivalently:

K(x1, x1) K(x1, x2) · · ·

K(x2, x1)
. . .

...

is positive semidefinite for any set {x1, · · · , xn}.

Example 2.12. A common kernel is the Gaussian Kernel: K(x,y) = e
1

2
‖x−y‖

2.3.4.2 Sparse (Dual) Kernel Perceptrons

We have mentioned before that theoretical work [Vapnik, 1998] shows that a large margin

is required for a classifier to ensure small generalization error bounds. However, the Occam’s

razor principle implies that “sparsity” of the solution vector (simplicity) is also important

for generalization. Graepel and Herbrich [2000] show that there is a relation between mar-

gin and sparsity: “the existence of a large margin classifier implies the existence of sparse

consistent classifiers in dual space”. Furthermore, these classifiers can be found by the dual

39

perceptron algorithm. The classical perceptron algorithm [Rosenblatt, 1958] assumes that data

are linearly separable. However, if this is not the case, as in the case of SVM, we could use

a kernel function φ to map the data to a higher dimensional space where the data become

linearly separable and learn the weight vector w in that space. In fact, Vapnik [1998] shows

that it is better to learn in the dual representation, which means that we write the weight

vector in terms of training instances, i.e. wλ =

|D|
∑

i=1

λiφ(xi), and learn the vector of coefficients

λ = (λ0, λ1, · · · , λ|D|) instead of learning directly the components of w. The dual perceptron

algorithm is described in Figure 2.9. As opposed to the classical algorithm [Rosenblatt, 1958]

where wλ ← wλ + ηyiφ(xi), the algorithm presented in Figure 2.9 adds a normalization term

which reduces the upper bound on the number of iterations of the algorithm [Graepel and

Herbrich, 2000].

Dual Perceptron Algorithm

Learning Phase
Learning rate: η.
Initialize λ = (0, 0, · · · , 0).
while (there exists an example xi such that yi· < wλ, φ(xi) >K≤ 0) do
{

λi ← λi +
ηyi

√

K(xi,xj)
⇔ wλ ← wλ + ηyi

φ(xi)

‖φ(xi)‖K

}

Classification Phase
For a new instance x

• assign x to the positive class if x · w∗ > 0;
• otherwise assign x to the negative class.

Figure 2.9 The Dual Perceptron algorithm

The main theorem in [Graepel and Herbrich, 2000] shows that “the mere existence of a

large margin classifier λ∗ is sufficient to guarantee a small generalization error for the solution λ

of the dual perceptron although its attained margin is likely to be much smaller”. This proves

that the margin itself is not crucial for a small generalization error. However, the existence of

a consistent large margin classifier implies the existence of a high sparsity classifier that can

be efficiently found by the dual perceptron algorithm. It turns out that in practice, the error

of the solution found by the dual perceptron is even smaller than the error found by SVM,

40

which makes this algorithm a simple and good candidate for problems where a large margin

classifier exists.

2.3.4.3 Logistic Regression Approximation to SVM

Logistic regression (LR) is a traditional statistical tool [Darlington, 1990] that can be used

to approximate SVM [Zhang et al., 2003a]. When the data are linearly separable, LR models

the conditional probability of the class label y given the instance x:

p(y|x) =
1

1 + exp(−y(wTx + b))
,

where w and b define the separating hyperplane. The Regularized LR involves solving the

following optimization problem:

w∗ = arg min
w

1

n

|D|
∑

i=1

log(1 + exp(−yi(w
Txi + b))) + λwTw

,

whose Hessian matrix is positive definite. This means that the objective function of the

regularized LR is strict convex, and thus it has a unique global solution [Luenberger, 1973].

Zhang et al. [2003] showed that a variant of the regularized logistic regression can be used

to approximate SVM by defining a sequence of smooth functions that converge uniformly to

the objective function of SVM. Thus, simple unconstrained optimization problems can be used

to solve the SVM optimization problem.

2.3.5 k Nearest Neighbors Classifiers

The k nearest neighbors (k-NN) classifier [Cover and Hart, 1967; Mitchell, 1997] is a simple

example of instance-based learning, also known as lazy learning. In the k-NN algorithm, the

nearest neighbors are defined in terms of a metric (a.k.a. distance) D(., .) between instances.

A metric is a function that satisfies the following properties for all x,y, z instances (i.e.,

vectors) [Frchet, 1906]:

• non-negativity: D(x,y) ≥ 0

41

• reflexivity: D(x,y) = 0 if and only if x = y

• symmetry: D(x,y) = D(y,x)

• triangle inequality: D(x,y) + D(y, z) ≥ D(x, z)

If we assume that all the instances are points in the n-dimensional space Rn, let

x =< a1, · · · , an > and y =< b1, · · · , bn >. It is easy to check that the following metrics in

Rn satisfy the properties above:

• Euclidean distance: d(x,y) =

√

√

√

√

n
∑

i=1

(ai − bi)2

• Minkowski metric: d(x,y) =

(

n
∑

i=1

|ai − bi|
k

)
1

k

• Manhattan distance: d(x,y) =
n

∑

i=1

|ai − bi|

Let C = {c1, · · · , cm} be the set of class labels, and D = {(x1,y1), · · · , (xt,yt)} the set of

training examples. Then the class label for a new instance x is given by the most common

class label among the k training examples nearest to x (Figure 2.10).

o

+

+
+

+

_
_

_

_

X
o

+

_

+
+

_

o

o

o
o

Figure 2.10 Decision boundary induced by the 1 nearest neighbor classifier

The pseudocode of the algorithm is shown in Figure 2.11. We can see that no general

hypothesis h is learned. Instead, the algorithm computes the classification of a new instance

x as needed. Alternatively, we can view this as assembling a hypothesis for each instance to

be classified.

42

k-NN Algorithm

Learning Phase:
for (each training example (xi, yi))
{

add the example to the list training examples
}

Classification Phase:
Given a new instance x to be classified:

let xi1 , · · · ,xik be the k nearest neighbors of the instance x in the list training examples
return

h(x) = arg max
c∈C

k
∑

j=1

δ(c, yij),

where δ(a, b) = 1 if a = b and δ(a, b) = 0 otherwise.

Figure 2.11 The k Nearest Neighbors algorithm

2.4 Decomposition of Learning Algorithms into Information Ex-

traction and Hypothesis Generation Components

The algorithms described in the previous section are representative for a large class of

Machine Learning algorithms. We observe [Kearns, 1998; Caragea et al., 2004d] that most of

the learning algorithms use only certain statistics computed from the data D in the process

of generating a hypothesis and classifying new instances. (Recall that a statistic is simply

a function of the data. Examples of statistics include mean value of an attribute, counts of

instances that have specified values for some subset of attributes, the most frequent value of

an attribute, etc.) This yields a natural decomposition of a learning algorithm components

(learning component and classification component) into two sub-components (see Figure 2.12):

(1) an information extraction component that formulates and sends a statistical query to a

data source and (2) a hypothesis generation component that uses the resulting statistic to

modify a partially constructed algorithm output, sometimes represented also as a statistic

(and further invokes the information extraction component if needed to generate the final

algorithm output) [Caragea et al., 2004d].

Definition 2.13. A statistical query q(s) is any query q that returns a statistic s. One

common type of query posed by many learning algorithms (Naive Bayes, Bayesian Networks,

43

Lazy Learning

i

ii

Statistical Query

Formulation

Statistical Query

Formulation

Hypothesis Generation

i+1 i

i

i

 D

Data

 D

Data
i

i

Hypothesis Generation

h <−R(h , s(D,h))
s(D, h)Result

Query s(D, h)

Query s(D, h (x))

Result s(D, h (x))
i+1

h (x)<−R(h (x), s(D,h (x)))

Eager Learning

Figure 2.12 Learning revisited: identify sufficient statistics, gather the suf-
ficient statistics and generate the current algorithm output

Decision Trees etc.) is called count or joint count statistical query.

Example 2.14. If D is data shown in Table 2.1, then the query that asks for the number

of examples in D for which the class attributes EnjoySport takes the value Y es is a count

statistical query. The query that asks for the number of examples in D for which attribute

Humidity takes value Low given that the class attribute EnjoySport takes value Y es, is a

joint count statistical query.

In what follows, we formally define sufficient statistics for a learning algorithm [Caragea et

al., 2004d] and identify sufficient statistics for the algorithms described in Section 2.3 [Caragea

et al., 2000; 2001; 2004d].

2.5 Sufficient Statistics

Definition 2.15. [Casella and Berger, 2001] A statistic s(D) is called a sufficient statistic for

a parameter θ if s(D) (loosely speaking) provides all the information needed for estimating the

parameter θ from data D. Thus, sample mean is a sufficient statistic for mean of a Gaussian

distribution.

44

Definition 2.16. [Casella and Berger, 2001] A sufficient statistic s for a parameter θ is called

a minimal sufficient statistic if for every sufficient statistic s′ for θ there exists a function gs

such that gs(s
′(D)) = s(D).

We can generalize this notion of a sufficient statistic for a parameter θ to yield the notion

of a sufficient statistic sL(D,x) for classifying a new instance x using a learning algorithm L

applied to a data set D [Caragea et al., 2004d]. Trivially, the data D is a sufficient statistic

for classifying x using L applied to D. However, we are typically interested in statistics that

are minimal or at the very least, substantially smaller in size than the whole data set D.

We observe that in the case of eager learning algorithms, a hypothesis is built during the

learning phase of the algorithm, then it is used to classify new examples in the classification

phase. Thus, the sufficient statistics for classifying a new example x are given by the example

x itself and the statistics sl
L(D, h) that are needed to learn the hypothesis h from data D using

the algorithm L. Hence, for eager learning algorithms, gathering sufficient statistics sL(D,x)

reduced to gathering sufficient statistics sl
L(D, h) during the learning phase.

In the case of lazy learning algorithms, data are simply stored during the learning phase

and a hypothesis h(x) is build “on-the-fly” for each instance x during the classification phase.

This means that the sufficient statistics sL(D,x) are given by the instance x itself and the

statistics sc
L(D, h(x)) that are needed to learn h(x) from D using the algorithm L. Hence, for

lazy learning algorithms, gathering sufficient statistics sL(D,x) reduced to gathering sufficient

statistics sc
L(D, h(x)) during the classification phase.

In some simple cases, it is possible to extract non trivial sufficient statistics sl
L(D, h) or

sc
L(D, h(x)) in one step (e.g., when L is the standard algorithm for learning Naive Bayes or

k-NN classifiers, respectively).

Definition 2.17. We say that sl
L(D, h) is a sufficient statistic for learning h using the eager

learning algorithm L if there exists an algorithm that accepts sl
L(D, h) as input and outputs

h.

Definition 2.18. We say that sc
L(D, h(x)) is a sufficient statistic for learning h(x) using the

lazy learning algorithm L if there exists an algorithm that accepts sc
L(D, h(x)) as input and

45

outputs h(x).

In general, a hypothesis h or h(x) is constructed by L by interleaving information extrac-

tion and hypothesis generation operations (see Figure 2.12). Thus, a decision tree learning

algorithm would first obtain the sufficient statistics (expected information concerning the class

membership of an instance associated with each of the attributes) for a single node decision

tree (a partial hypothesis h1), then follow up with queries for additional statistics needed to

iteratively refine h1 to obtain a succession of partial hypotheses h1, h2, · · · culminating in h,

the final decision tree.

Observation 2.19. In what follows, with a little abuse of notation, we will denote by h either

a hypothesis or a representation of the hypothesis (e.g., in the case of the SVM algorithm

h could be the set of support vectors that determine the separating hyperplane and not the

hyperplane itself).

Definition 2.20. We say that sl
L(D, hi → hi+1) is a sufficient statistic for the refinement of

hi into hi+1 if there exists an algorithm Rl which accepts hi and sl
L(D, hi → hi+1) as inputs

and outputs hi+1.

Definition 2.21. We say that sc
L(D, hi(x) → hi+1(x)) is a sufficient statistic for the refinement

of hi(x) into hi+1(x) if there exists an algorithm Rc which accepts hi(x) and sc
L(D, hi(x) →

hi+1(x)) as inputs and outputs hi+1(x).

Definition 2.22. We say that sl
L(D, hi → hi+k) (where k ≥ 0) is a sufficient statistic for

iteratively refining hi into hi+k if hi+k can be obtained through a sequence of refinements

starting with hi.

Definition 2.23. We say that sc
L(D, hi(x) → hi+k(x)) (where k ≥ 0) is a sufficient statistic

for iteratively refining hi(x) into hi+k(x) if hi+k(x) can be obtained through a sequence of

refinements starting with hi(x).

Definition 2.24. We say that sl
L(D, (h1, · · · , hm) → h) is a sufficient statistic for the compo-

sition of (h1, · · · , hm) into h if there exists an algorithm C l which accepts as inputs h1, · · · , hm

and sL
l (D, (h1, · · · , hm) → h) and outputs the hypothesis h (or a representation of h).

46

Definition 2.25. We say that sc
L(D, (h1(x), · · · , hm(x)) → h(x)) is a sufficient statistic for

the composition of (h1(x), · · · , hm(x)) into h(x) if there exists an algorithm Cc which accepts

as inputs h1(x), · · · , hm(x) and sc
L(D, (h1(x), · · · , hm(x)) → h(x)) and outputs the hypothesis

h(x) (or a representation of h(x)).

Definition 2.26. We say that sl
L(D, h) is a sufficient statistic for learning the hypothesis h

using the eager learning algorithm L and the training data D, starting with a null h0 = φ, if h

can be obtained from h0 through some sequence of applications of composition and refinement

operations.

Definition 2.27. We say that sc
L(D, h(x)) is a sufficient statistic for learning the hypothesis

h(x) using the lazy learning algorithm L and the training data D, starting with a null h0(x) =

φ, if h(x) can be obtained from h0(x) through some sequence of applications of composition

and refinement operations.

Definition 2.28. We say that sL(D,x) is a sufficient statistic for classifying x using the

eager learning algorithm L and the training data D (or simply a sufficient statistic for L with

respect to the learning phase of L) if there exist sl
L(D, h)) such that sL(D,x) is obtained

from sl
L(D, h) and x.

Definition 2.29. We say that sL(D,x) is a sufficient statistic for classifying x using the lazy

learning algorithm L and the training data D (or simply a sufficient statistic for L with respect

to the classification phase of L) if there exist sc
L(D, h(x))) such that sL(D,x) is obtained from

sc
L(D, h(x)) and x.

Assuming that the relevant sufficient statistics (and the procedures for computing them)

can be defined, finding the class of a new example x using an algorithm L and a data set

D can be reduced to the computation of sl
L(D, h) (or sc

L(D, h(x))) through some sequence of

applications of refinement and composition operations starting with the hypothesis h0 = φ

(or h0(x) = φ).

47

2.6 Examples of Sufficient Statistics

2.6.1 Sufficient Statistics for Naive Bayes Classifiers

We have seen (Figure 2.2) that in the case of Naive Bayes classifiers a hypothesis (set of

probabilities) is built during the learning phase. This hypothesis is used during the classi-

fication phase to classify new unseen instances. The set of probabilities P (cj) and P (ai|cj),

representing the hypothesis, can be computed based on counts of the form t = countD(x),

tj = countD(cj), and tij = countD(ai|cj). Thus, these counts represent sufficient statistics

for the hypothesis build during the learning phase of Naive Bayes classifiers [Caragea et al.,

2001]. They can be computed in one pass through the data as in Figure 2.13 where the data

D is as in Table 2.1.

Table 2.1 Data set D: Decide EnjoySport based on Weather Data
Example Outlook Wind Humidity EnjoySport

1 Sunny Strong High No
2 Sunny Strong Normal No
3 Rainy Weak Normal Yes

2.6.2 Sufficient Statistics for Decision Trees

The information requirements of the learning phase of ID3-like decision tree algorithms

can be identified by analyzing the way in which the best attribute is chosen at each step

of the algorithm (Figure 2.3). Different algorithms for decision tree induction differ from

each other in terms of the criterion that is used to evaluate the splits that correspond to

tests on different candidate attributes [Buja and Lee, 2001]. Many of the splitting criteria

used in decision tree algorithms (e.g., information gain based on entropy or gini index) can

be expressed in terms of relative frequencies computed from the relevant instances at each

node. These relative frequencies can be reduced to counts of the form t = countD|h(x),

tj = countD|h(cj), tij = countD|h(ai|cj) (where D|h is the relevant data that satisfies the

constraints specified by the partial decision tree h on the values of particular attributes). We

48

D

Outlook

Humidity

Wind

EnjoySport

Counts(EnjoySport)

Counts(Hymidity|EnjoySport)

Counts(Outlook|EnjoySport)

Count Distribution

Count Distribution
Counts(Wind | EnjoySport)

Count Distribution

Count Distribution

NB Learning Algorithm

DATA

Figure 2.13 Naive Bayes classifiers learning as information extraction and
hypothesis generation: the algorithm asks a joint count statis-
tical query for each attribute in order to construct the classifier

notice that for a particular node h is actually the path to that node, which is a conjunction

of attribute values. Thus, the sufficient statistics are joint counts that represent refinement

sufficient statistics in the sense defined in Section 2.5 [Caragea et al., 2004d]. They have to

be obtained once for each node that is added to the tree starting with the root node (see

Figure 2.14). A decision tree specific refinement operator uses these counts to compute the

information gain for the possible splitting attributes and then it chooses the best attribute.

The final decision tree constructed during the learning phase is used to classify new instances

during the classification phase.

2.6.3 Sufficient Statistics for Perceptron Algorithm

The perceptron algorithm classifies new unseen examples based on the weight vector w

computed during the training phase. By analyzing the algorithm in Figure 2.5, we notice

that at each step, the weight w gets updated based on the current example (xj, yj) ∈ D. As

the weight w is computed directly from the data D, the value of the weight after one pass

through the data (one iteration) can be seen as a minimal refinement sufficient statistic with

49

Data

Decision Tree Learning Algorithm

Hypothesis Generation

Outlook

Yes Wind

No Yes

Humidity

No Yes

Sunny

Overcast

Rain

Strong Weak

High Normal

Counts(Outlook,Class), Counts(Class)

Counts(Class|Outlook)

Counts(Wind,Class|Outlook)
Count Distribution

Count Distribution

Count Distribution

Counts(Humidity, Class|Outlook), Counts(Class|Ourlook)

D

Figure 2.14 Decision Tree learning as information extraction and hypothesis
generation: for each node, the algorithm asks a joint count
statistical query and chooses the best attribute according to
the count distribution

50

respect to the partial hypothesis constructed in one iteration i of the algorithm. We denote

by wi+1(D) the value of the weight computed from D at iteration i + 1. Then, s(D,wi(D))

is a refinement sufficient statistic for wi+1(D) (see Figure 2.15). The output of the algorithm

is the final weight w(D).

i

(D))(D, ws

 D

Data

Result

Query

Weight Update

Statistical Query

Formulation

Algorithm
Perceptron

ii+1
w (D) <−R(w (D), s(D,w (D)))

i

Figure 2.15 The Perceptron algorithm as information extraction and hy-
pothesis generation: at each iteration i + 1, the current weight
wi+1(D) is updated based on the refinement sufficient statistic
s(D,wi(D))

2.6.4 Sufficient Statistics for SVM

The SVM algorithm (Figure 2.8) constructs a binary classifier that corresponds to a sep-

arating hyperplane that maximizes the margin of separation between instances belonging to

two classes. The weight vector w that defines the maximal margin hyperplane is therefore a

sufficient statistic for the SVM algorithm with respect to the learning phase. Because such

a weight vector can be expressed as a weighted sum of a subset of training instances (called

support vectors), the support vectors and the associated weights also constitute a sufficient

statistic for SVM [Caragea et al., 2000]. Thus, the algorithm can be decomposed into infor-

mation extraction and hypothesis generation as in Figure 2.16. For Sparse Kernel Perceptrons

and Logistic Regression Approximations to SVMs, the algorithms compute the weight incre-

mentally by iterating through the data several times, as in the case of Perceptron algorithm.

Thus, for these algorithms we have refinement sufficient statistics as in Figure 2.15.

51

Compute weight based on SV(D)

 D

Data

Result

Query
Statistical Query

Formulation

 SVM Algorithm

SV(D)

Figure 2.16 The SVM algorithm as information extraction and hypothesis
generation: the algorithm asks for the support vectors and their
associated weights) and the weight w is computed based on this
information

2.6.5 Sufficient Statistics for k-NN

As can be seen in Figure 2.11, the learning phase of a k-NN algorithm consists simply of

storing the data and the information extraction is done during the classification phase. Given

a new example x to be classified the sufficient statistics with respect to h(x) consist of the k

nearest neighbors (training examples) of the new example x that needs to be classified. Given

the k nearest neighbors, the class of the new example is determined by taking a majority

vote among those examples, independent of the rest of the data. Furthermore, we notice that

although the k nearest neighbors represent sufficient statistics for k-NN classifiers, they are

not minimal sufficient statistics. The minimal sufficient statistics are given by the smallest

k distances and the classes corresponding to them. As in the case of Naive Bayes, here the

sufficient statistics can be computed in one step (see Figure 2.17).

2.7 Summary and Discussion

After introducing some background on machine learning systems and their evaluation,

in this Chapter we defined the problem of learning from data and presented five classical

learning algorithms (Naive Bayes, Decision Tree Algorithm, Perceptron Algorithm, Support

Vector Machines and k-Nearest Neighbors algorithm) which are representative for a large class

of learning problems.

52

Compute Classification

 D

Data

Result

Query
Statistical Query

Formulation

 k−NN Algorithm

kNN(x,D)

h(x) = MV (kNN(x,D))

Figure 2.17 k-NN Algorithm as information extraction and hypothesis gen-
eration: for each example x the algorithm asks for the k nearest
neighbors and computes the classification h(x) taking a major-
ity vote over these neighbors

In the context of learning in the presence of classification noise in the probabilistic learning

model of Valiant and its variants [Valiant, 1984], Kearns [1998] formalized a related model of

learning from statistical queries and showed that every class learnable in Valiant’s model and

its variants can also be learned in the new model and thus can be learned in the presence of

noise (with one notable exception, the class of parity functions, which is not learnable from

statistical queries, and for which no noise-tolerant algorithm is known). Intuitively, in the sta-

tistical query model, a learning algorithm is forbidden to examine individual examples of the

unknown target function, but is given access to an oracle providing estimates of probabilities

over the sample space of random examples. Thus, the example oracle E(f,D) [Valiant, 1984]

is replaced with a statistics oracle STAT (f,D) [Kearns, 1998]. Every input to the statis-

tics oracle is of the form (χ, α), where χ is any mapping of a labeled example to {0, 1} and

α ∈ [0, 1] and can be interpreted as the request for the probability Pχ = Px∈D[χ(x, f(x)) = 1].

As the oracle STAT (f,D) will not return the exact value of Pχ, but only an approxima-

tion, α quantifies the amount of error the learning algorithm is willing to tolerate in this

approximation.

Similar to [Kearns, 1998], we observed that most of the learning algorithms use only certain

statistics computed from the data D in the process of generating hypotheses used to classify

new instances [Caragea et al., 2004d]. In the light of this observation, we revisited the classical

definition of learning from data and showed that any learning algorithm can be decomposed

53

into two components: an information extraction component in which sufficient statistics for

learning are collected and a hypothesis generation component in which sufficient statistics are

used to construct a hypothesis [Caragea et al., 2004d]. We defined formally the notion of

sufficient statistics for classifying a new instance x using a learning algorithm L applied to

a data set D and identified sufficient statistics for classifying instances using the algorithms

of interest (Naive Bayes, Decision Tree Algorithm, Perceptron Algorithm, Support Vector

Machines and k-Nearest Neighbors algorithm).

In the next Chapter, we will show how this new formulation of the problem of learning

from data can be used to design algorithms for learning classifiers from distributed data.

54

3 LEARNING CLASSIFIERS FROM DISTRIBUTED DATA

In this chapter we will define the problem of learning from distributed data and show how

we can transform learning algorithms as those presented in Chapter 2 into algorithms for

learning from distributed data. We will also introduce criteria for comparing the two types of

learning.

3.1 Learning from Distributed Data

Definition 3.1. In a distributed setting, the data are distributed across several data sources.

Each data source contains only a fragment of the data. This leads to a fragmentation of a data

set D. Two common types of data fragmentation are: horizontal fragmentation (Figure 3.1

(Left)), wherein (possibly overlapping) subsets of data tuples are stored at different sites; and

vertical fragmentation (Figure 3.1 (Right)), wherein (possibly overlapping) sub-tuples of data

tuples are stored at different sites. More generally, the data may be fragmented into a set

.

D

D

D

D1

1

2

2

Data Instances

AttributesAttributes

D D

K

K...

..

Figure 3.1 Data fragmentation: (Left) Horizontally fragmented data
(Right) Vertically fragmented data

of relations (as in the case of tables of a relational database, but distributed across multiple

sites) [Atramentov et al., 2003] (see Figure 3.2).

55

COMPLEX

INTERACTION
GENE

COMPOSITION

TYPE

GENE_ID2

GENE_ID1

EXPRESSION_CORR

I_ID

GENE_ID

ESSENTIAL

CHROMOSOME

LOCALIZATION
MOTIF

PHENOTYPE

CLASS

GENE_ID

C_ID

Figure 3.2 Multi relational database

If a data set D is distributed among the sites 1, · · · , K containing data set fragments

D1, · · · , DK , we assume that the individual data sets D1, · · · , DK collectively contain all the

information needed to construct the complete dataset D (at least in principle).

Thus, if the data D is horizontally distributed among the sites 1, · · · , K, then D can be

reconstructed from D1, · · · , DK by simply taking the multi-set union of these subsets, i.e.,

D = D1 ∪ · · · ∪ DK (duplicates are allowed).

When the data are vertically distributed, we assume that each example has a unique index

associated with it. Vertical fragments of the data are distributed across different sites. Each

vertical fragment corresponds to a subset of the attributes that describe the complete data set.

It is possible for some attributes to be shared (duplicated) across more than one vertical frag-

ment, leading to overlap between the corresponding fragments. Let A1, A2, · · · , AK indicate

the set of attributes whose values are stored at sites 1, · · · , K respectively, and let A denote

the set of attributes that are used to describe the data tuples of the complete data set. Then

in the case of vertically distributed data, we have: A1∪A2 · · ·∪AK = A. Let D1, D2, · · · , DK ,

denote the fragments of the dataset stored at sites 1, · · · , K respectively, and let D denote the

complete data set. Let the ith tuple in a data fragment Dj be denoted as tiDj
. Let tiDj

.index

denote the unique index associated with tuple tiDj
and let × denote the join operation. Then

the following properties hold: D1 ×D2 × · · · ×DK = D and ∀ Dj, Dk, tiDj
.index = tiDk

.index.

Thus, the sub-tuples from the vertical data fragments stored at different sites can be put to-

gether using their unique index to form the corresponding data tuples of the complete dataset.

It is possible to envision scenarios in which a vertically fragmented data set might lack unique

indices. In such a case, it might be necessary to use combinations of attribute values to infer

56

associations among tuples [Bhatnagar and Srinivasan, 1997]. In what follows, we will assume

the existence of unique indices in vertically fragmented distributed data sets.

Definition 3.2. The distributed setting typically imposes a set of constraints Z on the learner

that are absent in the centralized setting. For example:

• The constraints Z may prohibit the transfer of raw data from each of the sites to a central

location while allowing the learner to obtain certain statistics from the individual sites

(e.g., counts of instances that have specified values for some subset of attributes) or they

may prohibit the execution of remote code to some of the data sources.

• The constraints Z may allow shipping raw data but they may specify that no suffi-

cient statistics are provided (for example, operators for computing the statistics are not

available).

• Sometimes it might be possible to ship code for gathering sufficient statistics that are

not provided by a data source (for example, support vectors). However, the constraints

Z may prohibit the execution of remote code at a data source.

• Some applications may impose a physical limit on the amount of information that can

be shipped (e.g., no more than 100Mb per day).

• Other applications of data mining (e.g., knowledge discovery from clinical records),

might impose constraints Z designed to preserve privacy.

Definition 3.3. The problem of learning from distributed data can be summarized as follows:

Given the fragments D1, · · · , DK of a data set D distributed across the sites 1, · · · , K, a set

of constraints Z, a hypothesis class H, and a performance criterion P , the task of the learner

Ld is to output a hypothesis h ∈ H that optimizes P using only operations allowed by Z. As

in the case of centralized learning, this is likely to result in a classifier that can be used to

classify new unlabeled data. Clearly, the problem of learning from a centralized data set D is

a special case of learning from distributed data where K = 1 and Z = φ.

57

Having defined the problem of learning from distributed data, we proceed to define some

criteria that can be used to evaluate the quality of the hypothesis produced by an algorithm

Ld for learning from distributed data relative to its centralized counterpart.

Definition 3.4. We say that an algorithm Ld for learning from distributed data sets D1, · · · , DK

is exact relative to its centralized counterpart L if the hypothesis produced by Ld is identical

to that produced by L from the complete data set D obtained by appropriately combining

the data sets D1, · · · , DK , and thus the classification error is the same.

Example 3.5. Let Ld be an algorithm for learning a Support Vector Machine (SVM) clas-

sifier hd : ℜn → {−1, 1}, under constraints Z, from horizontally fragmented distributed data

D1, · · · , DK , where each Dk ⊆ ℜK × {−1, 1}. Let L be a centralized algorithm for learning

an SVM classifier h : ℜK → {−1, 1} from data D ⊆ ℜK × {−1, 1}. If D = ∪K
1 Dk, then we

say that Ld is exact with respect to L if and only if ∀X ∈ ℜK , h(X) = hd(X).

Observation 3.6. We should note that some learning algorithms involve making certain ran-

dom choices, either in the learning phase or in the classification phase. For example, in the

learning phase of the decision tree algorithm, if two possible splitting attributes have the same

information gain, one of them is randomly chosen for splitting. Or in the classification phase

of the Naive Bayes algorithm, if there are two equally probable classes for a test example x,

one of them is randomly chosen. Thus, when we define the exactness criterion for comparing

learning from distributed data with learning from data, we assume that whenever a random

choice needs to be made, both learning from distributed data and learning from data make

the same choice.

Similar to the Definition 3.4, we can define exactness of learning from distributed data

with respect to other criteria of interest (e.g., expected accuracy of the learned hypothesis).

More generally, it might be useful to consider approximate learning from distributed data in

similar settings. However, we focus on algorithms for learning from distributed data that are

provably exact with respect to their centralized counterparts in the sense defined above, as

proof of exactness of an algorithm for learning from distributed data relative to its centralized

counterpart ensures that a large collection of existing theoretical (such as those introduced in

58

Chapter 2, Section 2.1) as well as empirical results obtained in the centralized setting apply

in the distributed setting. Also questions addressed by the Computational Learning Theory,

if answered in the centralized case, can be easily translated to the distributed case. Some

examples of such questions are:

• What can we learn? What are the classes of hypothesis that are learnable by a learning

algorithm? Which is the best algorithm for a specific problem? [Mitchell, 1997]

• When can we learn? What are the conditions under which learning is possible? How

much training data is sufficient for learning? How much data do we need to ensure that

the classification error is a good estimate for the true error? [Valiant, 1984; Vapnik and

Chervonenkis, 1971]

• Have we learned? How much have we learned? Can we provide a high confidence bound

on the true error of the learned hypothesis? [Langford, May 2002]

Goal: Our goal is to design a strategy for transforming algorithms for learning from data into

exact algorithms for learning from distributed data. We compare the resulting algorithms with

the traditional algorithms in terms of time and communication complexity.

3.2 General Strategy for Learning from Distributed Data

Our general strategy for designing an algorithm for learning from distributed data that is

provably exact with respect to its centralized counterpart (in the sense defined above) follows

from the observation made in Chapter 2, Section 2.4 that most of the learning algorithms

use only certain statistics computed from the data D in the process of generating hypotheses

and classifying new instances, and thus they can be decomposed in two components: (1) an

information extraction component and (2) a hypothesis generation (information processing)

component.

In light of this observation, the task of designing an algorithm Ld for learning from dis-

tributed data can be also decomposed into two components: (1) information extraction from

distributed data and (2) hypothesis generation. The information extraction from distributed

59

data entails decomposing each statistical query q posed by the information extraction com-

ponent of the learner into sub-queries q1, · · · , qK that can be answered by the individual data

sources D1, · · · , DK , respectively, and a procedure for combining the answers to the sub-

queries into an answer for the original query q (see Figure 3.3). When the learner’s access

to data sources is subject to constraints Z the information extraction component has to be

executable without violating the constraints Z. The transformation of the task of learning

from distributed data into a sequence of applications of hypothesis refinement and hypothesis

composition operations can be performed assuming serial or parallel access to the data sources

D1, · · · , DK (see Figure 3.4).

...

Statistical Query

Decomposition
Query

Answer
Composition

D

D

D

1

2

q

q

q

1

2

Query

Result

Formulation

Hypothesis Generation

i+1 iih <−R(h , s(D, h))

i

i

s(D, h)

s(D, h)

(a)

KK

Eager Learning

...

Statistical Query

Decomposition
Query

Answer
Composition

D

D

1

2

q

q

q

1

2

Formulation
D

K

(b)

K

Lazy Learning

Hypothesis Generation

Query s(D, h (x))i

Result s(D, h (x))i
i+1

h (x)<−R(h (x), s(D, h (x)))
i i

Figure 3.3 Exact distributed learning: distribute the statistical query
among the distributed data sets and compose their answers.(a)
Eager learning (b) Lazy learning

...
DD DD D D

1 2

2

1 2n

1 21

 S S S

SGSG SG

 S S S

SG SG SG

1
s(D ... D , h)

Data

Gathering
Statistics

Statistics
Partial

Statistics
Global

K

K

K

K

K

1
s(D ... D , h)

K

...

Figure 3.4 Distributed statistics gathering: (Left) Serial (Right) Parallel

The exactness of the algorithm Ld for learning from distributed data relative to its cen-

60

tralized counterpart, which requires access to the complete data set D, follows from the cor-

rectness (soundness) of the query decomposition and answer composition procedure. Thus,

if D is distributed across the sites D1 ∪ · · ·DK , let q be a statistical query posed by the in-

formation extraction component of the learner with respect to D and q1, · · · , qK sub-queries

of q that can be answered by the individual data sources D1, · · · , DK , respectively. We de-

note by C a procedure for combining the answers to the sub-queries into an answer for the

original query q. Then, a necessary and sufficient condition for an algorithm for learning

from distributed data to be exact with respect to its centralized counterpart is the following:

q(D) = C(q1(D1), · · · , qK(DK)).

We have mentioned that count statistical queries (Definition 2.13) are one common type

of queries, whose answers are needed by many learning algorithms (Naive Bayes, Bayesian

Networks, Decision Trees, etc.). The following lemma is true:

Lemma 3.7. If D is horizontally distributed across the data sites D1, · · · , DK and q is a

count statistical query over D that decomposes into sub-queries q1, · · · , qK with respect to

D1, · · · , DK, then q(D) = C(q1(D1), · · · , qK(DK)), where C is the operation of adding up

counts, i.e. q(D) = q1(D1) + · · · + qK(DK).

Proof. Because D is horizontally distributed over D1, · · · , DK , we have that D = D1∪· · ·∪DK

and duplicates are allowed (see Definition 3.1), which means that we have exactly the same

data in D and D1 ∪ · · · ∪ DK . As the answers to count statistical queries are numbers, by

adding up the numbers we obtain from the distributed data sets, we obtain the same number

as if we answered the query q from D, i.e. q(D) = q1(D1) + · · · + qK(DK).

Observation 3.8. Similar results can be obtained for different types of statistics, such as weight

refinement statistics, needed for perceptron style algorithms or distance-based statistics, needed

by k-NN style algorithms.

3.3 Algorithms for Learning Classifiers from Distributed Data

In this section we apply the strategy described above to design provably exact algorithms

for learning from horizontally and vertically distributed data using Naive Bayes, Decision

61

Trees, Perceptron algorithm, Support Vector Machines and k-NN classifiers (see also [Caragea

et al., 2004d; 2001]). We show that although time complexity in the distributed case is similar

to time complexity in the centralized case, the communication complexity can be sometimes

drastically improved by performing learning from distributed data as opposed to centralized

data.

We denote by |D| the size of a data set D, n = |A| = |x| the number of attributes used to

describe an example x (except class), v = |V | the maximum number of values of an attribute,

m = |C| the number of classes, and K the number of distributed data sites. Our complexity

analysis will be done with respect to these numbers.

Definition 3.9. A message is defined as any unit of information (e.g., a number or a string)

sent over the network. For the communication analysis, we compare the number of messages

sent in the distributed as opposed to centralized case.

For the analysis that follows we make the following assumptions:

(1) Each local data source allows both shipping of the raw data and computation and

shipping of the sufficient statistics. In general, this may not be the case. For example,

some data sources may not allow data shipping or they may not allow the local execution

of the operations necessary for computing the sufficient statistics, in which case the

sufficient statistics can not be gathered and data has to be shipped. In such cases, the

communication analysis changes accordingly.

(2) The data sources constraints do not change over time.

3.3.1 Learning Naive Bayes Classifiers from Distributed Data

We have seen in Chapter 2 that in the case of Naive Bayes classifiers counts of the form

t = countD(x), tj = countD(cj), and tij = countD(ai|cj) represent sufficient statistics for the

hypothesis constructed during the learning phase. They can be computed in one pass through

the data. With these observations, we will show how we can gather the sufficient statistics for

learning Naive Bayes classifiers from distributed data, and thus how we can construct Naive

Bayes classifiers from horizontally and vertically fragmented data.

62

3.3.1.1 Horizontally Fragmented Distributed Data

When the data are horizontally distributed, each data source contains a subset of examples.

Thus, all the attributes are present at each location and D = D1 ∪ · · · ∪ DK , hence |D| =

|D1| + · · · + |DK |. In order to compute the counts over all the data, we need to compute

tk = countDk
(x), tkj = countDk

(cj), tkij = countDk
(ai|cj) at each location k and send them

to a central location. The global counts are obtained at the central location by adding up

local counts as follows: t =
∑K

k=1 tk, tj =
∑K

k=1 tkj , tij =
∑K

k=1 tkij (see Figure 3.5 for an

example). The pseudocode for learning Naive Bayes classifiers from horizontally distributed

...

Outlook

Humidity

Wind

EnjoySport

Counts(Outlook|EnjoySport)
Count Distribution

NB Learning Algorithm

Decomp.

Query

Answer

Count(Outlook|EnjoySport)

Count D
ist

rib
utio

n

Count Distribution

Count Distribution

Count(Outlook|EnjoySport)
2

DK

D

D 1

Comp.

Add Up
Counts

Figure 3.5 Learning Naive Bayes classifiers from horizontally distributed
data: the algorithm asks a joint count statistical query for each
attribute in order to construct the classifier. Each query is de-
composed into sub-queries, which are sent to the distributed
data sources and the answers to sub-queries are composed and
sent back to the learning algorithm

data is shown in Figure 3.6.

Theorem 3.10. (Exactness) The algorithm for learning Naive Bayes classifiers from hori-

zontally distributed data, shown in Figure 3.6, is exact with respect to its batch counterpart,

shown in Figure 2.2.

Proof. We have seen that if the data are horizontally distributed, a subset of the training

examples is stored at each location and thus all the attributes are present at each location.

63

Naive Bayes Classifier from Horizontally Fragmented Data

Learning Phase:
for (each data source Dk)
{

Compute counts tk = countDk
(x) and send them to the central location.

for (each class cj)
{

Compute the counts tkj = countDk
(cj) and send them to the central location.

for (each attribute value ai)
{

Compute counts tkij = countDk
(ai|cj) and send them to the central location.

}
}

}
At the central location, compute:

P (cj) =

∑K

k=1 tkj
∑K

k=1 tk
, P (ai|cj) =

∑K

k=1 tkij
∑K

k=1 tkj
.

Classification Phase:
Given a new instance x =< a1, · · · , an > to be classified,

Return cNB(x) = arg max
cj∈C

P (cj)
n

∏

i=1

P (ai|cj)

Figure 3.6 Naive Bayes classifier from horizontally fragmented data

64

Because the counts are additive, by computing the counts for an attribute locally, and adding

up the local counts at the central place, we obtain the same numbers as if we brought all

the data together and computed the counts globally (see Lemma 3.7). This means that we

obtain the same statistics for both distributed and centralized data, therefore, the algorithm

for learning from horizontally distributed data is exact.

Theorem 3.11. (Time Complexity) If both serial and parallel access to the data are allowed,

then parallel access is preferred as it results in an algorithm for learning Naive Bayes classi-

fiers from horizontally distributed data, shown in Figure 3.6, that is K times faster than the

algorithm for learning Naive Bayes classifiers from centralized data, shown in Figure 2.2.

Proof. We can see that for both algorithms (Figure 3.6 and Figure 2.2), the computation of

the counts can be done with one pass through the data. However, in the distributed case, we

can compute the counts at each location k independent of the counts at the other locations.

Thus, if parallel data access is performed, the counts can be computed in parallel, which

makes the algorithm for learning Naive Bayes classifiers from distributed data K times faster

then the algorithm for learning from centralized data. Therefore, parallel access to data is

preferred to serial access to data.

Theorem 3.12. (Communication Complexity) Under the assumption that both local compu-

tation of the sufficient statistics and shipping of the raw data are possible, then the algorithm

for learning Naive Bayes classifiers from horizontally distributed data, shown in Figure 3.6,

is preferable to the algorithm for learning Naive Bayes classifiers from centralized data, show

in Figure 2.2 in terms of communication complexity if: O(|V ||C|K) < O(|D|).

Proof. We first estimate the communication complexity in the distributed case: Each data

source Dk computes tk, tkj , tkij for each class cj and each attribute value ai. The number

of messages sent over the network is (|A||V ||C| + |C| + 1)K. In the centralized case, all

the data are shipped to the central location. Therefore, the number of messages sent is

(|D1| + · · · + |DK |)(|A| + 1) = |D|(|A| + 1). Thus, learning of Naive Bayes classifiers from

distributed data is preferred to learning from centralized data if (|A||V ||C| + |C| + 1)K ≤

|D|(|A| + 1), which implies O(|V ||C|K) < O(|D|).

65

Observation 3.13. The inequality |V ||C|K < |D| is usually satisfied in practice.

Example 3.14. Assume the following scenario which can be often met in practice: the data

set D contains |D| = 1, 000, 000 examples which are distributed among K data sources. Each

example is described by |A| = 100 attributes, and each attribute can take up to |V | = 10

possible values. An example belongs to one of |C| = 10 possible classes. Then the com-

munication complexity in the distributed case is (100 · 10 · 10 + 10 + 1)10 = 100, 110. The

communication complexity in the centralized case is 1000000(100 + 1) = 101, 000, 000 which

is very large compared to the communication in the distributed case.

3.3.1.2 Vertically Fragmented Distributed Data

When the data are vertically fragmented, we have sub-tuples of all the examples at each

site, which means that the data corresponding to an attribute is all at the same location. If we

denote by Ak the set of attributes at each location k, then A = ∪K
k=1Ak and |A| =

∑K

k=1 |Ak|.

In this case, we can compute t = tk = countDk
(x) and tj = tkj = countDk

(cj) at any location

k, and then compute tij = tkij = countDk
(ai|cj) at the location k where the attribute ai can

be found. The pseudocode of the algorithm for learning from vertically distributed data is

shown in Figure 3.7.

Theorem 3.15. (Exactness) The algorithm for learning Naive Bayes classifiers from vertically

distributed data, shown in Figure 3.7, is exact with respect to the algorithm for learning Naive

Bayes classifiers from centralized data, shown in Figure 2.2.

Proof. We mentioned that if the data are vertically distributed, then all the data related to

an attribute is located at one site. Thus, by computing the counts for an attribute locally,

we obtain the same numbers as if we brought all the data together and computed the counts

globally, which means that we obtain the same statistics for both distributed and centralized

learning, i.e. the algorithm for learning from distributed data is exact.

Theorem 3.16. (Time Complexity) If both serial and parallel access to the data are allowed,

then parallel access is preferred as it results in an algorithm for learning Naive Bayes classifiers

66

Naive Bayes Classifier from Vertically Fragmented Data

Learning Phase:
Let k be any location between 1 and K.
Compute t = countXk

(x) and send t to the central location.
for (each class cj)
{

Compute tj = countDk
(cj) and send tj to the central location.

}
for (each data source Dk)
{

for (each data class cj and each attribute value ai at site Dk)
{

Compute the counts tij = countDk
(ai|cj) based on the training data Dk.

Send these counts to the central location.
}

}
At the central location, compute:

P (cj) =
tj
t
, P (ai|cj) =

tij
tj

.

Classification Phase:
Given a new instance x =< a1, · · · , an > to be classified,

Return cNB(x) = arg max
cj∈C

P (cj)
n

∏

i=1

P (ai|cj)

Figure 3.7 Naive Bayes classifier from vertically fragmented data

67

from vertically distributed data, shown in Figure 3.7, that is K times faster than the algorithm

for learning Naive Bayes Classifiers from centralized data, shown in Figure 2.2

Proof. We can see that for both algorithms (Figure 3.7 and Figure 2.2) the computation of

the counts can be done with one pass through the data. However, in the distributed case, we

can compute the counts at each location k independent of the counts at the other locations.

Thus, if parallel data access is performed, the counts can be computed in parallel, which

makes the algorithm for learning from distributed data K times faster then the algorithm for

learning from centralized data. Therefore, parallel access to data is preferred to serial access

to data.

Theorem 3.17. (Communication Complexity) Under the assumption that both local compu-

tation of the sufficient statistics and shipping of the raw data are possible, the algorithm for

learning from vertically fragmented data, shown in Figure 3.7, is preferable to algorithm for

learning from centralized data, shown in Figure 2.2, in terms of communication complexity if:

O(|A||V ||C|) < O(|D|(|A| + K)).

Proof. We first estimate the communication complexity of the algorithm for learning from

distributed data: One of the data sources computes t and tj for any j = 1,m and sends

them to the central location. Then, each data source Dk computes tij for each class cj and

those attribute values ai located at the location k. The number of messages sent over the

network is ((|A1|+ · · ·+ |AK |)|V ||C|+ |C|+1) = (|A||V ||C|+ |C|+1). In the centralized case,

all the data are shipped to the central location. Therefore, the number of messages sent is

(|D|(|A1|+2)+(|A2|+1) · · ·+|D|(|AK |+1)) = |D|(|A|+K+1) (just the first data source sends

the class labels, the others send the attributes at their sites and the unique index that is used

to put the data together). Thus, learning of Naive Bayes classifiers from vertically distributed

data is preferred to learning from centralized data if (|A||V ||C|+ |C|+1) ≤ |D|(|A|+K +1),

which implies O(|A||V ||C|) < O(|D|(|A| + K)).

Observation 3.18. The inequality |A||V ||C| < |D|(|A| + K) is usually satisfied in practice.

Example 3.19. We consider again a practical scenario: the data set D contains |D| =

1, 000, 000 examples. Each example is described by |A| = 100 attributes, each attribute can

68

take up to |V | = 10 possible values and the attributes are distributed among K = 10 data

sources. An example belongs to one of |C| = 10 possible classes. Then the communication

complexity in the distributed case is 100 · 10 · 10 + 10 + 1 = 10, 011. The communication

complexity in the centralized case is 1000000(100 + 10 + 1) = 111, 000, 000 which is very large

compared to the communication in the distributed case.

3.3.2 Learning Decision Tree Classifiers from Distributed Data

We have shown in Chapter 2 that counts of the form t = countD|h(x), tj = countD|h(cj),

tij = countD|h(ai|cj) (where D|h is the relevant data that satisfies the constraints specified

by the partial decision tree h on the values of the attributes on the current path) represent

sufficient statistics for the refinement of the partial decision tree h. They have to be collected

once for each node of the final tree starting with the root node. A decision tree specific

refinement operator RDT uses these counts to compute the information gain for the possible

splitting attributes and it chooses the best attribute for splitting. We will show how we can

gather the sufficient statistics for learning exact decision trees from horizontally and vertically

fragmented data.

Assume that given a partially constructed decision tree, we want to choose the best at-

tribute for the next split. Let aj(π) denote the attribute at the jth node along a path π

starting from the attribute a1(π) that corresponds to the root of the decision tree, leading

up to the node in question al(π) at depth l. Let v(aj(π)) denote the value of the attribute

aj(π), corresponding to the jth node along the path π. For adding a node below al(π), the

set of examples being considered satisfies the following constraints on values of the attributes

on the path π: L(π) = [a1(π) = v(a1(π))]∧ [a2(π) = v(a2(π))]∧ · · · ∧ [al(π) = v(al(π))], where

[aj(π) = v(aj(π))] denotes the fact that the value of the jth attribute along the path π is

v(aj(π)).

3.3.3 Horizontally Fragmented Distributed Data

When the data are horizontally distributed, examples corresponding to a particular value of

a particular attribute are scattered across different locations. In order to identify the best split

69

at a node in a partially constructed tree, all the sites are visited and the counts corresponding

to candidate splits of that node are accumulated. The learner uses these counts to find the

attribute that yields the best split to further partition the set of examples at that node.

Thus, given L(π), in order to split the node corresponding to al(π) = v(al(π)), the statistics

gathering component has to obtain the counts tk = countDk|L(π)(x), tkj = countDk|L(π)(cj),

tkij = countDk|L(π)(ai|cj) for all x ∈ Dk|L(π), for all classes cj and all candidate attributes ai

that are not already in L(π) (note that Dk|L(π) is the subset of the data set Dk that satisfies

the constraints specified by L(π)).

The algorithm for learning decision trees from horizontally fragmented data applies a

refinement operator RDT to refine a partial decision tree hi based on the sufficient statistics

collected from D1, · · · , Dn given hi. The refinement operator is applied |T | times, where |T |

is the size of the decision tree (number of nodes). Initially the tree is null, but at each of the

subsequent iterations hi is the partial decision tree constructed so far (see Figure 3.8 for an

example).

Most of the pseudocode in Figure 2.3 remains the same, except that we expand the proce-

dure that determines the best attribute for a split, by showing how to do this when data are

horizontally distributed. The pseudocode is shown in Figure 3.9.

Theorem 3.20. (Exactness) The algorithm for learning Decision Trees from horizontally

distributed data, shown in Figure 3.9, is exact with respect to its centralized counterpart,

shown in Figure 2.3.

Proof. As can be seen, the algorithm for learning from distributed data is similar to the

algorithm for learning from centralized data, except the part where the best attribute is

chosen from the candidate attributes. But the best attribute selection is based on counts

and because the count operation is additive, computing the counts from distributed data and

adding them up gives the same result as computing the counts when all data are together at

a central place (Lemma 3.7). Thus, the distributed algorithm is exact.

Theorem 3.21. (Time Complexity) If both serial and parallel access to the data are al-

lowed, then parallel access is preferred as it results in an algorithm for learning Decision Tree

70

...

Decision Tree Learning Algorithm

Hypothesis Generation

D
K

D 2

D 1
Query
Decomp.

Answer
Comp.

Counts(Wind,Class|Outlook)

Counts(Class|Outlook)

Counts(Wind,Class|Outlook)Counts(Class|Outlook)

Count D
istr

ibution

Count Distribution

Count Distribution

Add Up

Counts

Outlook

Yes Wind

Overcast

Rain

?

Sunny

Counts(Wind,Class|Outlook)

Counts(Class|Outlook)

Count Distribution

Figure 3.8 Learning Decision Tree classifiers from horizontally fragmented
distributed data: for each node, the algorithm asks a joint count
statistical query, the query is decomposed into sub-queries and
sent to the distributed data sources, and the resulting counts are
added up and sent back to the learning algorithm. One iteration
is shown

71

Best Attribute from Horizontally Fragmented Data

BestAttribute(D1, · · · , DK , L(π))
for (each data source Dk)
{

• Get L(π) from the central location.
• Compute the counts tk = countDk|L(π)(x) of the examples x ∈ Dk

that satisfy the constraints specified by L(π).
• Send these counts to the central location.
for (each class cj)
{

• Compute the counts tkj = countDk|L(π)(cj) of the examples x ∈ Dk

that satisfy the constraints specified by L(π).
• Send these counts to the central location.
for (each attribute value ai that is not already used in L(π))
{

• Compute counts tkij = countDk|L(π)(ai|cj) of the examples x ∈ Dk

that satisfy the constraints specified by L(π).
• Send these counts to the central location.

}
}

}
At the central location:

for (each attribute that is not already used in L(π))
{

• Compute P (cj) =

∑K

k=1 tkj
∑K

k=1 tk
, P (ai|cj) =

∑K

k=1 tkij
∑K

k=1 tkj
.

• Compute information gain using the probabilities defined above.
}
Choose the attribute with the best information gain.

Figure 3.9 Decision Tree classifiers: finding the best attribute for split when
data are horizontally fragmented

72

classifiers from horizontally distributed data, shown in Figure 3.9, that is K faster than the

algorithm for learning Decision Tree classifiers from centralized data, shown in Figure 2.3

Proof. We can see that for both algorithms (Figure 3.9 and Figure 2.3) the computation

of the counts for one node can be done with one pass through the data. However, in the

distributed case, we can compute the counts at each location k independent of the counts at

the other locations. Thus, if parallel data access is performed, the counts can be computed in

parallel, which makes the algorithm for learning from distributed data K times faster then the

algorithm for learning from centralized data. Therefore, parallel access to data is preferred to

serial access to data.

Theorem 3.22. (Communication Complexity) Under the assumption that each data source

allows shipping of raw data and computation of sufficient statistics, the algorithm for learning

decision trees from horizontally distributed data, shown in Figure 3.9, (where we ship the

statistics all the time) is preferable to the algorithm for learning from centralized data, shown

in Figure 2.3 (where we bring all the data to the central location), in terms of communication

complexity, if: O(|C||V ||T |K) < O(|D|).

Proof. For each node in the decision tree T , the central location has to transmit the current

path L(π) (whose size is at most 2|A|, from at most |A| attribute-value pairs) to each site

and each site has to transmit the counts tk = countDk|L(π)(x), tkj = countDk|L(π)(cj), tkij =

countDk|L(π)(ai|cj) to the central location. The number of messages needed to ship these counts

is at most (1 + |C| + |C||A||V |). Hence, the total amount of information that is transmitted

between sites is given by (2|A|+1+ |C|+ |C||A||V |)|T |K. The number of messages shipped in

the centralized case when all the data are shipped is (|D1|+ · · ·+ |DK |)(|A|+1) = |D|(|A|+1).

Thus, the algorithm for learning from distributed data is preferred to the algorithm for learning

from centralized data if (2|A| + 1 + |C| + |C||A||V |)|T |K < |D|(|A| + 1), which implies

O(|C||V ||T |K) < O(|D|).

Observation 3.23. It is worth noting that the bounds presented in Theorem 3.22 can be further

improved so that they depend on the height of the tree instead of the number of nodes in the

73

tree by taking advantage of the sort of techniques that are introduced in [Shafer et al., 1996;

Gehrke et al., 1999] (we gather statistics once for each level of the tree as opposed to once for

each node).

Observation 3.24. We notice that for a data source Dk we ship the statistics as opposed to data

if O(|C||V ||T |) < O(|Dk|). This ensures that overall we get optimal performance, because the

previous inequality implies |C||V |T |K < |D1| + · · · |DK | = |D|.

Observation 3.25. We can see that the communication analysis performed above is a global

analysis, which depends on the size of the final decision tree T . However, we do not know |T |

a priori, but we can bound it by |V ||A| as |A| represents a bound for the height of the tree

and |V | represents a bound on the branching factor.

Observation 3.26. Theorem 3.19. assumes that in the distributed case, we ship the statistics

all the time, as opposed to the centralized case, when we ship the whole data to the central

location once. However, in practice it may be the case that in the beginning it is better to

ship the statistics, but towards the end of the algorithm the size of the data that satisfies the

constraints imposed by the partial decision tree built is smaller then the size of the sufficient

statistics that still need to be shipped, in which case shipping data becomes preferable.

Thus, if we know the size of the data and the size of the statistics at each step, and

besides we have a good estimate for the number of iterations left, we can optimize further

the communication complexity. This optimization is possible because the amount of data or

statistics shipped at each step is an upper bound on the amount of information that would

need to be shipped at the next step. We can prove the following theorem:

Theorem 3.27. For each data source k and each iteration l corresponding to the node to be

expanded on a partial path L(π) = [a1(π) = v(a1(π))]∧[a2(π) = v(a2(π))] · · · [al(π) = v(al(π))],

let Dl
k ⊂ Dk be the subset of the data Dk satisfying the constraints imposed by L(π), Al be

the set of attributes that are not already in L(π) and let |T l| be an estimate of the number

of iterations left until the end of the algorithm. If O(|C||V ||T l|) < O(|Dl
k|/K) then it is

preferable to ship the statistics at step l, otherwise it is preferable to ship the data.

74

Proof. It follows from the communication complexity theorem and from the observation that

the amount of information shipped at the current step is an upper bound on the amount of

information shipped at the next step.

3.3.3.1 Vertically Fragmented Distributed Data

When the data are vertically distributed, we assume that each example has a unique index

associated with it. Sub-tuples of an example are distributed across different sites. However,

correspondence between sub-tuples of a tuple can be established using the unique index. As

before, given L(π), in order to split the node corresponding to al(π) = v(al(π)), the statistics

gathering component has to obtain the counts of examples that belong to each class for each

possible value of each candidate attribute. Since each site has only a subset of the attributes,

the set of indices corresponding to the examples that match the constraint L(π) have to be

made available at each site. To achieve that, first the central location sends the current path

L(π) to each site, then each site sends back to the central location the indices Ik of its data

that satisfy the constraints. Second, the intersection I = ∩K
k=1Ik of these indices is found

at the central location and sent back to the data sources. Also the number t = countI(x)

of examples in D that satisfy the constraints is computed (this number is equal to size(I)).

Using the set of indices I, each site can compute the relevant counts tij = countDk|I(ai|cj) that

correspond to the attributes that are stored at that site. One of the sites sends the counts

tj = countDk|I(cj) (they can be computed at any of the data sources). All these counts received

from the sites are used to compute the information gain for the candidate attributes and thus

to select the best attribute to further split the node corresponding to al(π) = v(al(π)).

Similar to the algorithm for learning decision trees from horizontally fragmented, the

algorithm for learning from vertically distributed data applies a refinement operator RDT to

refine a partial decision tree hi based on the sufficient statistics collected from D1, · · · , Dn

given hi. The refinement operator is applied |T | times, where |T | is the size of the decision

tree (number of nodes). Initially the tree is null, but at each of the subsequent iterations hi

is the partial decision tree constructed so far.

As in the horizontally distributed case, most of the pseudocode in Figure 2.3 remains the

75

same, except that we expand the procedure that determines the best attribute for a split, by

showing how to do this when data are vertically distributed. The pseudocode that finds the

best attribute in this case is shown in Figure 3.10.

Best Attribute from Vertically Fragmented Data

BestAttribute(D1, · · · , DK , L(π))
Central location:
{

• Send current L(π) to each data source Dk.
• Get back Ik from each data source Dk.
• Compute I = ∩K

k=1Ik.
• Send I to each data source Dk.
• Compute t = countI(x).

}
for (each class cj)
{

Compute tj = countDk|I(cj) at any k ∈ {1, · · · , K}.
Send tj to the central location.

}
for (each data source Dk)
{

for (each class cj)
for (each attribute value ai at Dk that is not already used in L(π))

• Compute counts tkij = countDk|I(ai|cj) of the examples x ∈ Dk|I.
• Send these counts to the central location.

}
At the central location:

for (each attribute that is not already used in L(π))
{

• Compute P (cj) =
tj
t
, P (ai|cj) =

tij
tj

.

• Compute information gain using the probabilities defined above.
}
Choose the attribute with the best information gain.

Figure 3.10 Decision Tree classifiers: finding the best attribute for split
when data are vertically fragmented

Theorem 3.28. (Exactness) The algorithm for learning Decision Trees from vertically dis-

tributed data, shown in Figure 3.10, is exact with respect to its centralized counterpart, shown

in Figure 2.3.

76

Proof. As can be seen, the distributed algorithm is similar to the centralized algorithm, except

the part where the best attribute is chosen from the candidate attributes. But the best

attribute selection is based on counts and because all the data about an attribute is at the

same location, once we select the examples that satisfy the constraints in L(π), the counts

obtained are the same as those that would be computed if we brought all the data together.

Thus, the algorithm for learning from vertically fragmented data is exact.

Theorem 3.29. (Time Complexity) If both serial and parallel access to the data are allowed,

then parallel access is preferred as it results in an algorithm for learning Decision Tree classi-

fiers from vertically distributed data, shown in Figure 3.10, that is K faster than the algorithm

for learning Decision Tree classifiers from centralized data, shown in Figure 2.3

Proof. We can see that for both algorithms (Figure 3.10 and Figure 2.3) the computation

of the counts for one node can be done with one pass through the data. However, in the

distributed case, we can compute the counts at each location k independent of the counts at

the other locations. Thus, if parallel data access is performed, the counts can be computed in

parallel, which makes the algorithm for learning from distributed data K times faster then the

algorithm for learning from centralized data. Therefore, parallel access to data is preferred to

serial access to data.

Theorem 3.30. (Communication Complexity) Under the assumption that each data source

allows shipping of raw data and computation of sufficient statistics, the algorithm for learning

decision trees from vertically distributed data, shown in Figure 3.9, (where we ship the statistics

all the time) is preferable to the algorithm for learning from centralized data, shown in Figure

2.3 (where we bring all the data to the central location), in terms of communication complexity,

if: O((|D| + |A||V ||C|)K|T |) < O(|D|(|A| + K)).

Proof. For each node in the decision tree T , the central location has to transmit the current

path L(π), whose size is at most 2|A| (because there are at most |A| attribute-value pairs).

Then the data sources send the set of indices of the examples that satisfy the constraints in

L(π) (the size of each set is at most |D|), and the central location sends back the set of indices

77

given by the intersection of the local indices sets (again, the size of this set is at most |D|).

Finally one of the sites has to transmit tj = countDk|L(π)(cj) (i.e., |C| messages) and each site

has to transmit tij = countDk|L(π)(ai|cj) for the |Ak| attributes at its location (i.e., |V ||Ak||C|

messages). The total number of messages needed to be shipped in the distributed case is at

most (K|A| + K|D| + K|D| + |C| + |C||V ||A|K)|T |. The number of messages shipped in the

centralized case when all the data are shipped is |D|(|A1|+2+· · ·+|AK |+1) = |D|(|A|+K+1)

(one site sends both the index and class value, the others send just the index value). Thus the

algorithm for learning from distributed data is better than the algorithm for learning from

centralized data if (K|A|+K|D|+K|D|+|C|+|C||V ||A|K)|T | < |D|(|A1|+2+· · ·+|AK |+1) =

|D|(|A| + K + 1), which implies O((|D| + |A||V ||C|)K|T |) < O(|D|(|A| + K).

Observation 3.31. It is worth noting that the bounds presented here can be further improved

if we compute the statistics once for each level of the tree instead of each node by taking

advantage of the sort of techniques that are introduced in [Shafer et al., 1996; Gehrke et al.,

1999] (in which case they would depend on the height of the tree instead of the number of

nodes in the tree).

Observation 3.32. We notice that for a data source Dk we ship statistics as opposed to

data if O((|D|/K + |Ak||V ||C|)|T |) < O(|D||Ak|). This ensures that overall we get opti-

mal performance because the inequality here implies (|D| + |A||V ||C|)T < |D||A| (we know

|A1| + · · · + |AK | = |A|).

Observation 3.33. We can see that the communication analysis performed here is a global

analysis which depends on the size of the final decision tree T . However, as in the case of

horizontally fragmented data, we don’t know |T | a priori, However, we can bound it by |V ||A|

because |A| represents a bound for the height of the tree and |V | represents a bound on the

branching factor.

Observation 3.34. The communication complexity theorem above assumes that in the dis-

tributed case, we ship the statistics at each step as opposed to the centralized case where we

ship all data to the central location once. However, in practice it may be the case that in the

beginning it is preferable to ship the statistics, but towards the end of the tree construction

78

the subset of the data that satisfies the constraints imposed by the partial decision tree built

so far is smaller compared to the size of the sufficient statistics that need to be shipped until

the end, in which case shipping the data becomes preferable.

Thus, if we know the size of the data and the size of the statistics that would need to be

shipped at each step, and in addition, we have a good estimate for the number of iterations left,

then we can optimize further the communication complexity. This optimization is possible

because the amount of data or statistics at each step is an upper bound on the amount of

information that would need to be shipped at the next step. We can prove the following

theorem:

Theorem 3.35. For each data source k and each iteration l corresponding to the node to be

expanded on a partial path L(π) = [a1(π) = v(a1(π))]∧[a2(π) = v(a2(π))] · · · [al(π) = v(al(π))],

let Dl
k ⊂ Dk be the subset of the data Dk satisfying the constraints imposed by L(π), Al

k be

the attributes at site k that are not already in L(π), let |T l| be an estimate of the number of

iterations left until the end of the construction of the tree T and |Dl| be the size of the data

(number of examples) shipped at iteration l. If O((|Dl|/K + |Al
k||V ||C|)|T l|) < O(|Dl||Al

k|)

then it is preferable to ship the statistics at step l, otherwise it is preferable to ship the data.

Proof. It follows from the communication complexity theorem and from the observation that

the amount of information shipped at each step is an upper bound on the amount of informa-

tion shipped at the next step.

3.3.4 Learning Threshold Functions from Distributed Data

We have seen in Chapter 2 that in the case of the perceptron algorithm, the value of the

weight after one pass through the data can be seen as a minimal refinement sufficient statistic

for the data set D, with respect to the partial hypothesis constructed in one iteration i of

the algorithm. We denote by wi+1(D) the value of the weight computed from D at iteration

i + 1. Then, s(D,wi(D)) is a refinement sufficient statistic for wi+1(D). The output of the

algorithm is the final weight w(D). In what follows, we will show how the sufficient statistics

can be computed from horizontally and vertically distributed data.

79

3.3.4.1 Horizontally Fragmented Distributed Data

If we assume that the data D is horizontally distributed among the data sources D1, · · · , DK ,

we can devise an algorithm for learning threshold functions from distributed data as in Fig-

ure 3.12. At each iteration i, the weight vector is subsequently sent to each data source Dk,

updated based on the data at Dk, and then sent back to the central location together with

a flag, which is true if no updates were made within one pass through that data (see Figure

3.11 for an example). The algorithm stops when all the flags are true after one complete pass

through all the data sets.

...

(D))(D, ws

Weight Update

Statistical Query

Formulation

Algorithm
Perceptron

ii+1
w (D) <−R(w (D), s(D,w (D)))

i

Query

Result

Query
Decomp.

Query

Comp.

 D

 D

 D 1

2

s (D,wi (D1))

K

Result

Result

s (D, wi(DK))

i

Figure 3.11 Learning Threshold Functions from horizontally distributed
data: the algorithm asks a statistical query, the query is de-
composed into sub-queries which are subsequently sent to the
distributed data sources, and the final result is sent back to the
learning algorithm. One iteration i is shown

Theorem 3.36. (Exactness) The algorithm for learning threshold functions from horizontally

distributed data, shown in Figure 3.12, is exact with respect to its centralized counterpart,

shown in Figure 2.5.

Proof. Same weight vector is computed in the distributed case. The only difference is that

the weight is updated by visiting the data sources one by one, as opposed to the centralized

case when all data are together and can be visited at once.

Theorem 3.37. (Time Complexity) The algorithm for learning threshold functions from hor-

izontally distributed data, shown in Figure 3.12, has time complexity comparable to its cen-

tralized counterpart, shown in Figure 2.5.

80

Learning Threshold Functions from Horizontally Distributed Data

Learning Phase
Initialize w ← [0, · · · , 0] at the central location.
do
{

for (all the data sets Dk, i = 1, K)
{

1. Set flagi ← false.
2. Send the current w to the data source Dk.
3. Compute w(Dk) by updating w based on Dk.
4. If (no change) flagi → true.
5. Update w ← w(Dk).
6. Send the current value of w and the flagi back to the central location.

}
}
until (a complete pass through data sets results in no false flags).
w∗ ← w

Classification Phase
For a new instance x

• assign x to the positive class if x · w∗ > 0;
• otherwise assign x to the negative class.

Figure 3.12 The Perceptron algorithm when data is horizontally fragmented

81

Proof. As opposed to algorithms for learning Naive Bayes classifiers or Decision Trees, for

which the sufficient statistics at a local data source are independent of the sufficient statistics

at the other data sources (and thus the sufficient statistics computation can be naturally

parallelized), in the case of Perceptron algorithm the weight computation is a sequential

process, which means that the weight vector cannot be updated at site k + 1 before it was

updated at site k. Hence, in this case the time complexity in the distributed case doesn’t

improve compared to the time complexity in the centralized case.

Theorem 3.38. (Communication Complexity) Under the assumption that at each iteration

the data sources allow shipping raw data and also updating the weight vector locally, then

the algorithm for learning threshold functions from distributed data, shown in Figure 3.12,

is preferable to the algorithm for learning threshold functions from centralized data, shown

in Figure 2.5, in terms of communication complexity, if O(MK) < O(|D|), where M is the

number of iterations executed by the algorithm.

Proof. The size of an example x (and therefore the size of the weight vector w) is |A| = n, and

there are K data sets. The size of the data set Dk is |Dk| and we know that
∑K

k=1 |Dk| = |D|.

In the centralized case, we ship all the examples from the distributed sites to the central

location once. Thus, the total amount of information shipped is (|D1|(|A|+1)+· · ·+|DK |(|A|+

1)) = (|A|+1)·|D| If we assume that the algorithms stops after M iterations, then the amount

of information shipped for each data source in the distributed case is (2|A| + 1) · M , because

at each iteration the vector w is shipped from the central location to the local data source and

then back from the local data source to the central location, together with the flag. Hence,

the total amount of information shipped in the distributed case is (2|A| + 1) · M · K. Thus,

learning from distributed data is preferable to learning from centralized data if (2|A|+1)MK <

(|A| + 1)|D|, which implies O(MK) < O(|D|).

Observation 3.39. The amount of information shipped in the distributed case can be decreased

by a factor of 2 if the initial weight is sent from the central site to the first data set D1 and

then the updated weight is sent from one data set Dk to the next data set Dk+1 and so on.

The process repeats til no weight updates are performed during one pass through all the data

82

sets (i.e., “serial” perceptron learning as opposed to “parallel” perceptron learning). When

that happens, the current weight is sent back to the central location.

The communication complexity analysis performed above is a global analysis, which gives

us the overall amount of information that needs to be shipped during the process of learning

from distributed data. However, the whole process can be broken into iterations, as can be

seen in the pseudocode in Figure 3.12. At each iteration either the weight vector is shipped,

or the data are shipped for a data source.

We notice that for the perceptron algorithm we don’t need to perform the optimization

(i.e., decide if shipping data or statistics is preferable) at each iteration, but just once per

data source. If we found out that shipping the weight is preferred to shipping the data (or

the other way around) at the first step, this will remain true til the end of the algorithm, so

we can reuse the results of the optimization for the first iteration.

However, if we do not take into account the maximum number of iterations when we

perform the optimization at a certain iteration, it may turn out that although we shipped the

smallest amount of information at each iteration, the overall amount of information shipped

is not minimized. This is because (2|A| + 1) < |Dk|(|A| + 1) does not imply (2|A| + 1) · M <

|Dk|(|A| + 1) (we ship a new w at each iteration, for M iterations, but we ship data only

once). We can prove the following theorem for the perceptron algorithm from distributed

data:

Theorem 3.40. If M is known or if it can be bounded, and for every data source k, we know

the relationship between (2|A|+1)M and |Dk|(|A|+1) (i.e., either (2|A|+1)M < |Dk|(|A|+1)

or (2|A| + 1)M > |Dk|(|A| + 1)), then optimizing the amount of information shipped by each

data source ensures that the amount of information shipped over all is optimal.

Proof. We can assume without loss of generality that (2|A|+1)M < |Dk|(|A|+1). Performing

local optimization at each step means that at each iteration we ship w twice and the flag

as opposed to shipping all the data Dk. Thus, we have 2|A| + 1 < |Dk|(|A| + 1). The

amount of information shipped in one iteration for all the data sets is (2|A| + 1)K, which

means that the total amount of information shipped in M iterations is (2|A| + 1)KM . But

83

(2|A|+1)KM < (|A|+1)(|D1|+ · · · |Dk|) (because (2|A|+1)M < (|A|+1)|Dk|), so we obtain

global optimization.

Observation 3.41. In practice, the number of iterations is unknown. However, we may be able

to estimate (or bound) it based on the knowledge about the data domain, and thus check the

inequality above, which tells us if learning from distributed data or learning from centralized

data is preferable.

3.3.4.2 Vertically Fragmented Distributed Data

We assume that the data D is vertically distributed among the data sources D1, · · · , DK .

Given the incremental nature of the algorithm described in Figure 2.5, it is difficult to design

an algorithm for learning threshold functions from distributed data whose communication

complexity is better than the communication complexity of the algorithm for learning from

centralized data. This is because we have to update the weight after seeing each example. To

show how this could be done when data are vertically fragmented, we denote by wk and xk

the projections of the current weight vector w and of the training example x, respectively,

on the attributes available at the data source Dk. At each iteration, for each example x ∈ D

the central location sends wk to each site k. The sites compute < wk,xk > for xk ∈ Dk and

send these numbers back to the central location, where they are added up and the weight

is updated accordingly. Because |w1| + · · · + |wK | = |w| = |A| = |x| = |x1| + · · · + |xK |,

it is obvious that the amount of information shipped for one complete update of the weight

vector (one iteration) is larger than the amount of information shipped in the centralized case.

As the algorithm for learning from distributed data performs M iterations, it turns out that

is very inefficient compared to the batch counterpart in terms of communication complexity.

This proves that learning from distributed data, although always possible in principle, it it

sometimes much worse than learning from centralized data.

However, there exists a batch variant of the Perceptron Algorithm [Nilsson, 1965] that

can be easily transformed into an efficient algorithm for learning from vertically distributed

data. In the Batch Perceptron, the weight update is done after one pass through all the

84

training examples. We can transform this algorithm into an algorithm for learning from

vertically distributed data as follows: at each iteration the central location sends the current

wk to each site k. Each site k computes
∑|D|

i=1 < wk,xk
i > and sends this number back to

the central location, where all the numbers received from the distributed data sources are

added up and the weight vector is updated. One of the sites has to send the class label

to the central location as well. Thus, in this case the information shipped per iteration is

|w1|+1+ · · ·+ |wK |+1+ |D| = |w|+K +D = |A|+K + |D|. Hence, the overall information

shipped is O((|A|+|D|+K)M) as opposed to O(|A||D|). For practical problems, usually (|A|+

|D|+K)M < |A||D|, so learning from distributed data is preferred to learning from centralized

data. It is easy to see that the Batch Perceptron from vertically distributed data is exact

with respect to its centralized counterpart because
∑|D|

i=1 < w,xi >=
∑|D|

i=1

∑|A|
j=1 wjxij =

∑|D|
i=1

∑K

k=1 < wk,xk
i >, so the same weight is obtained in both distributed and batch case.

The algorithm for learning from distributed data is preferable in terms of time complexity

because all the sums
∑|D|

i=1 < wk,xk
i > can be computed in parallel.

3.3.5 Learning Support Vector Machines from Distributed Data

We have seen in Chapter 2 that the weight vector that defines the maximal margin hyper-

plane is a sufficient statistic for the SVM algorithm. Since this weight vector can be expressed

as a weighted sum of a subset of training instances (called support vectors), the support vec-

tors and the associated weights also constitute sufficient statistics for SVM. We will show

how we can design efficient algorithm for learning SVM classifiers from distributed data under

horizontal and vertical data fragmentation.

3.3.5.1 Horizontally Fragmented Distributed Data

In what follows, we will assume without loss of generality that the training examples are

represented (if necessary, using a suitable kernel function) in a feature space in which the data

D = D1 ∪ · · · ∪ DK is linearly separable.

A naive approach to distributed learning using SVM [Syed et al., 1999] works as follows:

apply the SVM algorithm for each data source Dk (k = 1, K), and send the resulting support

85

vectors to the central site. At the central site, apply SVM algorithm to the union of the

support vector sets received from the distributed data sources. The final set of support vectors

and their corresponding weights are the sufficient statistics used to generate the separating

hyperplane (see Figure 3.13 for an example). The pseudocode for this algorithm is shown in

Figure 3.14.

...

Query
Decomp.

Query

Comp.

(union)

SV(D)

Query

Compute weight based on SV(D)

Statistical Query

Formulation

 SVM Algorithm

Result

D1

D
2

D
K

SV(D)

SV(D)

Resu
lt

Result

Result

Figure 3.13 Learning SVM from horizontally distributed data: the algo-
rithm asks a statistical query, the query is decomposed into
sub-queries which are sent to the distributed data sources, the
results are composed, and the final result is sent back to the
learning algorithm

Naive SVM from Distributed Data
Learning Phase

for (each data source Dk)
{

Apply SV M(Dk) and find the support vectors SVk.
Send the support vectors SVk to the central location.

}
At the central location:

Compute DSV = ∪K
k=1SVk.

Apply SV M(DSV)
Let < xi1 , yi1 >, · · · , < xip , yip > be the set of final support vectors.
Let λ∗

il
be their corresponding weights.

Classification Phase
For a new instance x

assign x to the class f(x) = sign(
∑p

l=1 yilλ
∗
il
· K(x,xil) + b∗)

Figure 3.14 Naive SVM from horizontally fragmented distributed data

Although this algorithm may work reasonably well in practice if the data sets D1, · · · , DK

are individually representative of the entire training set D, in the sense that the hyperplane

86

determined by the support vectors derived from either one of them does not differ very much

from that derived from the entire data set. However, if that is not the case, it can be shown

that the resulting hyperplane can be an arbitrarily poor approximation of the target hy-

pothesis [Caragea et al., 2000]. This can be seen by considering the scenario illustrated

in Figure 3.15. Here D1 = {(−6,−2, +), (−2,−2, +), (6,−6, +), (−2, 2,−), (2, 2,−)}, and

D2 = {(−2,−2, +), (−2,−6, +), (2, 2,−), (2,−2,−)}. Thus, the set D1 ∪D2 is clearly linearly

separable. We can run the following experiment using an SVM algorithm (e.g., SVMlight

[Joachims, 1999]:

• Apply SVM to D1 ∪ D2 to get the support vector set

D1 ∪ D2) = {(−2,−2, +), (6,−6, +), (2,−2,−)}

• Apply SVM to D1 to get the support vector set

SV1 = {(−6,−2, +), (−2,−2, +), (−2, 2,−), (2, 2,−)}

• Apply SVM to D2 to get the support vector set

SV2 = {(−2,−2, +), (−2,−6, +), (2, 2,−), (2,−2,−)}

• Apply SVM to SV1 ∪ SV2 to get the support vector set

SV (SV1 ∪ SV2) = {(−2,−2, +), (−2, 2,−), (2,−2,−)}

V
ar

 2

 -
6

 -
4

 -
2

 0
 2

Var 1

-10 -5 0 5

V
ar

 2

 -
6

 -
4

 -
2

 0
 2

Var 1

 -2 -1 0 1 2

V
ar

 2

 -
5

 0
 5

Var 1

-10 -5 0 5

Figure 3.15 Counterexample to naive SVM from distributed data

Note that SV (D1 ∪ D2) 6= SV (SV1 ∪ SV2). Because the separating hyperplane depends

on the support vectors, this implies that the solution found by the SVM in the distributed

setting is different from the solution found by batch learning. Thus, the naive approach to

87

learning SVMs from distributed data loses important boundary information (the data point

(6,−6, +) in the example above). As this depends on the underlying distribution over the

pattern space, it can happen with an arbitrarily high probability, so the resulting classifier can

have an arbitrarily high error. Therefore a better approach to designing learning algorithms

that are effective in a distributed setting is necessary.

We would like to have SV (D1 ∪ D2) = SV (SV1 ∪ SV2), but we have seen that the set of

support vectors does not satisfy this property. However the convex hulls of the instances that

belong to the two classes do satisfy this property [Gruber and Wills, 1993]. The convex hull

of a set of points S, denoted conv(S) is the smallest convex set containing S. That is,

conv(S) = {X ∈ RN |X =
∑

Xi∈S

λiXi,
∑

λi = 1, λi ≥ 0}.

Thus, conv(S) is the set of all non-negative affine combinations of points from S. If the set S

is finite, the convex hull is a convex polyhedron given by the intersection of a finite number of

closed half-spaces. We are interested in the vertices of this polyhedron because they uniquely

define the convex hull.

Theorem 3.42. Let D1, · · · , DK be convex sets. Then:

conv(conv(D1) ∪ · · · ∪ conv(DK)) = conv(D1 ∪ · · ·DK).

Observation 3.43. Let V Conv(D) denote the vertices (training examples) that define the

convex hull of a convex set D. It can be easily shown that:

V Conv(V Conv(D1) ∪ · · · ∪ V Conv(DK)) = V Conv(D1 ∪ · · · ∪ DK)

We assume that the data set D = D1 ∪ · · · ∪ DK is linearly separable (possibly through a

kernel K(., .)). Let Dk(+) and Dk(−) denote the positive and negative instances in the data

set Dk. Similarly, let D(+) and D(−) denote the positive and negative instances in the data

set D. Let SV M(D) denote the result of applying the SVM algorithm to the data set D.

Similar to the algorithm in Figure 3.14, we can design an algorithm for learning SVMs from

horizontally fragmented data using convex hulls as follows: each data source Dk computes

V Conv(Dk(+)) and V Conv(Dk(−)) and sends these sets to the central location. At the

88

central location the SVM algorithm is applied to the union of all the sets of positive and

negative convex hull vertices received from the distributed sites. The set of support vectors

obtained and the weights associated with them represent the sufficient statistics that define

the separating hyperplane. The pseudocode of this algorithm is shown in Figure 3.16.

SVM Learning From Horizontally Distributed Data
Learning Phase

for (each data source Dk)
{

Apply V Conv(Dk) and find the vertices on the convex hull of Dk.
Send the vertices V Conv(Dk) to the central location.

}
At the central location:

Compute Dconv = ∪K
k=1V Conv(Dk)

Apply SV M(Dconv)
Let < xi1 , yi1 > · · · , < xip , yip > be the set of support vectors.
Let λ∗

il
be their corresponding weights.

Classification Phase
For a new instance x

assign x to the class f(x) = sign(
∑p

l=1 yilλ
∗
il
· K(x,xil) + b∗)

Figure 3.16 Convex hull based SVM learning from horizontally fragmented
distributed data

Theorem 3.44. (Exactness) The algorithm for learning SVMs from vertically distributed

data, shown in Figure 3.16, is exact with respect to its centralized counterpart, shown in

Figure 2.8. (i.e., the set of support vectors found in the distributed setting is guaranteed to be

identical to that obtained in the batch setting for any given training set).

Proof. It follows immediately from Observation 3.43 and the fact that the set of support

vectors is a subset of the convex hull vertices.

Theorem 3.45. (Time Complexity) The algorithm for learning SVMs from horizontally frag-

mented data, shown in Figure 3.16 is exponential in the number of dimensions n.

Proof. The complexity of the convex hull computation has a linear dependence on the number

of facets of the convex hull and the number of facets can be exponential in the dimension of

the space [Gruber and Wills, 1993; Skiena, 1997]. This makes the algorithm in Figure 3.16

exponential in the number of dimensions n. Thus, this approach to learning SVMs from

89

horizontally distributed data is likely to be practical only when the convex hulls are simple

(i.e., have relatively few facets) but not in general.

Theorem 3.46. (Communication Complexity) We assume that each data source allows both

the shipment of the raw data and the computation of the convex hull at the local site. If M is

the size of the largest subset of examples obtained as the result of the convex hull algorithm,

then the algorithm for learning SVMs from horizontally distributed data, shown in Figure 3.16

is preferable to the algorithm for learning SVMs from centralized data, shown in Figure 2.8,

in terms of communication complexity, if O(KM) < O(|D|).

Proof. In the distributed setting, each data source has to transmit at most M examples to

the central site, hence the data shipped overall is KM(|A| + 1). The data shipped in the

centralized case is |D|(|A|+1). Thus, the algorithm for learning from horizontally distributed

data is preferred to the algorithm for learning from centralized data if O(KM) < O(|D|),

which is usually the case in real world scenarios.

We have described two algorithms for learning from horizontally distributed data, but one

of them is not exact and the other one is not efficient. However, it is possible to design an effi-

cient and exact algorithm for learning SVM-like classifiers from horizontally distributed data

if we use a variant of the SVM algorithm, called Linear Support Vector Machines (LSVM)

[Bradley and Mangasarian, 2000]. For simplicity, we describe this algorithm for linear sepa-

rating surfaces (i.e., separating hyperplanes), but it can be extended to nonlinear separating

surfaces the same way as the SVM algorithm is extended (i.e., by mapping the data to a higher

dimensional space where a separating hyperplane can be found) [Bradley and Mangasarian,

2000].

We have seen that SVM selects from among the hyperplanes that correctly classify the

training set, one that minimizes ‖w‖2. This involves solving the following quadratic program-

ming problem:

min
w,b

Φ(w) =
1

2
‖w‖2

subject to yi(w · xi + b) ≥ 1 ∀i = 1, · · · , t.

Linear Support Vector Machines algorithm [Bradley and Mangasarian, 2000] uses the ∞-norm

90

to measure the distance between the bounding planes, which leads to a linear programming

formulation for the optimization problem, considerably less difficult than the quadratic op-

timization problem solved by SVM algorithm. Support vectors can be defined similar to the

support vectors in SVM, and they are the only relevant data instances for computing the

optimal separating plane.

We can transform LSVM from centralized data into an algorithm for learning from hor-

izontally distributed data similar to the Linear Programming Chunking Algorithm (LPC)

described in [Bradley and Mangasarian, 2000]. More precisely, this approach is similar to the

naive approach to SVM from distributed data described above, except that several iterations

through the distributed data sets are made. Thus, at each iteration, the central location sends

the current set of support vectors to the distributed data sources. Each data source k adds

those support vectors to its data and applies the LSVM algorithm to find a new set of support

vectors given the global set of support vectors. The resulting set is sent back to the central

location, which combines all the support vectors received from the distributed data sources

and applies the LSVM algorithm to determine the new set of global support vectors. The

pseudocode for this algorithm is shown in Figure 3.17.

We can directly apply the Theorem on the Finite Termination of LPC Algorithm in

[Bradley and Mangasarian, 2000], to prove that this strategy yields a provably exact algo-

rithm for learning an LSVM classifier from distributed data under horizontal fragmentation.

The communication complexity of this algorithm is similar to the communication com-

plexity of the algorithm based on convex hull multiplied by the number of iterations. As in

the case of perceptron, this is not known a priori, but we could bound it based on the prior

knowledge about the domain.

Another way to design efficient and exact SVM-like classifiers is by considering algorithms

which are theoretically proven to find the same solution as the SVM algorithm (e.g., Dual

Perceptron Algorithm [Graepel and Herbrich, 2000], Logistic Regression [Zhang et al., 2003a]),

but lead to gradient descent optimization techniques, which can be efficiently performed in a

distributed framework, similar to the classical Perceptron Algorithm.

91

LSVM from Horizontally Distributed Data
Learning Phase

Initialize SV = ∅ (the global set of support vectors).
repeat
{

Let SV ′ = SV .
Send SV ′ to all data sources Dk.
for (each data source Dk)
{

Apply LSV M(Dk ∪ SV ′) and find the support vectors SVk.
Send the support vectors SVk to the central location.

}
At the central location:

Compute SVD = ∪K
k=1SVk.

Apply LSV M(SVD) to find the new SV

}
until (SV = SV ′)
Let < xi1 , yi1 >, · · · , < xip , yip > be the set of final support vectors.
Let λ∗

il
be their corresponding weights.

Classification Phase
For a new instance x

assign x to the class f(x) = sign(
∑p

l=1 yilλ
∗
il
· K(x,xil) + b∗)

Figure 3.17 Exact and efficient LSVM learning from horizontally frag-
mented distributed data

92

3.3.5.2 Vertically Fragmented Distributed Data

Learning SVM classifiers from distributed data under vertical data fragmentation is more

difficult than under horizontal data fragmentation. This difficulty arises from the fact that

an entire instance (not just the projections on the available attributes) is needed at once in

order to solve the optimization problem. It may be the case that it is not possible to design

an algorithm for learning SVMs from vertically distributed data unless we look closely at the

optimization problem that the SVM algorithm solves and ship enough information so that

we can still solve it exactly. However, the amount of information transmitted in such a case

is likely to be almost equal (or even greater than) to the size of data itself as in the case of

incremental perceptron.

Fortunately, as we have seen that in the case of the Perceptron algorithm it is possible to

learn efficiently from vertically distributed data if we consider the “batch” formulation of the

algorithm. Similarly, Dual Perceptron Algorithm and Logistic Regression algorithms allow

“batch” formulations that makes them more appropriate for a distributed framework than

the SVM algorithm itself. As there are theoretical guarantees that prove that their solutions

are comparable to the SVM solution, we thus obtain efficient algorithms for learning SVM-like

classifiers from vertically distributed data.

3.3.6 Learning k Nearest Neighbor Classifiers from Distributed Data

In the case of k-NN algorithm, the learning phase consists simply of storing the data and

the information extraction is done during the classification phase. As we have seen in Chapter

2, given a new example x to be classified, the distances to the closest k neighbors together

with the labels of these neighbors represent minimal sufficient statistics for h(x). As in the

case of Naive Bayes, the sufficient statistics for k-NN classifiers can be computed in one step.

In what follows, we will show how the minimal sufficient statistics can be computed when

data are distributed, so that we obtain k-NN classifiers from distributed data.

93

3.3.6.1 Horizontally Fragmented Distributed Data

To compute the minimal sufficient statistics in the distributed setting, we compute the k

nearest neighbors at each location l and ship the class labels corresponding to these neighbors

(examples) together with the distance from each of them to the new example x. Thus, we

ship pairs < d(x,xl
ij
), c(xl

ij
) > for every nearest neighbor xl

ij
at the location l (we denote by

dl
ij

= d(x,xl
ij
) the distance between x and xl

ij
according to the metric used by the algorithm

and by cl
ij

= c(xl
ij
) the class yl

ij
of the example xl

ij
. At the central location, we determine

the k smallest distances among all the distances received and take a majority vote among the

classes associated with those instances (see Figure 3.18 for an example). The majority class

will be the class of the new example x. The pseudocode for the distributed algorithm is shown

in Figure 3.19.

...

Statistical Query

Formulation

 k−NN Algorithm

h(x) = MV (kNN(x,D))

Compute Classification

Query
Decomp.

Answer
Comp.

(min)

D 1

D 2

D

kNN(x,D)

Query

Result

kNN(x,D1)

kNN(x,D2)

Result

Result

Result

K

Figure 3.18 Learning k-NN classifiers from horizontally fragmented dis-
tributed data: the algorithm asks a statistical query, the query
is decomposed into sub-queries which are sent to the distributed
data sources, results are composed, and the final result is sent
to the learning algorithm

Theorem 3.47. (Exactness) The algorithm for learning k-NN classifiers from horizontally

distributed data, shown in Figure 3.19, is exact with respect to the algorithm for learning

k-NN classifiers from centralized data, shown in Figure 2.11.

Proof. We need to show that the set of class labels used for majority vote in the distributed

case is the same as the set of class labels used for majority vote in the centralized case. This

follows from the observation that mink(X) = mink(X1 ∪ · · · ∪ XK) = mink(mink(X1) ∪

94

k-NN Classifiers from Horizontally Distributed Data

Learning Phase:
for (each data source Dl)
{

for (each training example (xi, yi))
{

Add the example (xi, yi) to the list of training examples TrEx(l) at location l.
}

}

Classification Phase:
Given a new instance x to be classified:

Send x to each site l.
for (each data source Dl)
{

Let xl
i1
, · · · ,xl

ik
be the k nearest neighbors of the instance x in the list TrEx(l).

Send < dl
i1
, cl

i1
>, · · · , < dl

ik
, cl

ik
> to the central location.

}
At the central location

Compute the k nearest distances among all the distances received.
Let ci1 , · · · , cik be the classes corresponding to these distances.

return

h(x) = arg max
c∈C

k
∑

j=1

δ(c, cij),

where δ(a, b) = 1 if a = b and δ(a, b) = 0 otherwise.

Figure 3.19 Algorithm for learning k Nearest Neighbors classifiers from hor-
izontally fragmented distributed data

95

· · · ∪ mink(XK)), where mink(X) returns the k smallest distances in a set of distances X

corresponding to the set of examples D and a new instance x to be classified.

Theorem 3.48. (Time Complexity) If both serial and parallel access to the data are allowed,

then parallel access is preferred as it results in an algorithm for learning k-NN classifiers from

horizontally distributed data, shown in Figure 3.19, that is K times faster than the algorithm

for learning k-NN classifiers from centralized data, shown in Figure 2.11.

Proof. We can see that for both algorithms (Figure 3.19 and Figure 2.11), the computation

of the distances can be done with one pass through the data. However, in the distributed

case, we can compute the the distances at each location k independent of the distances at

the other locations. Thus, if parallel data access is performed, the distances can be computed

in parallel, which makes the algorithm for learning k-NN classifiers from distributed data K

times faster then the algorithm for learning from centralized data. Therefore, parallel access

to data is preferred to serial access to data.

Theorem 3.49. (Communication Complexity) Under the assumption that the data sources

allow shipping the raw data and also computation of the k smallest distances from a new

example x to be classified to the training examples locally, the algorithm for learning k-NN

classifiers from horizontally distributed data is preferable to the algorithm for learning k-NN

classifiers from centralized data, in terms of communication complexity, if O((|A| + k)K) <

O(|A||D|).

Proof. We compute the amount of information transmitted in the distributed case. First the

central location sends the example x to be classified to all K distributed data sources. Each

data source computes the k nearest neighbors and sends back their corresponding distances

and classes. So the total amount of information transmitted is: |A|K + 2kK = (|A| + 2k)K.

The total amount of information transmitted in the centralized case is (|A| + 1)|D1| + · · · +

(|A| + 1)|DK | = (|A| + 1)|D|. Thus, the algorithm from distributed data is preferred to the

algorithm from centralized data if (|A|+2k)K < (|A|+1)|D|, which implies. O((|A|+k)K) <

O(|A||D|).

96

Example 3.50. Assume a typical scenario: |D| = 1, 000, 000, |A| = 100, k = 10 and K = 10.

Then the distributed k-NN sends 1200 messages as opposed to 100, 000, 000 messages shipped

in the distributed case.

3.3.6.2 Vertically Fragmented Distributed Data

In the vertically distributed data setting, a training example (xi, yi) is scattered over the

distributed data sources. We denote by xl the projection of an example x on the attributes

at site l. To compute the distance d(x,xi) from a new example x to the training example xi,

we need to compute dl
i = [d(xl,xl

i)]
2 at each location l and ship them to the central location

together with the index i and the class ci. Then the distance d(x,xi) =
√

∑K

l=1 dl
i is computed

at the central location for all the training examples xi and the k smallest distances are found.

We denote by ci1 , · · · , cik the classes corresponding to the k smallest distances. The class of the

new example x is the majority class among these classes. The pseudocode for the algorithm

for learning k-NN classifiers from vertically fragmented data is shown in Figure 3.20. We use

the Euclidean distance to present the algorithm, but this can be generalized to any distance

measure defined in Section 2.3.5.

Theorem 3.51. (Exactness) The algorithm for learning k-NN classifiers from vertically dis-

tributed data, shown in Figure 3.20 is exact with respect to the algorithm for learning k-NN

classifiers from centralized data, shown in Figure 2.11.

Proof. We need to show that the set of class labels used for majority vote in the centralized

case is the same as the set of class labels used for majority vote in the distributed case. It

is obvious that the distances d(x,xi) computed in the distributed case are the same with

the distances computed in the batch case. Then their corresponding sets of class labels are

identical.

Theorem 3.52. (Time Complexity) If both serial and parallel access to the data are allowed,

then parallel access is preferred as it results in an algorithm for learning k-NN classifiers from

vertically distributed data, shown in Figure 3.20, that is K times faster than the algorithm for

learning k-NN classifiers from centralized data, shown in Figure 2.11.

97

k-NN Classifiers from Vertically Distributed Data

Learning Phase:
for (each data source Dl)
{

for (each training example (xl
i, y

l
i))

{
Add the example (xl

i, y
l
i) to the list TrEx(l).

}
}

Classification Phase:
Given a new instance x to be classified:

Send x to each site l.
for (each data source Dl)
{
for (each example xl

i)
{

Let dl
i = [d(xl,xl

i)]
2

Send < dl
i, c

l
i, i > to the central location

}
}

At the central location
for (each index i)
{

Compute di = d(x,xi) =
√

∑K

l=1 dl
i

}
Let ci1 , · · · , cik be the classes corresponding to the k smallest distances.
return

h(x) = arg max
c∈C

k
∑

j=1

δ(c, cij),

where δ(a, b) = 1 if a = b and δ(a, b) = 0 otherwise.

Figure 3.20 Algorithm for k Nearest Neighbors classifiers from vertically
fragmented distributed data

98

Proof. We can see that for both algorithms (Figure 3.20 and Figure 2.11) the computation

of the distances can be done with one pass through the data. However, in the distributed

case, we can compute distances at each location k independent of the distances at the other

locations. Thus, if parallel data access is performed, the distances can be computed in parallel,

which makes the algorithm for learning k-NN from vertically distributed data K times faster

then the algorithm for learning from centralized data. Therefore, parallel access to data is

preferred to serial access to data.

Theorem 3.53. (Communication Complexity) Under the assumption that the data sources

allow shipping raw data and also computation of the k smallest distances from a new example

x to be classified to the training examples, the algorithm for learning k-NN classifiers from ver-

tically distributed data, shown in Figure 3.20, is preferable to the algorithm for learning k-NN

classifiers from centralized data, shown in Figure 3.20, in terms of communication complexity,

if O(|D|K) < O(|A||D|).

Proof. The amount of information transmitted in the distributed case is obtained as follows:

the central location sends the projection xl of the example x to be classified to all K distributed

data sources. Each data source l computes dl
i and sends back to the central location dl

i, c
l
i, i for

i = 1, |D|. Thus, the total amount of information transmitted is (|A1|+ · · ·+ |AK |) + 3|D|K.

The total amount of information transmitted in the centralized case is (|A| + 1)|D1| + · · · +

(|A|+1)|DK | = (|A|+1)|D|. Thus, the algorithm for learning from vertically distributed data

is better than the algorithm for learning from centralized data if (|A|+3|D|K < (|A|+1)|D|,

which implies O(|D|K) < O(|A||D|).

Example 3.54. Assume a typical scenario: |D| = 1, 000, 000, |A| = 100, k = 10 and K = 10.

Then the distributed k-NN sends 30, 000, 100 messages as opposed to 100, 000, 000 messages

shipped in the distributed case. Although the communication complexity of the algorithm for

learning k-NN from vertically distributed data is better than the communication complexity

of the algorithm for learning from centralized case, the difference is not overwhelming as in

the case of learning from horizontally fragmented data.

99

Observation 3.55. If |A| ≈ K then O(|D|K) = O(|A||D|), hence learning from vertically dis-

tributed data and learning from centralized data are equally good in terms of communication.

However, this is not usually the case, as the attributes are distributed at the K location. Ob-

viously, |A| cannot be larger than K in this scenario, so the algorithm k-NN classifiers from

vertically distributed data should be always preferred to the algorithm for learning k-NN

classifiers from centralized data.

3.4 Statistical Query Language

We have seen that learning from distributed data sources reduces to answering statistical

queries from distributed data sources. Thus, it is important to define a statistical query

language for formulating and manipulating statistical queries in a distributed setting. In

this section, we define such a language consisting of a set of operators belonging to one of two

categories: data operators and statistical operators, by extending the set of relational operators

[Ramakrishanan and Gehrke, 2000].

Definition 3.56. Data operators correspond to operations whose inputs and outputs are sets

of instances. They can be classified into:

• Set Operators: ∪, ∩, −, ×

• Relational Operators: SEL, PROJ , JOIN

• Specialized Operators: HOR-INT, VER-INT

Definition 3.57. Statistical operators are operators that output statistics about data. They

can be classified into:

• Aggregate Operators: AV G, COUNT , DIST , MIN , MAX used to compute aggregate

statistics for a data set.

• Specialized Learning Operators: SV M , DT , NN , k−NN etc. used to extract algorithm-

specific sufficient statistics from a data set.

100

• Refinement/Combination Operators: REF , REF n, COMBn used to refine or combine

current sufficient statistics.

• Compositional Operators: +, UNION , MIN , MAX, V OTE etc. used to combine

sufficient statistics extracted from several data sources.

3.4.1 Operator Definitions

Let D be the set of all possible data sets and H the space of the functions that a learner

can draw on in order to construct classifiers. In a typical inductive learning scenario, H is a

set of hypotheses. However, here it is useful to allow H to include not only the hypotheses

but also sufficient statistics for hypotheses in H.

Definition 3.58. Let T = {τ |τ is a string} be a set of types. For each type τ , dom(τ) =

{v|v is a value of type τ} is called the domain of τ .

We assume that every data source D ∈ D can be viewed as a table whose rows represent

data instances and whose columns represent the attributes used to describe the instances.

Definition 3.59. Let {A1, · · · , An} be the set of attributes used to describe the data in

a particular data source D, and let {τ1, · · · , τn} be the set of types associated with these

attributes. The set S = {A1 : τ1, · · · , An : τn} is called the schema of the data source D.

Definition 3.60. We say that two schemas S1 and S2, corresponding to the data sets D1 and

D2, respectively, are union compatible and we write S1 = S2 if they have the same number of

attributes and the same types.

To define the query operators, we first define atomic conditions and selection conditions

which are used by most of the operators to specify the precise data to which they are applied.

Definition 3.61. An atomic condition is defined as a condition having the form X op Y ,

where op ∈ {=, 6=, <,≤, >,≥}, and X,Y are terms (i.e., attributes or typed values v : τ , with

v ∈ dom(τ))).

Definition 3.62. A selection condition is a condition that can be defined recursively as follows:

101

• Any atomic condition is a selection condition.

• If c is a selection condition, then ¬c is a selection condition.

• If c1 and c2 are selection conditions, then c1 ∧ c2, c1 ∨ c2 are selection conditions.

3.4.1.1 Data Operators

Definition 3.63. The union operator is specified by ∪ : D × D → D. It generates a new

dataset D′ from two existing dataset D1 and D2, where D′ contains all the instances that occur

either in D1 or in D2. To perform this operation, D1 and D2 should be union-compatible

(S1 = S2) and the schema S ′ is identical to the common data source schemas. The union

operator may perform the standard set union, multi-set union, or any suitably well-defined

operation.

Definition 3.64. The intersection operator is specified by ∩ : D×D → D. It generates a new

dataset D′ from two existing datasets D1 and D2, where D′ contains all the instances that

occur both in D1 and in D2. To perform this operation, D1 and D2 should be union-compatible

(S1 = S2) and the schema S ′ is identical to the common data sources schemas.

Definition 3.65. The set-difference operator is specified by − : D × D → D. It generates a

new dataset D′ from two existing dataset D1 and D2, where D′ contains all the instances that

occur in D1 but not in D2. To perform this operation, D1 and D2 should be union-compatible

(S1 = S2) and the schema S ′ is identical to the common data sources schemas.

Definition 3.66. The cross product operator is specified by × : D × D → D. It generates a

new data set D′ from two existing datasets D1 and D2. The schema S ′ corresponding to the

new data set D′ contains all the fields in S1 followed by all the fields in S2, and the elements

of D′ are tuples < e1, e2 >, where e1 ∈ D1 and e2 ∈ D2.

Definition 3.67. The selection operator is specified by σ : D → D. It generates a new dataset

D′ from an existing dataset D by selecting examples according to a specified criterion (e.g., it

selects those instances from D that satisfy a selection condition on their attributes or it selects

102

instances according to a specified probability distribution). If S is the schema corresponding

to the data set D, then D′ will have the same schema S.

Definition 3.68. The projection operator is specified by π : D → D. It generates a new

dataset D′ from an existing dataset D by projecting the examples in D on some attributes (it

extracts columns from a table). If S is the schema corresponding to D, then the schema S ′

corresponding to D′ has the property that S ′ ⊂ S.

Definition 3.69. The join operator is specified by ⊲⊳: D×D → D. It generates a new dataset

D′ from two existing data sets D1 and D2. The new data set D′ is defined as D′ = D1 ⊲⊳

D2 = σc(D1 × D2), where c is a selection condition based on attributes from both S1 and S2.

Definition 3.70. A horizontal integration operator is specified by ⊔ : D×D → D. It generates

a new data set D′ from two existing data sets D1 and D2. It is defined similar to the union

operator, except that a select and/or a project can be also performed on union result. Thus

it is defined as D′ = D1 ⊔ D2 = σc(πA(D1 ∪ D2)).

Definition 3.71. A vertical integration operator is specified by ⊓ : D×D → D. It generates

a new data set D′ from two existing data sets D1 and D2. It is defined similar to the join

operator, except that here we assume that the two schemas S1 and S2 have at least one common

attribute, and the join is performed on the common attribute. The schema S ′ contains the

common attributes just once. Thus, V is defined as ⊓ = π(S1∪S2)(σ(A1

i =A2

j)(D1 × D2)), where

A1
i ∈ S1 and A2

j ∈ S2 are pairs of common attributes.

3.4.1.2 Statistical Operators

Definition 3.72. An aggregate operator (average, count, distance, minimum, maximum etc.)

is specified by ψ : D → H, where the precise data set D′ to which the operators are applied can

obtained from the an existent data set D by applying selection and/or projection operators.

The result could be a number, a sting, a matrix, etc. depending on the data to which it is

applied.

Definition 3.73. A learning operator is specified by L : D → H, where L denotes any

inductive learning algorithm or information extraction algorithm. It takes as input a dataset

103

D and returns a function h that satisfies some specified criterion with respect to the data set.

For example, if L is a consistent learner, it outputs a hypothesis that is consistent with the

data. In other scenarios, L might compute relevant statistics from D.

Definition 3.74. The refinement operator RD,L : H×H → H, augments or refines a function

h by incorporating a new statistics s(D, h) according to the algorithm L. For instance, it may

minimally modify a hypothesis according to L so as to be consistent with new data.

Definition 3.75. The n-step refinement operator Rn
D,L : Hn ×H → H, augments or refines a

function h by incorporating a new statistics s(D, h) according to the algorithm L in n steps.

Definition 3.76. The combination operator Cn
D,R : Hn ×H → H produces a new function h

by exploiting the information provided by the given functions h1, h2, · · · , hn and a combination

statistic s(D, h1, · · · , hn).

Definition 3.77. A compositional operator is specified by ◦ : H×H → H. It takes as input

two elements of the same kind from H (statistics of data, e.g. two sets of examples satisfying

some conditions, two count matrices, two numbers etc.) and it outputs a composition of these

two elements (e.g., the union of the two sets or the addition of two matrices etc.).

Observation 3.78. This set of definitions is meant to be merely illustrative (and not exhaustive)

with respect to the types of operators that might be useful in distributed settings. However,

we will prove later that the set of operators introduced is complete with respect to a large

class of algorithms that we are interested in.

Theorem 3.79. The set of operators defined above is complete with respect to the learning

algorithms considered in this dissertation, i.e., any statistical query needed by the learning

algorithms of interest can be expressed using only operators defined above.

Proof. By construction, it follows from the way we decomposed the algorithms of interest into

information extraction and hypothesis generation components.

104

3.5 Summary and Discussion

In this Chapter we have defined the problem of learning from distributed data, presented a

general strategy for transforming algorithms for learning from data into algorithms for learn-

ing from distributed data and introduced criteria for comparing the two types of learning.

This strategy is based on the decomposition of an algorithm into information extraction and

hypothesis generation components. The information extraction from distributed data en-

tails decomposing each statistical query q posed by the information extraction component of

the learner into sub-queries q1, · · · , qK that can be answered by the individual data sources

D1, · · · , DK , respectively, and a procedure for combining the answers to the sub-queries into

an answer for the original query q.

We have applied this strategy to design exact algorithms for learning Naive Bayes, Decision

Trees, Threshold Functions, Support Vector Machines and k-NN classifiers from horizontally

and vertically distributed data. We have compared the resulting algorithms with the tradi-

tional algorithms in terms of time and communication complexity.

Similar to the algorithms for learning Naive Bayes classifiers or Decision Trees, we can

design algorithms for learning hypotheses from distributed data for a large class of algorithms

that have counts as sufficient statistics: Bayesian Networks [Pearl, 2000; Jensen, 2001], Bags of

Words [Mitchell, 1997], Relational Learning [Friedman et al., 1999; Atramentov et al., 2003],

NB-k [Silvescu et al., 2004a], Association Rules [Agrawal and Shafer, 1996] etc. Efficient ways

for gathering count sufficient statistics are described in are described in [Graefe et al., 1998;

Gehrke et al., 2000; Moore and Lee, 1998].

We have seen that in some cases, the algorithm for learning from centralized data is prefer-

able to the algorithm for learning from vertically distributed data in terms of communication

complexity (e.g. learning threshold functions). In other cases, the algorithm for learning from

vertically distributed data is preferable to the algorithm for learning from centralized data

(learning k-NN classifiers). In some other cases, the algorithms for learning from distributed

data or the algorithms for learning from centralized data is preferable, depending on actual

data parameters (size, dimension etc.) Sometimes the communication complexity depends

105

on the number of iterations, which is not known a priori (e.g., learning threshold functions).

However, Krishnaswamy et al. [2002] propose methods for estimating the communication and

time complexity a priori.

As can be seen in Section 1.4.1, there is a lot of related work on distributed learning.

However, as opposed to the previous approaches, our approach can be applied to any learning

algorithm and any kind of data fragmentation. Furthermore, as we usually ship sufficient

statistics, some of the resulting algorithms can be easily applied in scenarios where privacy

issues need to be taken into consideration.

Another major advantage of our approach is that it can be easily extended to an approach

for learning from heterogeneous data, as we will see in the next Chapter.

106

4 LEARNING CLASSIFIERS FROM SEMANTICALLY

HETERO-

GENEOUS DATA

Our approach to learning classifiers from semantically heterogeneous distributed data is a

natural extension of the approach to learning from distributed data discussed in Chapter 3,

which assumes a common ontology shared by all of the data sources (See Figure 4.1 vs.Figure

3.3).

...

Statistical Query

Decomposition
Query

Answer
Composition

q

q

1

2

Query

Result

Formulation

Hypothesis Generation

i

User Ontology O

D

D
2

1

User Ontology O

i+1
h <−R(h , s (D, h))O

i

s (D, h)

s (D, h)

O

O

i

i

, O

, O

1

2

O1

O2

Mappings
M(O−>Oi)

D , O
K K

OK
q

K

Eager Learning

Figure 4.1 Learning from semantically heterogeneous distributed data:
each data source has an associated ontology and the user pro-
vides a user ontology and mappings from the data source on-
tologies to the user ontology

In order to extend our approach to learning from distributed data sources into effective

algorithms for learning classifiers from semantically heterogeneous distributed data sources,

techniques need to be developed for answering statistical queries, posed by the learner in

terms of the learner’s ontology O, from the heterogeneous data sources (where each data

source Di has an associated ontology Oi). Thus, we have to solve a variant of the problem of

integrated access to distributed data repositories, the data integration problem [Levy, 2000],

107

in order to be able to use machine learning approaches to acquire knowledge from semantically

heterogeneous data.

4.1 Integration of the Data at the Semantic Level

As the number of data sources available for analysis increases every day, the need for tools

for integrating these data sources becomes imperious. In the last few years, a lot of work

in data integration community has focused successfully on data integration at the syntactic

level. However, the integration at the semantic level is still an open problem.

In this section, we will describe a formal model, called ontology-extended data sources

which allows us to do semantic data integration. Our model is inspired from a similar model

called ontology-extended relational algebra described in [Bonatti et al., 2003]. Although we

can view a collection of physically distributed, autonomous, heterogeneous data sources as

though they were relational databases [Reinoso-Castillo et al., 2003], we will use the term data

sources and not relational databases in what follows, to point out that, in principle, our data

sources can be any kind of data sources (e.g., flat files, relational databases, web pages etc.),

and therefore, the set of operations that can be executed at each data source is an extension

of the set of operations allowed by relational databases.

Every data source that is used for learning has an implicit ontology associated with it.

Intuitively, the ontology provides semantic information about the data source elements (e.g.,

attribute names, attribute values etc.) and about the relationships between these elements.

4.1.1 Motivating Example

We will consider the following example throughout this chapter.

Example 4.1. Suppose a company C1 records information about weather in some region of

interest R. From C1’s point of view, Weather is described by the attributes Temperature,

Wind, Humidity and Outlook. An ontology O1 associated with this data could tell us that

WindSpeed is part of the Wind attribute description (called part-of relationship) and that

Sunny, Rainy, Cloudy and Snowy are all Outlook descriptions (called is-a relationship). It

108

can also tell us that the Temperature is measured in degrees Fahrenheit and the WindSpeed

is measured in miles per hour. The data D1 that this company collects can be stored into a

table like the one in Table 4.1.

Table 4.1 Data set D1: Weather Data collected by company C1

Day Temperature WindSpeed Humidity Outlook
1 20 16 67 Cloudy
2 10 34 53 Sunny
3 17 25 62 Rainy

Suppose that another company C2 collects information about weather in the same region

R. From C2’s point of view Weather is described by the attributes temperature denoted Temp,

Wind, Humidity and precipitation denoted Prec. The ontology O2 associated with its data

tells us that Speed and Direction are both parts of the Wind attribute (part-of relationship)

and that Snow, Rain and NoPrec are both Prec (is-a relationship). This ontology also stores

information about the amount of precipitation by categorizing the precipitation values. For

example, when recording the precipitation for one day, one can say Rain or LightRain or

HeavyRain, etc. We say that LightRain is-a description of Rain. Furthermore, the ontology

tells us that Temp is measured in degrees Celsius and that WindSpeed is measured in kilometers

per hour. Thus, the data D2 collected by this company looks like the one shown in the Table

4.2.

Table 4.2 Data set D2: Weather Data collected by the company C2

Day Temp WindSp WindDir Humidity Prec
1 3 24 N 67 Rain
2 -2 50 NW 53 LightRain
3 0 34 NE 62 NoPrec

Suppose that a user U , having his or her own semantic about the weather domain, wants to

infer some global information about weather in region R using the data collected by both C1

and C2. Assume that in this user ontology OU , Temperature (measured in degrees Fahrenheit),

Wind described by WindSpeed (measured in mph) and WindDir, Humidity and Precipitation

109

are the significant attributes. In order to be able to use simultaneously both data sources D1

and D2, the user needs to specify mappings from the data source ontologies O1 and O2 to

the ontology OU . For example, the user would map Temperature in O1 and Temp in O2 to

Temperature in OU ontology. The user needs also to specify a conversion function to convert

Temp values in O2 from degrees Celsius to Fahrenheit. Similarly, the user defines mappings

and conversion functions for WindSpeed. With respect to Precipitation, the user observes that

Outlook in O1 and Prec in O2 can be mapped to Precipitation in OU . Also Rainy in O1 can

be mapped to Rain in OU etc. We will see later what problems these mappings can generate

and how we can deal with them.

A different user U ′ with a different semantic (ontology OU ′) may also want to use the data

sources D1 and D2 for weather analysis. Similar to the first user, this user needs to specify

mapping and conversion functions from the data source ontologies to his/her own ontology.

Thus, every user can use the available data sources from his/her own perspective.

4.1.2 Ontology Definition

Having this example in mind, we will formally define the terms used above, by reformulat-

ing and extending the definitions in [Bonatti et al., 2003] from relational databases to general

data sources (represented as tables). We start with an informal definition for an ontology

borrowed from philosophy:

Definition 4.2. “An ontology is an explicit formal specification of the objects, concepts and

other entities that are assumed to exist in some area of interest and the relationships that

hold among them.”

Of particular interest are hierarchically structured ontologies [The Gene Ontology Consor-

tium, 2000], [Bonatti et al., 2003; Zhang and Honavar, 2003; Caragea et al., 2004b]. Thus, to

define ontologies formally, first we need to introduce the notion of a hierarchy:

Definition 4.3. Let S be a partially ordered set under ordering ≤. We say that another

ordering ¹ defines a hierarchy on S if the following three conditions are satisfied:

• (1) x ¹ y ⇒ x ≤ y, ∀x, y ∈ S (we say that (S,¹) is more concise than (S,≤)),

110

• (2) (S,≤) is the reflexive, transitive closure of (S,¹),

• (3) no other ordering ⊑, which is more concise than (S,≤), satisfies (1) and (2).

Example 4.4. Let S = {Weather,Wind,WindSpeed}. We can define a partial ordering ≤

on S according to the part-of relationship. Thus, Wind is part-of the Weather characteristics,

WindSpeed is also part-of the Weather characteristics, and WindSpeed is part-of Wind charac-

teristics. In addition, everything is part-of itself. Therefore, (S,≤) = {(Weather,Weather), (Wind,Wind

(WindSpeed,Weather), (WindSpeed,Wind)}. It follows that (S,¹) = {(Wind,Weather),

(WindSpeed,Wind)}, is the only one hierarchy associated with the order determined by the

part-of relationship. Furthermore, (S,≤) is the reflexive, transitive closure of (S,¹).

Let Λ be a finite set of strings that can be used to define hierarchies for a set of terms

S. For example, Λ may contain strings like is-a, part-of corresponding to is-a and part-of

relationships, respectively.

Definition 4.5. An ontology O (over terms in S) with respect to the partial orderings con-

tained in Λ is a mapping Θ from Λ to hierarchies on S defined according to orderings in

Λ.

In other words, an ontology associates orderings to their corresponding hierarchies. Thus,

if is-a∈ Λ, then Θ(is-a) will be the is-a hierarchy associated with the set of terms in S.

Example 4.6. Figures 4.2, 4.3 and 4.4 show the ontologies associated with the data sets D1

and D2, and the user ontology OU1
, respectively, when Λ = {is-a, part-of}. In this case, the

ontologies are is-a hierarchies H1(is-a), H2(is-a), HU(is-a) and part-of hierarchies H1(part-of),

H2(part-of), HU(part-of).

4.1.3 Ontology Integration

As mentioned before, we want to associate ontologies O1, · · · , OK with distributed data

sources D1, · · · , DK . For a user having an ontology OU to be able to ask queries over several

autonomous heterogeneous data sources, the user needs to specify mappings from the data

111

Snowy

Outlook

Sunny Rainy Cloudy

Humidity WindTemperature

Weather

Humidity OutlookTemperature Wind

Speed
Wind

Figure 4.2 The ontology (part-of and is-a hierarchies) associated with the
data set D1

source ontologies O1, · · · , OK to the user ontology OU , so that all the ontologies O1, · · · , OK

are integrated according to the ontology OU . We will formally define the integration ontology

in what follows. To do that we start by explicitly associating types with all the objects that

exist in an ontology.

In Chapter 3 we defined T = {τ |τ is a string} to be a set of types. For each type τ ,

dom(τ) = {v|v is a value of the type τ} is called the domain of τ .

Observation 4.7. We can view all the internal nodes in a hierarchy as types whose domain is

given by the values that their children can take. Some of these types are continuous types

(e.g., Temp), others are enumerated types (e.g., Outlook).

Example 4.8. A type τ could be a predefined type, e.g., int or string or it can be a type like

F o (degrees Fahrenheit), USD (US Dollars), mph (Miles per hour) or it can be an enumerated

type such as Outlook whose domain is given by the values: Sunny, Rainy, Snowy etc.

Definition 4.9. We denote by τ|d(τ) the restriction of the type τ to the sub-domain d(τ),

where d(τ) ⊆ dom(τ).

112

Wind

Temp Wind Humidity Prec

Weather

Wind
Speed

Wind
Dir

Humidity Prec

Rain SnowNoPrec

Moderate
Rain

Light
Rain

Heavy
Rain

Light Moderate Heavy
Snow Snow Snow

Temp

Figure 4.3 The ontology (part-of and is-a hierarchies) associated with the
data set D2

113

Wind

Wind Humidity

Weather

Wind
Speed

Wind
Dir

Humidity

Rain SnowNoPrec

Moderate
Rain

Light
Rain

Heavy
Rain

Light Moderate Heavy
Snow Snow Snow

Temperature Precipitations

PrecipitationsTemperature

Figure 4.4 User ontology OU , which represents an integration of the hier-
archies corresponding to the data sources D1 and D2 in weather
domain

114

Definition 4.10. Let (H1,¹1), · · · , (HK ,¹K) be a set of K hierarchies determined by the

same relationship ord (e.g., is-a) on the sets of terms S1, · · · , SK , respectively, and let (HU ,¹U)

be a user ontology determined by the relationship ord on a set of terms S. A set of interoper-

ation constraints IC(ord) is a set of relationships that exist between elements from hierarchies

Hi and elements from the hierarchy HU . Thus, for two elements x ∈ Hi and y ∈ HU we can

have one of the following IC’s: x : Hi = y : HU or x : Hi 6= y : HU or x : Hi ≤ y : HU or

x : Hi 6≤ y : HU . If any or both x and y represent types in the corresponding hierarchy, we

could also have constraints derived from the constraints above by restricting any or both types

to a subdomain, i.e. x|d(x) : Hi = y : HU or x : Hi = y|d(y) : HU or x|d(x) : Hi = y|d(y) : HU .

Example 4.11. For the weather example, if we consider the is-a hierarchies associated with

the data sources D1 and D2 (i.e., H1(is-a) and H2(is-a)) and the is-a hierarchy HU(is-a), we

have the following interoperation constraints, among others: temp : H2(is-a) = temperature :

HU(is-a), humidity : H1(is-a)6= wind : HU(is-a), rainy : H1(is-a) 6≤ lightRain : HU(is-a),

heavyRain : H2(is-a)≤ rain : HU(is-a), outlook|{sunny,rainy,snowy} : H1(is-a)= precipitations :

HU(is-a) etc.

Definition 4.12. A user perspective UP with respect to a set of ontologies O1, · · · , OK is

defined by a user ontology OU and a set of interoperation constraints IC from hierarchies in

O1, · · · , OK to hierarchies in user ontology OU . We write UP = (OU , IC). In particular, the

ontologies O1, · · · , OK and OU could be simply hierarchies.

Definition 4.13. Let (H1,¹1), · · · , (HK ,¹K) be a set of K hierarchies and UP = (HU , IC)

a user perspective with respect to the hierarchies H1, · · · , HK . We say that the hierarchies

H1, · · · , HK are integrable according to the hierarchy (HU ,¹) in the presence of the interoper-

ation constraints IC (or equivalently HU is the integration hierarchy of H1, · · · , HK) if there

exist K injective partial mappings φ1, · · · , φK from H1, · · · , HK , respectively, to HU with the

following two properties:

• For all x, y ∈ Hi, if x ¹i y then φi(x) ¹ φi(y) (we call this order preservation);

• For all x ∈ Hi and y ∈ HU , if (x : Hi op y : HU) ∈ IC, then φi(x) op y in the hierarchy

HU (we call this interoperation constraints preservation).

115

Definition 4.14. Let Λ be a set of strings (defining orderings) and S1, · · · , SK subsets of terms

ordered according to the orderings in Λ; let O1, · · · , OK be ontologies with respect to Λ and

S1, · · · , SK , respectively, and UP = (OU , IC) a user perspective with respect to O1, · · · , OK .

We say that the ontologies O1, · · · , OK are integrable according to OU (or equivalently, OU is

the integration ontology of O1, · · · , OK) if and only if for each element ord ∈ Λ the hierarchies

Θ1(ord), · · · , ΘK(ord) are integrable according to ΘU(ord).

Thus, a set of ontologies are integrable from a user perspective, if a set of mappings from

the hierarchies in the local ontologies to the user hierarchies in the user ontology (satisfying

the properties in the integration hierarchy definition) can be found.

Example 4.15. The ontologies O1 and O2 corresponding to the data sources D1 and D2 in

the weather example (Figures 4.2 and 4.3) can be integrated according to the user ontology

OU (Figure 4.4).

We propose a simple algorithm for finding a set of mappings that witness the integration

of the hierarchies H1, · · · , HK according to a user perspective UP = (OU , IC) (see Figure 4.5)

and an algorithm for checking that the set of mappings found by this algorithm is consistent

with the interoperation constraints and it satisfies the order preservation property (see Figure

4.6). We use these algorithms to integrate a set of ontologies O1, · · · , OK according to a user

ontology OU in the presence of the interoperation constraints IC = {IC(ord)|ord ∈ Λ}, by

applying them to the set of hierarchies defined by each ord ∈ Λ in the presence of IC(ord).

Example 4.16. Let H1, H2 and HU be the is-a hierarchies in Figures 4.2, 4.3 and 4.4,

respectively. Let IC(is-a)= {Temp : H2(is-a) = Temperature : HU(is-a), Outlook : H1(is-a)

= Precipitation : HU(is-a), Prec : H2(is-a)= Precipitation : HU(is-a), Sunny : H1(is-

a)= NoPrec : HU(is-a), LightRain : H2(is-a)≤ Rain : HU(is-a), · · · }. According to the

first step of the Finding Mappings algorithm (name matching mappings), we add the mappings

in Table 4.3. According to the second step of the algorithm (equality constraint mappings),

we add the mappings in Table 4.4. By using Check Consistency algorithm, we can see that

all the mappings constructed are consistent with the non-equality constraints and satisfy the

order preservation property.

116

Finding Mappings
Input: a set of hierarchies H1, · · · , HK and a user perspective UP = (HU , IC).
Output: a mappings set MS.
{

MS = φ
for (each Hi)
{

Name Matching Mappings:
for (each term ∈ Hi)
{

If (term ∈ HU),then
MS → MS ∪ {term : Hi → term : HU}
(unless there is a constraint that does not allow this)

}

Equality Constraints Mappings:
for (each equality constraint term1 : Hi = term2 : HU)
{

MS → MS ∪ {term1 : Hi → term2 : HU}
}

}
If (MS is consistent with the non-equality constraints)

return MS
Else

eliminate mappings that are inconsistent with the integrity constraints
return MS

}

Figure 4.5 Algorithm for finding mappings between a set of data source
hierarchies and a user hierarchy

117

Check Consistency
Input: A set of mappings

MS = {term : Hi → term′ : HU} and a set of interoperation constraints
IC = {(term1 : Hi op1 term′

1 : HU), · · · , (termk : Hi opk term′
k : HU)}.

Output: true if the MS is a set of partial injective mappings consistent with the set interoperation
constraints and order preservation, false otherwise.

{
Check that MS is a set of mappings

for (each term ∈ Hi)
if ((term : Hi op′ term′ : HU) & (term : Hi op′′ term′′ : HU) ∈ IC

& (term′ : HU 6= term′′ : HU))
return false

Check that the mappings in MS are consistent
for (each term ∈ HU)

if ((term′ : Hi op′ term : HU) & (term′′ : Hi op′′ term′′ : HU) ∈ IC
& (term′ : HU 6= term′′ : HU))
return false

Check that the mappings in MS are consistent with the interoperation constraints IC
for (each (term : Hi → term′ : HU) ∈ MS)

for (each (termk : Hi opk term′
k : HU) ∈ IC)

if (term == termk) & (term′ == term′
k)

if (opk is 6=)
return false

Check that the mappings in MS are consistent with the order preservation constraints IC
for (each t term such that t : Hi ≤ term : Hi or term : Hi ≤ t : Hi)

if (t : Hi maps to T : HU and t : Hi ≤ term : Hi)
if (T : HU ≥ term′ : HU) return false

else (t : Hi ≤ term : Hi)
if (term′ : HU ≥ T : HU) return false

return true

Figure 4.6 Algorithm for checking the consistency of a set of partial injec-
tive mappings with a set of an interoperation constraints and
with the order preservation property

118

Table 4.3 Mappings from H1(is-a) and H2(is-a) (corresponding to the data
sets D1 and D2) to HU(is-a) found using name matching strategy

φ1 φ2

Temperature → Temperature -
Wind → Wind Wind → Wind

Humidity → Humidity Humidity → Humidity
- Rain → Rain
- LightRain → LightRain
- ModerateRain → ModerateRain
- HeavyRain → HeavyRain
- LightSnow → LightSnow
- ModerateSnow → ModerateSnow
- HeavySnow → HeavySnow
- NoPrec → NoPrec

Table 4.4 Mappings from H1(is-a) and H2(is-a) (corresponding to the data
sets D1 and D2, respectively) to HU(is-a) found from equality
constraints

φ1 φ2

- Temp → Temperature
Outlook → Precipitation Prec → Precipitation

Sunny → NoPrec -
Rainy → Rain -

119

Once a set of mappings is found using the algorithms described in Figures 4.5 and 4.6, the

user is given the opportunity to inspect the mappings and add other mappings if needed and

if they do not violate the interoperation constraints or the order preservation property.

4.1.4 Ontology-Extended Data Sources

So far, we have defined ontologies, explained what it means to integrate ontologies and

showed how a user can check if his or her ontology can be an integration for a set of ontologies

associated with autonomous data sources. Once the user integration ontology is defined

(together with the mapping to the data sources ontologies), the user’s goal is to ask queries in

his/her ontology and get sound and complete answers from the data sources. For example, in

the weather example, the user may want to ask queries about the days when the Temperature

was higher than 40F. To get the answer to such a query, besides name mappings (Temp :

O2 → Temperature : O), a conversion from degree Celsius to degree Fahrenheit is needed in

the case of the second data source D2.

In what follows, we will show how the information about ontologies can be incorporated

into the associated data sources and also into the operations allowed by these data sources,

so that we ensure that the answers to queries posed by a user are sound and complete.

Definition 4.17. We say that a total function τ12τ2 : dom(τ1) → dom(τ2) that maps values

of τ1 to values of τ2 is a conversion function from τ1 to τ2. The set of all conversion functions

must satisfy the following constraints:

• For every two types τi, τj ∈ T there exists at most one conversion function τi2τj.

• For every type τ ∈ T , τ2τ exists (the identity function).

• If τi2τj and τj2τk exist, then τi2τk exists and τi2τk = τi2τj ◦ τj2τk.

Definition 4.18. We say that τ1 can be converted into τ2 and we write τ1 → τ2 if there exists

a conversion function τ12τ2.

Observation 4.19. If τ1 and τ2 are on the same path in a hierarchy (H,≤) and τ1 ≤ τ2, then

τ1 → τ2, which means that τ12τ2 exists. (This is usually the identity.)

120

A user needs to specify conversion functions for all the ontology mappings defined in the

system. If a conversion function is not explicitly specified, it is assumed to be the identity

function.

Example 4.20. The conversion function associated with the mapping Humidity : O1 →

Humidity : OU is the identity.

Example 4.21. The conversion function associated with the mapping Temp : O2 → Temperature :

OU (where Temp is measured in degrees Celsius and Temperature is measured in degrees

Fahrenheit) is the function Temp(C)2Temperature(F) which converts Celsius to Fahrenheit.

Example 4.22. The conversion function associated with the mapping Outlook : O1 →

Precipitation : OU (where dom(Outlook) = {Sunny,Rainy, Cloudy, Snowy}

and dom(Precipitation) = {Rain, Snow,NoPrec}) is a function

Outlook2Precipitation which converts values in dom(Outlook) to values in

dom(Precipitation). Thus, Outlook2Precipitation could “convert” Sunny to NoPrec, Rainy

and Cloudy to Rain, and Snowy to Snow.

Observation 4.23. If the interoperation constraints are defined on subdomains of some do-

mains, then the conversion functions are defined with respect to the respective subdomains.

Definition 4.24. Let H be a hierarchy and τ a type in that hierarchy. We denote by

belowH(τ) the union between the values of τ and the subtypes τ ′ of τ :

belowH(τ) := {τ ′|τ ′ ∈ H, τ ′ ≤H τ} ∪ dom(τ).

Example 4.25. We have: belowH(Prec) = {Rain,NoPrec, Snow, LightRain,ModerateRain,

HeavyRain, LightSnow,ModerateSnow,HeavySnow}.

Definition 4.26. Let τ1 and τ2 be two types. A type τ is called the least common supertype

of τ1 and τ2 if

• τ1 → τ and τ2 → τ .

121

• If there exists τ ′ such that τ1 → τ ′ and τ2 → τ ′, then τ → τ ′.

Example 4.27. Let X = Rain and Y = HeavySnow be two terms in the is-a hierarchy of

the user ontology in the Weather example. Then the least common supertype of type(X) and

type(Y) is Precipitation.

We view any data source as a table whose lines represent data instances and whose columns

represent the attributes used to describe the instances. Let {A1, · · · , An} be the set of at-

tributes used to describe the data in a particular data source D, and let {τ1, · · · , τn} be the

set of types associated with these attributes. The set {A1 : τ1, · · · , An : τn} is called the

schema of the data source D.

Definition 4.28. Two schemas S1 = (A1 : τ 1
1 , · · · , An : τ 1

n) and S2 = (A1 : τ 2
1 , · · · , An : τ 2

n)

are compatible if τ 1
i and τ 2

i have a least common supertype τi and the conversion functions

τ 1
i 2τi and τ 2

i 2τi exist for all i = 1, · · · , n. The common schema S = (A1 : τ1, · · · , An : τn)

is called the least common super-schema of S1 and S2. The conversion functions Sj2S are

defined by Sj2S(D) = {(τ j
12τ1(x1), · · · , τ j

n2τn(xn))|(x1, · · · , xn) ∈ D} for j = 1, 2.

We will show that we can ensure the semantical correctness of an answer to a query if we

extend each data source with its corresponding ontology and also with the type information

associated with each attribute (i.e., data source schema), and specify conversion functions

between different types.

Definition 4.29. We say that (D,S,O) is an ontology-extended data source if D is a data

source (represented as a table), O is an ontology over D, S = {A1 : τ1, · · · , An : τn} is the

data source schema, and the following conditions are satisfied:

(1) τ1, · · · , τn ∈ O are types in the ontology O and

(2) D ⊆ belowO(τ1) × · · · × belowO(τn).

Definition 4.30. Let D = {D, (A1 : τ1, · · · , An : τn), O} be an extended data source and let

X be a term (attribute, type or typed value) in the context of D. We define the type of the

term X as follows: type(X) =

τi if X = Ai

τ if X = τ or X = v : τ

122

Example 4.31. Let D1 = {D1, (Day : Day, Temp : Temp(F),WindSpeed : WindSpeed(mph),

Humidity : PosInt, Outlook : Outlook), O1}. Then, if X = Temp, we have type(X) =

Temp(F); if X = Day, then type(X) = Day; if X = 16 : mph, then type(X) = WindSpeed(mph);

if X = Humidity, then type(X) = PosInt etc.

So far, we have extended data sources with ontologies and type information. We want to

use these extended data sources to answer statistical queries, which means we need to show

how to extend the operators defined in Section 3.4, so that we guarantee that the answers that

we get to queries are sound and complete. To do that, we first re-define selection conditions

which are used to specify the precise data to which the operators are applied. Thus, given the

type information, we extend the definition of an atomic condition introduced in Chapter 3 as

follows:

Definition 4.32. An atomic condition is defined as a condition having the form X op Y ,

where op ∈ {=, 6=, <,≤, >,≥, is-a, part-of, instance-of, subtype-of, above-type, below-type}, and

X,Y are terms (i.e., attributes, types or typed values v : τ , with v ∈ dom(τ))).

Definition 4.33. A selection condition is a condition that can be defined recursively as follows:

• Any atomic condition is a selection condition.

• If c is a selection condition, then ¬c is a selection condition.

• If c1 and c2 are selection conditions, then c1 ∧ c2, c1 ∨ c2 are selection conditions.

Example 4.34. The following expressions are selection conditions: type part-of Wind, Temperature>10:F

type part of Wind ∧ Temperature<10:F.

Definition 4.35. An atomic condition X op Y , where op ∈ {=, 6=, <,≤, >,≥} is well-typed

if X and Y have a least common supertype τ and the conversion functions type(X)2τ and

type(Y)2τ exist. If op ∈ {is-a, part-of, instance-of, subtype-of, above-type, below-type}, then

an atomic condition X op Y is always well-typed. A selection condition is well-typed if all its

atomic conditions are well-typed.

123

Definition 4.36. We define the value of a term X with respect to an instance t ∈ D as

follows:

valt(X) =

valt(Ai) if X = Ai

τ if X = τ 6∈ {A1, · · · , An}

v if X = v : τ

Example 4.37. Let D1 = {D1, (Day : Day, Temp : Temp(F),WindSpeed : WindSpeed(mph),

Humidity : PosInt, Outlook : Outlook), O1} be an extended data set and t = {3, 52, 30, 67, Sunny}

an instance in D1. If X = Outlook, then valt(X) = Sunny; if X = temp, then valt(X) = 52;

if X = Integer, then valt(X) = Integer; if X = 57 : Temp(F), then valt(X) = 57.

Definition 4.38. An instance t ∈ D satisfies a well-typed condition c in the context of D and

we write D, t |= c if one of the following conditions is satisfied:

• c = X op Y , where op ∈ {=, 6=, <,≤, >,≥}, and there exists τ the least common

supertype of X and Y such that (type(X)2τ)(valt(X)) op (type(Y)2τ)(valt(Y)) is true.

• c = X instance-of Y , valt(Y) ∈ T , type(X) →O valt(Y) and valt(X) ∈ dom(valt(Y)).

• c = X subtype-of Y , valt(X) ∈ T , valt(Y) ∈ T , valt(X) →O valt(Y).

• c = c1 ∧ c2, D, t |= c1 and D, t |= c2.

• c = c1 ∨ c2, and either D, t |= c1 or D, t |= c2.

• c = ¬c1 and D, t 6|= c1.

• c = X below-type Y , D, t |= X instance-of Y ∧ X subtype-of Y .

• c = X above-type Y and D, t |= Y below-type X.

4.2 Ontology-Extended Query Operators

Definition 4.39. Let (D1, S1, O1), · · · , (DK , SK , OK) be a set of ontology-extended data

sources and O an integration ontology for O1, · · · , OK . An ontology-extended data set X

in the integrated domain (o.e.d.s) is a data set (extended with its schema and the associated

124

ontology) whose instances are obtained from the set of instances of other data set in the do-

main by applying compositional operators and taking into account ontological information.

Thus, we need to make sure that ontology-extended data sets are well-typed.

Definition 4.40. A statistic over an ontology-extended data set X (s.o.e.d.s.) is defined as

the result of applying any function (operator or composition of operators) to that particular

data set X. For example, a statistic can be a set of instances (i.e., another ontology-extended

data set), counts of the instances in the initial data set, the average of a set of instances etc.

For a statistic to be well-typed, we need to ensure that the ontology-extended data set that

we start with are well-typed, and also that the result of applying the operators is well-typed.

In what follows we will show how to define well-typed ontology-extended data set and

statistics recursively, i.e., we will show how to use the query operators in the context of

extended data sources (types and ontological information) in a distributed environment.

4.2.1 Ontology-Extended Primitive Operators

Let (D1, S1, O1), · · · , (DK , SK , OK) be K ontology-extended data sources, and let O be an

integration ontology for O1, · · · , OK via the set of mappings {φi|i = 1, K}.

Definition 4.41. (Adapted and extended from [Bonatti et al., 2003]) Let X be a data set

(table) in the integrated domain. We define the [X]O = {X,S,O} inductively as follows:

• Primitive Data Set: If X is a data set corresponding to a data source Di whose schema is

Si = (A1 : τ1, · · · , An : τn), then [X]O = (φi(Di), S, O), where S = (A1 : φi(τ1), · · · , An :

φi(τn)). In this case, X is always well-typed.

• Cast: If the data set X is obtained from a data set X ′ (where [X ′]O = (D,S ′, O)) by

converting the schema S ′ to a different schema S, denoted X = (S)X ′, then [X]O =

(S ′2S(D), S, O). X is well-typed if S and S ′ have the same number of attributes, the

conversion function S ′2S exists and X ′ is well-typed.

• Projection: If X is a data set obtained by applying PROJECT operator to an existing

data set X ′, denoted X = ΠAi1
,··· ,Aik

(X ′), (1 ≤ ij ≤ n for 1 ≤ j ≤ k) and if [X ′]O =

125

(D′, (A1 : τ1, · · · , An : τn), O), then [X]O = (D,S,O), where D is the standard projection

of D′ onto Ai1 , · · · , Aik and S = (Ai1 : τi1 , · · · , Aik : τik). X is well-typed if X ′ is well-

typed.

• Selection: If X is a data set obtained by applying SELECT operator to an existing

data set X ′, denoted X = σc(X
′), and if c is a selection condition in the context of

[X ′]O = (D′, S, O), then [X]O = (D,S,O), where D = {t ∈ D′|(D′, S, O), t |= c}. X is

well-typed if X ′ and c are well-typed.

• Cross Product: If X is a data set obtained by applying CROSS PRODUCT operator to

two existing data sets X1 and X2, denoted X = X1 × X2 and [Xi]O = (Di, Si, O) (for

i=1,2), then [X]O = (D,S,O), where D is the standard cross product of D1 and D2 and

S is the concatenation of S1 and S2. X is well-typed if X1 and X2 are well-typed and

S1 and S2 have no common attribute.

• Join: If X is a data set obtained by applying JOIN operator to two existing data

sets X1 and X2, we can write the join as the composition of the SELECT and CROSS

PRODUCT operators, denoted X = X1 ⊲⊳ X2 = σc(X1 × X2), and thus, we can use

the previous definitions for SELECT and CROSS PRODUCT to define [X]O. X is

well-typed if the results of the SELECT and CROSS PRODUCT are well-typed.

• Set Operations: If X = X1 op X2, where op ∈ {∪,∩,−}, and if [Xi]O = (Di, Si, O)

(i = 1, 2), and S1 and S2 have a least common superschema S, then [X]O = (D,S,O),

where D is the standard result of S12S(D1) op S22S(D2). X is well-typed if X1 and X2

are well-typed and the schemas S1 and S2 have a least common superschema.

• Horizontal Integration: If X = X1 ∐ X2, and if [Xi]O = (Di, Si, O) (i = 1, 2), and S1

and S2 have a least common superschema S, then [X]O = (D,S,O), where D is the

standard result of S12S(D1) ∪ S22S(D2). X is well-typed if X1 and X2 are well-typed

and the schemas S1 and S2 have a least common superschema.

• Vertical Integration: If X = X1ΠX2, and if [Xi]O = (Di, Si, O) (i = 1, 2), and S1 and

S2 have at least one common column (e.g., id), then [X]O = (D,S,O), where D is

126

the result of S12S(D1) · S22S(D2) (where · means the concatenation by omitting the

repetitive columns). X is well-typed if X1 and X2 are well-typed.

Theorem 4.42. For all data sets X over (D1, S1, O1), · · · , (DK , SK , OK) and all integration

ontologies O of O1, · · · , OK, [X]O is an ontology-extended data set in the integrated domain

(i.e., a table satisfying the conditions (1) and (2) in the Definition 4.29).

Proof. Follows from the definitions above.

4.2.2 Ontology-Extended Statistical Operators

Definition 4.43. For an ontology-extended data set X, we define an ontology-extended statis-

tic [f(X)]O inductively as follows:

• If X is a data set, such that [X]O = {D,S,O}, and f is an aggregate operator f ∈

{AV G,COUNT,DIST,MIN,MAX} or a specialized operator

f ∈ {SV M,DT,NN,NB, kNN}, then [f(X)]O = {f(D), S ′, O}, where f(D) is the

result of applying the operator f to the data source D (presented as a table) and S ′

represents its corresponding schema. f(X) is always well-typed.

• Let f(X1), f(X2) be the results of applying an aggregate or a specialized operator f

to the data sets X1 and X2, respectively, where [f(Xi)]O = {f(Di), S
′
i, O} for i = 1, 2

are defined as above. Let X = X1 op X2 and f(X) = g(f(X1), f(X2)). If S ′
1 and S ′

2

have a least common superschema S ′, then [f(X)]O = {g(f(D1), f(D2)), S
′, O}. f(X)

is well-typed if f(X1) and f(X2) are well-typed and the schemas S ′
1 and S ′

2 have a

least common superschema. For example, if f is the COUNT operator, then g is the

compositional operator +; if f is SV M then g is ∪; if f is a specialized operator, g can

be V OTE compositional operator etc.

Theorem 4.44. For all data sets X over (D1, S1, O1), · · · , (DK , SK , OK) and all integration

ontologies O of O1, · · · , OK, [f(X)]O is an ontology-extended statistic.

Proof. Follows from the definitions above.

127

4.3 Semantic Heterogeneity and Statistical Queries

Before we can develop methods to answer statistical queries from semantically heteroge-

neous data, it is useful to explore what it means to answer a statistical query in such a setting.

In what follows, we will consider is-a hierarchies over attributes. We illustrate some of the

issues that have to be addressed using the weather example. Thus, we assume there exist two

data sources D1 and D2 with the associated ontologies O1 and O2 and a user is interested in

analyzing the data from D1 and D2 from his perspective, which corresponds to the ontology

OU and a set of interoperation constraints IC. Suppose D1 contains 10 instances of Rainy

days and 30 instances of Snowy days. The data source D2 contains 10 instances of LightRain

days, 20 instances of HeavyRain days, 10 instances of LightSnow days and 10 instances of

HeavySnow days.

A statistical query qOU is posed to the two data sources based on the ontology OU : What

fraction of the days are Rain days? After performing the necessary mappings (Rainy : O1 →

Rain : OU , Rain : O2 → Rain : OU), the answer to this query can be computed in a

straightforward way as the ratio of the number of Rain days (20+10+20=50) divided by the

total number of days (100) yielding an answer of 0.5.

Now consider another query rOU (also based on the ontology OU): What fraction of days

are HeavyRain days? The answer to this query is not as straightforward as the answer to the

previous query qOU
. This is due to the fact that the quantification of rain for the days in data

source D1 is only partially specified [Zhang and Honavar, 2003] with respect to the ontology

OU . Consequently, we can never know the precise fraction of days that are HeavyRain days

based on the information available in the two data sources. However, if it is reasonable to

assume that the data contained in both D1 and D2 are drawn from the same universe (i.e., can

be modeled by the same underlying distribution), we can estimate the fraction of days that are

HeavyRain days in the data source D1 based on the fraction of Rain days that are HeavyRain

days in the data source D2 (i.e., 20 out of 30) and use the result to answer the query rOU .

Under the assumption that the samples of days in D1 and D2 can be modeled by the same

distribution, the estimated number of HeavyRain days in D1 is given by
(

20
30

)

(20) =
(

40
3

)

.

128

Hence, the estimated number of HeavyRain days in D1 and D2 is
(

40
3

)

+ 20 =
(

100
3

)

. Thus,

the answer to the query rOU is
(

100
3

) (

1
100

)

= 1
3
.

While the assumption that the data sources under consideration can be modeled by the

same underlying distribution may be reasonable in some cases, in other cases, alternative

assumptions may be justified. For example, some users might want to assume that the precise

amount of rain in data source D1 cannot reasonably be estimated on the basis of the rain

distribution of the days in data source D2 and hence require that the answer to query rOU

be based only on the data in D2, yielding an answer of 20 out of 100 or 0.2. An alternative

would be to assume that Rain days in data source D1 are equally likely to be LightRain or

HeavyRain yielding an answer 0.3 (30 out of 100) to query rOU .

Note that the answer to query qOU is completely determined by the ontologies O1, O2, OU ,

the mappings shown in Tables 4.3, 4.4 and the data available in the data sources D1 and D2.

However, answer to the query rOU is only partially determined by the ontologies O1, O2, OU ,

the mappings shown in Tables 4.3, 4.4 and the data available in the data sources D1 and

D2. In such cases, answering statistical queries from semantically heterogeneous data sources

requires the user to supply not only the mappings between ontologies associated with the data

sources and his or her ontology, but also additional assumptions of a statistical nature (e.g.,

that data in D1 and D2 can be modeled by the same underlying distribution). The validity

of the answer returned depends on the validity of the assumptions and the soundness of the

procedure that computes the answer based on the supplied assumptions.

We assume that the user has the option to choose between two ways of answering queries

from partially specified data with respect to his/her ontology: first option, the data in each

of the distributed data source is modeled by the same underlying distribution; second option,

the possible values of attributes that are partially specified are equally likely.

In the next section, we assume that we know how to solve the semantic heterogeneity

problem (see Section 4.1) and we will show how we can use approaches to learn classifiers

from partially specified data [Zhang and Honavar, 2003; 2004] to design algorithms for learning

from semantically heterogeneous distributed data.

129

4.4 Algorithms for Learning Classifiers from Heterogeneous Dis-

tributed Data

We assume that all the ontologies involved (user ontology and data sources ontologies)

consist of is-a hierarchies over the set of attributes (a.k.a., attribute value taxonomies or

AVTs) (see Figure 4.7).

Definition 4.45. If A is an attribute in D, its corresponding attribute value taxonomy, H(A)

is a tree rooted at A. We denote by Nodes(A) the set of nodes of the AVT associated with the

attribute A. The set of leaves in the tree, Leaves(H(A)), corresponds to the set of primitive

values of A. The internal nodes of the tree correspond to the abstract values of the attribute

A. The arcs of the tree correspond to is-a relationships between attribute values that appear

in adjacent levels in the tree. The set of abstract values at any given level in the tree H(A)

form a partition of the set of values at the next level (and hence, a partition of the set of

primitive values of A).

O Prec

Rain SnowNoPrec

Moderate
Rain

Light
Rain

Heavy
Rain

Prec

Rain SnowNoPrec

Moderate
Rain

Light
Rain

Heavy
Rain

Light Moderate Heavy
Snow Snow Snow

Prec

Rain SnowNoPrec

O1 O2

Figure 4.7 The AVTs corresponding to the Prec attribute in the ontologies
O1, O2 and OU , associated with the data sources D1 and D2 and
a user, respectively (after the names have been matched)

Definition 4.46. [Haussler, 1988] A cut Z(H(A)) of an AVT H(A) is a subset of nodes in

H(A) satisfying the following two properties:

• For any leaf v ∈ Leaves(H(A)), either v ∈ Z or v is a descendent of a node n ∈ Z.

• For any two nodes n1, n2 ∈ Z, n1 is neither a descendent nor an ascendent of n2.

130

Cuts through an AVT H(A) correspond to partitions of Leaves(H(A)).

Example 4.47. The cut corresponding to {Rain, Snow,NoPrec} in the AVT associated

with the attribute Prec in the ontology O2 in Figure 4.7, defines a partition of the primi-

tive values of the Prec attribute as follows: {LightRain,ModRain,HeavyRaib}, {NoPrec},

{LightSnow,ModSnow,HeavySnow}}.

If S = (A1 : τ1, A2 : τ2, · · · , An : τn) is the schema of a data source D having an ontology

O, then O can be written as O = {H1(A1), H2(A2), · · · , Hn(An)}, where Hi(Ai) is the AVT

corresponding to the attribute Ai.

Definition 4.48. A cut Z(O) of an ontology O = {H1(A1), H2(A2), · · · , Hn(An)} is defined

as Z(O) = {Z(H1(A1)), Z(H2(A2)), · · · , Z(Hn(An))}.

Let (D1, S1, O1), · · · , (DK , SK , OK) be K ontology-extended data sources and OU a user

ontology. Let Z(O1), · · · , Z(OK) be the levels of abstraction (cuts) at which the instances are

specified in the data sources D1, · · · , DK , respectively and Z(OU) a learning cut through the

user ontology defining the level of abstraction at which the learning needs to be done. When

learning from D1, · · · , DK using the user ontology OU , the name and type heterogeneity

problems are solved once valid mappings between data source ontologies and user ontology

have been specified. However, we still encounter problems as those described in the previous

section. More precisely, having different ontologies at different data sources implies that the

instances to be classified could be specified at different levels of precision with respect to a

user ontology.

Definition 4.49. Let x = (vA1
, · · · , vAn

) ∈ Dj be an instance in Dj. We say that x is:

• a completely specified instance if for all 1 ≤ i ≤ n, the correspondent of vAi
in OU belongs

to the user level of abstraction Z(OU).

• a partially specified instance if there exist at least one attribute value vAi
for which the

corresponding value in Z(OU) does not belong to the user level of abstraction Z(OU).

This value can be under-specified if its correspondent in the user ontology is above the

131

learning cut, or over-specified if its correspondent in the user ontology would be below

the learning cut (but it actually does not exist). An attribute is under-specified if it has

under-specified values, and it is over-specified if it has over-specified values.

Example 4.50. Assume that the instances in the data source D1 are specified in terms

of Rain, NoPrec and Snow. The instances in the data source D2 are specified in terms of

LightRain, ModerateRain, HeavyRain, NoPrec, LightSnow, ModerateSnow, HeavySnow.

Assume that according to the user level of abstraction the instances have to be specified in

terms of LightRain, ModerateRain, HeavyRain, NoPrec and Snow. We can see that in this

case, the instances in D1 are under-specified, while the instances in D2 are over-specified. Thus,

Rain is an under-specified value of the attribute Prec in D1, while LightSnow, ModerateSnow,

HeavySnow are over-specified values of the attribute Prec in D2.

One way to deal with the under- or over-specification problems is to replace the original

data set with a new data set where the values of the attributes are at the right level of

specification, given the user level of abstraction, and then apply the algorithms for learning

from distributed data described in Chapter 3. In principle, this could be easily done when an

attribute is over-specified: we replace the over-specified value with a higher level ancestor in the

corresponding AVT (specifically, with the ancestor that has the same level of abstraction as the

value in the user AVT). When an instance is under-specified, we replace the original instance

with a new instance having the right level of specification, according to the user preference.

Thus, the user specifies how under-specified values should be filled in: by assuming that all

the data is modeled by the same underlying distribution or by assuming uniform distribution

for the data.

Although we can, in principle, generate a new data set having the right level of spec-

ification, this is not always possible in a distributed environment where data sources are

autonomous. We will show that for some learning algorithms we can gather the sufficient

statistics corresponding to the transformed data sets (having the right level of abstraction)

without doing the transformation explicitly.

Let A1(OU), · · · , An(OU) be the user attributes with respect to a data domain and OU =

132

{H1(A1), · · · , Hn(An)} the user ontology associated with these attributes. Let vA1
(OU), · · · , vAn

(OU)

be a learning cut through the user ontology (note that vAi
(OU) ⊆ HU(Ai) could be a set of

values of the attribute Ai(OU)). If the data are horizontally distributed, then each data source

Dj contains an attribute Ai(Oj) that maps to Ai(OU). If the data are vertically distributed,

then for each attribute Ai(OU) there exists a data source Dj that contains an attribute Ai(Oj)

that maps to Ai(OU).

4.4.1 Naive Bayes Classifiers from Heterogeneous Data

The algorithm for learning naive Bayes classifiers from horizontally (vertically) distributed

heterogeneous data sources is similar to the algorithm for learning naive Bayes classifiers form

horizontally (vertically) distributed homogeneous data sources. As opposed to this case, in

the case of heterogeneous data sources:

First the set of mappings is used to find the correspondents of the user attributes in

the distributed data sources (e.g., Ai(Oj) → Ai(OU)) and also to resolve the syntactic and

semantic mismatches between the correspondent attributes.

Second, for each attribute value v ∈ vAi
(OU) in the user cut, we compute the counts at a

particular data source Dj that contains that attribute, as follows:

• If v is over-specified in Dj, then we recursively propagate up the counts from its children

in Hi(Dj) to v, until all the children are specified in Dj (primitives). For example, in

Figure 4.7, to compute the counts in D2 corresponding to Snow, we compute the counts

for LightSnow, ModerateSnow, and HeavySnow and we add them up.

• If v is under-specified in Dj, we can treat it as a missing value and thus we reduce our

problem to the problem of filling in missing values. Depending on the user preference,

one of the following approaches can be used for that:

– If the user assumes uniform distribution over the attribute values, then the counts

are propagated down uniformly from a parent to its children. For example, in

Figure 4.7, if there are 9 instances in D1 for which the attribute Prec takes value

133

Rain, then according to the user assumption, we can infer that that there are 3

instances for each of the values LightRain, ModerateRain and HeavyRain.

– If the user assumes that all the data are coming from the same distribution, we

can estimate this distribution based on a data set where the values are specified,

and then propagate down the counts based on that distribution in a data set where

the values are under-specified. For example, if there are 8 instances in D1 for

which Prec takes value Rain and if the distribution over the values LightRain,

ModerateRain, HeavyRain is (25, 50, 25), then we can infer that there are 2 in-

stances for which Prec = LightRain, 4 instances for which Prec = ModerateRain

and 2 instances for which Prec = HeavyRain.

Once the counts are estimated this way, the algorithm works as in the homogeneous dis-

tributed data case. Thus, we can see that we do not need to explicitly construct data sets

where all the instances are completely specified, as the counts can be computed implicitly.

4.4.2 Decision Tree Induction from Heterogeneous Data

The algorithm for learning decision trees from horizontally (vertically) distributed hetero-

geneous data sources is similar to the algorithm for learning decision trees form horizontally

(vertically) distributed homogeneous data sources. As the sufficient statistics that need to be

computed in the case of the decision tree algorithm are also counts, they can be computed

similar to the way we compute the counts for naive Bayes, after all the mappings are per-

formed. Thus, there is no need to explicitly construct the equivalent data sets where all the

instances are completely specified.

4.4.3 Support Vector Machines from Heterogeneous Data

In the case of the Support Vector Machines algorithm, we showed that if the data are

horizontally distributed, the sufficient statistics are given by the support vectors (if we iterate

a few times through the data) or the points that determine the convex hull. In either case, an

optimization problem that involves all data needs to be solved in order to find the sufficient

134

statistics. Because of that, it is not possible to compute the sufficient statistics without

effectively constructing new data sets, where all the under-specified or over-specified values

are filled in or abstracted as follows:

• If v is over-specified in Dj, let u1, · · · , uk be the over-specifications of v in Dj. We

replace every instance in Dj with a new instance in which any occurrence of the values

u1, · · · , uk is replaced by the values v. For example, for D2 in Figure 4.7, we replace

LightSnow, ModerateSnow, and HeavySnow with Snow in any instance from Dj.

• If v is under-specified in Dj, we have to fill it in according to the user preference. Thus,

one of the following approaches can be used to fill in under-specified values:

– If the user assumes uniform distribution over the attribute values, we replace v’s

correspondent in Dj randomly with one of v’s children (the probability that any

child is used is 1/(number of children)). If the new value is a primitive value in

OU , we are done, otherwise the same procedure is repeated until all the values are

primitive.

– If the user assumes that all the data are coming from the same distribution, we

can estimate this distribution based on a data set where the values are specified,

and then replace v’s correspondent in Dj with one of v’s children according to the

estimated distribution. If the new value is a primitive value in OU , we are done,

otherwise the same procedure is repeated until all the values are primitive.

For example, for the data set D1 the value Rain of the attribute Prec is under-specified.

It needs to be replaced with one of the children of the Rain value in OU (i.e., LightRain,

ModerateRain or HeavyRain) according to the desired distribution.

Another method to construct a data set where all the instances are specified, based on a

data set containing over- or under-specified values, is called propositionalization. According

to this method, if vA1
(OU), · · · , vAn

(OU) is the learning cut, any instance in a data source Dj

is replaced with a new instance that has as many boolean attributes as values in the learning

cut. Any of these new attributes can take one of the values True, False, or Missing, as follows:

135

• If an attribute A, corresponding to the value v in the learning cut, is at the right level

of specification in Dj, then: if A appears in an instance Dj, it takes value True in the

new instance. If it A does not appear in an instance, it takes value False in the new

instance.

• If an attribute A, corresponding to the value v in the learning cut, is under-specified in

Dj, then it takes value Missing in any new instances.

• If an attribute A, corresponding to the value v in the learning cut, is over-specified in

Dj, then it takes value True in any new instances.

Observation 4.51. Gradient-based variants of SVM algorithm could be transformed into al-

gorithms for learning from partially specified distributed data without constructing the data

sets explicitly by using an approach similar to the approach for learning threshold functions

from heterogeneous data (see Section 4.4.4).

4.4.4 Learning Threshold Functions from Heterogeneous Data

We saw that in the case of learning threshold functions, the weight w represents the

sufficient statistics. This weight is updated at each step of the algorithm based on the current

example in the case horizontally distributed data (when data are vertically the weight is

updated once for each data source, using a quantity computed by visiting the instances one

by one). Because of the incremental nature of these algorithms, it is not necessary to explicitly

construct new data sets containing completely specified instances. Instead when needed, each

over- or under-specified instance is transformed on the fly into the corresponding specified

instance using one of the methods described in Section 4.4.3. Thus, after resolving name and

type heterogeneity problems, the distributed algorithms described in Chapter 3 can be used

unchanged, except that the weight is updated based on the (implicitly) transformed instances.

4.4.5 k-Nearest Neighbors Classifiers from Heterogeneous Data

Similar to the algorithms for learning threshold functions, the k-NN classifiers are in-

cremental with respect to instances, meaning that they compute distances (i.e., sufficient

136

statistics) by processing the examples one by one. Thus, both horizontally and vertically

distributed k-NN classifiers can be used as they are for learning from horizontally and ver-

tically distributed heterogeneous data sources. The only difference is that the distances are

computed not using the original instances, but using (implicitly) transformed instances, as in

the case of learning threshold function. Thus, this is another example of an algorithm where

the data are not explicitly transformed from partially specified data to completely specified

data.

4.5 Summary and Discussion

In this Chapter, we showed how the approach for learning from distributed data sources

can be extended to yield an approach for learning from heterogeneous data sources. To do

that, we defined ontologies, user perspective and the integration of a set of ontologies from a

user perspective. We associated an ontology with each data source. In this setting, answering

statistical queries from ontology-extended data sources reduces to extending operators with

ontological information, so that their invocation results in well-typed data sets (tables) or

statistics over data sets. We showed that learning from heterogeneous data sources can be

reduced to learning from partially specified data in the presence of AVT’s [Zhang and Honavar,

2003]. We used the approach in [Zhang and Honavar, 2003] together with the approach in

Chapter 3 [Caragea et al., 2004d] to design algorithms for learning Naive Bayes, Decision

Trees, Perceptron, SVM and k-NN classifiers from heterogeneous distributed data.

Our definition of ontology-extended data sources was inspired by a similar definition for

ontology-extended relational algebra introduced in [Bonatti et al., 2003]. The authors in

[Bonatti et al., 2003] associate a graph with each hierarchy. In their setting, the user defines

a set of mappings between different hierarchies in the system and a set of interoperation

constraints. The mappings are used to merge all the individual graph hierarchies into an

overall graph hierarchy. An integration hierarchy is given by a canonical hierarchy which

consists of all strongly connected components in the graph hierarchy. An integration hierarchy

is valid if it satisfies a set of interoperation constraints and order preservation property.

137

As opposed to [Bonatti et al., 2003], we define a user perspective as consisting of a user

ontology and a set of interoperation constraints. We present a simple algorithm for coming up

with mappings between data source ontologies and a user ontology based on interoperation

constraints and an algorithm for checking that these mappings are valid.

Our approach is more general that the approach in [Bonatti et al., 2003] because users can

impose their own perspective over a set of data sources. It is also more general in the sense

that our data sources can be in any format (e.g., flat files, relational databases, web pages

etc.) and thus the set of operators used to retrieve data or statistics is an extension of the

relational operators.

Our results are similar to the results in [McClean et al., 2002] in terms of the flexibility

achieved by giving the user the possibility to specify his/her own ontology. However, their

framework assumes that there exists metadata, in terms of mappings between ontologies, in

the system, while we give the user the possibility to specify how he/she wants to use the

existent data, by specifying a set of interoperation constraints that relates data of interest.

Another strength of our approach comes from the ability to deal with type heterogeneity (by

using conversion functions, e.g. C → F), not only with name (Temp → Temperature) and

level of abstraction heterogeneity (e.g. LightRain → Rain).

The approach to learning from ontology-extended data sources is similar to the approach

in [Zhang and Honavar, 2003], where AVT’s are associated with the attributes in a data set

and the level of abstraction which gives the best accuracy is sought. In our case, we assume

the level the abstraction is given by the user. This level defines a level of abstraction for each

data source ontology, which results in some attributes being over-specified while others might

be under-specified, hence the connection with learning from partially specified data. We can

envision scenarios where there is no user predefined level of abstraction, in which case we

would iterate through successive user levels of abstraction as in [Zhang and Honavar, 2003;

2004] and the one that gives the best accuracy is chosen.

Pathak et al. [2004] developed ontology-extended workflow components and semanti-

cally consistent methods for assembling such components into complex ontology-extended

component-based workflows. The result is a sound theoretical framework for assembly of se-

138

mantically well-formed workflows from semantically heterogeneous components. In this case,

there is no integration hierarchy for all the ontologies associated with components in the work-

flow, as some of them may be unrelated. Instead an integration ontology is found for every

set of ontologies corresponding to neighboring (source, target) components.

Bromberg et al. [2004] defined the problem of multi-agent data mining, which is an ex-

tension to our framework for learning from distributed data. In multi-agent data mining,

the agents have limited resources and are self-interested, but they can achieve their goals by

communicating and exchanging information with other self-interested agents. Thus, mecha-

nisms for knowledge production and coordination, similar to those in economics, need to be

developed. We assume that there are hundreds of agents in such a framework, so one agent

cannot communicate with all the agents in the system but just with a small subset of agents.

One natural extension to the framework in [Bromberg et al., 2004] is to associate ontologies

with each agent in the system. As in the case of workflow components, we do not have an

overall integration ontology, but we can define integration ontology for the neighborhood of

an agent.

139

5 SUFFICIENT STATISTICS GATHERING

In the previous chapters we have seen that learning from distributed heterogeneous data

can be reduced to identifying sufficient statistics for the learning algorithm, gathering the

sufficient statistics from heterogeneous data and generating the classifier using these sufficient

statistics. We have identified sufficient statistics for a representative class of learning algo-

rithms and showed how they can be used to generate the classifiers. We have also developed

the tools needed to gather sufficient statistics by introducing a statistical query language and

extending data sources and query operators with ontologies. In this chapter we will show how

we can design a system for gathering sufficient statistics (i.e., answering statistical queries)

from distributed heterogeneous autonomous data sources.

5.1 System Architecture

The architecture of the system for gathering sufficient statistics from distributed het-

erogeneous autonomous data sources is similar to the architecture of many heterogeneous

database systems [Haas et al., 1997; Tomasic et al., 1998; Garcia-Molina et al., 1997; Chang

and Garcia-Molina, 1999; Rodriguez-Martinez and Roussopoulos, 2000], etc. Figure 5.1 shows

this architecture. It consists of servers (data sources) and clients (learning algorithms) that

are registered with a central resource repository. A set of iterators used to access and retrieve

information from data sources and a user perspective of the system are also registered with

the central resource repository. A query answering engine (query optimizer), which acts as a

middleware between clients and servers, is used to answer statistical queries from autonomous

semantically heterogeneous data sources, under a variety of constraints and assumptions moti-

vated by application scenarios encountered in practice. The query answering engine has access

140

to the data sources in the system through data access modules (DA), which are invocations of

iterators.

Clients

Query Answering Engine (QAE)

.......D1 D2 D

Query Answer

DA DADA

Servers

Query
Decomp.

Query

Optim.
Query
Exce. Comp.

Answer

K

Resource

Central

Repository

Learning Algorithm

Figure 5.1 The architecture of a system for gathering sufficient statistics
from distributed heterogeneous autonomous data sources

In what follows, we will describe the central resource repository (Section 5.2) and the query

answering engine (Section 5.3). We will show how the problem of gathering sufficient statistics

from distributed heterogeneous autonomous data sources can be formulated as a planning

problem (Section 5.4.1) and present a planning algorithm for solving this optimization problem

(Section 5.4.2).

5.2 Central Resource Repository

We assume that all the information available in the system is registered with a central

resource repository. The central resource repository has four main components data catalog,

algorithm catalog, iterator repository and user perspective, that will be described below (see

Figure 5.2).

First, in any distributed environment that we consider there exist several data sources

that store interrelated data. Every data source available in the system registers with the data

catalog component of the central resource repository. When registering, both the location

(network address, i.e., URI) of the data source and the description of the data source are

provided. The description of a data source D consists of the data source schema, S, its

141

Central Resource Repository

LALA 1

D1 Di

D

Data Sources

Learning Algorithms

Operators

U1

U

Um

i

Users

iLA

P

P

P

i

l

1

Description
Description

Data Sources

Data Catalog

Catalog

op

data

(Name, Code, O , Inp, Out, Sel, Cost)

User Ontology

Conversion Fnc.

Mappings

(URI, Name, O , Inp, Out)
alg

Algorithm

Iterator Repository

Algorithm

User Defined Fnc.

UP=(O ,IC)
user

K

p

(URI, S, O , Const, Iter)

User Perspective

Figure 5.2 Central resource repository: data sources, learning algorithms,
iterators and users registration

ontology, Odata, the set of constraints, Cons, imposed by that particular data source and also

a wrapper consisting of iterators, Iter, that can be directly executed on the data source (e.g.,

calculation of counts of data source instances that satisfy certain constraints on the values of

some of the attributes). Thus, a data source D registers as a tuple (URI, S,OData, Cons, Iter).

New data sources can be easily added to the system by registering them with the query

answering engine by specifying such a tuple.

Besides data sources that store data, in a distributed system there exist several learning

or information extraction algorithms that can be used to learn or extract information from

the available data sources. Similar to data sources, the learning algorithms register with the

algorithm catalog in the resource repository. For an algorithm, the location (URI) of its code

and its description, consisting of Name of the algorithm, its associated ontology, OAlg, inputs,

Inp, and outputs, Out, are provided. New learning algorithms can be added to the system

by specifying a tuple like (URI,Name,OAlg, Inp,Out).

All the iterators that can be used in the process of answering queries are registered with

142

an iterator repository. These iterators are implementations of primitive and statistical oper-

ators, or user defined functions. Besides code, their names, information about their inputs

and outputs, as well as an ontology over their names is recorded in the iterators repository.

If available, their selectivity factors and their associated costs (w.r.t. number of instances,

number of attributes etc.) if executed locally or globally are also recorded. In the paper

[Krishnaswamy et al., 2002] a suite of techniques for estimating the computation and com-

munication costs of distributed data mining are presented. Thus, an iterator registers as a

tuple (Name,Code,OOp, Inp,Out, Sel, Cost). New iterators can be added to the system by

registering the corresponding information with the iterators repository. The existing ones can

be easily updated by re-submitting this information.

When a user wants to use the system for learning or just for information extraction, the

user is given access to all the data sources, algorithms and iterators available in the system and

he can build simple workflows like those in Figure 5.3 using some of these resources according

to his needs. For the system to be able to execute this workflow, the current user or an expert

user needs to provide the central resource repository with the user perspective UP consisting

of an ontology Ouser and a set of interoperation constraints IC from his ontology to the

ontologies of the data sources, algorithms and iterators that are involved in the user workflow.

The set of interoperation constraints is used by the system to come up with mappings from

the user ontology to other ontologies involved in the user workflow, as described in Chapter

4. Once a set of mappings is found, the user can inspect these mappings, delete, add or

modify them, and also associate conversion functions with the final set of mappings (either

new conversion function or predefined conversion functions). All this information is stored in

the user perspective component of the central resource repository. According to the semantic

imposed by the user ontology, the workflows are internally translated by the system into more

specific workflows, such as those in Figure 5.4.

All the resources in the system that register with the central resource repository are de-

scribed in a RDF file (Resource Description Framework) [RDF, 1995], which is an XML-based

technology used to specify metadata for resources available in a networked environment. Fig-

ure 5.5 shows the RDF file of a data source (Prosite) described by name, URI, schema and

143

2

D1

D2

LA ResultsIter
i k

D1

D
2

D
3

LA Resultsj

W1 W

Figure 5.3 Simple user workflow examples

D1

D2

LA ResultsHor−Int Iter
 i k PROJECT

D1

D
2

D
3

SELECTcond

cond

X

SELECT
cond

Ver−Int LA Resultsj

Figure 5.4 Internal translation of the workflows in Figure 5.3 according to
the semantic imposed by the user ontology

operators allowed by the data source.

5.3 Query Answering Engine

In the process of workflow execution, queries are sent to a query answering engine (QAE),

which plays the role of a mediator (middleware) between the learning algorithm or the user that

formulates the query (clients) and data sources (servers) (see Figure 5.1). The query answering

engine has information about the resources available in the systems and the constraints and

assumptions imposed by them, through the central resource repository. Besides, it can access

the distributed data sources and extract information from them according to their constraints,

through data access modules (DA), which are invocations of iterators.

We design the query answering engine by adapting the middleware in [Rodriguez-Martinez

and Roussopoulos, 2000] according to the needs of the learning algorithms that we consider.

Thus, we assume that the middleware is self extensible, meaning that if a particular application

needs a specific functionality that is not provided by a remote data source (visited in the query

answering process), then the middleware itself deploys the code that realizes that functionality

144

<?xml version=’1.0’ encoding=’UTF-8’?>
<rdf:RDF

xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns”
xmlns:INDUS=”http://pierce.cs.iastate.edu/7080” >

<rdf:Desc rdf:about=”http://Indus/Database/”>
<INDUS:Database> Prosite </INDUS:Database>
<INDUS:URI> ftp://us.expasy.org/databases/prosite/release </INDUS:URI>
<INDUS:Schema>

<rdf:Bag>
<rdf:li parseType=”Resource” >

<INDUS:A Name> ID </INDUS:A Name>
<INDUS:A Type> Integer </INDUS:A Type>
<INDUS:A Desc>Indicates ID of the Protein </INDUS:A Desc>

</rdf:li>
<rdf:li parseType=”Resource” >

<INDUS:A Name> AC </INDUS:A Name>
<INDUS:A Type> String </INDUS:A Type>
<INDUS:A Desc>Accession number of the Protein </INDUS:A Desc>

</rdf:li>
</rdf:Bag>

</INDUS:Schema>
<INDUS:Operators>

<rdf:Bag>
<rdf:li parseType=”Resource” >

<INDUS:F Name> Sort </INDUS:FName>
<INDUS:F Desc> Sorts the records by Date </INDUS:F Desc>

</rdf:li>
<rdf:li parseType=”Resource” >

<INDUS:F Name> Count </INDUS:F Name>
<INDUS:F Desc> Give counts on some attribute </INDUS:F Desc>

</rdf:li>
</rdf:Bag>

</INDUS:Operators>
</rdf:Description>

</rdf:RDF>

Figure 5.5 Example of RDF file for a data source (Prosite) described by
name, URI, schema and operators allowed by the data source

145

to the data source in automatic fashion, if that particular data source allows this. As a result,

the remote data source achieves new capabilities, becoming able to manipulate the data of

interest, and thus satisfies the need for application-specific operators at the remote sites that

do not provide them [Rodriguez-Martinez and Roussopoulos, 2000; Yang et al., 1998].

The query answering engine consists of four main components (see Figure 5.6): query

decomposition, query optimization, query execution, and answer composition.

(QAE)

Query
Decomposition

Query
Optimization

Query
Execution

Answer

Composition

Query Answer

Query Answering Engine

Figure 5.6 Query answering engine

The query decomposition component decomposes a query into sub-queries by identifying

the largest possible fragments that involve a particular data source and it sends them to the

query optimization component together with the specification of how to combine the results.

For each sub-query that it receives, the query optimization component enumerates all the

possible plans (or only some of them if a heuristic is used), eliminates those that do not

comply with the constraints imposed by the corresponding data source, then computes the

cost of each of the remaining plans based on the cost of operators involved and chooses the

best one. The optimal composition of the individual sub-query plans results in an overall best

plan to the original query that needs to be answered. Once the best plan is found, it is sent

to the query execution component.

The query execution component sends the plan corresponding to a data source to its

corresponding DA. The DA invokes some iterators and returns the answer of the query with

respect to that data source to the answer composition component.

The answer composition component puts together all the answers received from the local

data sources according to the composition operators identified by the query decomposition

146

component and sends the final answer to the client that asked the query.

Example 5.1. Assume that there are K data sources D1, · · · , DK available in the system and

a learning algorithm asks a statistical query Q over these data sources (e.g., counts(class =

“Sunny“)). This query is decomposed into K sub-queries QD1
, · · · , QDK

(e.g., QDi
= countsDi

(class =

“Sunny“)) and optimal plans are found for each of these sub-queries and executed, resulting in

answers A(QDi
). The answer A(Q) is obtained by composing the answers A(QD1

), · · · , A(QDK
)

as follows: A(Q) = A(QD1
) op QD2

op · · ·A(QDK
) (in our counts example op = +).

There is a lot of work in the information integration community on designing query lan-

guages and rules for decomposing queries into sub-queries and composing the answers to

sub-queries into answers to the initial query [Garcia-Molina et al., 1997; Chang and Garcia-

Molina, 1999; Knoblock et al., 2001; Lu et al., 1995; Levy, 1998; Draper et al., 2001] etc.

We rely on the results of this work for query decomposition, query execution and answer

composition in our system, as there is nothing different in terms of statistical queries that

we want to answer. However, we will give a more detailed description of the way we deal

with the query optimization component of the query answering engine as this is where the

constraints imposed by data sources and the analysis that we have done in Chapter 3 in terms

of communication complexity need to be taken into account.

5.4 Query Optimization Component

Our approach to the design of query optimization component is inspired from [Rodriguez-

Martinez and Roussopoulos, 2000].

5.4.1 Optimization Problem Definition

Definition 5.2. We define the cost of an operator Ω with respect to a data source D as fol-

lows: costD(Ω) = α · CompCostD(Ω) + β · NetworkCostD(Ω) + γ · RespT imeD(Ω), where

CompCostD(Ω) is the total cost of applying the operator Ω over an input data set D,

NetworkCostD(Ω) is the total communication cost (data movement) incurred while executing

the operator Ω on D, and RespT imeD(Ω) is the response time when the operator Ω is applied

147

on the data source D. The parameters α, β, γ are chosen according to the user preference on

a certain costs.

Example 5.3. A user can set α = 0.1, β = 1 and γ = 0 which means that the communication

cost is the most important to that user, followed by a small fraction of the computation cost.

The response time is ignored.

Because the time needed to execute a query is usually considerably smaller than the

communication time, by optimizing the data movement, we optimize also the total time,

unless the user specifies a different preference over the cost components by changing the

values of the parameters α, β, γ.

Definition 5.4. Similar to [Rodriguez-Martinez and Roussopoulos, 2000], our query operators

can be classified into two categories:

• data-reducing operators or filters: return answers whose volume is smaller than the

volume of the data that they are applied to, and thus it is better to execute them at the

remote distributed data sources (e.g., aggregate operators such as counts);

• data-inflating operators: return answers whose volume is larger than the volume of the

data that they are applied to (e.g., some user-defined operators) and thus they should

be executed at the central location where the query answering engine is located.

Thus, we ship more or less data, depending on where we execute the queries. More

precisely, we can perform data shipping, when the data is shipped at the client site and the

query is executed there, or result shipping, when the query is executed at the data site (via

shipping the code if it is not already available) and only the results of the query are shipped

at the client site. Moreover, hybrid approaches that combine data and answer shipping,

depending on which one is the best at each time step, are preferable.

We use the approach in [Rodriguez-Martinez and Roussopoulos, 2000] to decide if an

operator is a data-inflating operator or a data-reducing operator. This approach is based on

the definitions below.

148

Definition 5.5. The Volume Reduction Factor, VRF for an operator Ω over a data set D is

defined as

V RF (Ω) =
V DT

V DA
, (0 ≤ V RF (Ω) < ∞),

where V DT is the total data volume to be transmitted after applying Ω to D, and V DA is

the total data volume originally in D. Thus, an operator Ω is data-reducing if and only if its

V RF is less than 1; otherwise, it is data-inflating.

Definition 5.6. The Cumulative Volume Reduction Factor, CVRF for a query plan P to

answer query Q over data sets D1, · · · , Dn is defined as

CV RF (Ω) =
CV DT

CV DA
, (0 ≤ CV RF (Ω) < ∞),

where CV DT is the total data volume to be transmitted over the network after applying all the

operators in P to D1, · · · , Dn, and CV DA is the total data volume originally in D1, · · · , Dn.

The intuition is that the smaller the CV RF of the plan, the less data is sent over the

network, and the better performance the plan provides.

5.4.2 Planning Algorithm

The query optimizer described in Figure 5.7 (similar to [Rodriguez-Martinez and Rous-

sopoulos, 2000]) follows a dynamic programming model for query optimization. We want to

find an optimal plan for the query Q(D1, · · · , DK) = QD1
op1 QD2

· · · opK−1 QDK
. Because

for a query some operators may be executed at the remote data sources and some may be

executed at the central place, we assume that each query plan has two component sub-plans,

a data source sub-plan DP that is executed by data access modules corresponding to the

distributed data sources and an engine sub-plan EP that is executed at the central place by

the query answering engine. The first part of the algorithm described in 5.7 (1–5) construct an

optimal plan for each sub-query QDi
. The construction starts with an arbitrary plan in step

3, followed by an optimization procedure that finds the optimal placement for the operators

involved in the sub-query in step 4. The last part of the algorithm in Figure 5.7 (6–20) finds

149

procedure Query Optimization: Q(D1, · · · , DK) = QD1
op1 QD2

· · · opK−1 QDK

/* find best composition plan */
1 for i=1 to K do
2 {
3 Pi ← selectP lan(Di)
4 optimalP lan(Di) ← OptimalOperatorP lacement(Pi, Di)
5 }
6 for i=2 to K do
7 {
8 for all S ∈ {D1, · · · , DK} s.t. |S| = i do
9 {
10 bestP lan ← any plan with infinite cost
11 for all Dj, Sj s.t. S = {Dj} ∪ Sj do
12 {
13 P ← composedP lan(optimalP lan(Sj), optimalP lan(Dj))
14 P ← OptimalOperatorP lacement(P,Dj)
15 if cost(P) ≤ cost(bestP lan)
16 bestP lan ← P
17 }
18 optimalP lan(S) ← bestP lan
19 }
20 }
21 return optimalP lan({D1, · · ·Dn})

Figure 5.7 Query optimization (planning) algorithm

150

the best way to compose individual plans, using the optimal operators placement again, this

time for placing the composition operators opi with i = 1, K −1. The pseudocode for optimal

operators placement is shown in Figure 5.8. It starts by identifying the operators in a plan

procedure Operator Placement(P,D)
/* find best operator placement */
1 O ← getOperators(P,D)
2 opDP ← initDP (P,D)
3 opEP ← initEP (P,D)
4 for all Ω ∈ O do
5 {
6 if (V RF (Ω) < 1)
7 insert(Ω, opDP)
8 else
9 insert(Ω, opEP)
10 }
11 rank(opDP)
12 rank(opEP)

Figure 5.8 Operator placement algorithm

P that can be executed at the data source D and initializes a set of operators opDP that

need to be executed at D and a set of operators opEP that need to be executed at the central

place. Then, for each of the operators in Ω ∈ P , it places them in opDP or opEP in such

a way that the data movement is minimized. The procedure, rank, ranks the operators in a

set according to the metric: rank(op) =
Selop

CompCost(op)
, where Selop is the selectivity of the

operators op defined as Sel(op) =
|output(op)|

|input(op)|
(size of the output divided by size of the input)

in [Hellerstein and Stonebraker, 1993] and CompCost(op) represents the computational cost

of op.

The best plan generated by the optimizer explicitly indicates which are the operators to

be evaluated by the query answering engine and which are those to be evaluated at the remote

data sites. In addition, it also indicates what code needs to be dynamically deployed to each

of the participants in the query execution process.

151

5.5 Sufficient Statistics Gathering: Example

Suppose that we have the following resources in a system: two data sources D1 and D2

containing weather data as in Section 4.1.1, a Naive Bayes learning algorithm and a set of

iterators for accessing data sources. The data sources D1 and D2 register with the central

resource repository by submitting tuples such as (URIDi
, SDi

, ODi
, ConsDi

, IterDi
) for i = 1, 2,

respectively. The learning algorithm sends a tuple like: (URINB, NB,ONB, InpNB, OutNB).

Similarly an iterator iter (e.g., counts) submits a tuple like: (Nameiter, Codeiter, Oiter, Inpiter,

Outiter, Seliter, Costiter) to the central resource repository. A user U that wants to use the

system to learn Naive Bayes classifiers using the resources available, has to register with

the system by defining his perspective over the system, i.e., an ontology OU and a set of

interoperation constraints IC from the ontologies in the system to his own ontology. The user

can build a workflow like the one in Figure 5.9 (Left), which is internally translated into the

workflow in Figure 5.9 (Right).

D
1

D
2

NB Results

D1

D
2

SELECTcond

condSELECT

Hor−Int NB Results

Figure 5.9 (Left) User workflow Naive Bayes example (Right) User work-
flow internal translation

The algorithm’s input is mapped to SelCond(D1) Hor-Int SelCond(D2), where SelCond

is a selection condition as defined in Subsection 4.1.4 (e.g. SELECTtemperature≥0(D1)), and

thus the workflow can be written as: NB(SelCond(D1) Hor-Int SelCond(D2)). The initial

problem is formulated in the user ontology, and translated to the algorithm ontology and

further to data source ontologies, by using the necessary mappings and conversion functions

as described in Section 4.2. We have seen that in the case of Naive Bayes algorithm, the

sufficient statistics are given by counts of tuples (attribute, value, class), which determine

a matrix of size |A| · |V | · |C|, where |A| is the number of attributes of the data set used

by the Naive Bayes algorithm (in this case, D = SelCond(D1) Hor-Int SelCond(D2), |V | is

152

the maximum number of values that an attribute can take, and |C| is the total number of

classes. We also denote by |D1| and |D2| the number of instances in the data sets D1 and D2,

respectively. Thus, in order to execute the workflow, the following query needs to be answered

by the query answering engine:

counts(attribute, value, class)

FORALL (attribute, value, class)

FROM (SelCond(D1) Hor-Int SelCond(D2).

The query decomposition component decomposes this query into sub-queries Q(D1) and Q(D2)

corresponding to the two data sources, as follows:

counts(attribute, value, class) counts(attribute, value, class)

FORALL(attribute, value, class) FORALL(attribute, value, class)

FROM(SelCond(D1)) FROM(SelCond(D2))

where +matrix, representing the addition of two matrices of equal size, is used to compose the

answers to these sub-queries.

The query optimizer takes as input the decomposed query and enumerates the possible

plans for executing this query. There are four possible plans, which we show in Figure 5.10.

For each plan, everything below the dashed horizontal line is executed at the remote data

sources, and everything above is executed at the central place. The plans that do not satisfy

the data sources constraints are eliminated. In our case, we assume that all four plans are

possible.

We proceed to the calculation of the cost of each plan. We assume that the user wants

to optimize only the communication cost, expressed as a function of |D1|, |D2|, |A|, |V |, |C|

defined above. We assume |D1| = 100, |D2| = 50, |A| = 7, |V | = 4, |C| = 3. Then,

• cost(P1) = |D1|(|A| + 1) + |D2|(|A| + 1) = (|A| + 1)(|D1| + |D2|) = 1200,

• cost(P2 = |D1|(|A| + 1) + |A||V ||C|) = 884,

• cost(P3) = |A||V ||C| + |D2|(|A| + 1) = 484, and

• cost(P3) = 2 · |A||V ||C| = 168.

153

4

D
1

SelCond

D2

Counts

Counts

+

Answer

D
1

SelCond

D2

Counts

Answer

Hor−Int

SelCond

D2
D

1

Answer

Counts Counts

+

D2
D

1

Counts SelCond

Counts

+

Answer

P1

P
2

P
3 P

Figure 5.10 The four plans found by the query optimizer for Naive Bayes
example. The operators below the dotted line are executed at
the remote data sources, and the operators above the dotted
line are executed at the central place

154

Thus, it turns out that the plan P4 is the best and it will be sent further to the execution

engine. The count matrices received back as answers are added up using the +matrix operation

to get the final answer to the initial query.

5.6 Summary and Discussion

In this Chapter we have shown how a system for answering statistical queries from dis-

tributed heterogeneous autonomous data sources can be designed. Our approach draws on

much of the existing literature on data integration and query optimization [Garcia-Molina et

al., 1997; Arens et al., 1993; Knoblock et al., 2001; Levy, 1998; Draper et al., 2001] etc. Hence,

it shares some of the features of existing data integration platforms. But it also includes some

novel features.

Few of the existent systems take into account semantic relationships between values of

attributes used to describe instances (e.g., taxonomies over attribute values) in individual

data sources. The tools we introduced in Chapter 4 allow us to generalize various information

integration approaches to work in settings where taxonomies over attributes are specified.

One important characteristic of our system consists of a clear separation between a user

perspectives and the procedures used for query answering. This allows users to replace their

ontologies on the fly, making it attractive for query answering tasks that arise in exploratory

data analysis wherein scientists might want to experiment with alternative ontologies.

We proposed a query optimization algorithm similar to the algorithm in [Rodriguez-

Martinez and Roussopoulos, 2000], where code can be shipped in order to minimize the amount

of information transmitted over the network, if a data source constraints allows this. As op-

posed to the algorithm in [Rodriguez-Martinez and Roussopoulos, 2000] our algorithm works

for general data sources (not only relational databases) and for the extended set of opera-

tors introduced in Section 3.4 (not only for relational operators). Furthermore, by defining

ontologies associated with the data sources and mappings between ontologies, queries over

semantically heterogeneous data sources can be answered.

In related work, Lambrecht and Kambhampati [1999] present a method for reducing the

155

amount of network traffic generated while executing an information gathering plan, by re-

ordering the sequence in which queries are sent to remote information sources. Data source

descriptions are used to assist in ordering the queries.

INDUS, a federated query-centric approach to learning classifiers from distributed hetero-

geneous autonomous data sources (described in the next Chaper) is implementing the query

answering system designed in this Chapter.

156

6 INDUS: A FEDERATED QUERY-CENTRIC APPROACH TO

LEARNING CLASSIFIERS FROM DISTRIBUTED HETERO-

GENEOUS AUTONOMOUS DATA SOURCES

6.1 Overview

Our work has contributed to the design and development of INDUS (INtelligent Data Un-

derstanding System) (see Figure 6.1). INDUS initially a federated, query-centric approach to

information integration from distributed heterogeneous data sources [Reinoso-Castillo, 2002;

Reinoso-Castillo et al., 2003] has been substantially redesigned and extended to yield a system

for learning classifiers from distributed heterogeneous autonomous data sources.

Learning Algorithms

PROSITE, OPROSITE MEROPS, O
MEROPS SWISSPROT, O

SWISSPROT

Ontology O
1

Ontology O2

INDUS Query Answering Engine

Figure 6.1 INDUS: Intelligent Data Understanding System. Three data
sources are shown: PROSITE, MEROPS and SWISSPROT
together with their associated ontologies. Ontologies O1 and O2

are two different user ontologies

The choice of the federated (as opposed to data warehouse) and query centric (as opposed

157

to source centric) approach to information integration was motivated by characteristics of

a class of scientific applications of data-driven knowledge acquisition that are of interest to

us. A detailed discussion of the design rationale of INDUS can be found in [Reinoso-Castillo

et al., 2003]. In brief, a federated approach lends itself much better to settings where it is

desirable to postpone specification of the user ontology, OU , and the mappings, M(Oi, OU),

between data source specific ontologies, O1, · · · , OK , and user ontology, OU , until when the

user is ready to use the system. The choice of a query centric approach in INDUS enables

users the desired flexibility in querying data from multiple autonomous sources in ways that

match their own context or application specific ontological commitments (whereas in a source

centric approach, what the data from a source should mean to a user are determined by the

source).

It is exactly the choice of federated and query centric approach that makes INDUS suitable

for being transformed into a system for learning from distributed heterogeneous autonomous

data sources. We have seen in the previous chapters that we can design algorithms for learning

from distributed heterogeneous data by separating the learning task into information extrac-

tion and hypothesis generation components, which translates to formulating statistical queries,

decomposing them into sub-queries corresponding to the data sources of interest, answering

the sub-queries and composing the answers to these sub-queries into an answer to the initial

query. Through the means of a query answering engine this process can be made transparent

to the learning algorithm, and thus the learning algorithm becomes independent of the data

given the sufficient statistics provided by the query answering engine.

As an information integration system, INDUS can be used to answer queries from dis-

tributed heterogeneous autonomous data sources. Thus, it is appropriate to transform the

technology involved there into an INDUS query answering engine. By linking a set of learning

algorithms to this engine, we obtain a learning system as the one designed in Chapter 5.

Weka [Witten and Frank, 1999] is a large and popular collection of machine learning

algorithms (for classification, regression, clustering, association rules) and machine learning

tools (for data pre-procession, visualization) implemented in Java. The algorithms and tools

in Weka can either be applied directly to a dataset or called from other Java programs. They

158

could also be used as a starting point in developing new machine learning algorithms. However,

the design of the algorithms in Weka does not take into account the separation between

information extraction and hypothesis generation, and thus the resulting implementations are

not independent of data, making it difficult to transform these algorithms into algorithms for

learning from distributed heterogeneous autonomous data sources. Furthermore, most of the

time the data is kept in the memory, which makes it impossible to run Weka algorithms on

very large data sets.

In the next section, we show how a large class of Weka algorithms can be modified to

enforce the separation of concerns between information extraction and hypothesis generation

components of the algorithm. The resulting implementations provide a scalable and efficient

approach to learning classifiers from large distributed semantically heterogeneous data sources.

We link the resulting algorithms to INDUS query answering engine and thus obtain a

system for learning from distributed heterogeneous autonomous data sources.

6.2 From Weka to AirlDM to INDUS

AirlDM is a collection of machine learning algorithms, which are data source independent

through the means of sufficient statistics and data source wrappers. They work with general

data sources where data can be stored in any format as long as wrappers for accessing and

getting sufficient statistics from those data sources are provided. Some of the algorithms in

AirlDM are adapted from Weka implementations by separating the information extraction

and hypothesis generation components.

Figure 6.2 shows the general architecture of AirlDM. As can be seen a learning algorithm

is regarded as a TRAINER that generates a HYPOTHESIS from SUFFICIENT STATISTICS. Each

DATA SOURCE is wrapped by a DATA SOURCE WRAPPER. The TRAINER registers sufficient

statistics with the DATA SOURCE WRAPPER which populates them by accessing the corre-

sponding DATA SOURCE. Once the SUFFICIENT STATISTICS are populated, they are used by

the TRAINER to get parameters that are needed to build a current HYPOTHESIS. This process

may repeat a few time (e.g., for decision tree algorithm). When a hypothesis is built, a USER

159

can get hypothesis from the TRAINER and use it to classify new unseen data.

Get Hypothesis

DATA

SOURCE

TRAINER

Statistics

Sufficient

Register

USER INTERFACE

HYPOTHESIS

Data
Source
Wrapper

SS SS SS

Populate

USER

Get Parameters

LEARNING ALGORITHM

Figure 6.2 AirlDM: Data source independent learning algorithms through
the means of sufficient statistics and wrappers

AirlDM is an open source software issued under the GNU General Public License. In

the current release, we provide wrappers for data that can be seen as a single table (INDUS

wrapper, Weka wrapper), as a collection of tables (multi relational data wrapper) or as a

sequence (sequence wrapper). We have implemented sufficient statistics of type joint counts,

which are the sufficient statistics needed by a large class of algorithms (e.g., Naive Bayes

160

[Mitchell, 1997], Bayes Networks [Pearl, 2000; Jensen, 2001], Bags of Words [Mitchell, 1997],

Relational Learning [Friedman et al., 1999; Atramentov et al., 2003], NB-k [Silvescu et al.,

2004a], Decision Trees with a variety of splitting criteria [Buja and Lee, 2001] etc.). The

algorithms currently implemented are Naive Bayes and Decision Tree Algorithm.

Because of the modular design of AirlDM and the clear separation of concerns between

hypothesis generation and information extraction, AirlDM can be easily linked to INDUS to

obtain a system for learning from heterogeneous distributed autonomous data sources. Thus,

we have written an INDUS wrapper that provides sufficient statistics to the trainer and linked

it with the AirlDM implementations of Naive Bayes and Decision Tree algorithms. Using

that, we have implemented algorithms for learning Naive Bayes and Decision Tree classifiers

from horizontally and vertically distributed data sources by having the query answering engine

register the sufficient statistics that it gets from the trainer with the corresponding wrappers

and composing the statistics populated by the wrappers into the sufficient statistics needed by

the trainer. Thus, in the case of horizontally distributed data, each count statistic is registered

with the wrapper of each distributed data source and the answers are added up to get the

overall count. In the case of vertically fragmented data, the query answering engine identifies

the wrapper that can be used to populate each sufficient statistic count and the answer is sent

back to the trainer.

Therefore, we can achieve learning from distributed data in a way which is transparent to

the learning algorithm, meaning that from the algorithm point of view it makes no difference

if the data comes from a single or multiple data sources or if these data sources are repre-

sented as relational tables or flat file or any other format. Furthermore, if the distributed

data sources are heterogeneous, the query answering engine can perform mappings from data

sources ontologies to user ontology and the algorithms remain unchanged.

161

6.3 Case Study

6.3.1 Data Sources

To the best of our knowledge, there are no widely used benchmark data sets for evaluation

of systems for learning classifiers from semantically heterogeneous distributed data sources,

therefore we need to develop benchmark data sets. One appropriate data for the algorithms

that we design might be Census Data (www.thedataweb.org). An online data library made

available by the US Census Bureau, Bureau of Labor Statistics, and the Centers for Disease

Control along with an access tool (DataFerrett - Federated Electronic Research, Review,

Extraction, and Tabulation Tool) makes it easier to collect census data.

Using these tools Ronny Kohavi and Barry Becker (Data Mining and Visualization Silicon

Graphics) [Kohavi, 1996] extracted an income census data set UCI/ADULT from the 1994

census bureau database found at http://www.census.gov/ftp/pub/DES/www/

welcome.html and donated it to the UCI Machine Learning Repository [Blake and Merz,

1998]. The classification task is to determine if the salary of a person represented by a record

is greater or less than $50,000. The initial data was split into train/test in approximately

2/3, 1/3 proportions. There are 48842 instances (train=32561, test=16281). Each instance is

described by 5 continuous attributes (age, education-num, capital-gain, capital-loss, hours-per-

week) and 8 nominal attributes (workclass, education, marital-status,occupation, relationship,

race, sex, native-country). There are 7% missing values. The class distribution is as follows:

probability for the label > 50, 000 is 23.93%, probability for the label <= 50, 000 is 76.07%.

Terran Lane and Ronny Kohavi (Data Mining and Visualization Silicon Graphics) ex-

tracted another income census data set UCI/CENSUS-INCOME from the 1994 census bureau

database and donated it to the UCI Machine Learning Repository. The initial data extracted

was also split into train/test in approximately 2/3, 1/3 proportions. There are 199523 in-

stances in the training set and 99762 instances in the test set, and 40 attributes (7 continuous,

33 nominal), which makes this data set much bigger than the original UCI/ADULT data set

(approximately 100Mb compared to 5Mb). The classification task is to determine the income

level for the person represented by a record. Incomes have been binned at the $50,000 level

162

to present a binary classification problem, much like the original UCI/ADULT database.

We used the census data UCI/ADULT and UCI/CENSUS-INCOME to test our algo-

rithms for learning Naive Bayes classifiers from distributed, semantically heterogeneous data.

We tested the algorithms for learning Naive Bayes classifiers from horizontally distributed

data and from vertically distributed data with UCI/CENSUS-INCOME. As we do not have

an ontology editor to create mappings between ontologies, we used UCI/ADULT data (for

which we hand-crafted mappings) to test the algorithms for learning Naive Bayes classifiers

from semantically heterogeneous horizontally/vertically distributed data. Before using these

data sets for learning Naive Bayes classifiers, we filled in missing values and discretized the

continuous attributes using Weka.

Running Weka implementation of Naive Bayes algorithm on UCI/CENSUS-INCOME ends

with “Out of Memory” error. However, AirlDM with INDUS wrapper gives an accuracy

of 76.2174%. The accuracy on UCI/ADULT is 84.2516%. We evaluate our algorithms for

learning from heterogeneous distributed data by comparison with the batch algorithms whose

accuracy is shown here. We expect to obtain the same accuracy in the case of the algorithms for

learning from distributed data, as these algorithms are provably exact, but probably different

results for the algorithms for learning from heterogeneous data, as associating ontologies may

increase or decrease the accuracy [Zhang and Honavar, 2003].

6.3.2 Learning NB Classifiers from Distributed Data

As described above, UCI/CENSUS-INCOME data consists of a training (2/3) and a test

(1/3) set obtained by splitting the original data into two subsets. To generate two horizon-

tally fragmented distributed data sets, we randomly split the training set further into two

subsets Dh
1 , Dh

2 of approximately same size (1/2,1/2). To generate two vertically fragmented

distributed data sets, we randomly split the attribute set into two attribute subsets of approx-

imately the same size (1/2,1/2). The data corresponding to the first attribute subset goes into

Dv
1 and the data corresponding to the second attribute subset goes into Dv

2 . We apply the

algorithm for learning Naive Bayes classifiers from horizontally (vertically) distributed data

sources on the subsets Dh
1 , Dh

2 (and Dv
1 , D

v
2 , respectively). The results are shown in Table 6.1.

163

They prove that indeed the algorithms for learning from distributed data that we designed are

exact with respect to their batch counterparts, as we get the same results in all three cases.

Table 6.1 Learning from distributed UCI/CENSUS-INCOME data sources
Distribution Type Accuracy % Error % Correct Incorrect

Horizontal 76.2174 23.7826 855481 23726
Vertical 76.2174 23.7826 855481 23726

Centralized 76.2174 23.7826 855481 23726

6.3.3 Learning NB Classifiers from Heterogeneous Distributed Data

As described above, UCI/ADULT data consists of a training (2/3) and a test (1/3) set

obtained by splitting the original data into two subsets. We use the same procedure as in

Section 6.3.2 to further split the training data into two horizontal subsets Dh
1 , Dh

2 of approxi-

mately same size (1/2,1/2) and then into two vertical subsets Dv
1 , Dv

2 of approximately same

size (1/2,1/2).

We used a software provided by Kang et al. [2004] to generate AVT’s over the data sets

Dtest, Dh
1 , Dh

2 , Dv
1 , Dv

2 , respectively. The taxonomies for the attribute Ocupation are shown for

the user (test) data set, data set Dh
1 and data set Dh

2 in Figures 6.3, 6.4 and 6.5, respectively.

Graphviz, an open source graph drawing software from AT&T Labs Research [Gansner and

North, 2000], was used to draw these figures.

We hand-crafted mappings between the taxonomies associated with Dh
1 , Dh

2 , Dv
1 , Dv

2 ,

respectively, to the taxonomy associated with Dtest and chose a user level of abstraction such

that some attributes in the distributed data sources are under-specified, while others are over-

specified. To be able to deal with the under-specified values, we made the assumption that all

the data come from the same distribution and we used a distribution inferred from the user

data to fill in the under-specified values.

We apply the algorithm for learning Naive Bayes classifiers from horizontally (vertically)

distributed heterogeneous data sources to the subsets Dh
1 , Dh

2 (and Dv
1 , D

v
2 , respectively). The

results are shown in Table 6.2 and they confirm our theoretical results, as the same accuracy

164

Figure 6.3 Taxonomy for the attribute Ocupation in user (test) data. The
filled nodes represent the level of abstraction specified by the
user

165

Figure 6.4 Taxonomy for the attribute Ocupation in the data set Dh
1 .

The filled nodes represent the level of abstraction determined
by the user cut. Values Priv-house-serv, Other-service, Ma-
chine-op-inspct, Farming-fishing are over specified with respect
to the user cut

166

Figure 6.5 Taxonomy for the attribute Ocupation in the data set Dh
2 . The

filled nodes represent the level of abstraction determined by the
user cut. The value (Sales+Tech-support) is underspecified with
respect to the user cut

167

is obtained in the case of centralized, horizontal and vertical data distributions.

Table 6.2 Learning from heterogeneous UCI/ADULT data sources
Distribution Type Accuracy% Error% Correct Incorrect

Horizontal 83.6435 16.3565 13618 2663
Vertical 83.6435 16.3565 13618 2663

Centralized 83.6435 16.3565 13618 2663

6.4 Summary and Discussion

This Chapter contains the overview of a system for learning from distributed heteroge-

neous autonomous data sources to which the work in this dissertation contributed. We show

how a large class of algorithms in Weka as well as new learning algorithms, such as [Silvescu et

al., 2004a; Atramentov et al., 2003] etc. can be implemented in AirlDM, a publicly available

software which is designed in terms of the separation between information extraction and hy-

pothesis generation components of a learning algorithm, and how AirlDM can be used further

with INDUS query answering engine to design algorithms for learning from heterogeneous

distributed data. A case study using census data is also presented.

The development of ontology servers has been an active research area over recent years

and a number of systems have been designed and implemented [Farquhar et al., 1996; Papa-

georgiou et al., 2003; Bernstein et al., 2000; Bernstein, 2003]. Typically such systems store

ontological information in a knowledge-base that works in tandem with a database system to

produce a unified view of heterogeneous distributed data. Current research issues include the

management of changing ontologies in a distributed environment [Heflin et al., 1999], sup-

port for dynamic and multiple ontologies [Heflin and Hendler, 2000], and resusable ontologies

[Musen, 1998].

We used a software provided by Kang et al. [2004] to generate AVT’s over the set of

attributes in our domain. However, we defined the mappings between ontologies manually.

Bao and Honavar [2004] present P-OWL (Package-based OWL), an extension of OWL, a

widely used ontology language that supports modular design, adaptation, use and reuse of

168

ontologies. P-OWL localizes the semantics of entities and relationships in OWL to modules

called packages. Ontomill, a collaborative ontology tool that includes an ontology editor and a

reasoner, is also described. P-OWL and the associated tool will greately facilitate collaborative

ontology construction, use and reuse, as well as mapping definition.

In the future, we plan to perform the evaluation of the proposed algorithms on a broad

range of distributed semantically heterogeneous data from a number of domains including

bioinformatics [Yan et al., 2004a; 2004b; Andorf et al., 2004] and security information [Kang et

al., 2004a], among others, along a number of dimensions including in particular, characteristics

of data sources (structure of data sources, query and processing capabilities, complexity of

associated ontologies and mappings between ontologies, size of the data sets, prevalence of

partially missing attribute values as a consequence of integration of data described at multiple

levels of granularity), characteristics of algorithms (e.g., types of statistics needed for learning),

and performance criteria (quality of results produced relative to the centralized counterparts,

computational resource, bandwidth, and storage usage).

169

7 CONCLUSIONS

7.1 Summary

Efficient learning algorithms with provable performance guarantees for learning from dis-

tributed heterogeneous data constitute a key element of any practical approach to data driven

discovery and decision making using large, autonomous data repositories that are becoming

available in many domains (e.g., biological sciences, atmospheric sciences).

In this dissertation, we have precisely formulated the problem of learning from distributed

data sources and described a general strategy for transforming standard machine learning

algorithms that assume centralized access to data in a single location into algorithms for

learning from distributed data. This strategy relies on the separation of a learning algorithm

into an information extraction component that gathers sufficient statistics needed for learning

and a hypothesis generation component that uses these sufficient statistics to generate a

current hypothesis.

We have demonstrated the application of this strategy to devise several algorithms (Naive

Bayes, Decision Trees, Perceptron, Support Vector Machines and k-NN) for induction of classi-

fiers from distributed data. The resulting algorithms are provably exact in that the hypothesis

constructed from distributed data is identical to that obtained by the corresponding algorithm

when it is used in the centralized setting. This ensures that the entire body of theoretical

(e.g., sample complexity, error bounds) and empirical results obtained in the centralized set-

ting carry over to the distributed setting.

We have introduced a statistical query language consisting of operators for formulating and

manipulating statistical queries and showed how the algorithms for learning from distributed

data can be further extended to algorithms for learning from semantically heterogeneous

170

distributed data by extending data sources and operators with ontologies in a way that ensures

sound and complete answers to statistical queries in the presence of ontologies. Learning from

such data sources reduces to learning from partially specified data. To show how this works,

we have designed algorithms for inducing classifiers (Naive Bayes, Decision Trees, Threshold

Functions, SVMs, k-NNs) from semantically heterogeneous distributed data.

As gathering sufficient statistics from heterogeneous distributed data under various con-

straints imposed by data sources turns out to be very important for solving the problem of

learning from distributed data, we have designed a query answering engine that receives queries

from learning algorithms, decomposes them into sub-queries according to the distributed data

sources, finds an optimal plan for executing sub-queries, executes the plan and composes the

individual answers it gets from the distributed data sources into an answer to the initial query.

The algorithms and strategies designed through this dissertation are implemented in

AirlDM and INDUS and a case study proving how they work is presented.

7.2 Contributions

The major contributions of this dissertation include:

• A General Strategy for Design of Algorithms for Learning Classifiers from

Distributed Data [Caragea et al., 2004d]

We have proposed a general strategy for design of algorithms for learning classifiers from

distributed data based on a separation of concerns between hypothesis generation and

information extraction (statistical query answering) [Caragea et al., 2004d]. We have

designed algorithms with strong performance guarantees (relative to their centralized

counterparts) for learning decision tree [Caragea et al., 2003], support vector machine

[Caragea et al., 2001], nearest neighbor, perceptron and naive Bayes classifiers from

distributed data.

• A General Framework for Design of Algorithms for Learning Classifiers from

Semantically Heterogeneous Data [Caragea et al., 2004b].

171

We have proposed a framework for design of algorithms for learning from semantically

heterogeneous data based on the extension of data sources and operators with ontologies.

We have showed how we can answer queries from semantically heterogeneous data using

this framework and designed algorithms for learning from such data based on approaches

for learning from partially specified data.

• Design of INDUS Query Answering Engine [Caragea et al., 2004a]

We have showed how we can transform the INDUS information integration system into

an INDUS query answering engine that can answer statistical queries from semantically

heterogeneous data sources under a variety of constraints and assumptions motivated

by application scenarios encountered in practice.

• An Open Source Package Containing Data Source Independent Machine

Learning Algorithms [Silvescu et al., 2004b]

As the design of the algorithms for learning from distributed heterogeneous data sources

relies on the decomposition of learning into statistics gathering and hypothesis genera-

tion, we materialized this decomposition in AirlDM, a data source independent collection

of learning algorithms through the means of sufficient statistics and data source wrap-

pers. AirlDM contains an INDUS wrapper that can be used to answer queries from

semantically distributed data sources and thus, we obtain implementation of algorithms

for learning from semantically distributed data sources.

7.3 Future Work

Several future research directions are outlined below:

• Evaluation of the Query Optimization Algorithm in INDUS

Design of algorithms for learning from distributed data described in this paper has been

motivated by the desirability of performing as much of the processing of data as feasible

at the sites where the data and computing resources are available to avoid retrieving

172

large volumes of data from remote sites. The applicability of the proposed approach in

practice depends on whether information requirements of the learning algorithm L under

consideration can be met under the constraints imposed by the distributed setting and

the time, memory, and communication costs of the resulting algorithm relative to the

other alternatives (e.g., gathering all of the data in a centralized site and then applying

the centralized learning algorithm if such a solution is allowed by the constraints Z). It

is of interest to implement the techniques described in Chapter 5 for query optimiza-

tion ontology editor extension to more general ontologies in INDUS query answering

engine and experiment with different choices of constraints Z (e.g., privacy constraints

in knowledge acquisition from clinical records) that arise in practice.

• System Evaluation

In the future, we plan to perform the evaluation of the proposed algorithms along a

number of dimensions including in particular, characteristics of data sources (structure

of data sources, query and processing capabilities, complexity of associated ontologies

and mappings between ontologies, size of the data sets, prevalence of partially miss-

ing attribute values as a consequence of integration of data described at multiple levels

of granularity), characteristics of algorithms (e.g., types of statistics needed for learn-

ing), and performance criteria (quality of results produced relative to the centralized

counterparts, computational resource, bandwidth, and storage usage).

• Design of Approximate/Cumulative/Incremental Learning Algorithms

This dissertation has focused primarily on algorithms for learning from distributed

data that are provably exact relative to their centralized counterparts. In many ap-

plications, it would be of interest to relax the exactness requirement leading to prov-

ably approximate algorithms (based on resource constrained approximations of suffi-

cient statistics). Also of interest are extensions of the proposed approach to cumu-

lative and incremental learning scenarios [Caragea et al., 2001; Polikar et al., 2001;

Caragea et al., 2004c].

173

• Learning from Multi-Relational Tables

In related work, [Atramentov et al., 2003] have developed algorithms for learning from

multiple tables in a relational database. It is of interest to explore approaches similar

to those described in this dissertation for learning from distributed relational databases

as well as heterogeneous distributed data which are presented by INDUS as if they were

set of relations.

• Multi Agent Data Mining

Bromberg et al. [2004] , have defined the problem of multi-agent data mining, which is

an extension to the framework for learning from distributed data. In multi-agent data

mining, the agents have limited resources and are self-interested, but they can achieve

their goals by communicating and exchanging information with other self-interested

agents. Thus, mechanisms for knowledge production and coordination, similar to those

in economics, need to be developed. We assume that there are hundreds of agents in

such a framework, so one agent cannot communicate with all the agents in the system

but just with a small subset of agents. One natural extension to the framework in

[Bromberg et al., 2004] is to associate ontologies with each agent in the system. Here,

we do not have an overall integration ontology, but we can define integration ontology

for the neighborhood of an agent.

• Semantically Heterogeneous Distributed Data Visualization

Zhang et al. [2003] describe Limn Matrix, a system that interactively display density

plots for large, distributed data. This system makes use of a novel hierarchical indexing

technique that dramatically reduces the delay through the network. The framework

introduced in Chapter 4 in this dissertation could be used to extend Limn Matrix to

visualize semantically heterogeneous data.

• Ontology Language/Learning/Manipulation

Recent development of the Semantic Web [Berners-Lee et al., 2001] calls for large-scale

and well-maintained ontologies. However, little attention has been paid to the formalism

174

of building large-scale ontologies in distributed environments where both the ontology

integration and the ontology independence are important. In related work, Bao and

Honavar [2004] have proposed an extended ontology language to support modularity

and locality in semantics. In future work, we plan to use this language to design an

ontology editor that helps in building ontologies over distributed data sources and also

allows to define mappings (interoperation constraints) between different ontologies.

• Ontology-Extended Workflows

Pathak et al. [2004] have developed ontology-extended workflow components and se-

mantically consistent methods for assembling such components into complex ontology-

extended component-based workflows. The result is a sound theoretical framework for

assembly of semantically well-formed workflows from semantically heterogeneous com-

ponents. In this case, there is no integration hierarchy for all the ontologies associated

with components in the workflow, as some of them may be unrelated. Instead an integra-

tion ontology is found for every set of ontologies corresponding to neighboring (source,

target) components. Work in progress is aimed at design and implementation of an envi-

ronment for workflow assembly and execution from semantically heterogeneous software

components, ontologies and user supplied mappings between ontologies.

• Applications

Some of the work in progress is aimed at application of the proposed algorithms to

knowledge acquisition tasks that arise in applications in computational biology [Yan et

al., 2004a; 2004b; Andorf et al., 2004], information security [Kang et al., 2004a], and

related domains.

175

GLOSSARY

aggregate operators operators used to compute aggregate statistics over some data

answer shipping when the query is executed at the data site (via shipping the code if it is not

already available) and only the results of the query are shipped at the client site

attribute feature

attribute value taxonomy is-a hierarchy over a set of attributes

attribute values values that an attribute can take

autonomous data sources data sources that are not controlled by the learner and may impose

constraints on the learner

background knowledge the information that the learner has about the task before the learning

process (e.g., simple answers are preferable over complex answers)

central resource repository where all the resources in the system are registered

central site where the information extraction is done

class label value of the class attribute

classification phase of an algorithm when new unlabeled examples are classified

classification task a task for which the learner is given experience in the form of labeled

examples, and it is supposed to learn to classify new unlabeled examples

classifier the result of a learning algorithm

clients learning algorithms or users

176

completely specified instances instances for which all attributes are specified at the right level

of abstraction

compositional operators operators that can be used to combine statistics extracted from sev-

eral data sources

consistent hypothesis a hypothesis which is consistent with a set of labeled examples

consistent learner if it outputs a hypothesis which is consistent with a set of labeled examples

constraints a set of constraints imposed on the learner in a distributed setting coming from

privacy concerns, storage issues, operations allowed, etc.

data access modules iterators

data operators operators whose inputs and outputs are data sets

data set a collection of examples; we assume that the examples are randomly chosen from an

unknown distribution

data shipping when the data is shipped at the client site and the query is executed there

data-inflating operators whose volume is larger than the volume of the data that they are

applied to

data-reducing operators return answers whose volume is smaller than the volume of the data

that they are applied to

distributed data a collection of data sets distributed into a network

eager learning algorithm learning algorithms that do most of the work during learning phase

exact learning from distributed data an algorithm for learning from distributed data which

outputs a hypothesis identical to the hypothesis output by its centralized counterpart

examples the learner is presented with labeled examples about a particular task

features an example is described by a set of features

177

filters data-reducing operators

heterogeneous data a collection of data sources that are heterogeneous in structure (e.g., flat

file, relational database) or in content (different ontological commitments)

hierarchy categorization of a set according to an order

horizontal fragmentation type of data fragmentation wherein subsets of data tuples are stored

at different sites

hypothesis the output of a learning algorithm

hypothesis generation component of a learning algorithm when the hypothesis is generated

information extraction component of a learning algorithm when the information needed for

learning is gathered

instances examples

integrable hierarchies hierarchies that can be integrated according to an integration hierarchy

integrable ontologies a set of ontologies that can be integrated

integration hierarchy a hierarchy which can integrate a set of hierarchies (there exists partial

injective mapping from the integrated hierarchies to the integration hierarchy)

integration ontology an ontology that can be used to integrate a set of ontologies

interoperation constraints constraints that need to be specified by the mappings between two

ontologies

labeled example an example for which the class is not specified

labeled example an example for which the class is specified

lazy learning algorithm learning algorithms that do most of the work during classification

phase

178

learner an algorithm or a computer program that is able to use the experience to improve its

performance at some task

learning algorithm learner

learning from data learning from a set of training examples

learning phase of an algorithm when the hypothesis is generated

level of abstraction a cut through an is-a hierarchy

machine learning multidisciplinary field that brings together scientists from artificial intelli-

gence, probability and statistics, computational complexity, information theory, etc.

message any unit of information sent over the network

model hypothesis

ontology a specification over objects, categories, properties and relationships used to concep-

tualize some domain of interest; a set of hierarchies

ontology mappings mappings between terms in two different ontologies

ontology-extended data sources data sources that have an ontology associated with them

operators operations that can be executed on a data set

over specified value value which is under the level of abstraction in an attribute value taxon-

omy

partial specified instances instances for which some attributes are not specified at the right

level of abstraction

performance criteria measure the quality of the learning output in terms of accuracy, simplic-

ity, efficiency, etc.

queries queries that the learner can pose in the process of learning

179

query answering engine where the queries are decomposed into sub-queries and the answers

to sub-queries are composed into answers to the initial queries

selection condition a condition that specifies the data from which some statistics are gathered

servers data sources

statistic any function of data

statistical operators operators that output statistics about data

statistical query a query that returns a statistic

statistical query language set of operators used to formulate and manipulate statistical queries

sufficient statistic for a parameter a statistic that provides all the information needed to es-

timate the parameter

sufficient statistics for learning a hypothesis a statistic that provides all the information needed

to learn a hypothesis

task a description of the task that the learner is trying to accomplish (e.g. a concept, a

function, a language, etc.)

test set a set of unlabeled examples

training set a set of labeled examples

under specified value value which is above the level of abstraction in an attribute value tax-

onomy

user perspective given by an ontology and a set of interoperation constraints between this

ontology and other ontologies in the system

vertical fragmentation type of data fragmentation wherein sub-tuples of data tuples are stored

at different sites

wrappers used to access and retrieve information from data sources (iterators)

180

INDEX

aggregate operators, 99

algorithm catalog, 140

answer composition, 145

atomic condition, 100, 122

attribute value taxonomy, 129

attribute values, 24

background knowledge, 24

central resource repository, 139, 140

class label, 24

classification component, 26

classification error, 25

classification task, 24

classifier, 24

clients, 139

combination operators, 100

completely specified instance, 130

composition sufficient statistic, 45

compositional operators, 100

consistent, 25

constraints, 56

conversion function, 119

cost of an operator, 146

count statistical query, 43

cut, 129

data access modules, 140

data catalog, 140

data fragmentation, 54

data set, 24

data shipping, 147

data source, 24

data-inflating operators, 147

data-reducing operators, 147

eager learning, 26

empirical error, 25

exact, 57

examples, 24

experience source, 23

filters, 147

hierarchy, 109

horizontal fragmentation, 54

horizontal integration operator, 102

hypothesis, 24

hypothesis generation, 42

information extraction, 42

instances, 24

integrable hierarchies, 114

integrable ontologies, 115

181

integration hierarchy, 114

integration ontology, 115

interoperation constraints, 114

interoperation constraints preservation, 114

iterator repository, 140

iterators, 139

lazy learning, 26

learner, 23

learning component, 26

Learning from Data, 26

learning from distributed data, 56

learning operator, 102

least common super-schema, 121

least common supertype, 120

likelihood, 25

machine learning, 23

machine learning system, 23

maximum a posteriori hypothesis, 25

maximum likelihood, 25

minimal sufficient statistic, 44

minimum description length, 26

ontology, 109, 110

ontology-extended data sets, 123

ontology-extended data sources, 121

operators, 99

order preservation, 114

over-specified instance, 131

partially specified instance, 130

performance criteria, 24

queries, 24

query answering engine, 139

query decomposition, 145

query execution, 145

query optimization, 145

query optimizer, 139

refinement operators, 100

refinement sufficient statistic, 45

relational operators, 99

result shipping, 147

sample error, 25

sample space, 24

schema, 100

selection condition, 100, 122

servers, 139

set operators, 99

specialized learning operators, 99

specialized operators, 99

statistical operators, 99

statistical query, 42

sufficient statistic, 43

sufficient statistic for learning, 44

task, 23

training examples, 24

true error, 25

182

type of a term, 121

under-specified instance, 130

union compatible, 100

user perspective, 114, 140

vertical fragmentation, 54

vertical integration operator, 102

volume reduction factor, 148

well-typed condition, 123

183

BIBLIOGRAPHY

[Agrawal and Shafer, 1996] R. Agrawal and J. C. Shafer. Parallel mining of association rules.

IEEE Transactions on Knowledge and Data Engineering, 8:962–969, 1996.

[Agrawal and Srikant, 2000] R. Agrawal and R. Srikant. Privacy-preserving data mining. In

Proceedings of the ACM SIGMOD Conference on Management of Data, pages 439–450,

Dallas, Texas, May 2000.

[Amado et al., 2003] N. Amado, J. Gama, and F. Silva. Exploiting Parallelism in Decision

Tree Induction. In Parallel and Distributed Computing for Machine Learning. In conjunc-

tion with the 14th European Conference on Machine Learning (ECML’03) and 7th European

Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD’03),

Cavtat-Dubrovnik, Croatia, September 2003.

[AMIAS, 2002] American Medical Informatics Association. American Medical Informatics

Association Symposium on Ontologies, Terminologies, and the Semantic Web for Clinical

and Bio Scientists, San Antonio, TX, November 2002.

[Andorf et al., 2004] C. Andorf, D. Dobbs, and V. Honavar. Discovering protein function

classification rules from reduced alphabet representations of protein sequences. Information

Sciences, 2004. In press.

[Andrade et al., 2003] H. Andrade, T. Kurc, J. Saltz, and A. Sussman. Decision tree con-

struction for data mining on clusters of shared memory multiprocessors. In Proceedings of

the Sixth International Workshop on High Performance Data Mining: Pervasive and Data

Stream Mining (HPDM:PDS’03). In conjunction with Third International SIAM Confer-

ence on Data Mining, San Francisco, CA, May 2003.

184

[Arens et al., 1993] Y. Arens, C. Chin, C. Hsu, and C. Knoblock. Retrieving and integrating

data from multiple information sources. International Journal on Intelligent and Coopera-

tive Information Systems, 2(2):127–158, 1993.

[Aronis et al., 1996] J. Aronis, V. Kolluri, F. Provost, and B. Buchanan. The WoRLD: knowl-

edge discovery from multiple distributed databases. Technical Report ISL-96-6, Intelligent

Systems Laboratory, Department of Computer Science, University of Pittsburgh, Pitts-

burgh, PA, 1996.

[Ashburner et al., 2000] M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M.

Cherry, A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill, L. Issel-

Tarver, A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson, M. Ringwald, G.M. Rubin,

and G. Sherlock. Gene ontology: tool for unification of biology. Nature Genetics, 25(1):25–

29, 2000.

[Ashrafi et al., 2002] M. Z. Ashrafi, D. Taniar, and K. A. Smith. A data mining architecture

for distributed environments. In Proceedings of the Second International Workshop on

Innovative Internet Computing Systems, pages 27–38, Kühlungsborn, Germany, June 2002.

[Atramentov et al., 2003] A. Atramentov, H. Leiva, and V. Honavar. Learning decision trees

from multi-relational data. In T. Horvth and A. Yamamoto, editors, Proceedings of the 13th

International Conference on Inductive Logic Programming, volume 2835 of Lecture Notes

in Artificial Intelligence, pages 38–56. Springer-Verlag, 2003.

[Bala et al., 2002] J. Bala, S. Baik, A. Hadjarian, B. K. Gogia, and C. Manthorne. Application

of a distributed data mining approach to network intrusion detection. In Proceedings of the

First International Joint Conference on Autonomous Agents and Multiagent Systems, pages

1419–1420, Bologna, Italy, 2002. ACM Press.

[Bao and Honavar, 2004] J. Bao and V. Honavar. Ontology language extensions to support

semantics modularity and locality. In preparation, 2004.

185

[Barsalou and Gangopadhyay, 1992] T. Barsalou and D. Gangopadhyay. M(dm): An open

framework for interoperation of multimodel multidatabase systems. IEEE Data Engineer-

ing, pages 218–227, 1992.

[Berners-Lee et al., 2001] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web.

Scientific American, May 2001.

[Bernstein et al., 2000] P. Bernstein, A. Halevy, and R. Pottinger. A vision of management

of complex models. SIGMOD Record, 29(4), 2000.

[Bernstein, 2003] P.A. Bernstein. Applying model management to classical meta data prob-

lems. In Proceedings of the Second Conference on Innovative Data Systems Research, pages

209–220, Asilomar, CA, 2003.

[Bhatnagar and Srinivasan, 1997] R. Bhatnagar and S. Srinivasan. Pattern discovery in dis-

tributed databases. In Proceedings of the Fourteenth AAAI Conference, pages 503–508,

Providence, RI, 1997. AAAI Press/The MIT Press.

[Blake and Merz, 1998] C.L. Blake and C.J. Merz. UCI repository of machine learning

databases, 1998. See http://www.ics.uci.edu/∼mlearn/MLRepository.html (retrieved 19

July 2004).

[Blockeel and Raedt, 1997] H. Blockeel and L. De Raedt. Relational knowledge discovery

in database. In S. Muggleton, editor, Proceedings of the 6th International Workshop on

Inductive Logic Programming, volume 1314 of Lecture Notes in Artificial Intelligence, pages

199–212, 1997.

[Bonatti et al., 2003] P. Bonatti, Y. Deng, and V. Subrahmanian. An ontology-extended

relational algebra. In Proceedings of the IEEE Conference on Information Integration and

Reuse, pages 192–199. IEEE Press, 2003.

[Bonnet et al., 2001] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database systems.

In Proceedings of the Second International Conference on Mobile Data Management, pages

3–14. Springer-Verlag, 2001.

186

[Bradley and Mangasarian, 2000] P. S. Bradley and O. L. Mangasarian. Massive data discrim-

ination via linear support vector machines. Optimization Methods and Software, 13(1):1–10,

2000.

[Breiman et al., 1984] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification

and regression trees. Wadsworth, Monterey, CA, 1984.

[Bright et al., 1992] M.W. Bright, A.R. Hurson, and S.H. Pakzad. A taxonomy and current

issues in multibatabase systems. Computer Journal, 25(3):5–60, 1992.

[Bromberg et al., 2004] F. Bromberg, V. Honavar, and D. Caragea. Multi-agent data mining.

In preparation, 2004.

[Buja and Lee, 2001] A. Buja and Y.S. Lee. Data mining criteria for tree-based regression

and classification. In Proceedings of the Seventh ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 27–36, San Francisco, CA, 2001. ACM

Press.

[Cannataro and Talia, 2003] M. Cannataro and D. Talia. The Knowledge Grid. Communica-

tions of the ACM, 46(1):89–93, January 2003.

[Cannataro et al., 2001] M. Cannataro, D. Talia, and P. Trunfio. Knowledge Grid: high

performance knowledge discovery on the grid. In Proceedings of the Second International

Workshop on Grid Computing, pages 38–50, Denver, CO, November 2001.

[Caragea et al., 2000] D. Caragea, A. Silvescu, and V. Honavar. Agents that learn from dis-

tributed dynamic data sources. In Proceedings of the Workshop on Learning Agents, Agents

2000/ECML 2000, pages 53–61, Barcelona, Spain, 2000.

[Caragea et al., 2001] D. Caragea, A. Silvescu, and V. Honavar. Invited chapter: Toward

a theoretical framework for analysis and synthesis of agents that learn from distributed

dynamic data sources. In S. Wermter, J. Austin, and D. Willshaw, editors, Emerging

Neural Architectures Based on Neuroscience, volume 2036 of Lecture Notes in Artificial

Intelligence, pages 547–559. Springer-Verlag, 2001.

187

[Caragea et al., 2003] D. Caragea, A. Silvescu, and V. Honavar. Decision tree induction from

distributed heterogeneous autonomous data sources. In Proceedings of the International

Conference on Intelligent Systems Design and Applications, Tulsa, Oklahoma, 2003.

[Caragea et al., 2004a] D. Caragea, J. Pathak, and V. Honavar. Query answering in indus.

In preparation, 2004.

[Caragea et al., 2004b] D. Caragea, J. Pathak, and V. Honavar. Statistical queries over se-

mantically heterogeneous data sources. Submitted to the Second International Workshop

on Semantic Web and Databases, VLDB, 2004.

[Caragea et al., 2004c] D. Caragea, A. Silvescu, and V. Honavar. Characterization of sufficient

statistics using fixed point equations. In preparation, 2004.

[Caragea et al., 2004d] D. Caragea, A. Silvescu, and V. Honavar. A framework for learning

from distributed data using sufficient statistics and its application to learning decision trees.

International Journal of Hybrid Intelligent Systems, 1(2), 2004.

[Casella and Berger, 2001] G. Casella and R.L. Berger. Statistical Inference. Duxbury Press,

Belmont, CA, 2001.

[Cesa-Bianchi et al., 2001] N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the general-

ization ability of on-line learning algorithms. In Proceedings of the Neural Information

Processing Systems Conference, pages 359–366, Vancouver, British Columbia, Canada, De-

cember 2001. MIT Press.

[Chan et al., 1999] P. Chan, W. Fan, A. Prodromidis, and S. Stolfo. Distributed data mining

in credit card fraud detection. IEEE Intelligent Systems, pages 67–74, Nov/Dec 1999.

[Chang and Garcia-Molina, 1999] C. K. Chang and H. Garcia-Molina. Mind your vocabulary:

query mapping across heterogeneous information sources. In ACM SIGMOD International

Conference On Management of Data, Philadelphia, PA, June 1999.

188

[Chattratichat et al., 1999] J. Chattratichat, J. Darlington, Y. Guo, S. Hedvall, M. Koler,

and J. Syed. An architecture for distributed enterprise data mining. In High Performance

Computing Networking, pages 573–582, Amsterdam, Netherlands, 1999.

[Chen and Krishnamoorthy, 2002] R. Chen and S. Krishnamoorthy. A new algorithm for

learning parameters of a Bayesian network from distributed data. In Proceedings of the 2002

IEEE International Conference on Data Mining, pages 585–588, Maebashi City, Japan,

December 2002. IEEE Computer Society.

[Chen et al., 2001] R. Chen, S. Krishnamoorthy, and H. Kargupta. Distributed Web mining

using Bayesian networks from multiple data streams. In Proceedings of the IEEE Interna-

tional Conference on Data Mining, pages 281–288. IEEE Press, November 2001.

[Chen et al., 2003a] J. Chen, S. Chung, and L. Wong. The Kleisli query system as a backbone

for bioinformatics data integration and analisis. Bioinformatics, pages 147–188, 2003.

[Chen et al., 2003b] R. Chen, K. Sivakumar, and H. Kargupta. Distributed Bayesian mining

from heterogeneous data. Knowledge and Information Systems Journal, 2003.

[Chervenak et al., 1999] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke.

The Data Grid: Towards an architecture for the distributed management and analysis of

large scientific datasets. Journal of Network and Computer Applications, 1999.

[Clifton et al., 2002] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, , and M. Zhu. Tools for

privacy preserving distributed data mining. ACM SIGKDD Explorations, 4(2), December

2002.

[Cook and Holder, 2000] D. J. Cook and L. B. Holder. Graph-based data mining. IEEE

Intelligent Systems, 15(2):32–41, 2000.

[Cortes and Vapnik, 1995] C. Cortes and V. Vapnik. Support vector networks. Machine

Learning, 20:273–297, 1995.

[Cover and Hart, 1967] T.M. Cover and P.E. Hart. Nearest neighbor pattern classification.

IEEE Transactions on Information Theory, 13(1):21–27, 1967.

189

[Cristianini and Shawe-Taylor, 2000] N. Cristianini and J. Shawe-Taylor. An Introduction to

Support Vector Machines. Cambridge University Press, 2000.

[Curcin et al., 2002] V. Curcin, M. Ghanem, Y. Guo, M. Köhler, A. Rowe, J. Syed, and

P. Wendel. Discovery Net: towards a grid of knowledge discovery. In Proceedings of the

Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

pages 658–663, Edmonton, Canada, 2002. ACM Press.

[Darlington, 1990] R. B. Darlington. Regression and linear models. McGraw-Hill, 1990.

[Davidson et al., 2001] S. Davidson, J. Crabtree, B. Brunk, J. Schug, V. Tannen, G. Overton,

and C. Stoeckert. K2/Kleisli and GUS: experiments in integrated access to genomic data

sources. IBM Journal, 40(2), 2001.

[Dhillon and Modha, 1999] I. Dhillon and D. Modha. A data-clustering algorithm on dis-

tributed memory multiprocessors. In Proceedings of the KDD’99 Workshop on High Per-

formance Knowledge Discovery, pages 245–260, San Diego, CA, August 1999.

[Dietterich, 2000] T.G. Dietterich. Ensemble methods in machine learning. Lecture Notes in

Computer Science, 1857:1–15, 2000.

[Domingos, 1997] P. Domingos. Knowledge acquisition from examples via multiple models. In

Proceedings of the Fourteenth International Conference on Machine Learning, pages 98–106,

Nashville, TN, 1997. Morgan Kaufmann.

[Draper et al., 2001] D. Draper, A. Y. Halevy, and D. S. Weld. The nimble XML data inte-

gration system. In ICDE, pages 155–160, 2001.

[Du and Agrawal, 2002] W. Du and G. Agrawal. Using general grid tools and compiler tech-

nology for distributed data mining: Preliminary report. In Proceedings of the Fifth In-

ternational Workshop on High Performance Data Mining: Resource and Location Aware

Mining (HPDM:RLM’02). In conjunction with Second International SIAM Conference on

Data Mining, Arlington, VA, April 2002.

190

[Du and Atallah, 2001] W. Du and M. J. Atallah. Privacy-preserving cooperative scientific

computations. In Proceedings of the Fourteenth IEEE Computer Security Foundations

Workshop, pages 273–282, Nova Scotia, Canada, June 2001.

[Du and Zhan, 2002] W. Du and Z. Zhan. Building decision tree classifier on private data.

In Proceedings of the Workshop on Privacy, Security, and Data Mining at The 2002 IEEE

International Conference on Data Mining (ICDM’02), Maebashi City, Japan, December

2002.

[Duda et al., 2000] R. Duda, E. Hart, and D. Stork. Pattern Recognition. Wiley, 2000.

[Dzeroski and Lavrac, 2001] S. Dzeroski and N Lavrac, editors. Relational Data Mining.

Springer-Verlag, 2001.

[e-Science, 2001] The e-science initiative provides infrastructure to allow scientists to access

very large data collections, and to use large-scale computing resources and high-performance

visualization programs. See www.research-councils.ac.uk/escience (retreived 18 july 2004),

2001.

[Eckman, 2003] B. Eckman. A practitioner’s guide to data management and data integration

in bioinformatics. Bioinformatics, pages 3–74, 2003.

[Esposito et al., 1997] F. Esposito, D. Malerba, and G. Semeraro. A comparative analysis of

methods for pruning decision trees. IEEE Transactions on Pattern Analysis and Machine

Intellingence, 19(5):476–491, 1997.

[Etzold et al., 2003] T. Etzold, H. Harris, and S. Beulah. SRS: An integration platform for

databanks and analysis tools in bioinformatics. Bioinformatics Managing Scientific Data,

pages 35–74, 2003.

[Euroweb, 2002] The Web and the GRID: from e-science to e-business. Workshop at Euroweb

Conference, Oxford, UK, December 2002.

191

[Farquhar et al., 1996] A. Farquhar, R. Fikes, and J. Rice. The ontolingua server: a tool for

collaborative ontology construction. In Proceedings of the Knowledge Acquisition Work-

shops, Stanford, CA, March 1996.

[Fayyad and Irani, 1992] U.M. Fayyad and K.B. Irani. On the handling of continuous-valued

attributes in decision tree generation. Machine Learning, 8(1):87–102, 1992.

[Fern and Brodley, 2003] X. Fern and C. Brodley. Random projection for high dimensional

data clustering: A cluster ensemble approach. In Proceedings of the Twentieth International

Conference on Machine Learning (ICML2003), Washington, DC, August 2003.

[Foti et al., 2000] D. Foti, D. Lipari, C. Pizzuti, and D. Talia. Scalable parallel clustering for

data mining on multicomputers. In Proceedings of the Third Workshop on High Perfor-

mance Data Mining. In conjunction with International Parallel and Distributed Processing

Symposium 2000 (IPDPS’00), Cancun, Mexico, May 2000.

[Frchet, 1906] M. Frchet. Sur quelques points du calcul fonctionnel. Rendiconti del Circolo

Mathematico di Palermo, 22:1–74, 1906.

[Freund and Schapire, 1998] Y. Freund and R.E. Schapire. Large margin classification using

the perceptron algorithm. In Proceedings of the Eleventh Annual Conference on Computa-

tional Learning Theory, pages 209–217, Madison, Wisconsin, July 1998. ACM Press.

[Friedman et al., 1999] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning proba-

bilistic relational models. In Proceedings of the Sixteenth International Joint Conference

on Artificial Intelligence, pages 1300–1309, Orlando, FL, July 1999. Morgan Kaufmann

Publishers Inc.

[Friess et al., 1998] T. Friess, N. Cristianini, and C. Campbell. The Kernel-Adatron: a fast

and simple learning procedure for support vector machines. In J. Shavlik, editor, Proceeding

of the Fifteenth International Conference on Machine Learning (ICML), pages 188–196,

Madison, Wisconsin, July 1998. Morgan Kaufmann Publishers Inc.

192

[Gansner and North, 2000] E.R. Gansner and S.C. North. An open graph visualization system

and its applications to software engineering. Software-Practice and Experience, 30(11):1203–

1233, 2000.

[Garcia-Molina et al., 1997] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajara-

man, Y. Sagiv, J. Ullman, V. Vassalos, and J. Widom. The TSIMMIS approach to media-

tion: data models and languages. Journal of Intelligent Information Systems, Special Issue

on Next Generation Information Technologies and Systems, 8(2), 1997.

[Gehrke et al., 1999] J. Gehrke, V. Ganti, R. Ramakrishnan, and W.Y. Loh. BOAT – opti-

mistic decision tree construction. In Proceedings of ACM SIGMOD International Conference

on Management of Data, Philadelphia, Pennsylvania, June 1999. ACM Press.

[Gehrke et al., 2000] J. Gehrke, R. Ramakrishnan, and V. Ganti. RainForest - a framework

for fast decision tree construction of large datasets. Data Mining and Knowledge Discovery,

4(2/3):127–162, 2000.

[Getoor et al., 2001] L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Learning probabilistic

relational models. In S. Dzeroski and Eds. N. Lavrac, editors, Relational Data Mining.

Springer-Verlag, 2001.

[Giannadakis et al., 2003] N. Giannadakis, A. Rowe, M. Ghanem, and Y. Guo. Infogrid:

providing information integration for knowledge discovery. Information Sciences. Special

Issue: Knowledge Discovery from Distributed Information Sources, 155(3–4):199–226, Oc-

tober 2003.

[Gonzalez et al., 2002] J.A. Gonzalez, L.B. Holder, and D.J. Cook. Graph-based relational

concept learning. In Proceedings of the Nineteenth International Conference on Machine

Learning, pages 219–226, Sydney Australia, July 2002. Morgan Kaufmann Publishers Inc.

[Gradshteyn and Ryzhik, 1979] I.S. Gradshteyn and I.M. Ryzhik. Tables of Integrals, Series,

and Products, 5th ed. Academic Press, 1979.

193

[Graefe et al., 1998] G. Graefe, U. Fayyad, and S. Chaudhuri. On the efficient gathering of

sufficient statistics for classification from large sql databases. In Proceedings of the Fourth

International Conference on KDD, pages 204–208, Menlo Park, CA, 1998. AAAI Press.

[Graepel and Herbrich, 2000] Thore Graepel and Ralf Herbrich. From margin to sparsity. In

Proceedings of the Neural Information Processing Systems Conference, pages 210–216. MIT

Press, 2000.

[Grossman and Gou, 2001] L.R. Grossman and Y. Gou. Parallel methods for scaling data

mining algorithms to large data sets. In J.M. Zytkow, editor, Handbook on Data Mining

and Knowledge Discovery. Oxford University Press, 2001.

[Grossman et al., 2000] R. L. Grossman, S. Bailey, A. Ramu, B. Malhi, and A. Turinsky. The

preliminary design of Papyrus: a system for high performance, distributed data mining over

clusters. In Hillol Kargupta and Philip Chan, editors, Advances in Distributed and Parallel

Knowledge Discovery, pages 259–275. MIT Press, 2000.

[Gruber and Wills, 1993] P.M. Gruber and J.M. Wills. Handbook of Convex Geometry. Else-

vier Science Publishers B.V., 1993.

[Guo, 2003] Y. Guo. Discovery Net: a UK e-science pilot project for grid based knowledge dis-

covery service. In Proceedings of the Workshop on Data Mining and Exploration Middleware

for Distributed and Grid Computing, Minneapolis, Minnesota, September 2003.

[Haas et al., 1997] L.M. Haas, D. Kossmann, E. Wimmers, and J. Yan. Optimizing queries

across diverse sources. In Proceedings of the 23rd VLDB Conference, pages 267–285, Athens,

Greece, 1997.

[Haas et al., 2001] L.M. Haas, P.M. Schwarz, P. Kodali, E. Kotlar, J.E. Rice, and W.P. Swope.

DiscoveryLink: a system for integrated access to life sciences data sources. IBM System

Journal, 40(2), 2001.

194

[Hall and Bowyer, 2003] L. Hall and K. Bowyer. Comparing pure parallel ensemble creation

techniques against bagging. In Proceedings of the Third IEEE International Conference on

Data Mining (ICDM’03), Melbourne, FL, November 2003.

[Haussler, 1988] D. Haussler. Quantifying inductive bias: AI learning algorithms and Valiant’s

learning framework. Artificial Intelligence, 36:177–221, 1988.

[Heflin and Hendler, 2000] J. Heflin and J. Hendler. Dynamic ontologies on the Web. In

Proceedings on the 17th National Conference on Artificial Intelligence (AAAI-2000), pages

443–449, Austin, TX, July 2000.

[Heflin et al., 1999] J. Heflin, J. Hendler, and S. Luke. Coping with changing ontologies in a

distributed environment. In Proceedings of the AAAI-99 Workshop on Ontology Manage-

ment, 1999.

[Hellerstein and Stonebraker, 1993] J.M. Hellerstein and M. Stonebraker. Predicate migra-

tion: optimizing queries with expensive predicates. In Proceedings of ACM SIGMOD Con-

ference on Management of Data, pages 267–276, Washington, DC, May 1993.

[Hendler, 2003] James Hendler. Science and the semantic web. Science, 299, January 2003.

[Honavar et al., 1998] V. Honavar, L. Miller, and J.S. Wong. Distributed knowledge networks.

In Proceedings of the IEEE Conference on Information Technology, Syracuse, NY, 1998.

IEEE Press.

[Jaeger, 1997] M. Jaeger. Relational Bayesian networks. In Proceedings of the Thirteenth

Annual Conference on Uncertainty in Artificial Intelligence (UAI-1997), Providence, Rhode

Island, August 1997.

[Jennings and Wooldridge, 2001] N. Jennings and M. Wooldridge. Agent-oriented software

engineering. In J. Bradshaw, editor, Handbook of Agent Technology. MIT Press, 2001.

[Jensen, 2001] F. V. Jensen. Bayesian networks and decision graphs. Springer-Verlag, 2001.

195

[Jin and Agrawal, 2003] R. Jin and G. Agrawal. Communication and memory efficient parallel

decision tree construction. In Proceedings of the Third SIAM International Conference on

Data Mining, San Francisco, CA, May 2003.

[Joachims, 1999] T. Joachims. Making large-scale support vector machine learning practical.

In Bernhard Schlkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Advances

in Kernel Methods: Support Vector Learning, pages 169–184. MIT Press, 1999.

[Jouve and Nicoloyannis, 2003] P.E. Jouve and N. Nicoloyannis. A new method for combin-

ing partitions, applications for cluster ensembles in KDD. In Proceedings of Parallel and

Distributed Computing for Machine Learning. In conjunction with the 14th European Con-

ference on Machine Learning (ECML’03) and 7th European Conference on Principles and

Practice of Knowledge Discovery in Databases (PKDD’03), Cavtat-Dubrovnik, Croatia,

September 2003.

[Kang et al., 2004a] D.K. Kang, D. Fuller, and V. Honavar. Misuse and anomaly detec-

tion experiments on bag of system calls representation. In Computer and Communica-

tions Security (CCS) Workshop on Visualization and Data Mining for Computer Security

(VizSEC/DMSEC 2004), George W. Johnson Center at George Mason University, Fairfax,

VA, USA, 2004. Held in conjunction with the Eleventh ACM Conference on Computer and

Communications Security.

[Kang et al., 2004b] D.K. Kang, A. Silvescu, and V. Honavar. Generation of attribute value

taxonomies from data and their use in data-driven construction of accurate and compact

classifiers, 2004. Submitted.

[Kantarcioglu and Clifton, 2002] M. Kantarcioglu and C. Clifton. Privacy-preserving dis-

tributed mining of association rules on horizontally partitioned data. In Proceedings of

ACM SIGMOD Workshop on Research Issues on DMKD’02, June 2002.

[Kargupta et al., 1997] H. Kargupta, I. Hamzaoglu, and B. Stafford. Scalable, distributed

data mining using an agent based architecture. In D. Heckerman, H. Mannila, D. Pregibon,

196

and R. Uthurusamy, editors, Proceedings of Knowledge Discovery And Data Mining, pages

211–214, Menlo Park, CA, 1997. AAAI Press.

[Kargupta et al., 1999] H. Kargupta, B.H. Park, D. Hershberger, and E. Johnson. Collective

data mining: A new perspective toward distributed data mining. In H. Kargupta and

P. Chan, editors, Advances in Distributed and Parallel Knowledge Discovery. MIT Press,

1999.

[Kargupta et al., 2001] H. Kargupta, W. Huang, K. Sivakumar, and E. Johnson. Distributed

clustering using collective principal component analysis. Knowledge and Information Sys-

tems, 3(4):422–448, 2001.

[Kargupta et al., 2002] H. Kargupta, B.H. Park, S. Pittie, L. Liu, D. Kushraj, and K. Sarkar.

Mobimine: monitoring the stock market from a pda. SIGKDD Explorations Newsletter,

3(2):37–46, 2002.

[Kargupta et al., 2003] H. Kargupta, K. Liu, and J. Ryan. Random projection and privacy

preserving correlation computation from distributed data. In Proceedings of High Perfor-

mance, Pervasive, and Data Stream Mining 6th International Workshop on High Perfor-

mance Data Mining: Pervasive and Data Stream Mining (HPDM:PDS’03). In conjunction

with Third International SIAM Conference on Data Mining, San Francisco, CA, May 2003.

[Kearns, 1998] M. Kearns. Efficient noise-tolerant learning from statistical queries. Journal

of the ACM, 45(6):983–1006, 1998.

[Kersting and De Raedt, 2000] K. Kersting and L. De Raedt. Bayesian logic programs. In

F. Furukawa, S. Muggleton, D. Michie, and L. De Raedt, editors, Proceedings of the Seven-

teenth Machine Intelligence Workshop, Bury St. Edmunds, Suffolk, U.K., 2000.

[Knobbe et al., 1999] A.J. Knobbe, H. Blockeel, A. Siebes, and D.M.G. Van der Wallen.

Multi-relational data mining. In Benelearn ’99. Maastricht University, September 1999.

197

[Knoblock et al., 2001] C.A. Knoblock, S. Minton, J.L. Ambite, N. Ashish, I. Muslea,

A. Philpot, and S. Tejada. The ariadne approach to Web-based information integration.

International Journal of Cooperative Information Systems, 10(1-2):145–169, 2001.

[Kohavi, 1996] R. Kohavi. Scaling up the accuracy of naive-Bayes classifiers: a decision-tree

hybrid. In Proceedings of the Second International Conference on Knowledge Discovery and

Data Mining, Portland, Oregon, August 1996.

[Koller, 1999] D. Koller. Probabilistic relational models. In S. Dzeroski and P. Flach, editors,

Proceedings of Ninth International Workschop on Inductive Logic Programming (ILP-1999),

number 1634 in LNAI, Bled, Slovenia, June 1999. Springer.

[Krishnaswamy et al., 2002] S. Krishnaswamy, A. Zaslavsky, and W. S. Loke. Techniques

for estimating the computation and communication costs of distributed data mining. In

Proceedings of International Conference on Computational Science (ICCS2002) - Part I,

volume 2331 of Lecture Notes in Computer Science (LNCS), pages 603–612. Springer Verlag,

2002.

[Krishnaswamy et al., 2003] S. Krishnaswamy, A. Zaslasvky, and W. S. Loke. Internet delivery

of distributed data mining services: Architectures, issues and prospects. In V. K. Murthy

and N. Shi, editors, Architectural Issues of Web-enabled Electronic Business, pages 113–127.

Idea Group, 2003.

[Kuengkrai and Jaruskulchai, 2002] C. Kuengkrai and C. Jaruskulchai. A parallel learning

algorithm for text classification. In Proceedings of the Eighth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, Edmonton, Canada, July 2002.

[Kumar, 2003] V. Kumar. Network intrusion detection using distributed data mining. In

Workshop on Data Mining and Exploration Middleware for Distributed and Grid Comput-

ing, Minneapolis, MN, September 2003.

198

[Lambrecht et al., 1999] E. Lambrecht, S. Kambhampati, and S. Gnanaprakasam. Optimizing

recursive information-gathering plans. In Proceedings of the International Joint Conference

on Artificial Intelligence, pages 1204–1211. AAAI Press, 1999.

[Langford, May 2002] J. Langford. Quantitatively Tight Sample Complexity Bounds. PhD

thesis, Computer Science, Carnegie Mellon University, May 2002.

[Leckie and Kotagiri, 2002] C. Leckie and R. Kotagiri. Learning to share distributed prob-

abilistic beliefs. In Proceedings of The Nineteenth International Conference on Machine

Learning (ICML2002), Sydney, Australia, July 2002.

[Leiva et al., 2002] H. Leiva, A. Atramentov, and V. Honavar. Experiments with MRDTL –

a multi-relational decision tree learning algorithm. In Sašo Džeroski, Luc De Raedt, and

Stefan Wrobel, editors, MRDM02, pages 97–112. University of Alberta, Edmonton, Canada,

July 2002.

[Levy, 1998] A. Levy. The information manifold approach to data integration. IEEE Intelli-

gent Systems, 13, 1998.

[Levy, 2000] A. Levy. Logic-based techniques in data integration. In Logic-based artificial

intelligence, pages 575–595. Kluwer Academic Publishers, 2000.

[Lin et al., 2002] C.-R. Lin, C.-H. Lee, M.-S.Chen, and P. S. Yu. Distributed data mining in

a chain store database of short transactions. In Proceedings of the Eighth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 576–581, Ed-

monton, Canada, 2002. ACM Press.

[Lin et al., 2004] X. Lin, C. Clifton, and M. Zhu. Privacy preserving clustering with dis-

tributed EM mixture modeling. Knowledge and Information Systems, 2004. To appear.

[Lindell and Pinkas, 2002] Y. Lindell and B. Pinkas. Privacy preserving data mining. Journal

of Cryptology, 15(3):177–206, 2002. An extended abstract appeared at the CRYPTO 2000

conference.

199

[Lindner and Morik, 1995] G. Lindner and K. Morik. Coupling a relational learning algorithm

with a database system. In Workshop Notes of the MLnet Familiarization Workshop on

Statistics, Machine Learning and Knowledge Discovery in Databases, 1995.

[Liu et al., 2004] K. Liu, H. Kargupta, and J. Ryan. Distributed data mining bibliography,

release 1.3, March 2004.

[Lu et al., 1995] J. Lu, G. Moerkotte, J. Schue, and V.S. Subrahmanian. Efficient maintenance

of materialized mediated views. In Proceedings of 1995 ACM SIGMOD Conference on

Management of Data, San Jose, CA, 1995.

[Luenberger, 1973] D. Luenberger. Introduction to linear and nonlinear programming. Addi-

son Wesley, 1973.

[Manning and Keane, 2001] A. M. Manning and J. A. Keane. Data allocation algorithm for

parallel association rule discovery. In Proceedings ot the Fifth Pacific-Asia Conference on

Knowledge Discovery and Data Mining (PAKDD2001), Hong Kong, China, April 2001.

[Mansour, 1994] J. Mansour. Learning boolean functions via the fourier transform. In Theo-

retical Advances in Neural Computation and Learning. Kluwer, 1994.

[McClean et al., 2002] S. McClean, R. Páircéir, B. Scotney, and K. Greer. A negotiation agent

for distributed heterogeneous statistical databases. SSDBM 2002, pages 207–216, 2002.

[McClean et al., 2003] S. McClean, B. Scotney, and K. Greer. A scalable approach to in-

tegrating heterogeneous aggregate views of distributed databases. IEEE Transactions on

Knowledge and Data Engineering (TKDE), pages 232–235, 2003.

[McCulloch and Pitts, 1943] W. McCulloch and W. Pitts. A logical calculus of ideas imma-

nent in nervous activity. Bulletin of Mathematical Biophysics, 5:115–133, 1943.

[Merugu and Ghosh, 2003] S. Merugu and J. Ghosh. Privacy-preserving distributed clustering

using generative models. In Proceedings of the Third IEEE International Conference on

Data Mining (ICDM’03), Melbourne, FL, November 2003.

200

[Minksy and Papert, 1969] M. Minksy and S. Papert. Perceptrons: an introduction to com-

putational geometry. MIT Press, 1969.

[Mitchell, 1997] T.M. Mitchell. Machine Learning. McGraw Hill, 1997.

[MONET, 2004] MONET Consortium. MONET Workshop: Mathematics on the Web, Uni-

versity of Bath, 2004. See http://monet.nag.co.uk/cocoon/monet/index.html (retrieved 18

July 2004).

[Moore and Lee, 1998] Andrew W. Moore and Mary S. Lee. Cached sufficient statistics for

efficient machine learning with large datasets. Journal of Artificial Intelligence Research,

8:67–91, 1998.

[Morinaga et al., 2003] S. Morinaga, K. Yamanishi, and Jun ichi Takeuchi. Distributed co-

operative mining for information consortium. In Proceedings of the Ninth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, Washington, DC, Au-

gust 2003.

[Muggleton, 1992] S. Muggleton. Inductive Logic Programming. Academic Press Ltd., 1992.

[Musen, 1998] M.A. Musen. Modern architectures for intelligent systems: Reusable ontologies

and problem-solving methods. In C.G. Chute, editor, AMIA Annual Symposium, pages 46–

52, Orlando FL, 1998.

[Ngo and Haddawy, 1997] L. Ngo and P. Haddawy. Answering queries form context sensitive

probabilistic knowledge bases. Theoretical Computer Science, 1997.

[Nilsson, 1965] N. J. Nilsson. Learning Machines. McGraw-Hill, 1965.

[Papageorgiou et al., 2003] H. Papageorgiou, F. Pentaris, E. Theodorou, M. Vardaki, and

M. Petrakos. A statistical metadata model for simultaneous manipulation of both data and

metadata. International Journal of Intelligent Systems, 2003.

[Park and Kargupta, 2002a] B. Park and H. Kargupta. Constructing simpler decision trees

from ensemble models using Fourier analysis. In Proceedings of the 7th Workshop on Re-

201

search Issues in Data Mining and Knowledge Discovery (DMKD’2002), pages 18–23, Madi-

son, WI, June 2002. ACM SIGMOD.

[Park and Kargupta, 2002b] B. Park and H. Kargupta. Distributed data mining: algorithms,

systems, and applications. In Nong Ye, editor, Data Mining Handbook, pages 341–358. IEA,

2002.

[Park et al., 1995] J. S. Park, M.-S.Chen, and P. S. Yu. Efficient Parallel Data Mining for

Association Rules. In Proceedings of ACM International Conference on Information and

Knowledge Management, pages 31–36, Baltimore, MD, November 1995.

[Parthasarathy et al., 2001] S. Parthasarathy, M. J. Zaki, M. Ogihara, and W. Li. Parallel

data mining for association rules on shared-memory systems. Knowledge and Information

Systems, 3(1):1–29, 2001.

[Pathak et al., 2004] J. Pathak, D. Caragea, and V. Honavar. Ontology-extended component-

based workfows - a framework for constructing complex workfows from semantically hetero-

geneous software components. In IEEE International Conference on Information Integration

and Reuse, Las Vegas, Nevada, 2004. Submitted.

[Pearl, 2000] Judea Pearl. Graphical Models for Probabilistic and Causal Reasoning. Cam-

bridge Press, 2000.

[Polikar et al., 2001] R. Polikar, L. Udpa, S. Udpa, and V. Honavar. Learn++: an incremental

learning algorithm for multi-layer perceptron networks. IEEE Transactions on Systems,

Man and Cybernetics, 31(4):497–508, 2001.

[Poulet, 2003] F. Poulet. Multi-way Distributed SVM algorithms. In Parallel and Distributed

computing for Machine Learning. In conjunction with the 14th European Conference on

Machine Learning (ECML’03) and 7th European Conference on Principles and Practice

of Knowledge Discovery in Databases (PKDD’03), Cavtat-Dubrovnik, Croatia, September

2003.

202

[Prodromidis et al., 2000] A.L. Prodromidis, P. Chan, and S.J. Stolfo. Meta-learning in dis-

tributed data mining systems: issues and approaches. In H. Kargupta and P. Chan, editors,

Advances of Distributed Data Mining. AAAI Press, 2000.

[Provost and Hennessy, 1996] F. Provost and D. Hennessy. Scaling up: distributed machine

learning with cooperation. In Proceedings of the Thirteenth National Conference on Artifi-

cial Intelligence, 1996.

[Provost and Kolluri, 1999] Foster J. Provost and Venkateswarlu Kolluri. A survey of methods

for scaling up inductive algorithms. Data Mining and Knowledge Discovery, 3(2):131–169,

1999.

[Provost, 2000] F. Provost. Distributed data mining: Scaling up and beyond. In Hillol Kar-

gupta and Philip Chan, editors, Advances in Distributed Data Mining. MIT Press, 2000.

[Quinlan, 1986] R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.

[Ramakrishanan and Gehrke, 2000] R. Ramakrishanan and J. Gehrke. Database Management

Systems. Second Edition. The McGraw-Hill Companies, Inc., 2000.

[Rana et al., 2000] O. Rana, D. Walker, M. Li, S. Lynden, and M. Ward. PaDDMAS: Parallel

and Distributed Data Mining Application Suite. In Fourteenth International Parallel and

Distributed Processing Symposium, pages 387–392, Cancun, Mexico, May 2000.

[RDF, 1995] Resource description framework, 1995. See http://www.w3.org/RDF (retrieved

18 July 2004).

[Reinoso-Castillo et al., 2003] J. Reinoso-Castillo, A. Silvescu, D. Caragea, J. Pathak, and

V. Honavar. Information extraction and integration from heterogeneous, distributed, au-

tonomous information sources: a federated, query-centric approach. In IEEE International

Conference on Information Integration and Reuse, Las Vegas, Nevada, November 2003.

[Reinoso-Castillo, 2002] J. Reinoso-Castillo. Ontology-driven query-centric federated solution

for information extraction and integration from autonomous, heterogeneous, distributed

203

data sources. Masters dissertation, Department of Computer Science, Iowa State University,

Ames, IA, 2002.

[Rissanen, 1978] J. Rissanen. Modeling by shortest data description. Automatica, 14:465–471,

1978.

[Rodriguez-Martinez and Roussopoulos, 2000] M. Rodriguez-Martinez and R. Roussopoulos.

MOCHA: a self-extensible database middleware system for distributed data sources. In

Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data,

pages 213–224, Dallas, TX, 2000.

[Rosenblatt, 1958] F. Rosenblatt. The perceptron: A probabilistic model for information

storage and organization in the brain. Psychological Review, 65:386–408, 1958.

[Rumelhart et al., 1986] D.E. Rumelhart, G.E. Hinton, and J.L. McClelland. A general frame-

work for parallel distributed processing. Parallel Distributed Processing: Explorations in

the Microstructure of Cognition, 1, 1986.

[Samatova et al., 2002] N. F. Samatova, G. Ostrouchov, A. Geist, and A. Melechko. RA-

CHET: an efficient cover-based merging of clustering hierarchies from distributed datasets.

Distributed and Parallel Databases, 11(2):157–180, 2002.

[Sarawagi and Nagaralu, 2000] S. Sarawagi and S. H. Nagaralu. Data Mining Models as Ser-

vices on the Internet. SIGKDD Explorations, 2(1):24–28, 2000.

[Scholkopf, 1997] B. Scholkopf. Support Vector Learning. Springer-Verlag, 1997.

[Schuster et al., 2004] A. Schuster, R. Wolff, and B. Gilburd. Privacy-preserving association

rule mining in large-scale distributed systems. In Proceedings of Cluster Computing and the

Grid (CCGrid), 2004.

[Shafer et al., 1996] J.C. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable paral-

lel classifier for data mining. In Proceedings of 22th International Conference on VLDB,

September 3-6, 1996, Mumbai (Bombay), India. Morgan Kaufmann, 1996.

204

[Shek et al., 1996] E. C. Shek, R. R. Muntz, E. Mesrobian, and K. W. Ng. Scalable exploratory

data mining of distributed geoscientific datah. In Proceedings of the Second International

Conference on Knowledge Discovery and Data Mining (KDD-96), pages 32–37, Portland,

OR, 1996.

[Sheth and Larson, 1990] A. Sheth and J. Larson. Federated databases: architectures and

issues. ACM Computing Surveys, 22(3):183–236, 1990.

[Silvescu et al., 2004a] A. Silvescu, C. Andorf, D. Dobbs, and V. Honavar. Inter-element

dependency models for sequence classification. In IEEE International Conference on Data

Mining, 2004. Submitted.

[Silvescu et al., 2004b] A. Silvescu, D. Caragea, O. Yakhnenko, D.K. Kang, J. Pathak, and

V. Honavar. Data source independent learning algorithms through the means of sufficient

statistics and data source wrappers. In Preparation, 2004.

[Sivakumar et al., 2003] K. Sivakumar, R. Chen, and H. Kargupta. Learning Bayesian net-

work structure from distributed data. In Proceedings of the 3rd SIAM International Data

Mining Conference, pages 284–288, San Franciso, CA, May 2003.

[Skiena, 1997] S.S. Skiena. The Algorithm Design Manual. Springer-Verlag, 1997.

[Srivastava et al., 1999] A. Srivastava, E. Han, V. Kumar, and V. Singh. Parallel formulations

of decision-tree classification algorithms. Data Mining and Knowledge Discovery, 3(3):237–

261, 1999.

[Stevens et al., 2003] R. Stevens, C. Goble, N. Paton, S. Becchofer, G. Ng, P. Baker, and

A. Bass. Complex query formulation over diverse sources in tambis. Bioinformatics, pages

189–220, 2003.

[Stolfo and others, 1997] S. Stolfo et al. JAM: Java agents for meta-learning over distributed

databases. In Proceedings of Third International Conference on Knowledge Discovery and

Data Mining, pages 74–81, Menlo Park, CA, 1997. AAAI Press.

205

[Sunderam, 2003] V. Sunderam. Towards service-based approaches to data mining in grids.

In Workshop on Data Mining and Exploration Middleware for Distributed and Grid Com-

puting, Minneapolis, MN, September 2003.

[SWS, 2002] Science on the Semantic Web Workshop: Building the Next Generation of En-

vironmental Information Systems, October 2002. See http://cimic.rutgers.edu/semantic/

(retrieved 18 July 2004).

[Syed et al., 1999] N.A. Syed, H. Liu, and K.K. Sung. Incremental learning with support

vector machines. In Proceedings of the KDD Conference, San Diego, CA, 1999.

[Szalay, 2001] A. S. Szalay, editor. ASP Conference Series, volume 238(3), 2001.

[Talia, 2003] D. Talia. Grid-based data mining and the knowledge grid framework. In Work-

shop on Data Mining and Exploration Middleware for Distributed and Grid Computing,

Minneapolis, MN, September 2003.

[Tannen et al., 2003] V. Tannen, S. Davidson, and S. Harker. The information integration in

K2. Bioinformatics, pages 225–248, 2003.

[Tomasic et al., 1998] A. Tomasic, L. Rashid, and P. Valduriez. Scaling heterogeneous

databases and design of DISCO. IEEE Transactions on Knowledge and Data Engineer-

ing, 10(5):808–823, 1998.

[Tsai et al., 2001] H.J. Tsai, L.L. Miller, J. Xu, and S. Lin. Using ontologies to integrate

domain specific data sources. In ISCA 3rd International Conference on Information Reuse

and Integration, pages 62–67, Las Vegas, NV, 2001.

[Tsoumakas and Vlahavas, 2002] G. Tsoumakas and I. Vlahavas. Distributed data mining

of large classifier ensembles. In Proceedings of Companion Volume of the Second Hellenic

Conference on Artificial Intelligence, pages 249–256, Thessaloniki, Greece, April 2002.

[Tumer and Ghosh, 2000] K. Tumer and J. Ghosh. Robust order statistics based ensembles

for distributed data mining. In Hillol Kargupta and Philip Chan, editors, Advances in

Distributed and Parallel Knowledge Discovery, pages 185–210. MIT, 2000.

206

[Turinsky and Grossman, 2000] A. Turinsky and R. L. Grossman. A framework for finding

distributed data mining strategies that are intermediate between centralized strategies and

in-place strategies. In Proceedings of KDD 2000 Workshop on Distributed Data Mining,

2000.

[Tveit and Engum, 2003] A. Tveit and H. Engum. Parallelization of the Incremental Prox-

imal Support Vector Machine Classifier using a Heap-based Tree Topology. In Parallel

and Distributed computing for Machine Learning. In conjunction with the 14th European

Conference on Machine Learning (ECML’03) and 7th European Conference on Principles

and Practice of Knowledge Discovery in Databases (PKDD’03), Cavtat-Dubrovnik, Croatia,

September 2003.

[Vaidya and Clifton, 2002] J. Vaidya and C. Clifton. Privacy preserving association rule min-

ing in vertically partitioned data. In The Eighth ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, Edmonton, Canada, July 2002.

[Vaidya and Clifton, 2003] J. Vaidya and C. Clifton. Privacy-preserving k-means clustering

over vertically partitioned data. In The Ninth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, Washington, DC, August 2003.

[Valiant, 1984] L.G. Valiant. A theory of the learnable. Communication of the ACM,

27(11):1134–1142, 1984.

[Vapnik and Chervonenkis, 1971] V.N. Vapnik and A. Y. Chervonenkis. On the uniform con-

vergence of relative frequencies of events to their probabilities. Theory of Probaility and its

Applications, 16(2):264–280, 1971.

[Vapnik, 1998] V. Vapnik. Statistical Learning Theory. Springer-Verlag, 1998.

[Weiß, 1998] G. Weiß. A multiagent perspective of parallel and distributed machine learning.

In K. P. Sycara and M. Wooldridge, editors, Proceedings of the 2nd International Conference

on Autonomous Agents (Agents’98), pages 226–230, New York, NY, 1998. ACM Press.

207

[Wiederhold and Genesereth, 1997] G. Wiederhold and M. Genesereth. The conceptual basis

for mediation services. IEEE Expert, 12:38–47, 1997.

[Wirth et al., 2001] R. Wirth, M. Borth, and J. Hipp. When distribution is part of the seman-

tics: a new problem class for distributed knowledge discovery. In Proceedings of PKDD-2001

Workshop on Ubiquitous Data Mining for Mobile and Distributed Environments, pages 56–

64, Freiburg, Germany, September 2001.

[Witten and Frank, 1999] I.H. Witten and E. Frank. Data mining : practical machine learning

tools and techniques with Java implementations. Morgan Kaufmann, 1999.

[Wolff et al., 2003] R. Wolff, A. Schuster, and D. Trock. A high-performance distributed

algorithm for mining association rules. In Proceedings of the Third IEEE International

Conference on Data Mining (ICDM’03), Melbourne, FL, November 2003.

[Yan et al., 2004a] C. Yan, D. Dobbs, and V. Honavar. A two-stage classifier for identification

of protein-protein interface residues. Bioinformatics, 2004. In Press.

[Yan et al., 2004b] C. Yan, V. Honavar, and D. Dobbs. Identifying protein-protein interac-

tion sites from surface residues - a support vector machine approach. Neural Computing

Applications, 2004. In press.

[Yang et al., 1998] J. Yang, P. Pai, V. Honavar, and L. Miller. Mobile intelligent agents for

document classification and retrieval: A machine learning approach. In Proceedings of the

European Symposium on Cybernetics and Systems Research, 1998.

[Zaiane et al., 2001] O. Zaiane, M. El-Hajj, and P. Lu. Fast parallel association rules mining

without candidacy generation. In IEEE 2001 International Conference on Data Mining

(ICDM’2001), pages 665–668, 2001.

[Zaki, 1999] M. Zaki. Parallel and distributed association mining: a survey. IEEE Concur-

rency, 1999.

[Zhang and Honavar, 2003] J. Zhang and V. Honavar. Learning decision tree classifiers from

attribute-value taxonomies and partially specified data. In T. Fawcett and N. Mishra,

208

editors, Proceedings of the International Conference on Machine Learning, pages 880–887,

Washington, DC, 2003.

[Zhang and Honavar, 2004] J. Zhang and V. Honavar. Learning naive Bayes classifiers from

attribute-value taxonomies and partially specified data. In Proceedings of the Conference

on Intelligent System Design and Applications, In Press, 2004.

[Zhang et al., 2003a] J. Zhang, R. Jin, Y. Yang, and A.G. Hauptmann. Modified logistic re-

gression: An approximation to svm and its application in large-scale text categorization. In

T. Fawcett and N. Mishra, editors, Proceedings of the International Conference on Machine

Learning, Washington, DC, 2003.

[Zhang et al., 2003b] J. Zhang, L. Miller, D. Cook, A. Hardjasamudra, and H. Hofman. Den-

sityplot matrix display for large distributed data. In Proceedings of the Third International

Workshop on Visual Data Mining, Third IEEE International Conference on Data Mining,

Melbourne, FL, November 2003.

