
Information Integration and Knowledge
Acquisition from Semantically Heterogeneous

Biological Data Sources

Doina Caragea1,4, Jyotishman Pathak1,4, Jie Bao1,4, Adrian Silvescu1,4,
Carson Andorf1,3,4, Drena Dobbs2,3,4, and Vasant Honavar1,2,3,4

1 AI Research Laboratory, Department of Computer Science, 226 Atanasoff Hall
2 Department of Genetics, Development and Cell Biology, 1210 Molecular Biology

3 Bioinformatics and Computational Biology Program, 2014 Molecular Biology
4 Computational Intelligence, Learning and Discovery Program,

214 Atanasoff Hall Iowa State University, Ames, IA 50011
honavar@cs.iastate.edu

Abstract. We present INDUS (Intelligent Data Understanding Sys-
tem), a federated, query-centric system for knowledge acquisition from
autonomous, distributed, semantically heterogeneous data sources that
can be viewed (conceptually) as tables. INDUS employs ontologies and
inter-ontology mappings, to enable a user or an application to view a col-
lection of such data sources (regardless of location, internal structure and
query interfaces) as though they were a collection of tables structured
according to an ontology supplied by the user. This allows INDUS to an-
swer user queries against distributed, semantically heterogeneous data
sources without the need for a centralized data warehouse or a common
global ontology. We used INDUS framework to design algorithms for
learning probabilistic models (e.g., Naive Bayes models) for predicting
GO functional classification of a protein based on training sequences that
are distributed among SWISSPROT and MIPS data sources. Mappings
such as EC2GO and MIPS2GO were used to resolve the semantic differ-
ences between these data sources when answering queries posed by the
learning algorithms. Our results show that INDUS can be successfully
used for integrative analysis of data from multiple sources needed for
collaborative discovery in computational biology.

1 Introduction

Ongoing transformation of biology from a data-poor science into an increasingly
data-rich science has resulted in a large number of autonomous data sources
(e.g., protein sequences, structures, expression patterns, interactions). This has
led to unprecedented, and as yet, largely unrealized opportunities for large-scale
collaborative discovery in a number of areas: characterization of macromolecular
sequence-structure-function relationships, discovery of complex genetic regula-
tory networks, among others.
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Biological data sources developed by autonomous individuals or groups dif-
fer with respect to their ontological commitments. These include assumptions
concerning the objects that exist in the world, the properties or attributes of
the objects, relationships between objects, the possible values of attributes, and
their intended meaning, as well as the granularity or level of abstraction at which
objects and their properties are described [17]. Therefore, semantic differences
among autonomous data sources are simply unavoidable. Effective use of mul-
tiple sources of data in a given context requires reconciliation of such semantic
differences. This involves solving a data integration problem. Development of
sound approaches to solving the information integration problem is a prerequi-
site for realizing the goals of the Semantic Web as articulated by Berners-Lee et
al. [5]: seamless and flexible access, integration and manipulation of semantically
heterogeneous, networked data, knowledge and services.

Driven by the semantic Web vision, there have been significant community-
wide efforts aimed at the construction of ontologies in life sciences. Examples
include the Gene Ontology (www.geneontology.org) [2] in biology and Unified
Medical Language System (www.nlm.nih.gov/research/umls) in heath informat-
ics. Data sources that are created for use in one context often find use in other
contexts or applications (e.g., in collaborative scientific discovery applications in-
volving data-driven construction of classifiers from semantically disparate data
sources [9]). Furthermore, users often need to analyze data in different contexts
from different perspectives. Therefore, there is no single privileged ontology that

Fig. 1. INDUS: a system for information integration and knowledge acquisition from
semantically heterogeneous distributed data. Queries posed by the user are answered
by a query answering engine, which uses mappings between the user ontology and the
data source ontologies to resolve semantic differences. A user-friendly editor is used to
specify ontologies and mappings between ontologies
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can serve all users, or for that matter, even a single user, in every context. Effec-
tive use of multiple sources of data in a given context requires flexible approaches
to reconciling such semantic differences from the user’s point of view.

Against this background, we have investigated a federated, query-centric ap-
proach to information integration and knowledge acquisition from distributed,
semantically heterogeneous data sources, from a user’s perspective. The choice
of the federated, query-centric approach was influenced by the large number
and diversity of data repositories involved, together with the user-specific na-
ture of the integration tasks that need to be performed. Our work has led to
INDUS, a system for information integration and knowledge acquisition (see
Figure 1). INDUS relies on the observation that both the information integra-
tion and knowledge acquisition tasks can be reduced to the task of answering
queries from distributed, semantically heterogeneous data sources. We associate
ontologies with data sources and users and show how to define mappings between
them. We exploit the ontologies and the mappings to develop sound methods
for flexibly querying (from a user perspective) multiple semantically heteroge-
neous distributed data sources in a setting where each data source can be viewed
(conceptually) as a single table [10, 9].

The rest of the paper is organized as follows: Section 2 introduces the problem
we are addressing more precisely through an example. Section 3 describes the
design and the architecture of INDUS. Section 4 demonstrates how INDUS can
be used for knowledge acquisition tasks using as an example a simple machine
learning algorithm (Naive Bayes). We end with conclusions, discussion of related
work and directions for future work in Section 5.

2 Illustrative Example

The problem that we are wish to address is best illustrated by an example.
Consider several biological laboratories that independently collect information
about Protein Sequences in connection to their Structure and Function. Suppose
that the data D1 collected by a first laboratory contains human proteins and it is
described by the attributes Protein ID, Protein Name, Protein Sequence, Prosite
Motifs and EC Number (stored as in Table 1). The data D2 collected by a second
laboratory contains yeast proteins and it is described by the attributes Accession
Number AN, Gene, AA Sequence, Length, Pfam Domains, and MIPS Funcat
(stored as in Table 2). A data set D3 collected by a third laboratory contains
both human and yeast proteins and it is described by the attributes Entry ID,
Entry Name, Organism, CATH Domains and CATH Classes corresponding to
the domains (stored as in Table 3).

Consider a biologist (user) U who wants to assemble a data set based on
the data sources of interest D1, D2, D3, from his or her own perspective, where
the representative attributes are ID, Source, AA composition (a.k.a. amino acid
distribution, i.e. number of occurrences of each amino acid in the amino acid
sequence corresponding to the protein), Structural Classes and GO Function.
This requires the ability to manipulate the data sources of interest from the
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Table 1. Data D1 containing human proteins collected by a laboratory Lab1

Protein ID Protein Name Protein Sequence Prosite Motifs EC Number

Beta-adrenergic MADLEAVLAD RGS 2.7.1.126
P35626 receptor kinase 2 VSYLMAMEKS PROT KIN DOM Beta-adrenergic

· · · PH DOMAIN receptor kinase

Aspartyl/asparaginyl MAQRKNAKSS TPR 1.14.11.16
Q12797 beta-hydroxylase GNSSSSGSGS TPR REGION Peptide-aspartate

· · · TRP beta-dioxygenase

MRLWSWVLHL 3.4.24.79
Q13219 Pappalysin-1 GLLSAALGCG SUSHI Pappalysin-1

· · ·
· · · · · · · · · · · · · · ·

Table 2. Data D2 containing yeast proteins collected by a laboratory Lab2

AN Gene AA Sequence Length Pfam Domains MIPS Funcat

P32589 SSE1 STPFGLDLGN 692 HSP70 16.01 protein binding
NNSVLAVARN

· · ·
P07278 BCY1 VSSLPKESQA 415 cNMP binding 16.19.01 cyclic nucleotide

ELQLFQNEIN RIIa binding (cAMP, cGMP, etc.)
· · ·

· · · · · · · · · · · · · · · · · ·

Table 3. Data D3 containing human and yeast proteins collected by a laboratory Lab3

Entry ID Entry Name Organism CATH Domains CATH Classes

P35626 ARK2 HUMAN Human 1omwB0 Mainly beta
1omwG0 Few Sec. Struct.

Q12797 ASPH HUMAN Human not known not known

Q13219 PAPPA HUMAN Human 1jmaB1 Mainly beta
1jmaB2 Mainly beta

1dkgA1 Alpha beta
P32589 HS78 Y EAST Yeast 1dkgA2 Mainly alpha

1dkgB1 Alpha beta

P07278 KAPR Y EAST Yeast 1cx4A1 Alpha beta
1dkgA2 Alpha beta

· · · · · · · · · · · · · · ·

user’s perspective. However, the three data sources differ in terms of semantics
from the user’s perspective. In order to cope with this heterogeneity of semantics,
the user must observe that the attributes Protein ID, Accession Number and
Entry ID, in the three data sources of interest, are similar to the user attribute
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ID; the attribute Protein Sequence in the first data source and the attribute AA
Sequence in the second data source are also similar and they can be used to infer
the user attribute AA Composition (by counting the number of occurrences of
each amino acid in the corresponding AA sequence); similarly, the attributes EC
Number and MIPS Funcat are similar to the user attribute GO Function; finally,
the attributes Organism and CATH Classes in the third data source are similar
to the attributes Source and Structural Classes in the user view.

Therefore, to assemble the user data, one would need to project the data
in D1 (with respect to the attributes Protein ID, Protein Sequence and EC
Number) and the data in D2 (with respect to AN, AA Sequence, and MIPS
Funcat) and take the union D12 of the resulting sets; then the third data set
D3 needs to be projected with respect to the attributes Entry Name, Organism,
and CATH Classes. The cross-product with respect to the common attribute
ID, between D12 and D3 represents the data that the user is interested in.
Notice that all these operations can be written as a query whose result is DU =
(project(D1) ∪ project(D2)) × project(D3). However, before the query can be
executed, the semantic differences between values of similar attributes must be
resolved.

To establish the correspondence between values that two similar attributes
can take, we need to associate types with attributes and map the domain of the
type of an attribute to the domain of the type of the corresponding attribute
(e.g., AA Sequence to AA Composition or EC Number to GO Function). We
assume that the type of an attribute can be a standard type such as a collec-
tion of values (e.g., amino acids, Prosite motifs, etc.), or it can be given by a
simple hierarchical ontology (e.g., species taxonomy). Figure 2 shows examples
of (simplified) attribute value hierarchies for the attributes EC Numbers, MIPS
Funcat, and GO Function in the data sources D1, D2 and the user perspective.

Examples of semantic correspondences in this case could be: EC 2.7.1.126
in D1 is equivalent to GO 0047696 in DU , MIPS 16.01 in D2 is equivalent to
GO 0005515 in DU and MIPS 16.19.01 is equivalent to GO 0016208 in DU .
On the other hand, EC 2.7.1.126 in D1 is lower than (i.e., hierarchically below)
GO 0004672 in DU , or for that matter EC 2.7.1.126 is higher than GO0004672.
Similarly, MIPS 16.19.01 in D2 is lower than GO 0017076 in DU , and so on.
Therefore the integrated user data DU could look like in Table 4, where the
semantic correspondences have been applied.

In general, the user may want to answer queries such as the number of human
proteins that are involved in kinase activity from the integrated data or even
to infer models based on the data available in order to use them to predict
useful information about new unlabeled data (e.g., protein function for unlabeled
proteins). INDUS, the system that we have developed in our lab, can be used to
answer such queries against distributed, semantically heterogeneous data sources
without the need for a centralized data warehouse or a common global ontology.
We will describe INDUS in more detail in the next section.
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Fig. 2. Ontologies associated with the attributes EC Number, MIPS Funcat and GO
Function that appear in the data sources of interest D1, D2 and DU
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Table 4. Integrated user data DU

ID Source AA composition Struct. Classes GO Funct. Class

P35626 Human 7 3 9 14 · · · Mainly beta 0047696:beta-adrenergic-receptor
Few Sec. Struct. kinase activity

Q12797 Human 5 1 7 12 · · · not known 0004597: peptide-aspartate
beta-dioxygenase activity

Q13219 Human 10 8 6 15 · · · Mainly beta 0008237: metallopeptidase
Mainly beta activity

Alpha beta
P39708 Yeast 13 17 18 11 · · · Alpha beta 0005515: protein binding

Mainly alpha

Q01574 Yeast 23 16 8 1 · · · Mainly alpha 0016208: AMP binding
Mainly alpha

· · · · · · · · · · · · · · ·

3 INDUS Design and Architecture

A simplified version of INDUS architecture is shown in Figure 1. As can be
seen, several related distributed and semantically heterogeneous data sources
(servers) can be available to users (clients) who may want to query the data
sources through a query interface. Each user has his or her own view of the do-
main of interest reflected by a user ontology. The system provides default user
ontologies (e.g., GO Function) and mappings from the data source ontologies
to the user ontology (e.g., from AA Sequence to AA Composition or from EC
Number to GO Function) in a mapping repository. However, a user-friendly on-
tology and mapping editor is also available for users if they need to design or
modify their own ontologies or mappings (for example, if they need to explore
different mappings such as AA Sequence to AA composition or AA sequence to
hydrophobic versus hydrophilic AA Composition).

Once a query is posed by the user, it is sent to a query answering engine which
acts as a middleware between clients and servers. The query answering engine has
access to the data sources in the system and also to the set of mappings available.
Thus, when the query answering engine receives a user query, it decomposes this
query according to the distributed data sources, maps the individual queries to
the data source ontologies, then it composes the results to sub-queries into a
final result that is sent back to the user.

The main features of INDUS include:
(1) A clear distinction between data and the semantics of the data: this makes

it easy to define mappings from data source ontologies to user ontologies.
(2) User-specified ontologies: each user can specify his or her ontology and map-

pings from data source ontologies to the user ontology; there is no single
global ontology.

(3) A user-friendly ontology and mappings editor: this can be easily used to
specify ontologies and mappings; however, a predefined set of ontologies and
mappings are also available in a repository.
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(4) Knowledge acquisition capabilities: if the information requirements of an
algorithm for knowledge acquisition from data (e.g., learning algorithm) can
be formulated as statistical queries [10], then such an algorithm can be easily
linked to INDUS, making it an appropriate tool for information integration
as well as knowledge acquisition tasks.

Some of these features are shared by other systems developed independently,
e.g., BioMediator [25]. In the remaining of this section we describe the first
three features into more detail, while in the next section we show how INDUS
can be used to infer Naive Bayes models.

3.1 Ontology Extended Data Sources

Suppose that the data of interest are distributed over the data sources
D1, · · · , Dp, where each data source Di contains only a fragment of the whole
data D.

Let Di be a distributed data set described by the set of attributes
{Ai

1, · · · , Ai
n} and Oi = {Λi

1, · · · , Λi
n} an ontology associated with this data set.

The element Λi
j ∈ Oi corresponds to the attribute Ai

j and defines the type of
that particular attribute. The type of an attribute can be a standard type (e.g.,
types such as Integer or String; the enumeration of a set of values such as Prosite
motifs; etc.) or a hierarchical type, which is defined as an ordering of a set of
terms (e.g., the values of the attribute EC number) [6]. Of special interest to us
are isa hierarchies over the values of the attributes that describe a data source,
also called attribute value taxonomies (see Figure 2).

The schema Si of a data source Di is given by the set of attributes
{Ai

1, · · · , Ai
n} used to describe the data together with their respective types

{Λi
1, · · · , Λi

n} defined by the ontology Oi, i.e., S = {A1 : Λ1, · · · , An : Λn}.
We define an ontology-extended data source as a tuple Di =<Di, Si, Oi>, where
Di is the actual data in the data source, Si is the schema of the data source and
Oi is the ontology associated with the data source. In addition, the following
condition needs also to be satisfied: Di ⊆ Λi

1 × · · · ×Λi
n, which means that each

attribute Ai
j can take values in the set Λi

j defined by the ontology Oi.

3.2 User Perspective

Let <D1,S1,O1>,· · ·, <Dp, Sp, Op> be an ordered set of p ontology-extended
data sources and U a user that poses queries against the heterogeneous data
sources D1, · · · , Dp. A user perspective is given by a user ontology OU and a
set of semantic correspondences SC between terms in O1, · · · , Op, respectively,
and terms in OU . The semantic correspondences can be at attribute level (or
schema level), e.g., Ai

j : Oi ≡ AU
l : OU , or at attribute value level (or attribute

type level), e.g., x:Oi ≤ y:OU (x is semantically subsumed by y), x:Oi ≥ y:OU

(x semantically subsumes y), x:Oi ≡ y:OU (x is semantically equivalent to y),
x:Oi 6= y:OU (x is semantically incompatible with y), x:Oi ≈ y:OU (x is seman-
tically compatible with y) [7, 21].
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We say that a set of ontologies O1, · · · , Op are integrable according to a user
ontology OU in the presence of the semantic correspondences SC if there exist p
partial injective mappings ψ1, · · · , ψp from O1, · · · , Op, respectively, to OU with
the following two properties [9, 6]:

(a) For all x, y ∈ Oi, if x � y in Oi then ψi(x) � ψi(y) in OU (order preservation
property);

(b) For all x ∈ Oi and y ∈ OU , if (x : Oi op y : OU ) ∈ SC, then ψi(x) op y in
the ontology OU (semantic correspondence preservation property).

In general, the set of mappings can be (semi-automatically) inferred from the
set of semantic correspondences specified by the user [9].

3.3 Ontology-Extended Data Sources and Mappings Editor

In many practical data integration scenarios, the ontologies associated with data
sources are not explicitly specified in a form that can be manipulated by pro-
grams. In such cases, it is necessary to make explicit, the implicit ontologies
associated with the data sources before data integration can be performed. In
addition, users need to be able to specify the user ontology and the semantic
correspondences between user ontology and data source ontologies (used later to
generate a set of semantics preserving mappings). To address this need, we have
developed a user-friendly editor for editing data source descriptions (associated
with ontology extended data sources) and for specifying the relevant semantic
correspondences (a.k.a., interoperation constraints).

The current implementation of our data source editor provides interfaces for:

(a) Defining attribute types or isa hierarchies (attribute value taxonomies) or
modifying a predefined set of attribute types.

(b) Defining the schema of a data source by specifying the names of the at-
tributes and their corresponding types.

(c) Defining semantic correspondences between ontologies associated with the
data sources and the user ontology.

(d) Querying distributed, semantically heterogeneous data sources and retriev-
ing and manipulating the results according to the user-imposed semantic
relationships between different sources of data.

Figure 3 shows the interface that allows specification of semantic correspon-
dences between two data sources. The leftmost panel shows an ontology ex-
tended schema associated with a data source, which includes the hierarchical
type ontologies associated with attributes. The second panel shows the avail-
able semantic correspondences. The third panel shows the ontology extended
schema associated with the user data. The user can select a term in the first
schema, the desired semantic correspondence, and a term in the second schema.
The user-specified semantic correspondences that are used to infer consistent
mappings-specified are shown on the rightmost panel. The ontologies and map-
pings defined using the user-friendly editor in INDUS are stored in a repository
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Fig. 3. Editor for defining ontology-extended data sources and semantic correspon-
dences between two ontology-extended data sources

that is available to the query answering engine. INDUS contains a list of pre-
defined mappings (e.g., mappings from EC Number to GO Function or from
AA Sequence to AA Composition). Some of these functions are procedural (e.g.,
procedure that maps an AA Sequence to AA Composition), others represent
the enumeration of a list of mappings between values (e.g., EC Number to GO
Function). Furthermore, the user is given the freedom to define new mappings
or modify the existing ones according to his or her own needs. For example, if
the user wants to map AA Sequence to AA Composition and this mapping does
not exist in the repository, then the user can easily upload the corresponding
procedure through the editor interface. Also if a user decides to use a modified
version of a pre-defined mapping function, that particular function can be loaded
into the editor from the repository and edited according to the user needs.

4 Learning Classifiers for Assigning Protein Sequences
to Gene Ontology Functional Families

Caragea et al. [10] have shown that the problem of learning classifiers from
distributed data can be reduced to the problem of answering queries from dis-
tributed data by decomposing the learning task into an information integration
component in which the information needed for learning (i.e., sufficient statistics)
is identified and gathered from the distributed data and a hypothesis generation
component, which uses this information to generate a model.
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Assigning putative functions to novel proteins and the discovery of sequence
correlates of protein function are important challenges in bioinformatics. In what
follows, we will show how a biologist interested in learning models for predicting
the GO Function of unlabeled proteins based on data coming from SWISSPROT
and MIPS databases, can use the tools provided by INDUS to achieve this task.

4.1 Data and Problem Specification

We consider again the data sources described in our illustrative example. Because
the user is interested in learning to predict the GO Function of a protein based
on the information contained in the amino acid sequence, the data of interest
to the user can be seen as coming from two horizontal fragments as in Table 5
(where the data set D1 is assembled from SWISSPROT and the data set D2 is
assembled from MIPS).

Table 5. Horizontal data fragments that are of interest to a biologist

Protein ID Protein Sequence EC Number
P35626 MADLEAVLAD VSYLMAMEKS · · · 2.7.1.126 Beta-adrenergic...

D1 Q12797 MAQRKNAKSS GNSSSSGSGS · · · 1.14.11.16 Peptide-aspartate...
· · · · · · · · ·
AC AA Sequence MIPS Funcat

P32589 STPFGLDLGN NNSVLAVARN · · · 16.01 protein binding
D2 P07278 VSSLPKESQA ELQLFQNEIN · · · 16.19.01 cyclic nucleotide bind.

· · · · · · · · ·

Typically a user (e.g., a biologist) might want to infer probabilistic models
(e.g., Naive Bayes) from the available data. Using INDUS the user defines the
semantic correspondences between the data source attributes Protein ID in D1,
AC in D2 and the user attribute ID; Protein Sequence in D1, AA Sequence
in D2 and Sequence in OU ; and EC number in D1, MIPS catfun in D2 and
GO Function in the user perspective. Furthermore, the user can use predefined
mappings between the values of semantically similar attributes (e.g., mappings
from EC Number and MIPS Funcat to GO function) or modify existing mappings
according to the user’s view of the domain.

We will briefly review the Naive Bayes model, identify sufficient statistics
for learning Naive Bayes models from data and show how these sufficient statis-
tics can be computed from distributed, heterogeneous data using INDUS query
answering engine.

4.2 Classification Using a Probabilistic Model

Suppose we have a probabilistic model α for sequences defined over some al-
phabet Σ (which in our case is the 20-letter amino acid alphabet). The model
α specifies for any sequence S = s1, · · · , sn the probability Pα(S = s1, · · · , sn)
according to the probabilistic model α. We can construct such a probabilistic
model and explore it as a classifier using the following (standard) procedure:
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– For each class cj train a probabilistic model α(cj) using the sequences be-
longing to class cj .

– Predict the classification c(S) of a novel sequence S = s1, · · · , sn as given
by: c(S) = arg maxcj∈C Pα(S = s1, · · · , sn|cj)P (cj)

The Naive Bayes classifier assumes that each element of the sequence is in-
dependent of the other elements given the class label. Consequently, c(S) =
arg maxcj∈C Pα

∏n
i=1 Pα(s1|cj) · · ·Pα(sn|cj)P (cj). Note that the Naive Bayes

classifier for sequences treats each sequence as though it were simply a bag
of letters and it calculates the number of occurences σ(si|cj) of each letter in a
sequence given the class of the sequence as well as the number of sequences σ(cj)
belonging to a particular class cj . These frequency counts completely summarize
the information needed for constructing a Naive Bayes classifier, and thus, they
constitute sufficient statistics for Naive Bayes classifiers [10]. An algorithm for
learning probabilistic models from data can be described as follows:

(1) Compute the frequency counts σ(si|cj) and σ(cj).
(2) Generate the probabilistic model α given by these frequency counts.

The query answering engine receives queries such as q(σ(si|cj)) and q(σ(cj))
asking for frequency counts, it decomposes them into subqueries qk(σ(si|cj))
and qk(σ(cj)) according to the distributed data sources Dk (k = 1, p) and maps
them to the data source ontologies. Once the individual results are received back,
the query answering engine composes them into a final result by adding up the
counts returned by each data source. Thus, there is no need to bring all the data
to a central place. Instead queries are answered from distributed data sources
viewed from a user’s perspective.

Experimental results on learning probabilistic models for assigning protein se-
quences to gene ontology functional families are reported by our group in [1]. They
show that INDUS can be successfully used for integrative analysis of data from
multiple sources needed for collaborative discovery in computational biology.

5 Summary, Discussion and Further Work

5.1 Summary

We have presented INDUS, a federated, query-centric approach to answering
queries from distributed, semantically heterogeneous data sources. INDUS as-
sumes a clear separation between data and the semantics of the data (ontologies)
and allows users to specify ontologies and mappings between data source ontolo-
gies and user ontology. These mappings are stored in a mappings repository to
ensure their re-usability and are made available to a query answering engine.
The task of the query answering engine is to decompose a query posed by a
user into subqueries according to the distributed data sources and compose the
results into a final result to the intial user query.

In previous work [10] we have shown that learning algorithms can be decom-
posed into an information extraction component and a hypothesis generation
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component. This decomposition makes it possible to see learning algorithms as
pseudo-users that pose queries to the query answering engine in order to gather
the information that they need for generating the models that they output. Mod-
ular implementations of several learning algorithms have been linked to INDUS,
thus obtaining algorithms for learning classifiers from distributed, semantically
heterogeneous data sources. We have demonstrated how we can use INDUS to
obtain algorithms for learning Naive Bayes models for predicting the functional
classification of a protein based on training sequences that are distributed among
several distributed, semantically heterogeneous data sources.

An initial version of INDUS software and documentation are available at:
http://www.cild.iastate.edu/software/indus.html.

5.2 Discussion

There is a large body of literature on information integration and systems for in-
formation integration. Davidson et al. [12] and Eckman [13] survey alternative
approaches to data integration. Hull [19] summarizes theoretical work on data in-
tegration. Several systems have been designed specifically for the integration of bi-
ological data sources. It is worth mentioning SRS [15], K2 [29], Kleisli [11], IBM’s
DiscoveryLink [18], TAMBIS [28], OPM [22], BioMediator [25], among others.

Systems such as SRS and Kleisli do not assume any data model (or schema).
It is the user’s responsability to specify the integration details and the data
source locations, when posing queries. Discovery Link and OMP rely on schema
mappings and the definition of views to perform the integration task. TAMBIS
and BioMediator make a clear distinction between data and the semantics of
the data (i.e., ontologies) and take into account semantic correspondences be-
tween ontologies (both at schema level and attribute level) in the process of data
integration.

Most of the above mentioned systems assume a predefined global schema
(e.g., Discovery Link, OMP) or ontology (e.g., TAMBIS), with the notable ex-
ception of BioMediator, where users can easily tailor the integrating ontology to
their own needs. This is highly desirable in a scientific discovery setting where
users need the flexibility to specify their own ontologies.

While some of these systems can answer very complex queries (e.g., Bio-
Mediator), others have limited query capabilities (e.g, SRS which is mainly an
information retrieval system). Furthermore, for some systems it is very easy to
add new data sources to the system (e.g., SRS or Kleisli, where new data source
wrappers can be easily developed), while this is not easy for other biological in-
tegration systems (e.g., Discovery Link or OMP, where the global schema needs
to be reconstructed).

Finally, while some systems (e.g., SRS, BioMediator) provide support for
biological information retrieval tools (such as BLAST or FASTA), to the best of
our knowledge none of them are linked to machine learning algorithms that can
be used for data analysis, classification or prediction.

On a different note, there has been a great deal of work on ontology develop-
ment environments. Before developing INDUS editor, off-the-shelf alternatives
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such as IBM’s Clio [14] or Protege [24] were considered, but they proved in-
sufficient for our needs. Clio provides support only for schema mapping, but
not for hierarchical ontology mapping. Protege is a purely knowledge base con-
structing tool (including ontology mappings). It does not provide support for
the association of ontologies with data, data management or queries over the
data. Furthermore, neither of these systems allow procedural mappings (a.k.a.,
conversion functions), which are essential for data integration.

Of particular interest to ontology-based information integration is work on
modular ontolgies. Ontolingua [17, 16] and ONION [23] support manipulation of
modular ontologies. Calvanese et al. [8] proposed a view-based mechanism for
ontology integration. However, a global ontology is typically unavailable in infor-
mation integration from loosely linked, distributed, semantically heterogeneous
data. We have explored a description logic based approach to modular design and
reuse of ontologies, specification of inter-ontology semantic correspondences, and
mappings [4]. However, support for asserting and reasoning with partially spec-
ified semantic correspondences between local ontologies and localized reasoning
in distributed description logic is lacking.

In terms of learning from distributed, semantically heterogeneous data, while
there is a lot of work on distributed learning (see [20] for a survey), there has
been little work on learning classifiers from semantically heterogeneous, dis-
tributed data. Ontology extended relational algebra [6] provides a framework
within which users can specify semantic correspondences between names and
values of attributes and obtain answers to relational queries. This approach has
been extended in our work on INDUS to handle more general statistical queries
across semantically heterogeneous data sources [9].

5.3 Further Work

Our approach has been applied successfully to scenarios where the ontologies
associated with some attributes are given by tree structured isa hierarchies.
It is desirable to extend our work to the more general case where the hier-
archies are directed acyclic graphs, as this case is more often encountered in
practice.

As Protege [24] is the most popular tool for creating knowoledge bases, in
the future INDUS will allow users to import ontologies that are edited using
Protege.

In our current framework, we assume that each data source can be seen as
a single table. It is of interest to extend INDUS to scenarios where each data
sources can be conceptually viewed as a set of inter-related (possibly hierar-
chical) tables. This requires a framework for asserting semantic correspondences
between tables and relations across multiple ontologies (see [14]). In this context,
recent work on description logics for representing and reasoning with ontologies
[3, 27], distributed description logics [7] as well as ontology languages, e.g., web
ontology language (OWL) [26] are of interest. These developments, together with
our work on INDUS, set the stage for making progress on the problem of inte-
gration of a collection of semantically heterogeneous data sources where each
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data source can be conceptually viewed as a set of inter-related tables in its full
generality.
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