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Abstract. There is an urgent need for sound approaches to integrative and col-
laborative analysis of large, autonomous (and hence, inevitably semantically het-
erogeneous) data sources in several increasingly data-rich application domains.
In this paper, we precisely formulate and solve the problem of learning classifiers
from such data sources, in a setting where each data source has a hierarchical
ontology associated with it and semantic correspondences between data source
ontologies and a user ontology are supplied. The proposed approach yields al-
gorithms for learning a broad class of classifiers (including Bayesian networks,
decision trees, etc.) from semantically heterogeneous distributed data with strong
performance guarantees relative to their centralized counterparts. We illustrate
the application of the proposed approach in the case of learning Naive Bayes
classifiers from distributed, ontology-extended data sources.

1 Introduction

The availability of large amounts of data in many application domains has resulted in
unprecedented opportunities for data driven knowledge discovery. However, the mas-
sive size, the distributed nature of the data sources and the inevitability of semantic dif-
ferences between independently managed data repositories present significant hurdles
in our ability to fully exploit such data sources in knowledge discovery. The Semantic
Web enterprise [1] is aimed at supporting seamless and flexible access and use of se-
mantically heterogeneous data sources by associating meta-data (e.g., ontologies) with
data available in many application domains. The work described in this paper is aimed
at the development of algorithms for learning concise and accurate classifiers from se-
mantically heterogeneous, distributed data sets for applications in which integration of
data from multiple sources into a centralized repository is not feasible (e.g., because of
the enormous size of the data sources).

The problem that we seek to address is best illustrated by an example: Consider two
academic departments that independently collect information about their Students in
connection to Internships. Suppose a data set D1 collected by the first department is
described by the attributes ID, Advisor Position, Student Level, Monthly Income and In-
ternship and it is stored into a table as the one corresponding to D1 in Table 1. Suppose
a second data set D2 collected by the second department is described by the attributes
Student ID, Advisor Rank, Student Program, Hourly Income and Intern and it is stored
into a table as the one corresponding to D2 in Table 1.
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Consider a user, e.g., a university statistician, who wants to draw some inferences
about the two departments of interest from the user’s perspective, where the represen-
tative attributes are Student SSN, Advisor Status, Student Status, Yearly Income and
Internship. For example, the statistician may want to infer a model that can be used to
find out whether a student in the statistician’s data (DU in Table 1) has completed an
internship or not.

Table 1. Student data collected by two departments
and a statistician

ID Adv.Pos. St.Level M.Inc. Intern.
34 Associate M.S. 1530 yes

D1 49 None 1st Year 600 no
23 Professor Ph.D. 1800 no

SID Adv.Rank St.Prog. H.Inc. Intern
1 Assistant Master 14 yes

D2 2 Professor Doctoral 17 no
3 Associate Undergrad 8 yes

SSN Adv.Status St.Status Y.Inc. Intern
475 Assistant Master 16000 ?

DU 287 Professor Doctorate 18000 ?
530 Associate Undergrad 7000 ?

This requires the ability to perform
queries over the two data sources
associated with the departments of
interest from the user’s perspective
(e.g., number of doctorate students
who did an internship). However, we
notice that the two data sources differ
in terms of semantics from the user’s
perspective. In order to cope with this
heterogeneity of semantics, the user
must observe that the attributes ID in
the first data source and Student ID in
the second data source are similar to
the attribute Student SSN in the user
data; the attributes Advisor Position
and Advisor Rank are similar to the
attribute Advisor Status; the attributes Student Level and Student Program are similar to
the attribute Student Status, etc.

To establish the correspondence between values that two similar attributes can take,
we need to associate types with attributes and to map the domain of the type of an
attribute to the domain of the type of the corresponding attribute (e.g., Hourly Income
to Yearly Income or Student Level to Student Status). We assume that the type of an
attribute can be a standard type such as String, Integer, etc. or it can be given by a
simple hierarchical ontology. Figure 1 shows examples of attribute value hierarchies
for the attributes Student Level, Student Program, and Student Status in the data sources
D1, D2 and the user data DU , respectively. Examples of semantical correspondences
in this case could be: Graduate in D2 is equivalent to Grad in DU , 1st Year in D1 is
equivalent to Freshman in DU , M.S. in D2 is smaller than (or hierarchically below)
Master in DU , etc.

In this paper, our main focus is on learning classifiers from such semantically het-
erogeneous data sources. Learning typically requires extracting relevant statistics from
data. When the data sources are semantically heterogeneous, because of differences in
the levels of abstraction at which data in different data sources are specified relative to
the user’s perspective, we are presented with the problem of learning classifiers from
partially specified data. Previous work [2] has shown how to exploit a set of hierarchi-
cally structured ontologies in the form of isa hierarchies over attribute values in a single
data source to learn classifiers from partially specified data. Against this background,
this paper aims to address the problem of learning concise and accurate classifiers from
semantically heterogeneous distributed data sources.
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Fig. 1. Hierarchical ontologies associated with the attributes Student Level, Student Program and
Student Status that appear in the two data sources of interest D1 and D2 and in user data DU ,
respectively

The rest of the paper is organized as follows: Section 2 provides a more precise for-
mulation of the problem of learning compact and concise classifiers from semantically
heterogeneous distributed data; Section 3 presents a general approach to solving this
problem, illustrates its application in the case of Naive Bayes classifiers and presents
theoretical guarantees associated with the proposed algorithm; and Section 4 concludes
with a summary and discussion.

2 Problem Formulation

2.1 Ontology-Extended Data Sources

Suppose that the data of interest are distributed over the data sources D1, · · · ,Dp, where
each data source Di contains only a fragment of the whole data D. Two common types
of data fragmentation are horizontal fragmentation, where each data fragment contains
a subset of data tuples and vertical fragmentation, where each data fragment contains
subtuples of data tuples [3].

Let Di be a distributed data source described by the set of attributes {Ai
1, · · · , Ai

n}
and Oi = {Λi

1, · · · , Λi
n} a simple ontology associated with this data. The element Λi

j ∈
Oi corresponds to the attribute Ai

j and describes the type of that particular attribute. The
type of an attribute can be a (possibly restricted) standard type (e.g., Positive Integer or
String) or a hierarchical type. A hierarchical type is defined as an ordering of a set of
terms [4] (e.g., the values of an attribute). Of special interest to us are tree structured
isa hierarchies over the values of the attributes that describe a data source, also called
attribute value taxonomies (see Figure 1).

The schema Si of a data source Di is given by the set of attributes {Ai
1, · · · , Ai

n}
used to describe the data together with their respective types {Λi

1, · · · , Λi
n} de-

scribed by the ontology Oi. We define an ontology-extended data source as a tuple
D〉 =<Di, Si, Oi>, where Di is the actual data in the data source, Si is the schema of
the data source and Oi is the ontology associated with the data source.

2.2 Complete Data from a User Perspective

Let <D1,S1,O1>,· · ·, <Dp, Sp, Op> be an ordered set of p ontology-extended data
sources and U a user that poses queries against these heterogeneous data sources. A
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user perspective is given by a user ontology OU and a set of interoperation constraints
IC that define correspondences between terms in O1, · · · , Op and terms in OU . The
constraints can take one of the forms: x:Oi ≡ y:OU (x is semantically equivalent to
y), x:Oi ≤ y:OU (x is semantically below y), x:Oi ≥ y:OU (x is semantically above
y) [4]. The set of constraints specified by the user can be used to (semi-automatically)
infer a set of mappings between data source ontologies O1, · · · , Op and a user ontology
OU .

Let Γ = Γ (OU ) be a cut through the user ontology. If ΛU
j ∈ OU is a standard

(linear) type, then the cut Γ (ΛU
j ) through the domain ΛU

j is the domain itself. However,
if ΛU

j is a hierarchical type, then Γ (ΛU
j ) defines the level of abstraction at which the

user queries are formulated. For example, {Undergrad,Master, Ph.D.} is a level
of abstraction in the hierarchy associated with the attribute Student Status in the user
perspective in our example (Figure 1). Any value above this cut implies a higher level of
abstraction (e.g., Grad), while a value below the cut (e.g., ABD) implies a lower level
of abstraction, when used to specify instances. A user level of abstraction Γ determines
a level of abstraction Γi = Γ (Oi) in each distributed data source Di (by applying the
corresponding mappings). Let x = (v(Ai

1), · · · , v(Ai
n)) be an instance in Di. We say

that the instance x is:

– Fully specified if for all 1 ≤ j ≤ n, the value v(Ai
j) is on or below the cut Γi. If

v(Ai
j) is on the cut Γi, we say that v(Ai

j) is an exactly specified value; if v(Ai
j) is

below the cut Γi, we say that v(Ai
j) is an over-specified value.

– Partially specified if there exist at least one attribute value v(Ai
j) which is above

the cut Γi. We say that v(Ai
j) is an under-specified value.

Given a cut Γ through the user ontology, the available data sources D1, · · · ,Dp could
be seen as a complete virtual data set D, whose instances are specified at the level of
abstraction corresponding to the cut Γ . More precisely, D is defined as the multi-set
union (i.e., duplicates are allowed) of the distributed instances, appropiately mapped to
the user ontology by mapping each attribute value to the corresponding value in the user
ontology. Note that the complete data cannot always be constructed in practice (e.g.,
when the user cut results in under-specified data in the distributed data sources), thus
making impossible the application of standard centralized machine learning algorithms.
However, under specific assumptions about the distribution of the under-specified data
(e.g., all the under-specified values are equally likely), certain statistics about data (e.g.,
counts of data) can be easily estimated.

2.3 Learning Compact and Accurate Classifiers from Distributed,
Ontology-Extended Data Sources

The problem of learning classifiers from data can be summarized as follows [5]: Given
a data set D of labeled examples, a hypothesis class H , and a performance criterion
P , the learning algorithm L outputs a hypothesis h ∈ H that optimizes P . In pattern
classification applications, h is a classifier (e.g., a Naive Bayes classifiers, a Decision
Tree, a Support Vector Machine, etc.). Under appropriate assumptions, the resulting
classifier is likely to accurately classify unlabeled instances.
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A distributed setting typically imposes a set of constraints Z on the learner that are
absent in the centralized setting. In this paper, we assume that the constraints Z prohibit
the transfer of raw data from each of the sites to a central location while allowing the
learner to obtain certain statistics from the individual sites (e.g., counts of instances that
have specified values for some subset of attributes). Thus, the problem of learning com-
pact and accurate classifiers from distributed, semantically heterogeneous data sources
can be formulated as follows: Given a collection of ontology-extended data sources
<D1, S1, O1>,· · ·,<Dp, Sp, Op>, a user perspective (OU , IC), a set of constraints Z,
a hypothesis class H and a performance criterion P , the task of the learner Ld is to
output a hypothesis h ∈ H that optimizes P using only operations allowed by Z.

We say that an algorithm Ld for learning from distributed, semantically heteroge-
neous data sets D1, · · · ,Dp is exact relative to its centralized counterpart L if the hy-
pothesis produced by Ld is identical to that obtained by L from the complete data set
D obtained by appropriately integrating the data sets D1, · · · ,Dp according to the user
perspective, as defined in the previous section.

3 Sufficient Statistics Based Solution

We want to design algorithms for learning compact and accurate classifiers from dis-
tributed, semantically heterogeneous data sources. Our approach is based on a general
strategy for transforming algorithms for learning classifiers from data into algorithms
for learning classifiers from distributed data [6].

This strategy relies on the de-

p

     
Statistical Query

Decomposition
Query 

Answer
Composition

q

q

1

2

Query Formulation

User Ontology O

D

D
2

1

User Ontology O

, O

, O

1

2

O1

O2

Mappings

Dq

Hypothesis Generation Result 

Oq 

Learning Algorithm

M(Oi−>O)

...

p, O
p

Op

Fig. 2. Learning from semantically heterogeneous data
sources

composition of the learning task
into two components [7]: an infor-
mation gathering component, in
which the information needed for
learning is identified and gathered
from the distributed data sources,
and a hypothesis generation com-
ponent which uses this informa-
tion to generate or refine a par-
tially constructed hypothesis. The
information gathering component
involves a procedure for specify-
ing the information needed for learning as a query and a procedure for answering this
query from distributed data. The procedure for answering queries from distributed data
entails the decomposition of a posed query into sub-queries that the individual data
sources can answer, followed by the composition of the partial answers into a final
answer to the initial query. If the distributed data sources are also semantically hetero-
geneous, mappings between the data sources ontologies and a user ontology need to be
applied in the process of query answering to reconcile the semantical differences [6]
(Figure 2).

The strategy described can be applied to a large class of learning algorithms (e.g.,
naive Bayes, decision trees, Bayesian networks, etc.). To illustrate it, we will use Naive
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Bayes algorithms as an example. Zhang and Honavar [8] proposed an algorithm (AVT-
NBL) for learning compact and accurate Naive Bayes classifiers from a data set in the
presence of an associated ontology. In the remaining of this section we identify the
information requirements (sufficient statistics) of AVT-NBL algorithm, and we show
how to transform it into an algorithm for learning compact and accurate Naive Bayes
classifiers from distributed, semantically heterogeneous data sources.

3.1 Sufficient Statistics for AVT-NBL

A statistic s(D) is called a sufficient statistic for a parameter θ if s(D) captures all
the information about the parameter θ contained in the data D [9]. Caragea et al. [6]
generalized this notion of a sufficient statistic for a parameter θ to yield the notion
of a sufficient statistic sL(D) for learning a hypothesis h using a learning algorithm
L applied to a data set D. Thus, a statistic sL(D) is a sufficient statistic for learning
a hypothesis h using a learning algorithm L applied to a data set D if there exists a
procedure that takes sL(D) as input and outputs h.

Consider for example, the Naive Bayes classifier that operates under the assump-
tion that each attribute is independent of the others given the class. Thus, the joint
class conditional probability of an instance can be written as the product of individual
class conditional probabilities corresponding to each attribute defining the instance. The
Bayesian approach to classifying an instance x = {v1, · · · , vn} is to assign it to the most
probable class cMAP (x). Thus, we have: cMAP (x) = argmax

cj∈C
p(v1, · · · , vn|cj)p(cj) =

argmax
cj∈C

p(cj)
∏

i

p(vi|cj). Therefore, the task of the Naive Bayes Learner (NBL) is to

estimate the class probabilities p(cj) and the class conditional probabilities p(vi|cj), for
all classes cj ∈ C and for all attribute values vi ∈ dom(Ai). These probabilities can
be estimated from a training set D using standard probability estimation methods [5]
based on relative frequency counts. We denote by σ(vi|cj) the frequency count of the
value vi of the attribute Ai given the class label cj , and by σ(cj) the frequency count
of the class label cj in a training set D. These frequency counts completely summarize
the information needed for constructing a Naive Bayes classifier from D, and thus, they
constitute sufficient statistics for Naive Bayes learner.

While the sufficient statistics required for constructing a classifier can be computed
in one step in some simple cases (e.g., Naive Bayes), in general, this may require inter-
leaved execution of the information gathering and hypothesis generation components of
the algorithm over several steps with each step yielding refinement sufficient statistics
that are used to refine a partially construted classifier. More precisely, sL(D,hi → hi+1)
is a sufficient statistic for the refinement of hi into hi+1 if there exists a procedure R
that takes hi and sL(D,hi → hi+1) as inputs and outputs hi+1 [3].

We next identify the refinement sufficient statistics for the AVT-NBL algorithm
[8]. AVT-NBL efficiently expoits taxonomies defined over values of each attribute
in the data set to find a Naive Bayes classifier that optimizes the Conditional
Minimum Description Length (CMDL) score [10]. The CMDL score provides a
means of trading off the error of the classifier against its complexity. If we denote by
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|D| the size of the data set, Γ a cut through the AVT associated with this data,
h = h(Γ ) the Naive Bayes classifier corresponding to the cut Γ , size(h) the
number of probabilities used to describe h and CLL(h|D) the conditional log-
likelihood of the hypothesis h given the data D, then the CMDL score can be writ-

ten as CMDL(h|D) =
(

log |D|
2

)
size(h) − |D|CLL(h|D). Here, CLL(h|D) =

|D|
|D|∑

i=1

log ph(ci|vi1 · · · vin), where ph(ci|vi1 · · · vin) represents the conditional prob-

ability assigned to the class ci ∈ C associated with the example xi = (vi1, · · · , vin).
Because each attribute is assumed to be independent of the others given the class, we

can write CLL(h|D) = |D|
|D|∑

i=1

log

(
p(ci)

∏
j ph(vij |ci)

∑|C|
k=1 p(ck)

∏
j ph(vij |ck)

)
.

AVT-NBL starts with a Naive Bayes classifier corresponding to the most abstract cut
in the attribute value taxonomy associated with the data (most general classifier) and it
iteratively refines the cut by searching in a greedy fashion through the space of possible
cuts, until a best cut, according to the performance criterion, is found. More precisely,
let hi be the current hypothesis corresponding to the current cut Γ (i.e., hi = h(Γ )) and
Γ ′ a (one-step) refinement of Γ (see Figure 3).

Let h(Γ ′) be the Naive Bayes Λ

ΓCut

ΓCut ’

AVT Λ AVT

Fig. 3. The refinement of a cut Γ through an attribute
value taxonomy Λ

classifier corresponding to the cut
Γ ′ and let CMDL(Γ |D) and
CMDL(Γ ′|D) be the CMDL
scores corresponding to the hy-
potheses h(Γ ) and h(Γ ′), re-
spectively. If CMDL(Γ ) >
CMDL(Γ ′) then hi+1 = h(Γ ′),
otherwise hi+1 = h(Γ ). This
procedure is repeated until the differences |CMDL(Γ ) − CMDL(Γ ′)| approaches
zero for all (one-step) refinements Γ ′ of Γ . The last hypothesis constructed is the out-
put of the AVT-NBL algorithm.

Therefore, the final classifier that the AVT-NBL outputs is obtained from the most
general classifier through a sequence of refinement operations. Each refinement oper-
ation corresponds to the refinement of the current cut and it is based on the CMDL
score. Thus, the sufficient statistics for learning AVT-NBL classifiers can be seen as
refinement sufficient statistics, which are identified below.

Let hi be the current hypothesis corresponding to a cut Γ and CLDM(Γ |D) its
score. If Γ ′ is a refinement of the cut Γ , then the refinement sufficient statistics needed
to construct hi+1 are given by the frequency counts needed to construct h(Γ ′) together
with the probabilities needed to compute CLL(h(Γ ′)|D) (calculated once we know
h(Γ ′)). If we denote by domΓ ′(Ai) the domain of the attribute Ai when the cut Γ ′ is
considered, then the frequency counts needed to construct h(Γ ′) are σ(vi|cj) for all
values vi ∈ domΓ ′(Ai) of all attributes Ai and for all class values cj ∈ domΓ ′(C), and
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σ(cj) for all class values cj ∈ domΓ ′(C). To compute CLL(h(Γ ′)|D) the products∏
j ph(Γ ′)(vij |ck) for all examples xi = (vi1, · · · , vin) and for all classes ck ∈ C are

needed.
The step i + 1 of the algorithm corresponding to the cut Γ ′ can be briefly described

in terms of information gathering and hypothesis generation components as follows:

1) Compute σ(vi|cj) and σ(cj) corresponding to the cut Γ ′ from the training data D
2) Generate the NB classifier h(Γ ′)
3) Compute

∏
j ph(Γ ′)(vij |ck) from D

4) Generate the hypothesis hi+1

3.2 Naive Bayes Classifiers from Semantically Heterogeneous Data

Let <D1, S1, O1>,· · ·,<Dp, Sp, Op> be a set of p ontology-extended data sources and
OU a user ontology. Let Γ be a cut through the user ontology.

The step i + 1 (corresponding to the cut Γ ′ in the user ontology) of the algorithm
for learning Naive Bayes classifiers from distributed, semantically heterogeneous data
sources D1, · · · ,Dp is similar to the step i + 1 of the algorithm for learning from a
single data set (described above), except that the sufficient statistics are computed from
the distributed data sources D1, · · · ,Dp.

Thus, we have reduced the problem of learning Naive Bayes classifiers from dis-
tributed, ontology-extended data sources, to the problem of gathering the statistics
sL(D,hi → hi+1) from such data sources. Next, we show how to answer statistical
queries q(sL(D,hi → hi+1)) that return statistics sL(D,hi → hi+1), from horizon-
tally and vertically fragmented distributed, semantically heterogeneous data sources.

Horizontally Fragmented Data. If the data are horizontally fragmented, the examples
are distributed among the data sources of interest. Thus, the user query q(σ(vi|cj)) can
be decomposed into the sub-queries q1(σ(v1

i |c1
j )), · · · , qp(σ(vp

i |cp
j )) corresponding to

the distributed data sources D1, · · · ,Dp, where vk
i and ck

j are the values in Ok that map
to the values vi and cj in OU . Once the queries q1(σ(v1

i |c1
j )), · · · , qp(σ(vp

i |cp
j )) have

been answered, the answer to the initial query can be obtained by adding up the indi-
vidual answers into a final count σ(vi|cj) = σ(v1

i |c1
j ) + · · · + σ(vp

i |cp
j ). Similarly, we

compute the counts σ(cj). Once the counts σ(vi|cj) and σ(cj) have been computed, the
Naive Bayes classifier h′ = h(Γ ′) corresponding to the cut Γ ′ can be generated. The
next query that needs to be answered is q(

∏
j ph′(vij |ck)) corresponding to each (vir-

tual) example xi = (vi1, · · · , vin) (in the complete data set) and each class ck based on
the probabilities that define h′. Because all the attributes of an example are at the same
location in the case of the horizontal data fragmentation, each query q(

∏
j ph′(vij |ck))

is answered by the data source that contains the actual example xi. When all such
queries have been answered, the score CMDL can be computed and thus the hypothe-
sis that will be output at this step can be generated.

If any of the values vk
i or ck

j are partially specified in Ok, we “fill in” the partially
specified values and increment the count accordingly. Traditional methods for dealing
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with missing data, as well as new statistical methods designed specifically for partially
specified data can be used to “fill in” partially specified values. In this paper, we assume
that the user specifies a distribution over partially specified values or that such a distri-
bution is inferred based on the corresponding specified values in a different data source.

Vertically Fragmented Data. If the data is vertically fragmented, the attributes are
distributed among the data sources of interest, but all the values of an attribute are found
at the same location. Therefore, a user query q(σ(vi|cj)) can be answered by a particular
data source that contains the attribute Ai. However, the user query q(

∏
j ph(vij |ck)) is

decomposed into sub-queries according to the distributed data sources and the final
answer is obtained by multiplying the individual answers.

3.3 Theoretical Analysis

Theorem 1 (Exactness). The algorithm for learning Naive Bayes classifiers from a set
of horizontally (or vertically) fragmented distributed, ontology-extended data sources
<D1,S1,O1>,· · ·,<Dp,Sp,Op>, from a user perspective <OU , IC>, in the presence
of the inferred mappings ψ1, · · · , ψp, is exact with respect to the algorithm for learn-
ing Naive Bayes classifiers from the complete data set D, obtained (in principle) by
integrating the data sources D1, · · · ,Dp according to mappings ψ1, · · · , ψp.

Proof sketch: Because of the information gathering and hypothesis generation decom-
position of the the AVT-NBL algorithm, the exactness of the algorithm for learning
from distributed, semantically heterogeneous data sources depends on the correctness
of the procedures for decomposing a user query q into sub-queries q1, · · · , qp corre-
sponding to the distributed data sources D1, · · · ,Dp and for composing the individual
answers to the queries q1, · · · , qp into a final answer to the query q. More precisely,
we need to show that the condition q(D) = C(q1(D1), · · · , qp(Dp)) (exactness condi-
tion) is satisfied, where q(D), q1(D1), · · · , qp(Dp) represent the answers to the queries
q, q1, · · · , qp, respectively, and C is a procedure for combining the individual answers.

When data is horizontally fragmented the query q(σ(vi|cj)) is decomposed into sub-
queries q1(σ(v1

i |c1
j )), · · · , qp(σ(vp

i |cp
j )) corresponding to the distributed data sources

D1, · · · ,Dp and the final answer is σ(vi|cj)(D1, · · · ,Dp) = σ(v1
i |c1

j )(D1) + · · · +
σ(vp

i |cp
j )(Dp). If we denote by σ(vi|cj)(D) the answer to the query q(σ(vi|cj)) posed

to the complete data set D, we need to show that σ(vi|cj)(D1, · · · ,Dp) = σ(vi|cj)(D).
This is obviously true when the data sources D1, · · · ,Dp are homogeneous because the
addition operation is associative. The equality holds also when the data sources are het-
erogeneous, due to the way we compute the counts (by simulating the construction of
the complete data set D). A similar argument can be made for the exactness condition
in the case of the query q(σ(cj)). Because the answer to the query q(

∏
j ph(vij |ck)) is

obtained from a single data source and no combination procedure is needed, the exact-
ness condition is trivially satisfied in this case. Similarly we can prove the exactness of
the algorithm for leaning from vertically fragmented distributed data, which completes
the proof of the exactness theorem.
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4 Summary and Discussion

There is an urgent need for algorithms for learning classifiers from distributed, au-
tonomous (and hence inevitably, semantically heterogeneous) data sources in several
increasingly data-rich application domains such as bioinformatics, environmental in-
formatics, medical informatics, social informatics, security informatics, among others.

In this paper, we have precisely formulated the problem of learning classifiers from
distributed, ontology-extended data sources, which make explicit (the typically implicit)
ontologies associated with autonomous data sources. User-specified semantic corre-
spondences (mappings between the data source ontologies and the user ontology) are
used to answer statistical queries that provide the information needed for learning clas-
sifiers, from such data sources. The resulting framework yields algorithms for learning
classifiers from distributed, ontology-extended data sources. These algorithms are prov-
ably exact relative to their centralized counterparts in the case of the family of learning
classifiers for which the information needed for constructing the classifier can be bro-
ken down into a set of queries for sufficient statistics that take the form of counts of
instances satisfying certain constraints on the values of the attributes. Such classifiers
include decision trees, Bayesian network classifiers, classifiers based on a broad class
of probabilistic models including generalized linear models, among others. We have
illustrated the proposed approach in the case of learning Naive Bayes classifiers from
horizontally fragmented distributed, ontology-extended data sources.

There is a large body of literature on distributed learning (See [11] for a survey).
However, with the exception of [3], most algorithms for learning classifiers from dis-
tributed data do not offer performance guarantees (e.g., exactness) relative to their
centralized counterparts. Integration of semantically heterogeneous data has received
significant attention in the literature (see [12] for a survey). Most of this work has
focused on bridging semantic differences between schemas and ontologies associated
with the individual data sources and answering (typically relational) queries from such
data sources.

Caragea et al. [6] present an approach to semantic integration of data from multi-
ple sources when data are described in terms of different ontologies and briefly outline
some ideas on extending this approach to solve the problem of learning from seman-
tically heterogeneous data. In contrast, this paper precisely formulates and provides a
solution to this problem in the important special case where each data source has an
AVT ontology associated with it.

The algorithm and the analysis presented in this paper, together with results like
those presented in [6] represent important steps towards a problem of significant current
interest that cuts across multiple areas of AI (such as informtion integration, machine
learning, knowledge representation, etc.).
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