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ABSTRACT
This paper discusses visual methods that can be used to
understand and interpret the results of classi�cation using

support vector machines (SVM) on data with continuous
real-valued variables. SVM induction algorithms build pat-
tern classi�ers by identifying a maximal margin separat-
ing hyperplane from training examples in high dimensional
pattern spaces or spaces induced by suitable nonlinear ker-
nel transformations over pattern spaces. SVM have been

demonstrated to be quite e�ective in a number of practical
pattern classi�cation tasks. Since the separating hyperplane
is de�ned in terms of more than two variables it is neces-
sary to use visual techniques that can navigate the viewer
through high-dimensional spaces. We demonstrate the use
of projection-based tour methods to gain useful insights into

SVM classi�ers with linear kernels on 8-dimensional data.

Keywords
Dynamic graphics, visualization, machine leaning, classi�-
cation, support vector machines, tours, classi�cation, mul-
tivariate data

1. INTRODUCTION
Support vector machines [9, 15] o�er a theoretically well-

founded approach to automated learning of pattern clas-
si�ers for mining labeled data sets. They have also been
shown to build accurate rules in complex classi�cation prob-
lems, for example, gene expression analysis using microarray

data [2], and text classi�cation [13]. However the algorithms
are quite complex and the solutions sometimes diÆcult to
understand. For many data mining tasks understanding a
classi�cation rule is as important as the accuracy of the rule
itself.
Graphical methods, especially dynamic graphics, provide
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an important complement to automated classi�cation algo-
rithms in data mining. Pictures can provide easy to digest
summaries of complex information. In classi�cation prob-
lems, graphics can help us understand the nature of the

boundaries between classes and the relative importance of
variables for di�erentiating classes. We explore the use of
dynamic graphics methods called tours [1, 8, 7, 4] to exam-
ine results from SVM.
Tours provide mechanisms for displaying continuous se-

quences of low-dimensional linear projections of data in high-

dimensional Euclidean spaces. They are generated by con-
structing an orthonormal basis that represents a linear sub-
space. Tour methods are most appropriate for data that
contain continuous real-valued variables. They are useful
for understanding patterns, both linear and non-linear, in
multi-dimensional data. However, because tours are de�ned

as projections (analogous to an object shadow) rather than
slices some non-linear structures may be diÆcult to detect.
Tours are also limited to applications where the number of
variables is less than 20 because otherwise the space is too
large to randomly explore within a reasonable amount of
time. Hence when we have more than 20 variables, it is im-

portant to perform some dimensionality reduction prior to
applying tour methods.
This paper describes the use of tour methods for exploring

the results of SVM for an application on classifying olive
oils according to production region. The data set is one
that the authors have some experience in working with. It

is interesting because it is a multi-class data set and the
boundaries between classes are both simple and complex.

2. METHODS

2.1 Support Vector Machines
Let E = f(x1; y1); (x2; y2); � � � ; (xl; yl)g, where xi 2 RN

and yi 2 f�1; 1g be a set of training examples for a 2-
category classi�er. Suppose the training data is linearly
separable. Then it is possible to �nd a hyperplane that
partitions the N -dimensional pattern space into two half-
spaces R+ and R�. The set of such hyperplanes (the solu-
tion space) is given by fw;b(x) = sign(w �x+b). SVM selects
among the hyperplanes that correctly classify the training
set, the one that minimizes kwk2, which is the same as the



hyperplane for which the margin of separation between the
two classes, measured along a line perpendicular to the hy-

perplane, is maximized.
If the goal of the classi�cation problem is to �nd a lin-

ear classi�er for a non-separable training set, a new set of
weights, called slack weights (measuring the extent to which
the constraints are violated) can be introduced. In this case
the margin is maximized, paying a penalty proportional to

the cost of constraint violation. The decision function is
similar to the one for the linearly separable problem.
If the training examples are not linearly separable, the

SVM works by mapping the training set into a higher dimen-
sional feature space using an appropriate kernel function  .
Therefore, the problem can be solved using linear decision

surfaces in the higher dimensional space. Any consistent
training set (i.e., one in which no instance is assigned more
than one class label) can be made separable with an appro-
priate choice of a feature space of a suÆciently high dimen-
sionality. However, in general, this can cause the learning
algorithm to over�t the training data resulting in poor gen-

eralization. In this paper, though, we concentrate on linear
classi�ers, but discuss extensions to non-linear cases in the
�nal section.
For the experiments in this paper, we used SVMlight3:50

[14] implementation of SVM algorithm, that can handle

large data sets, as opposed to the traditional quadratic opti-
mization programs that have stringent limitations regarding
memory and time. SVMlight is currently one of the most
widely used implementations of SVM algorithm.

2.2 Tours
Tours are dynamic views of data provided by the manipu-

lation of low-dimensional (D) projections of high-dimensional
(N) spaces, where N is the number of variables. The grand
tour, originally proposed by Asimov [1], consists of a vi-
sual presentation of randomly determined low-dimensional
projections. A grand tour path is dense in the set of all un-
oriented D-dimensional planes in RN , meaning that, if the
viewer could watch until the end of time she would see every
possible D-dimensional projection of the data. Technically,

we de�ne a D-dimensional projection matrix, P , to be a
matrix of size N �D, where the columns are orthonormal.
P actually de�nes a plane in RN . Then a projection of the
data would be written as xiP; i = 1; : : : ; l.
There have been several approaches to implementing grand

tours. The method proscribed in Buja et al. [4] is as follows:
(1) Generate a series of anchor planes, Pj ; j = 1; : : : ; t,
from the space of all such planes, (2) Interpolate over a
geodesic (shortest) path from Pj to Pj+1. Generating an
interpolation path between two planes requires numerous
calculations. The principle is that there is a set of canonical

angles between the planes which can be found using singular
value decomposition of the space spanned by the two anchor
planes. Some examples of tours can be found in [16].
There have been several recent developments in tour meth-

ods. Guided, correlation and manually controlled tours are
the adaptations that are applied in this paper. In a guided

tour more interesting projections can be given a higher prob-
ability of a visit than less interesting views during the tour
path [8]. A correlation tour [3] is de�ned as 2�1-dimensional
tours, one displayed horizontally and the other vertically in
a 2-dimensional display space. This is useful in situations
where there are two disjoint sets of variables, in this paper

the two sets are explanatory variables (xi) and class identity
(yi) (or even predicted values). In a manual tour, the user

can adjust the projection coeÆcient of a single variable by
rotating it into or out of the current projection [7].

2.3 SVM and Tours

There are several approaches to exploring SVM results
using tours: the location of the support vectors in the data
space, the SVM predicted values in relation to the explana-

tory variables, and the weight vectors, w, for examining im-
portance of the explanatory variables to the classi�cation.
The grand (random) tour is used for generally exploring sup-
port vectors and classi�cation boundaries in the data space.
Manually controlled tours are used for studying variable im-
portance. A correlation tour (and manually controlled cor-

relation tour) is used to examine predicted values in relation
to explanatory variables.
We examine the distribution of support vectors relative

to the other instances in the data set to explore whether
tour methods can provide some insight into the behaviour
of the SVM algorithm. If the two classes are linearly sep-

arable, we expect to see support vectors from each group
roughly indicating a boundary between the groups in some
projection. The variables contributing to the projection pro-
vides an indication of relative importance to separating the
groups. The coeÆcients of the projection (elements of P )
are used to examine the variable contribution.

We examine the predicted value w �x+b for each instance
x in the space of explanatory variables. By using tour meth-
ods and focusing on the predicted values that are close to
0, we can explore the nature of the decision boundary in
the space of the explanatory variables. Predictions in the

neighborhood of 0 represent instances on the edge of the
two groups in linearly separable problems.
Examining the weights (w�

; b

�) of decision boundary which
maximizes the margin of separation between the two classes
is a way to explore the importance of variables. If the vari-
ables are standardized (zero mean, unit variance) prior to

�tting the SVM, the magnitude of the components of w�

provide some indication of their relative importance in de�n-
ing the separating hyperplane between the two classes. (If
the variables are not standardized then correlations between
the predicted values and the variables can be used similarly.
The correlation measures the strength of the linear relation-

ship between predicted values and explanatory variables.)
Elimination of variables that have negligible correlation with
predicted values should result in simpler decision boundaries
with little loss in accuracy.
This paper illustrates these three procedures for one ex-

ample data set but they generalize to any linearly separa-

ble problems. Non-linearly separable problems pose further
challenges not addressed here.

3. APPLICATION

The olive oil data consists of the percentage composi-

tion (�100) of 8 fatty acids (palmitic, palmitoleic, stearic,
oleic, linoleic, linolenic, arachidic, eicosenoic) found in the
lipid fraction of 572 Italian olive oils. (An analysis of this
data is given in [11]). There are 9 collection areas, 4 from
southern Italy (region 1), 2 from Sardinia (region 2), and
3 from northern Italy (region 3). The samples from the



southern region are North Apulia (area 1), Calabria (area
2), South Apulia (area 3) and Sicily (area 4). From Sar-

dinia there are two areas: Inland (5) and Coastal (6) and
from northern Italy there are East (7) and West Liguria
(8), and Umbria (9). This data was chosen because the au-
thors have a good understanding of the class structure in
high-dimensional space from extensive visual exploration,
and because it poses some interesting challenges to building

classi�ers. It is also an interesting practical problem. Oil
producers in Italy are very protective of the quality of their
product, and the competition seems to arise along regional
boundaries. For quality control it is important to be able to
verify the oil is from the region it is purported to be from.
Classi�ers can help here if the growing region can be iden-

ti�ed by the composition of fatty acids in the oil samples.
Here is a summary from our visual exploration. The sam-

ples from the southern region can be separated from the
other two regions by 1 variable alone: eicosenoic acid. The
samples from the north can be separated from the Sardinian
samples in numerous ways with just 2 variables using a

quadratic boundary, or linear using 3 variables. The samples
from areas within the southern region are very diÆcult to
separate cleanly. All variables appear to be necessary. The
two areas in Sardinia have a clean linear boundary. The
areas from within the northern region separate reasonably

well with linear boundaries allowing for a small amount of
confusion, using all of the variables. In general, the classes
also have heterogeneous shape and variance in the multivari-
ate space. Methods such as linear discriminant analysis and
tree classi�ers don't perform well here. The visual explo-
ration is important for gaining some initial insight into the

class structure. It assists in assessing the sensibility of the
results from SVM (or indeed any other type of classi�er).

3.1 Application of SVMlight
3:50

The data was divided by 100, to put it back in the range 0-
100 of raw percentage values. Since the SVMlight algorithm
works with only two classes, we need to work sequentially
through pairs of classes (see Table 1). There are many ways
to do this. The order used here was in part suggested by

the hierarchical class structure, but somewhat arbitrarily
chosen for classifying sub-regions. Only one problem with
the ordering was encountered, related to the sub-regions of
the southern samples.
The original data set is randomly divided into two subsets,

training set and test set. The training set contains roughly
three fourths of the data, while the test set contains the
remaining one fourth. The kernel used for the experiments
with SVMlight is a polynomial with degree 1 (this is the
same as a linear kernel), and the bound C was chosen to be
1000. All the other parameters are the default parameters.

After the model was constructed, it was used to classify both
the training set and the test set. The accuracy results are
reported in Table 1. Although there are more sophisticated
ways to estimate accuracy in prediction the results reported
here are reasonable and re
ect the expected accuracies based
on the preliminary visual inspection.

3.2 Visual Examination of SVM Results
In Figure 1 the support vectors for separating region 1

from regions 2,3 are marked as large solid circles. In the left-
most plot Region is plotted against eicosenoic. Eicosenoic
acid was identi�ed by the preliminary visual analysis as the

most important variable for separating regions. We would
expect that in this variable the support vectors would all be

in the boundary of the regions for eicosenoic acid, that is,
take values close to 10 for region 1, and values close to 3
for regions 2,3. Interestingly, the support vectors do not lie
on the edge of the two groups. Using a manually controlled
correlation tour we explore the in
uence of other variables.
Rotating palmitic acid with a positive component in a linear

combination with eicosenoic brings the support vectors from
region 1 closer to the boundary with regions 2 and 3 (middle
plot). Also, subtracting a small component of stearic acid
from the linear combination of eicosenoic and palmitic brings
the support vectors from regions 2,3 closer to the boundary
with region 1. It appears that these three variables were

detected to be important by the SVM for separating region
1 from regions 2,3.
If we examine the correlations with predicted values (Ta-

ble 2) with each variable we �nd that eicosenoic acid is the
most important, followed by palmitic, palmitoleic, and neg-
ative oleic acids. Starting with eicosenoic acid and manually

touring a small number of each of these variables into the
view (i.e. altering the projection coeÆcients to include more
of these variables in the projection) gives similar results. It
is clear that the SVM has used a combination of variables
to generate the space of best prediction. Figure 2 shows a

histogram of the predicted values from SVM, and also a his-
togram of eicosenoic acid alone. Both show good separations
between the two groups. On re-�tting the SVM using only
one variable, eicosenoic acid, we obtain the same accuracy
as that obtained using the more complex model.
Figure 3 shows the support vectors as large solid circles

in plots of oleic vs linoleic acid, and a linear combination
of oleic, linoleic and arachidic acids from a manually con-
trolled correlation tour. The location of the support vectors
are roughly where we would expect them: on the boundary
between the two groups in the variables oleic and linoleic
acids. From the visual examination of the data these two

variables emerged as the major variables for separating the
two regions. The correlation tour is used to examine the
location of the support vectors in the combination of vari-
ables oleic, linoleic and arachidic acids. The separation is
stronger in these 3 variables, and the support vectors are
still roughly in the boundary between the two groups. The

correlations of predicted values and the individual variables
(Table 2) also indicates that these 3 variables are the most
important in the SVM prediction. Re�tting the model with
only these variables gives the same 100% accuracy.
Understanding the results of classifying areas within south-

ern Italy are much more diÆcult. These are not linearly
separable groups. To separate areas 1 (North Apulia) and 2
(Calabria) from areas 3 (South Apulia) and 4 (Sicily) 7 sup-
port vectors are used, and 29 vectors are between the two
groups (Table 1). The correlation between predicted values
and variables (Table 2) suggest that variables oleic, linoleic,

palmitic and palmitoleic are important. Figure 4 shows the
support vectors (solid circles) and the slack vectors (open
circles) in relation to all the instances for Region 1 in a pro-
jection of these variables. The support vectors and slack
vectors are spread throughout the view. If we ignore the
area Sicily (area 4) then this view provides a good separa-

tion of all three other areas. In the initial visual examination
of the data we did �nd that Sicily was the most diÆcult area
to classify, it overlaps with all three other areas. The other



Table 1: Accuracy results

Groups Subgroups Tr.Ex. Ts.Ex. SV Slack Tr. acc. Test acc.

All 1:2,3 436 136 9 0 100 100
2:3 190 59 4 0 100 100

Group 1 11,12:13,14 246 77 7 29 89.02 89.47
11:12 60 20 4 0 100 100
13:14 186 57 8 0 100 98.21

Group 2 25:26 74 24 3 0 100 100

Group 3 37,38:39 116 35 7 0 100 97
37:38 76 24 6 0 100 100

Table 2: Correlations of predictions with individual variables

Group palm p'oleic stearic oleic lino l'enic arach eico

1:2,3 0.688 0.613 0.036 -0.616 0.267 0.506 0.288 0.940

2:3 0.052 0.198 -0.131 -0.798 0.851 0.153 0.477 -0.001

11,12:13,14 -0.604 -0.766 0.398 0.782 -0.808 0.588 0.199 0.290
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Figure 1: Olive oil data: Support vectors for separating region 1 from regions 2,3 are marked as large

solid circles. (Left) Region vs eicosenoic. Interestingly, the support vectors do not lie on the edge of the two

groups in the plot of eicosenoic acid alone. (Middle, Right) The manual correlation tour is used to introducing

palmitic in an additive linear combination with eicosenoic, and subtract a small amount of stearic acid. The

support vectors are now clearly on the boundary between the two groups.
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Figure 3: Olive oil data: Support vectors for separating region 2 from regions 3 are marked as solid circles.

(Left) Oleic vs linoleic. The support vectors are where we would roughly expect them to be relative to the

boundary between the two groups. (Right) Correlation tour used to explore the in
uence of arachidic acid.

Arachidic acid is added to linoleic acid, increasing the separation between the two groups.
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Figure 2: Olive oil data: (Top) Histogram of pre-

dicted values from SVM classi�cation of region 1 vs

regions 2,3. (Bottom) Histogram of eicosenoic acid

shows as good a separation.

three are basically linearly separable. The misclassi�cation

table (Table 3) con�rms this: roughly half this group (14)
are misclassi�ed. One might wonder if there is something
suspect about the sample from Sicily: could it be that they
are not truly from the same region, or are the growing con-
ditions more variable in Sicily than in other areas? It may

be that this high classi�cation error truly re
ects the vari-
ability in the sample, and that using a non-linear classi�er
to build a more accurate rule may give misleading infor-
mation. In light of these observations, though, a slightly
simpler strategy for building a better classi�cation rule is to
use a di�erent pairing of groups. For example, using a di�er-

ent kernel to classify oils from Sicily (4) from the other three
groups, and then a linear separator for areas North/South
Apulia and Calabria (1,2,3) works better (Table 4).

Table 3: Error distribution in the case 11,12:13,14

Group(class) Pos prediction (+1) Neg prediction

11(+) 16 3

12(+) 31 10

13(-) 156 3

14(-) 16 11

Figure 5 examines the explanatory variable space of in-
stances with predictions close to zero. Instances with pre-
dictions close to zero are highlighted as solid circles in these
plots. For the SVM classifying region 2 from 3 (Figure 5) it
is clear that instances with predictions close to zero are on a

(3 variable) linear boundary between the two groups. They
are not on the (2 variable) non-linear boundary (right plot)
which shows clearly that the SVM, as expected, detected
the linear separation not the non-linear separation.

4. SUMMARY AND DISCUSSION
The research reported in this paper is part of a larger

project on visualization methods for large data sets [17].

The project is exploring the use of SVM as a preprocessor,
both in terms of reducing the number of variables to enter
into the tour, and to reduce the number of instances to the
set of support vectors (which is much smaller than the data
set). In related work, we are exploring distributed learning
algorithms [5], [6] for visualization of large distributed data
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palmiticpalmitoleic
stearic

oleic

linoleic
linolenic

eicosenoic

North-Apulia

South-Apulia

Calabria

palmiticpalmitoleic
stearic

oleic

linoleic
linolenic

eicosenoic

Figure 4: Olive oil data: (Left) Support vectors for

the areas 1,2 vs 3,4 in the southern region are high-

lighted as large solid circle. View is the combina-

tion suggested by correlations between variables and

predicted values. (Right) Same view with instances

corresponding to Sicily are removed, revealing the

neat separation between the other three areas.

sets.
In general, the tour methods can be applied for a small

number of variables, not thousands of variables. Tour meth-
ods can provide us better insight into the nature of class
structure in data from 2 to 20 dimensions than almost any
other graphics method. Hence there is a need for ways to

select variables or subspaces to explore with the tour. Meth-
ods such as principal component analysis are not well-suited
for dimension reduction in classi�cation problems (see [10]).
The tour methods discussed here can be applied to data con-
taining up to 1 million instances. The main problem with
a large number of instances is that the rendering method,

scatterplots, produces too much overplotting.
Tours are de�ned for linear projections. Linear projec-

tions are simple to understand, and there is a real-world
analogy: shadows that objects make from a light source.
They have the same strengths and weaknesses as shadows;
we can see object curvature with a shadow but concavities

and hollow, empty centers may be diÆcult to detect. Furnas
& Buja [12] discuss methods for detecting such structure us-
ing sections or slices rather than projections. However this
introduces considerable complexity and greatly increases the
number of parameters needed to run an appropriate tour.

The methods described in previous sections will work with
non-linear SVM to some extent. It is possible to explore the
pattern of the support vectors from a non-linear kernel, and
it may be possible to detect a non-linear boundary in RN .
However, using correlation between predicted values and ex-
planatory variables may not accurately describe the relative

importance of variables in non-linear SVM. Similarly explor-
ing the instances with predicted values near zero may not
be helpful because the relationship is non-linear. Rather a
correlation tour could be used with predicted values plotted
against combinations of explanatory variables to explore the
non-linear dependencies.

Lastly, the approach we have described is very labor inten-
sive for the analyst. It cannot be automated because it relies
heavily on the analyst's visual skills and patience for watch-
ing rotations and manually adjusting projection coeÆcients.
However, it provides insights which we may not otherwise be
able to make. However, in the quest for automating classi�-



Table 4: Accuracy results for group 1

Group Subgroups Tr.Ex. Ts.Ex. SV Slack Tr. acc. Test acc.

Group 1 11,12,13:14 246 77 30 1 100 95.59
11:12,13 219 67 6 0 100 100
12:13 200 59 7 0 100 96.72

Reg 3 Boundary Reg 2
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Figure 5: Olive oil data: (Left) Instances in the neighborhood of predicted value zero are highlighted as solid

circles. (Middle) These instances are clearly in the decision boundary for the two groups in the explanatory

variables oleic, linoleic and arachidic acids. (Right) They are clearly not in the non-linear boundary between

the two groups when only arachidic and linoleic acids are considered.

cation tasks these methods can only be used in preliminary
stages, to re�ne and understand algorithms.
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