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Abstract
Background: Protein-protein interactions play a critical role in protein function. Completion of
many genomes is being followed rapidly by major efforts to identify interacting protein pairs
experimentally in order to decipher the networks of interacting, coordinated-in-action proteins.
Identification of protein-protein interaction sites and detection of specific amino acids that
contribute to the specificity and the strength of protein interactions is an important problem with
broad applications ranging from rational drug design to the analysis of metabolic and signal
transduction networks.

Results: In order to increase the power of predictive methods for protein-protein interaction
sites, we have developed a consensus methodology for combining four different methods. These
approaches include: data mining using Support Vector Machines, threading through protein
structures, prediction of conserved residues on the protein surface by analysis of phylogenetic
trees, and the Conservatism of Conservatism method of Mirny and Shakhnovich. Results obtained
on a dataset of hydrolase-inhibitor complexes demonstrate that the combination of all four
methods yield improved predictions over the individual methods.

Conclusions: We developed a consensus method for predicting protein-protein interface
residues by combining sequence and structure-based methods. The success of our consensus
approach suggests that similar methodologies can be developed to improve prediction accuracies
for other bioinformatic problems.
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Background
Protein-protein interactions play a critical role in protein
function. Completion of many genomes is being followed
rapidly by major efforts to identify experimentally inter-
acting protein pairs in order to decipher the networks of
interacting, coordinated-in-action proteins. Identification
of protein-protein interaction sites and detection of spe-
cific residues that contribute to the specificity and strength
of protein interactions is an important problem [1-3] with
broad applications ranging from rational drug design to
the analysis of metabolic and signal transduction net-
works. Experimental detection of residues on protein-pro-
tein interaction surfaces can come either from
determination of the structure of protein-protein com-
plexes or from various functional assays. The ability to
predict interface residues at protein binding sites using
computational methods can be used to guide the design
of such functional experiments and to enhance gene
annotations by identifying specific protein interaction
domains within genes at a finer level of detail than is cur-
rently possible.

Computational efforts to identify protein interaction sur-
faces [4-6] have been limited to date, and are needed
because experimental determinations of protein struc-
tures and protein-protein complexes, lag behind the num-
bers of protein sequences. In particular, computational
methods for identifying residues that participate in pro-
tein-protein interactions can be expected to assume an
increasingly important role [4,5]. Based on the different
characteristics of known protein-protein interaction sites
[7], several methods have been proposed for predicting
interface residues using a combination of sequence and
structural information. These include methods based on
the presence of "proline brackets"[8], patch analysis using
a 6-parameter scoring function [9,10], analysis of the
hydrophobicity distribution around a target residue
[7,11], multiple sequence alignments [12-14], structure-
based multimeric threading [15], and analysis of amino
acid characteristics of spatial neighbors to a target residue
using neural networks [16,17]. Our recent work has
focused on prediction of interface residues by utilizing
analyses of sequence neighbors to a target residue using
SVM and Bayesian classifiers [2,3].

There is an acute need for multi-faceted approaches that
utilize available databases of protein sequences, struc-
tures, protein complexes, phylogenies, as well as other
sources of information for the data-driven discovery of
sequence and structural correlates of protein-protein
interactions [4,5]. By exploiting available databases of
protein complexes, the data-driven discovery of sequence
and structural correlates for protein-protein interactions
offers a potentially powerful approach.

Results and discussion
Here we are using a dataset of 7 hydrolase complexes from
the PDB, together with their sequence homologs. The
application of our consensus method to other types of
complexes, e.g. antibody-antigen complexes is currently
under study and will be published later. It should be
noted, however, that prediction of binding sites for other
types of protein complexes, especially those involved in
cell signaling, is likely to be more difficult than for the
hydrolase-inhibitor complexes.

Figure 1 shows an example of the consensus method pre-
diction mapped on the structure of proteinase B from S.
griseus in a complex with turkey ovomucoid inhibitor
(PDB 3sgb [18]). The inhibitor (3sgb_I) is shown at the
top in wire frame and the proteinase B chain (3sgb_E), is
shown at bottom. Actual interface residues in the protein-
ase B chain, i.e., amino acids that form the binding site
between proteinase B and the inhibitor, were extracted
from the PDB structure (see Materials and Methods). Pre-
dicted interface and non-interface residues, identified by
the consensus method, are shown as color coded atoms as
follows: Red spheres = true positives (TP), actual interface
residues that are predicted as such; Gray strands = true
negatives (TN), non-interface residues that are predicted
as such; Yellow spheres = false negatives (FN), interface
residues that are misclassified as non-interface residues;
Blue spheres = false positives (FP), non-interface residues
that are misclassified as interface residues. Note that the
binding site in proteinase B is strongly indicated, with 14
out of 15 interface residues correctly classified, along with
2 false positives.

The primary amino acid sequence for proteinase B chain
and the interface residue prediction results for the four
individual methods and the consensus method are shown
in Figure 2. Actual interface residues are identified high-
lighted in red. The five lines below the amino acid
sequence show the locations of interface residues pre-
dicted by the different methods (described in detail
below): P = Phylogeny; C = Conservatism of Conservatism
(CoC); S = Data mining by SVM; T = Threading; E = Con-
sensus. Similar Figures for each protein studied in this
work are provided in Supplementary Materials [see Addi-
tional files 1, 2, 3, 4, 5, and 6].

The prediction results for all methods are shown in Table
1 and Table 2. Table 1 shows a complete summary of the
classification performance on the proteinase B chain for
all 5 methods including the overall Sensitivity (Sen) and
Specificity (Spec); Sensitivity (Sen+) and Specificity
(Spec+) for interface residues (the "positive" class); and
Correlation Coefficient (see Materials and Methods for
definitions of these performance parameters). Table 2
shows the overall average performance results for all seven
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protein complexes studied in this work. Two kinds of
averages are considered: the numerical average over each
of 7 proteins in the dataset, i.e., the average on a "per pro-
tein" basis (<...>p); and the average over the total number
of residues, i.e., the average on a "per residue" basis
(<...>r).

Sequence and structure conservation
Amino acid sequences are conserved for many different
reasons related to the structure and function of proteins:
for stability [19,20], enzyme active sites, subunit inter-
faces, facilitation of an essential motion (hinges), and
binding sites. Developing methods to identify the reason
for conservation of individual highly conserved residues is
a difficult problem. This is one of the reasons that a com-
bination of approaches may be more likely to permit
identification of residues that participate in protein-pro-
tein interactions. Even identifying the conserved residues
themselves is not completely straightforward, and as will
be seen, different approaches will indicate the same resi-
due being conserved to different extents. In this study, we
take advantage of this by using several methods to identify
sequence and structure conservation. Here we use two
principal methods for this purpose, one based on phylog-
eny to identify sequence conservation and one based on
Conservatism of Conservatism [21] to identify structure
conservation. These two methods often identify different
residues as being conserved.

Phylogeny
To identify protein residues that are conserved – perhaps
due to their functional role in forming specific protein-
protein interactions – we use ClustalX [22] multiple
sequence alignments of protein sequences to generate
phylogenetic trees (see Materials and Methods). Con-
served residues are defined as those that are identical at a
given position in more than 85% alignments, i.e., only
15% substitutions or gaps were allowed. This 85% cutoff
value is found to give optimal results (data not shown).
Because phylogenetic trees of closely related sequences
result in many residues that satisfy this condition (due to
the high conservation of sequences, apparently important
for protein folding, located in the protein core) we filter
the results to focus on surface residues by removing con-
served residues residing inside the protein core, i.e., hav-
ing low solvent accessibility (see Materials and Methods).

As shown in Figure 2, the phylogenetic method does not
classify any of the amino acids in proteinase B chain
(3sgb_E) as interface residues, i.e., TP = 0 and FP = 0. Thus,
for the phylogenetic method prediction, the correlation
coefficient (CC), which can range from -1 to +1, converges
to zero, whereas overall specificity converges to 0.905. The
latter misleading statistic is due to the large number of
negative examples (non-interface residues), which are

Interface residues predictions mapped on the three dimen-sional structure of Proteinase B from Streptomyces griseus (3sgb)Figure 1
Interface residues predictions mapped on the three dimen-
sional structure of Proteinase B from Streptomyces griseus 
(3sgb). The target protein is shown in ribbons and atomic 
spheres; the inhibitor partner is shown at the top in faint 
wire frame. The residues are color coded as: red = true pos-
itives (TP), gray = true negatives (TN), yellow = false nega-
tives (FN), and blue = false positives (FP). Red, yellow, and 
blue residues are shown in spacefill representation. Note 
that the actual interface residues extracted from the PDB 
structure include the red (TP) and yellow (FN) residues. Red 
and gray residues represent correct predictions of interface 
and non-interface residues (14 TP+ 210 TN = 224 correct 
predictions); yellow and blue residues represent incorrect 
predictions (1 FN + 2 FP= 3)
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correctly classified. In cases such as this (with unbalanced
numbers of positive and negative examples), sensitivity+
and specificity+ measures are especially useful because they
more clearly reflect the ability of a method to detect "pos-
itive" interface residues. (See the Methods section for def-

inition and further discussion of performance measures).
Note that even though Figure 2 shows that the phyloge-
netic method does not identify any interface residues in
this particular example, the results summarized in Table 1
for all seven proteins demonstrate that the ability of the

Comparison of individual methods for interface residue prediction with the consensus methodFigure 2
Comparison of individual methods for interface residue prediction with the consensus method. Results are shown for Protein-
ase B from Streptomyces Griseus (3sgb_E), the same protein shown in Figure 1. Actual interfaces are highlighted in red. Interface 
residues predicted by each of five different methods are indicated as follows: P = Phylogeny (none predicted for this protein), 
C = Conservatism of Conservatism; S = Support Vector Machine; T = Threading; and E = Consensus. Amino acid residues 
present in the protein sequence, but not included in the PDB structure file, are indicated by "X"s in the sequence.
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phylogenetic method to correctly predict non-interface
residues (reflected in the high overall sensitivity and spe-
cificity values), and in combination with other methods,
to lead to significantly improved predictions.

Conservatism of conservatism
To detect structurally conserved residues that are possible
binding sites we have used the Conservatism of Conserv-
atism method (CoC) developed by Mirny and Shakhnov-
ich[21] We use structural alignments generated by FSSP
(fold classification based on structure-structure alignment
of proteins) developed by Holm and Sander [23]) to iden-
tify protein families with folds similar to that of the each
of the 7 proteins. For each family, HSSP [24] (homology-
derived secondary structure of proteins) alignments are
used to calculate the sequence entropy at each position of
the alignment. The HSSP profile is based on the multiple
alignment of a sequence and its potential structural
homologues [25]. The structural alignment generated by
FSSP is used to calculate the value of CoC (see Materials
and Methods). Each residue in the protein chain was
ranked according to its CoC value at a given position in
the sequence. The top 75% of total residues ranked
according to their CoC values are defined as conserved.
We filter the results of the CoC ranking by removing all
structurally conserved residues located inside the protein
core by only choosing the residues that have a relative
accessibility of at least 25 as calculated by DSSP [26] (dic-

tionary of protein secondary structure). Interface residues
in proteinase B predicted by this method are indicated by
a "C" in Figure 2. The overall performance of the CoC
method is summarized in the second row of Tables 1 and
2. Although the correlation coefficient of the COC
method is in the same range of those obtained by phylog-
eny and support vector machines, 0.37, the sensitivity+
value, 0.71, is surpassed only by the consensus value.
Therefore, a larger fraction of interface residues is pre-
dicted by CoC than the other three methods. However,
the CoC method alone is not sufficient to successfully pre-
dict binding sites, and combining this method with other
prediction techniques in the consensus method gives
improved results (Tables 1 and 2).

Data mining for binding residues
We have generated a support vector machine (SVM) clas-
sifier to determine whether or not a surface residue is
located in the interaction site using information about the
sequence neighbors of a target residue. An 11-residue win-
dow consisting of the residue and its 10 sequence neigh-
bors (5 on each side) is chosen empirically. Each amino
acid in the 11 residue window is represented using 20 val-
ues obtained from the HSSP profile of the sequence. Each
target residue is therefore associated with a 220 (11 × 20)
element vector. The SVM learning algorithm is given a set
of labeled examples of the form (X, Y) where X is the 220
element vector representing a target residue and Y is its

Table 1: Classification results for Proteinase B from S. griseus (3sgb_E). TP is the number of true positive; TN is the number of true 
negatives; FP is the number of false positives, and FN is the number of false negatives. Overall sensitivity, overall specificity, 
sensitivity+, specificity+, and correlation coefficient are defined in the text.

3SGBE TP # TN # FP # FN # Overall 
Sen

Overall 
Spe

Sen+ Spe+ CC

Phylog. 0 212 0 15 0.94 0.91* 0 - 0*
COC 15 194 18 0 0.92 0.96 1 0.45 0.64
SVM 3 205 7 12 0.92 0.90 0.20 0.30 0.20
Thread. 14 201 11 1 0.95 0.97 0.93 0.56 0.70
Cons. 14 210 2 1 0.99 0.99 0.94 0.88 0.90

Table 2: Overall Classification Performance Results Averaged over 7 Proteins. Average results for Sensitivity+, Specificity+, overall 
Sensitivity, overall Specificity, and Correlation Coefficient averaged over the 7 proteins in the dataset. <>pdenotes averaging over the 
total number of proteins, <>rdenotes averaging over the total number of residues.

Method <Sen+>p <Spe+>p <Spe>p <Spe>r <Sen>p <Sen>r <Cor>p <Cor>r

Phylog. 0.39 0.71 0.90 0.89 0.91 0.89 0.43 0.37
COC 0.71 0.31 0.89 0.88 0.81 0.80 0.38 0.37
SVM 0.51 0.41 0.89 0.88 0.88 0.88 0.39 0.37
Thread. 0.59 0.57 0.91 0.89 0.92 0.91 0.53 0.48
Cons. 0.70 0.56 0.92 0.91 0.90 0.89 0.56 0.55
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corresponding class label, either interface or non-interface
residue. The SVM algorithm generates a classifier which
takes as input a 220 element vector that encodes a target
residue to be classified and outputs a class label. Our pre-
vious study [2] reported results for classifiers constructed
using a combined set of 115 proteins belonging to six dif-
ferent categories of complexes: antibody-antigen, pro-
tease-inhibitor, enzyme complexes, large protease
complexes, G-proteins, cell cycle signaling proteins, signal
transduction, and miscellaneous. In another study [3], we
trained separate classifiers for each major category of com-
plexes (e.g., protease-inhibitor complexes). In the case of
protease-inhibitor complexes, leave-one-out experiments
were performed on a set of 19 proteins. In each experi-
ment, an SVM classifier was trained using a set of surface
residues, labeled as interface or non-interface, from 18 of
the 19 proteins. The resulting classifier was used to classify
the surface residues of the remaining target protein into
interface residue and non-interface residue categories. The
interface residues obtained for 3sgb_E are reproduced in
Figure 2 and marked by "S". The performance of the SVM
classifier for the current test set of complexes is summa-
rized in Tables 1 and 2. The results show that SVM yields
relatively high sensitivity+ (0.51) and specificity+ (0.41).

Threading of sequences through structures of interface 
surfaces
Structural threading was performed for the set of 7 protein
complexes using a recently developed threading algo-
rithm [27], which was first used in the CASP5 [28] com-
petition. For each complex structure, we first extract the
interfacial region, essentially as described earlier. Residue-
residue contacts in the interfacial region are described
with contact matrices. The total energy in this threading
method is the sum of all pair-wise contact energies for the
conformation. Detailed residue-level contact potentials
were obtained from the Li, Tang and Wingreen [29]
parameterization of the Miyazawa and Jernigan [30]
matrix. We represent a protein sequence vector s by the
hydrophobicity values of its amino acids hi obtained in
this factorization and protein structure by the contact
matrix Γ. The problem of finding the best alignment of a
query sequence s with a structure having contact matrix Γ
is to find the transformation from s to s' that optimizes
the energy function. The optimum s' is the dominant
eigenvector v0 of the contact matrix Γ. There is a strong
correlation between a protein sequence and the dominant
eigenvector of its native structure's contact matrix. Here
the transformation we seek is obtained by maximizing the
correlation between s' and v0. This is an alignment
problem, and a dynamic programming method from
sequence alignment has been adapted to solve this prob-
lem [27].

For each sequence, threading is performed against struc-
tures in our template database and alignment results used
only when the score exceeds a length-dependent thresh-
old. From the alignments, residues involved in contacts at
the interface are identified using a scale based on the
number of times a particular residue is indicated and the
strength of the threading score. The predicted binding
sites for 3sgb_E by the threading method are marked in
Figure 1 by "T" and the prediction results are summarized
in Tables 1 and 2. The threading-based approach is some-
what more successful than other methods based on its
sensitivity+, selectivity+, and correlation coefficient val-
ues, but still not as good as the performance obtained by
combining it with methods in the consensus approach.

Consensus method for predicting protein binding sites
Based on the results from the predictions with the four
independent methods, we have developed a simple con-
sensus method to obtain a better prediction. In the con-
sensus method results presented here, an amino acid is
considered to be an interface residue if any of the follow-
ing conditions are met:

i) at least three independent methods classify it as an
"interface residue"

ii) any two methods (except the Phylogeny-Threading
pair) predict it

For this set of proteins, the parameters for combining
results in the consensus method have been empirically
determined without a systematic comparison of the
strengths and weaknesses of each method. We employ
this simple approach because it provides demonstrable
improvement in prediction performance over the individ-
ual methods. The consensus interface residue predictions
are indicated by an "E" in Figure 1, and performance
results are summarized in the last rows of Tables 1 and 2.
The consensus method generally results in an enhanced
correlation coefficient and sensitivity+, demonstrating the
superior performance of the consensus method for identi-
fying interface residues in this protein set. Predictions for
each protein, provided in Supplementary Materials [see
Additional files 1, 2, 3, 4, 5, and 6], illustrate that the
improvements can be even more pronounced when the
individual predictions of all four methods are relatively
weak. This suggests that combining diverse prediction
methods may be an excellent approach for the prediction
of the binding sites in protein complexes.

Conclusions
Each of the four prediction methods presented in this
paper sheds a different light on the conservation and pre-
diction of protein interaction sites, but none of the meth-
ods taken separately is as powerful as the combination of
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all four methods. The simple consensus approach pre-
sented here could perhaps be improved by generating an
ensemble predictor with more detailed probabilities. Our
current work is directed at this approach. It is clear that the
present subject is an active field of research [31-38].

Methods
Dataset of hydrolase-inhibitor complexes
The dataset of 7 hydrolase-inhibitor complexes used in
this work has been derived from a larger dataset of 70 pro-
tein heterocomplexes extracted from PDB by Chakrabarti
and Janin [39] and used in our previous studies [2,3]. All
are proteins from hydrolase-inhibitor complexes, with six
being proteinases: 1acb_E [40] (chain E of PDB structure
1acb), 1fle_E[41], 1hia_A[42], 1avw_A[43], 2sic_E[44],
3sgb_E [18]; and one being a carboxypeptidase: 4cpa [45].

Definition of surface and interface residues
Surface and interface residues for the proteins were iden-
tified based on information in the PDB coordinate files as
previously described [2,3]. Briefly, solvent accessible sur-
face areas (ASA) for each residue in the unbound protein
and in the complex are calculated using DSSP [26]. A sur-
face residue is defined as an interface residue if its calcu-
lated ASA in the complex is less than that in the monomer
by at least 1 Å2 [46]. In the extraction of interfacial region
for threading, however, a distance-based definition of sur-
face is used: a surface residue is defined as an interface res-
idue if its side-chain center is within 6.5Å of the side-chain
center of a residue belonging to another chain in the
complex.

Based on the ASA definitions, 41% of the residues in the
set of 7 proteins were surface residues, corresponding to a
total of 631 surface residues. Among these surface resi-
dues, 166 were defined as interface residues and 465 as
non-interface residues (i.e. surface residues that are not in
the interaction sites). Thus, on average, interface residues
represent 26% of surface residues, or 11% of total residues
for proteins in our dataset.

Using phylogeny to identify conserved residues
Many computational tools have been developed for iden-
tifying amino acids that are important for protein func-
tion/structure, but there is no consensus regarding the
best measure for evolutionary conservation [47]. Evolu-
tionary conservation can be decomposed into three com-
ponents: i) the overall selective constraints – the number
of changes observed at a site; ii) the pattern of amino acid
substitutions – the number of amino acid types observed
at a site; and iii) the effect of amino acid usage. We have
established a reliable relationship between each measure
and various aspects of structure. To explore the connec-
tion between sequence conservation and functional-struc-
tural importance, we proposed a new measure that can

decompose the conservation into these three components
[47]. This measure is based on phylogenetic analysis. The
evolutionary rate at site k during lineage l from amino
acids i to j (i,j = 1,...20) can be expressed as λkl (i,j) = ck ×
alk × Q(i,j|k), where ck accounts for the rate variation
among sites, alk for site-specific lineage (or subtree) effect
caused by functional divergence [48], and the 20 × 20
matrix Q(i,j|k) is the (site-specific) model for amino acid
substitutions. The likelihood function for a given tree can
be determined according to a Markov chain model [49].
We have developed an integrated computer program
(DIVERGE [50]) that can map these predicted sites onto
the protein surface to examine these relationships. We use
the solvent accessibility data from DSSP [26] to restrict
predicted conserved residues to those located on the pro-
tein surface.

Conservatism of conservatism
The phylogeny-based conservation of residues relies on
sequence homology. It is well known, however, that many
non-homologous proteins share similar folds [51]. It is
therefore highly desirable to study the conservation of res-
idues in proteins based on the structural superimposition
of non-homologous proteins. In order to obtain insight
into the evolutionary conservation of residues in proteins,
we use the Conservatism of Conservatism method (CoC).
The CoC method was developed by Mirny and Shakhnov-
ich [21] for studying evolutionary conservation of resi-
dues in proteins with specific folds from the FSSP
database [23]. With the FSSP database, Mirny and Sha-
khnovich performed an analysis of conserved residues in
several common folds. The 20 naturally occurring amino
acids were subdivided into 6 different classes, based on
their physicochemical characteristics and frequencies of
occurrence at different positions in multiple sequence
alignments. The evolutionary conservatism within fami-
lies of homologous proteins was measured through
sequence entropy. Structural superimposition of different
families of proteins with similar folds was used to calcu-
late CoC for all positions of residues within a fold. Here
we have applied a similar approach to identify structurally
conserved residues involved in protein interactions.

For each protein, we first calculate the sequence entropy at
each position within a family of related sequences from
the HSSP database [25]

where  is the frequency of the class i of residues (for

each of the six classes) at position l in sequence in the
multiple sequence alignment. Then we use the FSSP data-
base to obtain the structural alignment. The structural

s l p l p li i
i

( ) ( )log ( )= −
=
∑

1

6

pi
l( )
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superimposition of different families was used to calcu-
late the conservatism of conservatism (CoC)

where sm(l) is the intrafamily conservatism within the
family m at position l, and M is the number of families.
The CoC is the measure of the evolutionary conservation
of the specific sites within the protein fold. Because the
CoC method does not distinguish between residues at the
protein surface evolutionarily conserved for functional
reasons and residues inside the protein core that are con-
served because of their importance to the folding process,
we use solvent accessibility data for the unbound mole-
cules to eliminate those conserved residues located inside
the protein core.

Data mining approaches to binding site identification
Recent advances in machine learning [52] or data mining
[53] offer a valuable approach to the data-driven discov-
ery of complex relationships in computational biology
[54,55]. In essence, a data mining approach uses a repre-
sentative data training set to extract complex a priori
unknown relationships, e.g., sequence correlates of pro-
tein-protein interactions. Examination of the resulting
classifiers can help generate specific hypotheses that can
be pursued using molecular and biophysical methods. For
example, a classifier that is able to identify protein-protein
interface residues on the basis of sequence or structural
features can provide insights about sequence characteris-
tics that contribute to important differences in function.
The data mining approach for binding site identification
consists of the following steps:

• Identify the surface residues in each protein.

• Label each residue in each protein as either an interface
residue or a non-interface residue based on appropriate
criteria for defining residues in interaction sites.

• Use a machine learning algorithm to train and evaluate
a classifier to categorize a target amino acid as either an
interface or a non-interface residue. Different types of
information about the target residue (e.g., the identity and
physicochemical properties of its sequence neighbors,
whether or not the target residue is a surface residue) can
be supplied as input to the classifier. A variety of machine
learning algorithms [52,54] can be used for this purpose.

• Evaluate the classifier (typically using cross-validation or
leave-one-out experiments) on independent test data (not
used to train the classifier).

• Apply the classifier to identify putative interface residues
in a protein, given its sequence (and possibly its struc-
ture), but not the sequence or structure of its interaction
partner.

Here we have used a support vector machine (SVM) learn-
ing algorithm because SVMs are well-suited for the data-
driven construction of high-dimensional patterns and are
especially useful when the input is a real-valued pattern
[56]. In addition, algorithms for constructing SVM classi-
fiers effectively incorporate methods to avoid over-fitting
the training data, thereby improving its generality, i.e., the
performance of the resulting classifiers on test data. Sup-
port vector machine algorithms have proven effective in
many applications, including text classification [57], gene
expression analysis using microarray data [58], and pre-
dicting whether or not a pair of proteins is likely to inter-
act [59].

Threading of sequences through structures of protein-
protein interface surfaces
In phylogenetic and data mining approaches, the proper-
ties of the protein-protein interface are deduced by con-
centrating on the sequence information contained in the
protein pair under investigation. However, it is well
accepted that the physical origin of the specificity of pro-
tein-protein interactions comes predominantly from their
structures. Thus, in any thorough investigation of protein-
protein interactions, it is essential to include information
from structural studies. Here we have adapted methods
employed in protein structure recognition [60-63] to the
problem of predicting protein-protein interface residues.
In the first stage, structural models for identifying protein-
protein interfaces are generated from existing protein
databank (PDB) structures by extracting portions of con-
tacts between different protein chains. We found that if we
define the interaction region by the criterion that back-
bone Cα atoms on the two interacting chains are less than
15 Å apart, reasonably well connected fragments suitable
for threading studies are obtained. In the second stage,
after identifying a set of candidate template structures,
threading is performed to examine the probability that a
given model resembles the real interface. The threading
algorithm is described in Cao et al. [27]. The threading
alignments and scores obtained allowed us to predict
which parts of each protein are in the interfacial region in
the hydrolase-inhibitor complexes and to predict the most
probable residue-residue contacts between the two
proteins.

Ensemble predictions for combining results from multiple 
methods
Different approaches for identifying binding sites from
amino acid sequence information yield different (some-
times contradictory, sometimes complementary) results.
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In such cases, approaches for combining results from mul-
tiple predictors have a potential importance. The key idea
is that results obtained by using different approaches,
which we will call classifiers henceforth, may be corre-
lated (or, more generally, statistically dependent) due to a
variety of reasons including the use of a common dataset
for constructing or tuning classifiers, use of intermediate
variables for encoding input to the classifiers, and similar-
ities between methods (e.g., SVM, neural networks).
Regardless of the source of statistical dependency, the goal
is to develop methods for weighting the output of each
classifier appropriately for the purpose of producing more
accurate predictions. Our method takes as input the
binary (True/False) output of each classifier (e.g., SVM,
CoC) and produces as output a probability that the resi-
due under consideration is an interface residue, using the
outputs produced by each of the classifiers. Algorithms for
learning Bayesian (or Markov networks) can be then used
to learn the network of dependences and the relevant con-
ditional probabilities.

General evaluation measures for assessing the 
performance of classifiers
Let TP denote the number of true positives – residues pre-
dicted to be interface residues that are actually interface
residues; TN the number of true negatives – residues pre-
dicted not to be interface residues that are in fact not inter-
face residues; FP the number false positives – residues
predicted to be interface residues that are not interface res-
idues;FN the number of false negatives – residues pre-
dicted not to be interface residues that actually are
interface residues. Let N = TP+TN+FP+FN. Sensitivity
(recall) and Specificity (precision) are defined for the pos-
itive (+) class as well as the negative (-) class. Sensitivity+

= TP/(TP+FN), Sensitivity-= TN/(TN+FP), Specificity+ =
TP/(TP+FP), Specificity- =TN/(TN+FN). Overall sensitivity
and overall specificity correspond to expected values of
the corresponding measures averaged over both classes.
The performance of the classifier is summarized by the
correlation coefficient, which is given by

The correlation coefficient ranges from -1 to 1 and is a
measure of how predictions correlate with the actual data
[64]. It is important to note, that when the number of neg-
ative instances is much larger than the number of positive
instances – as is the case for prediction of interface resi-
dues – the Sensitivity+ and Specificity+ measures are more
appropriate for assessing prediction performance than the
overall Sensitivity and Specificity measures [64]. In the
extreme case when a classifier predicts every example to be
negative (due to a preponderance of negative training
instances) these overall performance measures would still

show a high success rate despite the obvious failure of the
prediction method. In such cases, the Correlation Coeffi-
cient, as well as the Sensitivity+, which is a measure of the
fraction of positive instances that are correctly predicted,
and Specificity+, which is a measure of the fraction of the
positive predictions that are actually positive instances,
may provide better performance assessment. Of course, a
meaningful comparison of the performance of different
classification methods depends critically on the specific
application and goal.
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