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Abstract

Multiple Instance Multiple Label learning problem has received much attention in
machine learning and computer vision literature due to its applications in image clas-
sification and object detection. However, the current state-of-the-art solutions to this
problem lack scalability and cannot be applied to datasets with a large number of in-
stances and a large number of labels. In this paper we present a novel learning algorithm
for Multiple Instance Multiple Label learning that is scalable for large datasets and per-
forms comparable to the state-of-the-art algorithms. The proposed algorithm trains a set
of discriminative multiple instance classifiers (one for each label in the vocabulary of all
possible labels) and models the correlations among labels by finding a low rank weight
matrix thus forcing the classifiers to share weights. This algorithm is a linear model un-
like the state-of-the-art kernel methods which need to compute the kernel matrix. The
model parameters are efficiently learned by solving an unconstrained optimization prob-
lem for which Stochastic Gradient Descent can be used to avoid storing all the data in
memory.

1 Introduction
Image classification is a challenging task with many applications in computer vision, includ-
ing image auto-annotation and content-based image retrieval. Images are naturally encoded
as high dimensional vectors of pixels and the extraction of meaningful features from the
images to this day is a difficult problem. In addition, images are annotated with multiple
keywords that may or may not be correlated. Recent state-of-the-art image classification
and annotation approaches [19, 20] used global features extracted from the images. How-
ever, the global features may not be well-suited in when images contain multiple objects.
The keywords assigned to an image often correspond to the individual regions (or objects)
present in the images as well as the collection of the objects. Therefore, global features may
not necessary capture the region-level information present in the images. On the other hand,
image segmentation algorithms (such as normalized cuts [25]) attempt to discover regions
in the image that may correspond to objects, and hence they make it possible to represent
images as a collection of regions (objects). Therefore, image classification may be naturally
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modeled as a Multiple Instance Multiple Label (MIML) learning problem [30]. MIML learn-
ing is a generalization of traditional supervised learning. The input data is no longer a set of
labeled instances, but a set of labeled bags (that contain multiple instances), each associated
with a set of labels.

Current state-of-the-art approaches to MIML fall into two categories: probabilistic mod-
els (i.e. [30]) and kernel methods (i.e. [28, 32]). Inference problem for the probabilistic
approach is intractable and cannot be solved exactly. Therefore the solution is usually ap-
proximated using Loopy Belief propagation approach, or Gibbs Sampling. This poses two
problems: the likelihood is inexact, and the inference is slow. It was shown that kernel meth-
ods achieve better performance, however in order to learn the kernel model the bag-kernel
needs to be computed [28]. Therefore, the run-time of the algorithm is at least N2 where N
is the number of all possible instances. In addition, the predictive power of approach in [28]
relies on the use of one-against-one SVMs.

In this paper we introduce an algorithm that is scalable for tasks where the number of
bags and the number of instances can be large. In order to do so, we focus on a linear model,
parameters for which can be learned by solving an optimization problem in the primal. In
particular, in supervised learning the state-of-the art scalable algorithms are linear models
solved in primal, as for example SVM primal solver [5], PEGASOS [24] and LIBLINEAR
[11]. In particular, recent work in explicity embedding the features into some other space that
allows to compute the kernel using its dot product defition [13] has successfully employed
linear SVM solvers in order to avoid computing the kernel matrix.

1.1 Overview and Contributions
We propose a novel solution for the MIML learning problem. Our model is a discriminative
model trained to maximize the probability of the labels present in the image and minimize the
probability of the labels absent from the image in the similar spirit as [30]. However, unlike
the Joint MIML model of [30] that uses an undirected model and requires normalization over
all possible labels, we model the probability for each individual label which makes the exact
computation of the probability tractable. Unlike [28] we train only as many classifiers as
there are labels in the vocabulary, which makes our approach applicable to settings where
the number of possible labels in the vocabulary is large.

We model our solution to the MIML learning problem within the well studied loss-
penalty formulation that allows the algorithm to trade-off the loss (classification error) against
the regularization term (penalty for the classifiers complexity in order to avoid over-fitting
on the training data). Our loss function is specifically designed for Multiple Instance learn-
ing. We observe that the Log Loss for a single instance is equivalent to negative logarithm
of the probability of the correct label of the instance. We generalize this notion and model
the loss of a bag as the negative logarithm of the probability of the label given the bag. The
probability of a label given the bag is computed using logistic Noisy-Or model [8, 22, 29]. In
general, the choice of a regularization term is task dependent and is an open problem. Since
in image classifcation the labels are often correlated, we use Trace Norm penalty as the reg-
ularization term in order to model and to capture the correlations among labels associated
with an image. Trace Norm regularization has previously been used to achieve a similar goal
in the case of Multiple Label learning [2], multi-task learning [3] and collaborative filtering
[1]. In addition, we consider well-studied Frobenius-norm and `1-norm regularization terms.

The results of our experiments on the Microsoft dataset show that the proposed MIML
method outperforms the Multiple Instance kernel algorithm proposed by [28] and are com-
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petitive with the MIML classifiers proposed by [30]. Our experiments with other large-scale
datasets with a large number of labels show that the proposed approach scales well to settings
in which it is not feasible to apply existing MIML learning algorithms [28, 30].

To summarize, the main contribution of this paper is a scalable, theoretically well-
founded, and easy-to-implement MIML learning algorithm that can be used to train MIML
classifiers for image annotation on large datasets and in settings where the vocabulary of
possible labels is large. The current implementation is available at
http://www.cs.iastate.edu/~oksayakh/research/resources.html

2 Related work in Multiple Instance Multiple Label
learning

We begin with describing the related work in Multiple Instance Multiple Label learning as
well as summarize the recent state-of-the-art algorithms for this problem. Zhou and Zhang
[31] proposed two solutions to MIML. The first approach involves effectively transforming
each bag of instances into a single instance and then applying a single instance Multiple La-
bel learning algorithm to the resulting dataset. The second approach generalizes a Multiple
Instance single label learning algorithm to handle Multiple Labels yielding a MIML learning
algorithm.

Zha et al. [30] proposed a discriminative model based on a collective multi-label model
[15] which was shown to yield state-of-the-art results on several image classification tasks
that are naturally posed as MIML learning problems. They proposed an undirected graphical
model, and in order to model a valid probability of labels given the bags, it is necessary to
compute the summation over all possible label assignments for each bag. The computation
of the probability is therefore exponential in the number of possible labels, and the exact
solution is intractable. Zha et al. [30] proposed an approximation for this computation using
Gibbs sampling. Gibbs sampling, however, can be slow when the number of labels is large,
making the algorithm impractical for large datasets with a large number of possible labels.
In particular, the Joint MIML model [30] solves an optimization problem. Each step uses
Gibbs Sampling to estimate the probability of the labels given a bag and thus each step needs
O(DNK) (N is the number of instances, D is the number of features and K is the number of
Gibbs Sampler iterations, typically very large to ensure accurate estimates).

Vijayanarasimhan and Grauman [28] proposed another MIML label algorithm which re-
lies on a Multiple Instance kernel [14] and one-versus-one Support Vector Machine training.
Therefore, in order to train the model it is required to compute the kernel (at least O(N2)
where N is the number of instances) and it is required to train M2 SVMs where M is the
number of possible labels). As with previous formulations, this approach is only applicable
for small number of labels.

3 Preliminaries
We briefly review Multiple Label learning, Multiple Instance learning and Multiple Instance
Multiple Label learning.

Single Instance Single Label Learning Let Rd be a d-dimensional vector space and let
L = {l1, ..., lM} be a set of labels. Given the dataset D = {xi,yi} where xi ∈Rd and yi ∈L
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the goal of supervised learning is to learn a function f : Rd →L .

Multiple Label Learning The first generalization of supervised learning is multiple label
learning. Each observation xi has a collection of labels assigned to it: Yi =

{
y1

i , ...,y
mi
i

}
where mi is the number of labels. Each of the labels is drawn from the label space y j

i ∈
L = {l1, ..., lM}. If the number of labels is 1, this scenario reduces to a standard single-label
classification task.

Multiple Instance Learning The second generalization of single instance learning is the
Multiple Instance learning [8]. Multiple Instance learning scenario assumes that the label yi
is assigned to a bag of instances Xi =

{
xi1, ...,xiki

}
where ki is the number of instances in

the bag and each instance xi j ∈ Rd where d is the dimensionality of the feature space used
to represents each instance. The bag is assigned a positive label yi = 1 if at least one of
the instances in Xi is positive (however it is not known which one is positive). The bag is
assigned a negative label yi =−1 if it only contains only negative instances.

Multiple Instance Multiple Label Learning Multiple Instance Multiple Label learning
[31] is a natural generalization of the Multiple Instance learning. It takes as input pairs
{Xi,Yi}N

i=1 where each Xi =
{

xi1, ...,xik1

}
is a bag of instances labeled with a set of labels

Yi = {y1
i , ...,y

mi
i } where each of the labels y j is drawn from a set of possible labels L =

{l1, ..., lM}. If the size of the training bags is one and it is labeled with only one label, the
learning task reduces to the traditional supervised learning.

4 Discriminative Multiple Instance Multiple Label
Learning

We now proceed to introducing our solution to the MIML learning problem. Our approach is
to adapt a well-studied framework for learning classifiers. In this framework, a classification
function is learned in order to minimize the trade-off between the classifier loss (classifica-
tion error) and the complexity of the classifier. We begin with an observation that the Log
Loss for single instance learning is related to the probability of predicting the label correctly,
and we generalize the loss to the Multiple Instance setting by using a Noisy-Or model [8, 29]
to compute the probability of the label that the bag can take given the instances in the bag. We
also consider several well-known penalty functions, including Trace Norm, Frobenius Norm
and `1-norm , which to the best of our knowledge have not been considered for MIML. Our
formulation of a learning task is a linear model that can be efficiently learned in the pri-
mal without the need to compute the kernel or to solve an expensive quadratic programming
problem.

4.1 Discriminative MIML Learning
The general formulation of learning [27] suggests learning a classifier by trading off between
the classifier’s average empirical loss and the complexity of the classifier. This reduces to

By a slight abuse of notation we will use `p-norm definition for both, vectors, and matrices: ||w||p = (∑i wp
i )

1
p
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choosing, from a class of functions H, a function h∗ that minimizes a weighted combination
of the loss and the penalty:

h∗ = min
h

(
N

∑
i=1

loss(yi,h(xi))+Cpenalty(h)

)
where C is a constant that controls the amount of trade-off. This formulation has been ex-
tended to multiple label learning [7] by training a collection of classifiers, each parametrized
by a weight vector w j for each class l j by decomposing the loss over each label for each
instance. Let there be M classifiers h1...hM (one for each of the M classes, or equiva-
lently, classifiers h1...hM predicting the corresponding elements of the vector of binary labels
y1

i ,y
2
i ....y

M
i , so that y j

i = 1 if l j is a label assigned to xi and y j
i =−1 otherwise).

{h1...hM}∗ = min
h1...hM

N

∑
i=1

M

∑
j=1

loss
(

y j
i ,h j(xi)

)
+Cpenalty(h1, ...,hM)

We adapt this framework to Multiple Instance Multiple Label learning by 1) designing a
loss function that models the loss for the bag of instances and 2) choosing a penalty function
that is specifically suitable for Multiple Label learning.

4.2 Loss Function for Multiple Instance Learning
We begin with discussion of loss functions for single instance learning and then propose
the loss function appropriate for Multiple Instance learning that computes the loss using bag
of instances directly. Among the studied loss functions are Hinge Loss, Logistic loss and
Squared-Loss. It is well-known that using Hinge Loss (defined as h(z) = max(0,1− z))
and `2-norm penalty on the classifier weight vector w results in an SVM model. The main
complication with using Hinge Loss is that it is not differentiable. Therefore Hinge Loss is
frequently approximated with some differentiable function. For example, [2] used a gener-
alized Log Loss and [19] used a numerical approximation of the Hinge Loss.

Logistic Loss, on the other hand, is differentiable. It can be viewed as a smooth ap-
proximation to the Hinge Loss function. In addition, it was proved [23] that Logistic Loss
also results in maximum margin classifiers [23]. Logistic Loss can also be interpreted as a
probability of assigning the correct class to an input.

Now we turn to the problem of modeling the loss for a bag of instances. How can we
compute the loss l(y j

i ,h j(xi)) for bags of instances when the labels for individual instances
in a bag are unknown? Consider the Log Loss:

l(y j
i ,h j(xi)) =− log p(y j

i |xi) =− log
1

1+ exp(−y j
i h j(xi))

In the case of logistic regression, Log Loss is the negative log of the probability of y j
i given

the observation xi. Hence,

l(y j
i ,h j(xi)) =−δ

(
y j

i ,1
)

log p(y j
i = 1|xi)−δ

(
y j

i ,−1
)

log p(y j
i =−1|xi)

where δ (a,b) = 1 if a = b and 0 otherwise. Let y j
ik denote the jth bit of the vector of class

labels for the kth instance xik in the ith bag xi. Let AT be the transpose of a matrix A. If

Defined as g(z,γ) = 1
γ

log(1+ exp(γ (1− z))) and it approximates Hinge Loss as γ → ∞.
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we are given a classifier defined by w j with respect to membership in class l j, we can use
sigmoid function to model the probability that the kth instance xik in the ith bag xi is positive
(with respect to membership in class label l j):

p(y j
ik = 1|xik) = σ(wT

j xik) =
1

1+ exp(−wT
j xi j)

Then the probability that the instance is negative with respect to membership in the jth class
is given by 1− p(y j

ik = 1|xik). Because a bag is labeled negative only if all the instances in
it are negative, we can use a Noisy-Or model to combine the probabilities that the individual
instances in the bag are negative:

p(y j
i =−1|xi,w j) =

Ki

∏
k=1

(
1− p(y j

i |xik,w j)
)
=

Ki

∏
k=1

(
1−σ(wT

j xik)
)

The probability that the bag is positive is then given by

p(y j
i = 1|xi,w j) = 1− p(y j

i =−1|xi,w j)

and therefore we have all the pieces necessary to compute the loss over a bag.

4.3 Penalty function for correlated Multiple Labels
The choice of an appropriate penalty function has been an active research area. Tradition-
ally, `2-norm has been used as it it closely related with the definition of margin [27], however
`1-norm has also been extensively used, and was shown to result in sparse classifier weights.
However, using either `1 or `2 norm penalties in the multi-label setting is equivalent to train-
ing M one-against-all independent classifiers. This is not desirable when the labels are cor-
related. Recently, Trace-Norm penalty has been proposed in the setting for multiple label
learning when the labels are correlated [2, 3, 19] and it was shown to capture the correlations
among labels unlike other norms.

4.3.1 Trace Norm Regularization

Let W = [w1, ...,wM] be a matrix of weights that correspond to multiple instance classifiers
where w j is a vector that defines a multiple instance classifier for class j. The Trace Norm
‖W‖

Σ
is defined as

min
W=FG

1
2

(
‖F‖2

F +‖G‖2
F

)
where ‖·‖F is the Frobenius norm (another name for the matrix `2 norm). Trace Norm
factorizes classifier weights matrix W into the matrices F and G, where F maps the inputs to
some feature space and G performs classification in that space. However this factorization
is not needed explicitly in order to compute the norm. It was shown [2] that the penalty
term ‖W‖

Σ
is equivalent to the sum of absolute values of the singular values of the matrix:

‖W‖
Σ
= ∑ |γi| where γ is a vector of singular values of W and |·| is the absolute value and

therefore only the SVD of W needs to be computed.
The existence of trace-norm SVM [2] that has been applied to Multiple Label learning

problems in computer vision [19] leads us to proposing another simple solution to MIML
similar in spirit to MIML-SVM [31]. Instead of learning independent binary SVMs, we
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propose learning correlated multiple-class classifiers [2] (using hinge loss and trace norm
as described above). The transformation from Multiple Instances to single instances is de-
scribed in detail in [31]. We will refer to this learning algorithm as MI-MatFact.

4.4 Solving the Optimization Problem
The model parameters W can be learned by solving an unconstrained optimization prob-
lem. The goal is to find weight matrix W ∗ that minimizes J = Jloss + Jreg, where Jloss =

∑
N
i=1 ∑

M
j=1 loss(y j

i ,h j(xi)) and Jreg = C‖W‖
Σ
. This is an unconstrained minimization prob-

lem, and therefore it can be solved using any unconstrained minimization method [21]. We
use Limited Memory BFGS [18] since it is known to converge to the solution faster without
the need to explicitly compute and store the Hessian (which can be expensive or infeasible
for the large number of model parameters). It is well known that the Noisy-Or function is not
a convex function and therefore its use makes the objective function not convex. The solu-
tion may be a local optimal solution. While the objective function is not convex, we must not
forget that the goal of learning is not convexity of the objective function, but rather a good
generalization on the unseen data. In fact non-convexity of the objective function generally
does not pose a challenge and non-convex problems were shown to have better performance
and be more scalable than convex [6].

In order to optimize the objective function, one needs to compute the gradient of the
objective function with respect to the model parameters, and we present the gradients of the
loss and penalty functions below.

The gradient of the loss function with respect to the jth column of the weight matrix W
is

∂Jloss

∂w j
=−

N

∑
i=1

δ

(
y j

i ,1
) (1− p(y j

i = 1|xi)
)

p(y j
i = 1|xi)

−δ

(
y j

i ,−1
) Ki

∑
k=1

σ(wT
j xik)xik


The computation of the gradient of the regularization term requires more work as the

absolute value function is not differentiable at 0. It however can be approximated with a
differentiable everywhere smooth function a(·) and therefore the Trace Norm regularization
term becomes ‖W‖

Σ
= ∑aτ (γi) [2] where

aτ(x) =

{
|x| |x|> τ

x2

2τ
+ τ

2 |x| ≤ τ

and τ is a small positive number (we used τ = 10−9) . The gradient of the regularization
term is given by:

∂

∂W
Jreg =CUa

′
τ (D)V T

where W = UDV T is the singular value decomposition of W and a
′
τ(D) is a derivative of

aτ applied to each element of diagonal of D. The function aτ(x) is twice-differentiable
everywhere and its first derivative is

The correctness of the analytical gradient and its implementation was checked numerically (using finite differ-
ence ∇ fnum (x)≈ f (x+h)− f (x)

h ).
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a
′
τ(x) =

{
sign(x) |x|> τ

x
τ

|x| ≤ τ

We will refer to this learning algorithm as Discriminative Multiple Instance Multiple Label
Model with trace-norm regularization (DMIMLΣ).

In addition to Trace Norm regularization we consider regularizing the MIML loss func-
tion with W1 = ∑wi∈W |wi| norm (`1-norm), and W 2

2 = ∑wi∈W |wi|2 (`2-norm) that result in
independent classifiers. Training these classifiers is done using a similar optimization prob-
lem as above, with the Trace-Norm replaced with `1 or `2 respectively. Note that `1 is
defined using sum of the absolute values and therefore it is not differentiable. Therefore, as
with Trace Norm, we approximate it using W1 = ∑wi∈W aτ (wi).

Arguably, it can be costly to compute SVD decomposition of a weight matrix when the
number of features and the number of labels is very high (on the order of several thou-
sands). Therefore we also consider `1 and `2 regularizations as alternatives, and we refer to
these variants of Discriminative Multiple Instance Multiple Label learning as DMIML`1 and
DMIML`2 respectively.

5 Experiments and Results
We now proceed with experimental evaluation of our algorithm and its comparison with
other known MIML algorithms including the recent state-of-the-art, namely Joint Multiple
Instance Multiple Label approach [30] and one-against-one SVM with Multiple Instance
Kernel [28].

We can only compare our approach with [30] and [28] on a relatively small but challeng-
ing MSRC dataset. No public implementation is available for [30] and it is non-trivial to
implement. [28] requires 1-vs-1 SVM training, which means that for small MSRC dataset
400 SVMs need to be trained. For larger datasets that we use in our evaluation (such as
Corel-5k and IAPR TC-12) use of this algorithm is infeasible as these datasets have ~300
labels and thus 90,000 SVMs need to be trained to fully compare with approach in [28] .

5.1 Data
MSRC The version 2 of Microsoft Object Class Recognition dataset consists of 591 im-
ages. The dataset also provides pixel level ground truth and each pixel is labeled with one
out of 23 possible classes (class ’void’ was not used, and following [28, 30] classes ’horse’
and ’mountain’ were treated as void since they have only a few observations, resulting in 21
classes). This dataset has been used in the past to evaluate MIML classifiers in computer
vision [28, 30]. While the dataset provides ground truth at pixel level, this information is
not used in training, and only the image and the image-level label information is used. As
in [28] we segment the images using normalized cuts [25] and from each region we extract
texton features [26] and color histograms. Each segment is then treated as an instance, and
each image is treated as a bag of segments.

IAPR TC-12 One recent benchmark in image annotation and retrieval is the IAPR TC-12
dataset [10]. It consists of 20,000 images each annotated with keywords from 274 cate-
gories. Each image has been manually segmented and annotated according to a predefined
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vocabulary of labels. From each segment the following visual features were extracted: area,
boundary/area, width and height of the region, average and standard deviation in x and y,
convexity, average, standard deviation and skewness in both color spaces RGB and CIE-
Lab. Each segment is treated as an instance, and each image is treated as a bag.

Corel 5K This dataset, first introduced by [9] which is a widely used benchmark for image
annotation. The dataset consists of 4500 training images and 500 test images and there are
263 possible keywords. Same features computed from segmented images as used by [9]
were used in our experiments.

5.2 Experiments and Results
For each dataset we experiment the following classifiers: DMIMLΣ, DMIML`1 , DMIML`2 ,
DMIML (the discriminative MIML model that uses no regularization with C = 0), MI-
MatFact: (proposed simple solution to MIML by transforming MI to single instance and
then applying the multi-class algorithm [2]), MIML-SVM (transforming MI to single in-
stance and training binary SVMs [31]). Where applicable, we compare the MIML [30] and
MI-kernel [28].

We use cross-validation tune the value of the regularization parameter C for Trace Norm,
`1 and `2 variants of DMIML. For each dataset we select one value from {2−9,2−5, ...25,26}
that yields the highest performance on the validation set (subset of training data) then retrain
the model for that value of C on the entire training set and evaluate its performance on the
test set. We use AUC, the area under ROC curve [16] as the performance measure. Since
there are multiple labels in the datasets, we compute the AUC for each label and report the
average AUC over all of the possible labels. The AUC enables direct comparisons with the
results available in the literature for the other MIML learning methods [28, 30, 31].

MSRC We begin with analyzing the effect of the tuning parameter C on the performance
of each of the DMIML classifiers. We split the dataset into 2 parts: 75% of the the data
(around 400 images) are used to train the model and the rest are used as a test set. The
models were trained for various values of C between 2−9 and 26 and the models were tested
on the test set. The optimal range of C for Trace Norm are between 20 and 23 and for `2-
norm this range is between 2−2 and 21. The `1 norm shows a rapid drop in performance as
the value of C becomes larger than 2−2, otherwise its performance is similar to that of Trace
Norm. `1 norm also has the worst performance, which suggests that for this task sparsity of
the features does not help. The performance of `2 norm is slightly higher than that of Trace
Norm for smaller values of C and significantly lower for larger values of the regularization
parameter. The performance of all the classifiers also begins to decrease for large values of
C. This is not surprising, since in the formulation of the objective function the higher the
value of C is, more contribution is given to the penalty term and less contribution is given to
the loss, therefore the models become “over-regularized”.

Overall, the best performance of the `2 norm is slightly better than the best performance
of the Trace Norm. This is not surprising as this dataset has relatively small number of
classes (21) many of which are not correlated. To investigate this further, we also performed
SVD decomposition of WΣ and W`2 and then reconstructed them using k highest principal
components. We found that using only 1 component to reconstruct WΣ yields an AUC of
0.62, while 1 component of W`2 yields AUC of 0.51 (as good as random), and that using
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Method MIMLSVM MIMLBoost [30] MIMIL [30] MIL-Kernel [28] MI-Mat-Fact
Average AUC 0.776 ± 0.02 0.766 0.902 0.896 0.8076 ± 0.02

Method DMIML`1 DMIML`2 DMIMLΣ DMIML
Average AUC 0.897±0.011 0.914±0.014 0.909 ± 0.013 0.829 ± 0.031

Table 1: AUC (± standard deviation) for MSRC V2 dataset

up to 4 principal components to reconstruct the matrices results in a higher performance of
the reconstructed WΣ. Using 5 or more components results in slightly higher performance
of W`2 . This suggests that WΣ has more information about correlated 4 classes, however this
result in a slight loss of information about the others compared to W`2 .

To compare the proposed approach with the current state-of-the-art techniques, following
the set-up in [30] we divide the data set into 5 equal parts and repeatedly use one part for
testing and the rest for training. In each run, we do 2-fold cross-validation on the training data
to pick the optimal value of parameter C. The average over 5 runs for the best performing
parameter values was computed. These results are reported in Table 1.

The proposed DMIML using `2 and Trace Norm regularization yield the best perfor-
mance and both models outperform the Joint MIML model [30] and the one-against-one
SVM with MI kernel [28]. As with the previous experiment, using `2 regularization has a
higher average AUC than using Trace Norm due to the small number of labels.

Next we show experimental results for two large-scale datasets with a large number of
labels for which the benefit of modeling correlation between labels via Trace Norm can be
observed better.

IAPR TC-12 We split the dataset into 60% (12,000 images) training and 40% testing
(8,000 images). The training set was further split into 8,000 training and 4,000 validation
images to tune the value of C, after which all images were used to train the final model. The
performance of the MIML classifiers is summarized in Table 2.

Corel-5k Last, we evaluate the algorithms on the Corel dataset. The training set was split
into training (4000 images) and validation (500 images) and the parameters were tuned on
the validation set. After the parameters were tuned, the model was then retrained with that
parameter setting on the full dataset (4500 images) and evaluated on the test set.

To ensure fair comparison, we use average AUC for all algorithms even though it is
a common practice to use precision and recall for this dataset [4, 9, 12, 17, 19, 20]. We
do not do this due to two reasons: 1) The lack of consistency in evaluation protocol of
recent advances in image annotation. Given the image annotation literature, there is a wide
discrepancy among how the annotations are evaluated. Most works [9, 17, 20] rank the
keywords using the learned classifiers, and then assign keywords that achieve top 5 scores
to each test image. However a recent work that achieved state-of-the-art results [19] uses
a threshold and assigns the keywords if the classifier’s score for a given image was above
that threshold (thus there may be more than 5 keywords in the annotation which results in
higher recall); 2) The lack of consistency in the choice of features. For example [4, 9, 17]
use features computed from segments. However, [17] uses features computed from images
after partitioning them into rectangles and [20] and [19] use global features. Given these
inconsistencies it is not obvious whether the improvement in precision/recall comes from the
new features set, or from the number of keywords assigned, or from the learning algorithm
itself.
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MIMLSVM MI-MatFact DMIML DMIMLΣ DMIML`2 DMIML`1
IAPR-TC 0.711 0.761 0.779 0.797 0.788 0.781
Corel 5K 0.691 0.713 0.758 0.789 0.773 0.761

Table 2: Average AUC for Corel and IAPR-TC datasets

Therefore, we keep the feature set fixed for all the experiments as our goal is to compare
the modeling power of the algorithms. We note, however, that we compare our algorithm
with the state-of-the-art Matrix Factorization model [19] as trained on the transformed Mul-
tiple Instance to single instance problem.

The results for the large-scale dataset show that the best result is achieved using Trace
Norm regularization, followed by `2 regularization then `1. Both Corel and IAPR-TC have a
very large vocabulary and many labels are correlated. Therefore Trace Norm regularization
outperforms `2 regularization, as it takes advantage of label correlation. It is also clear
that using Multiple Instance Learning directly is beneficial as even DMIML model with no
regularization outperforms MIMLSVM and MI-MatFact. The learning algorithm benefits
from using all instances during learning unlike MIMLSVM or MI-MatFact models which
lose information during the transformation from Multiple Instance learning to single instance
learning. The benefit of Trace Norm regularization is clear not only in case of Multiple
Instance Learning but also in case of the transformed Multiple Instance to single instance
Learning.

6 Summary and Conclusion

We proposed a solution to Multiple Instance Multiple Label Learning that can be used in
the settings where the number of bags and labels is large (such as image annotation). Un-
like previous state-of-the-art MIML algorithms our approach does not require approximate
probability computation (by using, for example, Gibbs Sampling) or computation of a ker-
nel matrix. Our solution to MIML learning problem is a linear model that is based on a well
studied loss-penalty formulation that allows the algorithm to trade-off the loss against the
penalty term. The proposed algorithm trains a discriminative model for each possible label
in the vocabulary and several regularization terms are considered and compared. The loss
function, inspired by the Noisy-Or model for Multiple Instance learning is designed specif-
ically for Multiple Instances. The penalty functions considered are Trace Norm and `1 and
`2 norms for the classifier weights, and we empirically show strengths and weaknesses of
each. We compared the performance of resulting algorithm with several existing approaches
to MIML on several image datasets: small but challenging Microsoft visual classes dataset,
and two large image datasets. In particular, we considered 2 state-of-the-art algorithms in
MIML learning [28, 30] and a state-of-the-art algorithm in Multiple Label learning [2] (and
in image annotation [19]) applied to Multiple Instance learning by transforming Multiple
Instance learning to single instance learning. We show that our learning algorithm has better
performance than the state-of-the art MIML learning algorithms. We also experimentally
showed that when the number of labels is small Trace Norm regularization helps find corre-
lations among labels even though overall it performs slightly worse than `2 regularization.
However Trace Norm regularization improves over Frobenius norm on datasets with a large
number of labels. In addition, the proposed algorithm, unlike many other state-of-the-art
MIML algorithms, is scalable to setting with large number of images and large vocabulary
of possible labels.
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