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ABSTRACT 
Discovery of disease biomarkers is a key step in translating 
advances in genomics into clinical practice. There is growing 
evidence that changes in gut microbial composition are associated 
with the onset and progression of Type 2 Diabetes (T2D), Obesity, 
and Inflammatory Bowel Disease (IBD). Reliable identification of 
the most informative features (i.e., microbes) for discriminating 
metagenomics samples from two or more groups (i.e., 
phenotypes) is a major challenge in computational metagenomics. 
We propose a Network-Based Biomarker Discovery (NBBD) 
framework for detecting disease biomarkers from metagenomics 
data. NBBD has two major customizable modules: i) A network 
inference module for inferring ecological networks from the 
abundances of microbial operational taxonomic units (OTUs);  ii) 
A node importance scoring module for comparing the 
constructed networks for the chosen phenotypes and assigning a 
score to each node based on the degree to which the topological 
properties of the node differ across two networks. We empirically 
evaluated  the proposed NBBD framework, using five network 
inference methods for inferring gut microbial networks combined 
with six node topological properties, on the identification of IBD 
biomarkers using a large dataset from a cohort of 657 and 316 IBD  

and healthy controls metagenomic biopsy samples, respectively. 
Our results show that NBBD is very competitive with some of the 
state-of-the-art feature selection methods including the widely 
used method based on random forest variable importance scores. 

CCS CONCEPTS 
• Computing methodologies → Machine learning 
algorithms;     • Applied computing→ Biological networks; 
Computational genomics 
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1 Introduction 
Inflammatory bowel disease (IBD) is a group of disorders that is 
characterized by flares of inflammation in the gut. Several studies 
have shown that the gut microbiota plays an important role in the 
pathogenesis of IBD [10; 15; 16; 20]. Recent advances in 
sequencing technology have expanded rapidly the amount of 
metagenomics samples collected from the gut under different 
health/disease conditions [4; 32]. Despite the existence of several 
IBD metagenomics datasets  (e.g., [10; 13; 34]) and metagenome-
wide analysis studies (e.g. [6; 10; 13]), the role of the gut 
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microbiome in the pathogenesis of IBD remains poorly 
understood [10]. Therefore, there is an urgent need for effective 
methods for data analysis, interpretation, and translation of the 
resulting insights into clinical practice [30]. Of particular interest 
are computational and statistical methods for integrative analyses 
of large metagenomics datasets to discover reliable biomarkers of 
IBD disease [29] as well as microbial signatures for different IBD 
subtypes [23]. 

Identification of disease biomarkers from metagenomics data 
calls for effective methods for selecting, from a very large number 
of candidate features, a small subset of features that can accurately 
discriminate between the phenotypes (e.g., IBD versus healthy). 
This task is very challenging in practice due to [28]: i) curse of 
dimensionality (i.e., large number of features and small numbers 
of samples); ii) high degree of sparsity of the metagenomics data 
samples (where only a small fraction of the entries have non-zero 
values); iii) complexity of the underlying biology and limitations 
in sequencing technology and taxonomy classification pipelines. 
To address these challenges, several statistical methods have been 
proposed in the literature to compare abundance of features (e.g., 
genes or OTUs) between two groups [36]. Some of these methods 
have been designed specifically for RNA-Seq data (e.g., DESeq [1] 
and edgeR [27]) while recently tools such as metagenomeSeq [24] 
and analysis of composition of microbiomes (ANCOM) [19] have 
been developed specifically for metagenomics data, which is often 
more sparse than RNA-Seq data. Machine learning based feature 
selection [11] is another widely used approach for identifying the 
most discriminative (informative) features from either RNA-Seq 
or metagenomics data.  

Against this background, we present an integrative framework 
for Network-Based Biomarkers Discovery (NBBD). NBBD 
integrates comparative network analysis for prioritizing 
biomarkers and the machine learning approach for assessing the 
discriminative power of the top selected biomarkers. We tested 
the proposed framework on the challenging task of identifying 
biomarkers from a large dataset of new-onset IBD metagenomics 
biopsy samples collected from pediatrics. Using our framework as 
a test-bed for evaluating five commonly used ecological network 
inference tools and six node topological properties, our results 
suggest that networks inferred from the same data but using 
different tools have substantial differences in their topological 
properties. Moreover, our method can identify highly 
discriminative biomarkers even from poorly inferred networks 
(e.g., networks with high rates of false positive and/or negative 
edges). Our results also suggest that the network-based feature 
selection method is very competitive with some state-of-the-art 
feature selection methods for determining the most discriminative 
features from metagenomics data. Finally, analyses of the 
identified IBD biomarkers suggest promising candidates for 
targeted experimental studies.   

 
 
 

2 Materials and Methods 

2.1 Datasets 
The OTU BIOM files and meta-data (including age, gender, race, 
disease severity, behavior, and location) for a large cohort IBD 
dataset [10] were downloaded from QIITA 
(https://qiita.ucsd.edu/) database. The dataset consists of 1359 
metagenomics samples including rectal tissue biopsy and fecal 
samples. We filtered the dataset by discarding fecal samples and 
samples corresponding to patients with age greater than 18 years. 
Thus, our final dataset consists of 657 and 316 IBD and healthy 
control metagenomic biopsy samples, respectively. We then 
randomly split the final dataset into training and test datasets such 
that the training data has 200 IBD and 200 healthy samples. Each 
sample has 786 OTUs at the genus level that were extracted using 
summarize_taxa.py QIIME script. 

2.1   Network-based Biomarker Discovery    
(NBBD) Framework 

NBDD framework consists of two main customizable modules, a 
network inference module and a node importance scoring module.  
Fig. 1 provides an overview of the NBBD framework: Given a pair 
of OTU tables (e.g., corresponding to IBD and healthy samples), 
the network inference module constructs a microbial network 
from each OTU table. In these networks, each node corresponds 
to an OTU and each edge represents a relationship between two 
nodes (e.g., co-occurrence). The node importance scoring module 
compares the two networks and assigns a score to each node 
based on the degree to which the topological properties of the 
node differ across the two networks. We hypothesize that the 
nodes that show the greatest difference across the two networks 
should provide useful features for training a classifier to 
discriminate between two populations of metagenomics samples. 

Let 𝐺"(𝑉", 𝐸") and 𝐺((𝑉(, 𝐸() represent two graphs (networks) 

constructed from two groups (𝑖, 𝑗) of metagenomics samples. We 
score each node 𝑣 ∈ 𝑉" ∩ 𝑉( with respect to a node property 𝑃 as: 

𝑠𝑐𝑜𝑟𝑒4(𝑣) = |𝑓4(𝑣, 𝐺") − 𝑓4(𝑣, 𝐺()| 
where 𝑓4(𝑣, 𝐺") is the value of the property P for node 𝑣 in 𝐺" . For 
instance, 𝑓4(𝑣, 𝐺") could be the degree of 𝑣 in 𝐺" .  

2.3   Network Inference Methods 
We experimented with five widely used microbial network 
inference methods. We used the default parameters of each tool, 
unless noted otherwise. In what follows, we briefly summarize 
each of the methods. 
 
SparCC: Sparse Correlations for Compositional data (SparCC) [8] 
infers a network of associations between the microbial species 
based on the linear Pearson correlation between the log-
transformed OTUs, under the assumption that the underlying 
network is sparse. We used the implementation of SparCC 
provide as part of SPIEC-EASI [17] tool.  
 



Figure 1: Overview of the NBBD framework. Training data in the form of two OTU tables corresponding to two groups of 
metagenomics samples are first used to construct two networks. The node importance scoring modules compares topological 
properties of shared nodes in the two graphs and outputs scores to prioritize the input features. Top selected features are 
then used to train and evaluate a classifier. 

Glasso: Graphical lasso (Glasso) [9] estimates a network of 
associations between OTUs by estimating a sparse inverse of the 
covariance matrix. Its advantages include speed and the reliance 
on only one parameter to be tuned (the regularization parameter 
which controls the sparsity of the learned network). We used the  
Glasso implementation that is part of SPIEC-EASI [17]. 

MB: This method, due to Meinshausen and Bühlmann [20] (hence 
the name MB method), estimates sparse networks by identifying 
direct neighbors (for each node) as the smallest subset of nodes 
such that the target node is conditionally independent of the rest 
of the networks given the direct neighbors so identified. MB is 
also implemented in SPIEC-EASI [17]. 

RMT: This method uses Pearson correlation coefficient to add an 
edge between two OTUs if their correlation is higher than a 
threshold that is optimized using a procedure based on the 
Random Matrix Theory (RMT). The method is implemented in the 
Molecular Ecological Network Analysis Pipeline [5]. We used the 
default parameters except for the parameter controlling the 
number of OTUs that build the network. An OTU was used if it is 
expressed in at least 25% of the samples. The default setting of 50% 
fails to construct a network.   

CoNet: This method infers the association network by combining 
two complementary approaches [7]: an ensemble method of 
similarity or dissimilarity measures;  and a novel permutation-
renormalization bootstrap method, ReBoot [7], to assess the 
significance of the associations.  

2.4   Node Topological Properties 
Let G	(V, E) be a network (or graph) where V and E denote the 
sets of nodes and edges, respectively. We considered the following 
node properties implemented in NetworkX [12]: 
    

Betweenness Centrality (btw): Betweenness centrality of a 

node 𝑣  is determined as 𝑓=>?(𝑣, 𝐺) = 	
@(A,?|B)
@(A,?)CD∈E    where 

σ 𝑢, 𝑤  is the total number of shortest paths between 𝑢 and 𝑤, 
and σ(𝑢, 𝑤|𝑣) is the number of shortest paths between 𝑢 and 𝑤 
passing through 𝑣.  

Closeness Centrality (cls): Closeness centrality of a node 𝑣  is 

𝑓IJK(𝑣, 𝐺) = 	
LMN
O(A,B)PQR

STR
	  where  d 𝑢, 𝑣  is the shortest path 

distance between 𝑢 and 𝑣, and 𝑛 is the number of nodes that can 
reach 𝑣. 

Average Neighbor Degree (and): The average neighborhood 

degree of a node 𝑣 is 𝑓WLX(𝑣, 𝐺) =
N

|Y(B)|
kAA∈Y(B)   where N(𝑣) 

are the neighbors of node 𝑣  and kA  is the degree of node 	𝑢 ∈
N(𝑣) . 

Clustering Coefficient (cc): For unweighted graphs, 
the clustering coefficient of a node 𝑣   is 𝑓II(𝑣, 𝐺) =
	 \](B)
O^_	(B)(O^_ B MN)

  where T(𝑣)  is the number of triangles that 

include node 𝑣 and deg	(𝑣) is the degree of 𝑣. 

Node Clique Number (ncn): The node clique number of a node 
𝑣 is the size of the largest maximal clique containing 𝑣, where a 
clique is a subset of nodes such that there is an edge between 
every pair of distinct nodes. 

Core Number (cn): The core number of a node 𝑣 is the largest 
value 𝑘  of a k-core containing 𝑣 , where 𝑘 -core is a maximal 
subgraph that contains nodes of degree 𝑘 or more. 

2.5   Machine Learning Classifiers and 
Performance Evaluation 

We used the training data to train Random Forest (RF) [3] 
classifiers to discriminate between (positively labeled) IBD 



 
 

samples and (negatively labeled) healthy samples. We used the 
implementation of RF algorithm provided in Scikit-learn [25] and 
set the number of trees to 500. We evaluated the performance of 
the resulting classifiers on the test set  using a set  of commonly 
used performance measures: Accuracy (ACC), Sensitivity (Sn), 
Specificity (Sp), Mathew's Correlation Coefficients (MCC), and 
Area Under ROC Curve (AUC) [2].  

3 Results and Discussion 

3.1   Exploratory Analysis 
We used PICRUSt [18] to examine the functional space in the IBD 
and healthy microbiome samples. PICRUSt infers functional 
activity by constructing ancestral gene content and then 
estimating the abundance of gene families in the 16S rRNA. The 
resultant functional gene count matrix was first normalized to 
rescale counts per sample to lie in the interval [0,1] before 
conducing follow-up analyses using Principal component analysis 
(PCA) and Student's t-test. Fig. 2-a and 2-b show the visualization 
of the first two principal components when PCA was applied to 
functional and compositional profiles of our training data, 
respectively. We did not see evidence of two distinct groups 
corresponding to IBD and healthy data in PC space. This led us to 
conjecture that non-linear classifiers (e.g., Random Forests [3]) 
will outperform linear models (e.g., Support Vector Machine [33] 
with a linear kernel) on this data. The statistically significant (at a 
p-value < 0.05) functional differences between IBD and healthy 
samples are shown in Fig. 2-c.  The results suggest that the IBD 
group exhibits a decrease with respect to 15 KEGG metabolic 
pathways, many of which have been reported in the literature. For 
example, decreased level of Tryptophan in serum was shown to 
be significantly lower in IBD patients [22], which is consistent 
with the lower microbiome Tryptophan metabolism activity in 
our IBD samples relative to the healthy samples. Medicherla et al. 
[21] have shown that the oral administration of geraniol inhibit 
pro-inflammatory cytokines in patients with murine colitis, which 
is again consistent with what we observe in our samples. A lower 
geraniol degradation activity in the IBD samples suggests lower 
availability of geraniol. 

The top 10 most differentially abundant OTUs between IBD 
and healthy samples identified using the nonparametric Kruskal-
Wallis statistical test [14] are shown in Fig. 3. Surprisingly, only 
six OTUs have significant (adjusted p-values < 	0.05) differential 
abundance with respect IBD and healthy groups. These OTUs 
correspond to Clostridiaceae and Pasteurellaceae families and four 
genera, Blautia, Coprococcus, Roseburia, and Ruminococcus. 

3.2   Feature Selection Improves the Predictive 
Performance of RF Classifiers 

Table 1 compares the performance on the test set of a RF classifier 
trained using all 786 OTUs and RF classifiers trained using top 30 
OTUs determined from training data using the following 
commonly used feature selection methods, RF feature importance 
[3], Lasso [31], Information Gain (IG), and Min- Redundancy and 

Figure 2: Visualization of the first two Principal 
components from the PCA analysis of (a) PICURSt 
functional profiles and (b) normalized OTU counts. (c) 
Functional differences, predicted using PICRUSt, of 
statistically significant KEGG metabolic pathways. 

 

 

Figure 3: Top 10 most differentially abundant OTUs 
between IBD and healthy samples identified using the 
nonparametric Kruskal-Wallis statistical test. 



 

Table 1: Performance of RF classifiers trained using all 
features and top 30 features selected using different feature 
selection methods. 

Feature Selection ACC (%) Sn Sp MCC AUC 
None 66 0.64 0.75 0.31 0.74 
RF 66 0.64 0.77 0.33 0.78 
Lasso 41 0.34 0.68 0.02 0.52 
IG 65 0.61 0.81 0.34 0.75 
MRMR 43 0.38 0.64 0.02 0.52 

 
 

Max-Relevance (MRMR) [26] using F-Statistic and Pearson's 
correlation coefficient for assessing relevance of and redundancy 
between features. Using all features, the performance (in terms of 
AUC) of the RF classifier estimated using the test data is 0.74. On 
the other hand, a RF classifier trained using top 30 features, 
determined using feature importance of another trained RF 
classifier, had AUC score of 0.78. Surprisingly, classifiers trained 
using top 30 features determined using Lasso or MRMR methods 
have very poor performance. One possible explanation of this 
finding is that the basic Lasso method fits a linear model whereas 
as suggested by our exploratory analyses, IBD and healthy 
samples cannot be reliably discriminated using a linear model. In 
the case of MRMR, our results seem to suggest that F-Statistic 
and/or Pearson's Correlation Coefficient do not reliably estimate 
the relevance and/or redundancy when the feature space is 
extremely sparse. 

3.3   Performance of Network-based Feature 
Selection Methods 

Table 2 reports the best performing classifier (in terms of AUC) 
using NBBD feature selection for each choice of the network 
inference methods. The highest AUC of 0.77 is obtained using 
SparCC combined with node betweenness centrality (btw) for 
determining node importance scores or RMT combined with core 
number (cn) node property for computing node importance 
scores. These results are especially noteworthy in light of a 
recently published comparative study [35] which showed that 
SparCC, RMT, and CoNet (among other correlation network 
inference tools) suffer from extremely poor precision (i.e., below 
0.2), and hence yield networks with a large number of false edges.  
Our results show that even networks with a large fraction of 
spurious edges can be used to reliably identify potential disease 
markers from metagenomic data.   

3.4   Analysis of Identified IBD Microbial 
Markers  

Tables 1 and 2 show that there exist three classifiers (each trained 
using a subset of top 30 selected OTUs) with AUC scores in the 
range 0.77-0.78. We named the corresponding feature subsets 
according to the feature selection method used to identify them 
(e.g., SparCC_btw, RMT_cn, and RF). We noted that the 
combination of these 90 OTUs resulted in 50 unique OTUs. 
 

Table 2: Performance of top performing RF classifier (in 
terms of AUC) for each network inference method in 
NBBD. 

Tool Property ACC (%) Sn Sp MCC AUC 
SparCC btw 66 0.62 0.79 0.34 0.77 
Glasso btw 58 0.57 0.59 0.14 0.63 
MB cc 57 0.53 0.73 0.21 0.66 
RMT cn 66 0.63 0.78 0.33 0.77 
CoNet btw 63 0.60 0.78 0.30 0.74 

 

 

Figure 4: Venn diagram of unique and shared features 
selected using RF feature importance, network-based 
feature selection applied to RMT (SparCC) networks and 
using cn (btw) for node importance scoring. 

The Venn diagram of unique and shared OTUs among the three 
subsets of features is given in Fig. 4. The number of unique OTUs 
in each subset is 12, 6, and 4 for SparCC_btw, RMT_cn, and RF 
sets, respectively. The network-based feature selection method 
that shares the largest number (22) of OTUs in common with those 
identified using RF feature importance method is RMT_cn.  We 
further observed that there were only 12 OTUs shared among the 
three sets. To assess the significance of the difference between the 
medians of relative abundance of these OTUs in IBD and healthy 
populations, we applied the Mann-Whitney nonparametric test. 
We found lower (but non statistically significant) abundance of 
Faecalibacterium genus in IBD samples. We also found 
significantly higher abundance of Gemellaceae and Sutterella in 
the IBD samples relative to the healthy samples. In the case of the 
remaining nine OTUs (Parabacteroides, Clostridiales, 
Clostridiaceae, Ruminococcus, Coprococcus, Lachnospira, 
Roseburia, Erysipelotrichaceae, Eubacterium), our results show 
significantly lower abundances in IBD samples relative to the 
healthy samples. Mechanistic understanding of the precise 
reasons for these observed differences calls for controlled 
experiments. 



 
 

4 Conclusions 
We proposed a novel Network-Based Biomarker Discovery 
(NBBD) framework for detecting disease biomarkers from 
metagenomics data. NBBD consists of: a network inference 
module, for inferring networks from the abundances of microbial 
operational taxonomic units (OTUs); and a node importance 
scoring module, for comparing the constructed networks for the 
chosen phenotypes and assigning a score to each node based on 
the degree to which the topological properties of the node differ 
across constructed networks. Our results show that the NBBD 
approach is able to reliably identify IBD biomarkers even when 
the constructed networks have high rates of false positive edges. 
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