Agents that Learn from Distributed Dynamic Data Sources®

Doina Caragea

Adrian Silvescu

Vasant Honavar

Artificial Intelligence Research Artificial Intelligence Research Artificial Intelligence Research

Laboratory, Laboratory, Laboratory,
Department of Computer Department of Computer Department of Computer
Science, Science, Science,

lowa State University,
Ames, |IA 50011 USA

dcaragea@cs.iastate.edu

ABSTRACT

Recent advances in high throughput data acquisition and
data storage technologies have made it possible to gather
and store large amounts of data at increasing rates. Much
of this data is physically distributed and the data sets grow
in size at a fairly fast rate. Translating the ability to gather
data into fundamental gains in understanding of the re-
spective domains (e.g., bioinformatics) calls for data-driven
knowledge acquisition agents that can incrementally process
large amounts of data that is distributed in space or time.

More generally, design of agents that learn from their inter-
actions with open-ended, dynamic environments (including
other agents) call for the design of learning agents with prov-
able convergence properties in incremental and distributed
settings.

We propose a theoretical framework for specification and
analysis of a large class of learning problems that arise in
open-ended, dynamic environments consisting of multiple,
distributed data and knowledge sources. We state some
properties of instance and hypothesis representations and
learning operators that constitute necessary and sufficient
conditions for incremental and distributed learning of pat-
tern classifiers.

We demonstrate the use of the proposed framework to design
learning agents based on variants and extensions of the Sup-
port Vector Machine (SVM) algorithm in distributed and
incremental learning settings. We conclude with a brief dis-
cussion of some promising directions for further research.

*This research was supported in part by grants from the
National Science Foundation (NSF ACI 9982341), the John
Deere Foundation, and Pioneer Hi-Bred, Inc.

lowa State University,
Ames, IA 50011 USA

silvescu@cs.iastate.edu

lowa State University,
Ames, |IA 50011 USA

honavar@cs.iastate.edu

1. LEARNING IN OPEN-ENDED,DYNAMIC,
DISTRIBUTED ENVIRONMENTS

Recent advances in sensor, high throughput data acquisi-
tion, and digital information storage technologies have made
it possible to acquire, store, and process large volumes of
data in digital form in a number of domains. For example,
biologists are generating gigabytes of genome and protein
sequence data at steadily increasing rates. Organizations
have begun to capture and store a variety of data about var-
ious aspects of their operations (e.g., products, customers,
and transactions). Complex distributed systems (e.g., com-
puter systems, communication networks, power systems) are
equipped with sensors and measurement devices that gather
and store, a variety of data that is useful in monitoring,
controlling, and improving the operation of such systems.
Translating the recent advances in our ability to gather,
process, and store data at increasing rates into fundamen-
tal gains in scientific understanding (e.g., characterization of
macromolecular structure-function relationships in biology)
and organizational decision making presents several chal-
lenges in computer and information sciences in general and
agent-based systems, machine learning, data mining, and
knowledge discovery in particular.

Data repositories of interest in many applications are very
large. Many of the existing mining algorithms do not scale
up to extremely large data sets. One approach to this prob-
lem is to partition the data set into several subsets of man-
ageable size, learn from each resulting dataset, and some-
how combine the resulting hypotheses. In other applica-
tions (e.g., collaborative scientific discovery) in addition to
being large, data repositories are autonomous and physi-
cally distributed. Thus it is desirable to perform as much
analysis as possible where the data are located (e.g., using
mobile software agents that transport themselves to the data
repositories, or stationary software agents that reside at the
repositories), and return only the results of analysis in or-
der to conserve network bandwidth. The sheer volume and
the rate of accumulation of the data, often prohibits the use
of batch learning algorithms which would require process-
ing the entire data set whenever new data is added to the
data repository. A key problem in acquiring useful knowl-
edge from large, dynamic, distributed data sources is that of
devising cumulative learning algorithms that can incremen-
tally incorporate new data as they become available ([12,
21]) over time (incremental learning) or across space (dis-

tributed learning) or both. More generally, design of agents
that learn from their interactions with open-ended, dynamic
environments consisting of several distributed, autonomous,
data and knowledge sources (including other agents) call for
learning algorithms with provable convergence properties in
such settings.

In this paper, we focus on a framework for the specification,
analysis, and design of learning agents for incremental and
distributed learning of pattern classifiers. However, the pro-
posed framework can be extended to other types of learning
problems in open-ended, dynamic environments.

2. SUPPORT VECTOR MACHINES

Let £ = {(Xl,yl),(XQ,yg),--- ,(Xl,yl)}, where X; € RN
and y; € {—1,1} be a set of training examples for a 2-
category classifier. Let

and
S ={Xi|(Xs,y:) €€ & yi = —1}.

Suppose the training data is linearly separable. Then it is

possible to find a hyperplane that partitions the N-dimensional

pattern space into two half-spaces Rt and R~ such that
StCRYand S CR™.

The set of such hyperplanes (the solution space) is given by
fW,b = sign(W - X+ b)

where each solution hyperplane can be specified by a pair
(W, b) such that:

W -X;+b>1VX; €St
and

W-X;+b6< -1 VX; € 5.

A solution hyperplane which satisfies the additional con-
straint

7

_Iglinl|W-Xi+b|=1

is called the canonical hyperplane and defines an one-to-one
correspondence between the solution space and the set of
pairs (W, b). The distance between a hyperplane defined by
a pair (W, b) and the nearest points from the training set is
given by:
[W - X+

Wi~

then the distance corresponding to the canonical hyperplane

d(X,(W,b)) =

is equal to SVM selects from among the hyperplanes

1
wi- - o
that correctly classify the training set, one that minimizes
[[W]|. This involves solving the following quadratic pro-

gramming problem:
. 1 2
min (W) = Z[W]|
subject to

yi(W-X;+b)>1 Vi=1,--- L

The hyperplane which minimize |W]|| is the same as the
hyperplane for which the margin of separation between the
two classes is maximized.

If the goal of the classification problem is fo find a linear
classifier for a non-separable training set, a new set of vari-
ables, called slack variables, can be introduced to define the
following optimization problem:

=l

. - 1

min (W, 5) = S||W|* +0()_&)"
i=1

W,b,E 2

subject to

yi(W-Xi+b)>1—¢& Vi=1,---,1

&E>0 Vi=1,--- 1.

If the training examples are not linearly separable, an SVM
works by mapping the training set into a higher dimensional
feature space using an appropriate kernel function . The
kernel function is chosen to ensure that the data becomes
linearly separable in the feature space. Therefore the prob-
lem can be solved using linear decision surfaces in the higher
dimensional space. Any consistent training set can be made
separable with an appropriate choice of a feature space of
a sufficiently high dimensionality. However, in general, this
can cause the learning algorithm to overfit the training data
resulting in poor generalization. SVM avoids this problem
by choosing the maximal margin hyperplane from the set of
all separating hyperplanes ([22]).

The solution given by the SVM will be of the following form:

1
F(X) = sign(W-1h(X) +b) = sign(D_ yidiyh(X) - 1(X) +b)

i=1

where (W, b) defines the solution hyperplane and W is a
weighted sum of the training instances in the feature space.
Here, \; is the weight assigned to training instance X;.
Thus, the maximum margin separating hyperplane in the
feature space can be represented as a weighted sum of the
training patterns. In this weighted sum, the training pat-
terns that lie far from this hyperplane receive weights of zero
and only those patterns that lie close to the decision bound-
ary between the two classes have non-zero weights. The
training patterns that have non-zero weights are called the
support vectors. The number of support vectors is usually a
small fraction of the size of the training set. This raises the
possibility that SVM algorithm can perhaps be adapted in a
relatively straightforward fashion to work in an incremental
setting ([20]).

3. LEARNING IN OPEN-ENDED,DYNAMIC
ENVIRONMENTS: INCREMENT AL
LEARNING AND DISTRIBUTED LEARN-
ING

The incremental learning problem can be formulated as fol-
lows: the learner incrementally refines a hypothesis (or a
set of hypotheses) as new data become available. Because
of the large volume of data involved, it may not be practical
to store and access the entire data set during learning. Thus,
the learner does not have access to previously analyzed data

Figure 1: Incremental Learning

Figure 2: Agglomerative Distributed Learning

(with the possible exception of a relatively small subset of
critical examples that is stored by the learner). A generic
incremental learning scenario is shown in figure 1.

We assume that data collections Dy, D2 and so on are made
available at discrete instants in time t¢1, t2, etc. We start
with initial hypothesis ho which constitutes prior knowledge
of the domain. We assume that the system is not permitted
to store the data in its raw form. Thus, it can only maintain
and update its hypothesis base as new data becomes avail-
able. Thus, ho gets updated to h; on the basis of D;, and
h1 gets updated to hy on the basis of data D2, and so on.

One type of distributed learning problem (the agglomerative
distributed learning task) can be formulated as follows: A
hypothesis is learned independently by learners situated at
each of the physically distributed data repositories and the
resulting set of hypotheses are somehow combined to obtain
the desired pattern classifier. An agglomerative distributed
learning scenario is shown in figure 2.

An incremental or distributed learning algorithm is said to
be exact with respect to some criterion of interest (e.g., the
learned hypothesis, expected generalization accuracy) if it
is guaranteed to yield the same result as that obtained in
the batch learning scenario wherein the entire dataset is ac-
cessible to the learning algorithm during learning. In many
real world problems involving sufficiently expressive concept
classes, exact incremental or distributed learning may not
be possible even in principle. In other instances, although
possible in principle, it may not be feasible in practice for
computational reasons.

At present, a characterization of hypothesis classes that lend
themselves to exact or approximate distributed or incremen-
tal learning is lacking. From a practical standpoint, the
design and implementation of data and hypotheses repre-
sentations that can support computationally efficient and
scalable distributed and incremental learning algorithms is
clearly of interest.

4. DESIGN OF INCREMENT AL AND DIS-
TRIBUTED LEARNING AGENTS FOR
PATTERN CLASSIFICATION

‘We consider the design of learning agents for data-driven ac-
quisition of pattern classification knowledge from distributed,
dynamic data sources to explore the challenges of design-
ing agents that learn from their interactions with dynamic,
open-endedenvironments that consist of multiple, autonomous
data and knowledge sources (including other agents). In
particular, we focus on the design of variants of the Support
vector machines (SVM) ([6, 22, 9, 16]) algorithm for prov-
ably exact incremental and distributed learning. This is
motivated by the demonstrated success of SVM algorithms
in several data-driven knowledge discovery applications in-
cluding gene expression analysis using microarray data ([4]),
text classification ([11]), among others.

4.1 Incrementaland Distrib uted Learning Us-
ing SVM

In what follows, we will assume without loss of generality

that the training patterns are represented (if necessary, us-

ing a suitable kernel function) in a feature space in which

the data set is linearly separable.

Suppose that two data sets D; and D> become available
to the learner at different instants in time (say t; and t2).
Our goal is to learn a binary classifier using D; and D; in
an incremental setting. If the learning is exact, the resulting
classifier should be the same as the one obtained in the batch
learning setting using the data set D = D U D».

A naive approach to incremental learning agents using SVM
([20]) works as follows:

1. Have an SVM based learning agent process D: and
generate a set of support vectors SV;

2. Add SVi to D to get a data set D5

3. Have an SVM based learning agent process D5 and
generate a set of support vectors SVa

One can envision a similar approach to agglomerative dis-
tributed learning in a setting wherein the data sets D; and
D5 are physically distributed:

1. Have an SVM based learning agent A; process D; and
generate a set of support vectors SVi

2. Have an SVM based learning agent A process Dy and
generate a set of support vectors SVa

3. Have an SVM based learning agent A process SV1USV>
to obtain the set of support vectors SV.

These two algorithms work reasonably well in practice if the
two data sets D; and D; each individually are representative
of the entire training set D1 U D2, so that the hyperplane
determined by the support vectors derived from either one
of them does not differ very much from that derived from

Figure 3: Counterexample to the naive approach:
dataset D,

o o
°
gVt (¢}
<
e 4+
T T
2 1 0 1 2
var1

Figure 4: Counterexample to the naive approach:
dataset D,

the entire data set. However, if that is not the case, it can
be shown that the resulting hyperplane can be an arbitrarily
poor approximation of the target hypothesis ([5]). This can
be seen by considering the scenario illustrated in figures 3,
4, and 5.

Suppose that

Dy, ={(-6,-2,+), (-2,
and

D, = {(_2: _2: +): (_27 _6: +)1 (2: 2’ _), (21 _25 _)}

Thus, the set D; U D; is clearly linearly separable. We can
run the following experiment using an SVM algorithm (e.g.,
SVM'eht ([13)):

Apply SVM to D; U D2 to get the support vector set
SV(D1 U D2) = {(_27 _2: +)) (61 _6: +)7 (2) _27 _)}

Apply SVM to D; to get the support vector set SVi =
{(_6: _2, +)’ (_25 _2: +)7 (_2: 2: _): (27 2: _)}

Apply SVM to D, to get the support vector set SVo =
{(_2: _2’ +): (_21 _6a +)a (2: 27 _): (27 _2a _)}

Apply SVM to SV1 USV; to get the support vector set
‘S‘/(SI/1 U S‘/?) = {(_25 _2: +)7 (_2, 2) _)J (2: _25 _)}

-2,4),(6,—-6,+),(-2,2,-),(2,2,-)},

var2

Figure 5: Counterexample to the naive approach:
entire dataset D = D, U D,

Note that SV(D; U D3) # SV(SV1 U SV32). Because the
separating hyperplane depends on the support vectors, this
implies that the solution found by the SVM in the incre-
mental setting is different from the solution found by batch
learning. Thus, the naive approach to incremental learning
using SVM loses important boundary information (the data
point (6, —6,+) in the example above). Since depending
on the underlying distribution over the pattern space, this
can happen with an arbitrarily high probability, the result-
ing classifier can have an arbitrarily high error. Therefore a
better approach to designing learning agents that are effec-
tive in an incremental setting is necessary.

4.2 Incrementaland Distrib uted Learning
Agents

Let L be an inductive learning algorithm for pattern classi-
fication. Suppose L works with an instance space X and a
hypothesis space . Each h in # classifies instances in X.
For example, if the hypotheses are binary, each instance is
classified into one of 2 classes. We fix the instance and hy-
pothesis representations. Then L takes as input, a labeled
finite training set £ = {(X;,y;)} and outputs a hypothesis
h € H. That is, L(£) = h. If L is a consistent learner,
the hypothesis produced by L correctly classifies each of the
training instances.

In what follows, we consider a special case wherein L and X
and H have the property that the hypotheses have a direct
encoding in terms of training instances. For example, some
instance based learning algorithms and the resulting classi-
fiers ([1]) and support vector machines satisfy this property.
Under this assumption, we can think of the output of L as
simply a set of instances (e.g., support vectors in the case
of SVM) plus some additional information (e.g., the weights
associated with the instances in the case of SVM). If we ig-
nore the additional information for the time being, both the
output as well as input to L have the same representation
(namely that used to encode the training instances).

In this case, given a learning algorithm L and data sets

D1,Ds,,---,Dy, a sufficient condition for exact learning,
i.e.

° L(...L(L(Dl) U Dz) @] DN) = L(D1 u..u DN) (in-

cremental case)

e L(L(D1)U...UL(Dy)) = L(D1U...UDy) (distributed
case)

is the following (u-closure) property:

e L(L(D)U D) = L(D U D')(incremental case)
e L(L(D)U L(D")) = L(D U D')(distributed case)

for any arbitrary sets D and D’.

Support Vectors do not satisfy this property but the convex
hulls of the instances that belong to the two classes do ([10]).

The convex hull of a set of points S, denoted conv(S) is the
smallest convex set containing S. That is,

conv(S) ={X e RV|X = Y AXi,» X\=1,Xx >0}

X; €S

Thus, conv(S) is the set of all non-negative affine combi-
nations of points from S. If the set S is finite, the convex
hull is a convex polyhedron given by the intersection of a
finite number of closed halfspaces. We are interested in the
vertices of this polyhedron because they uniquely define the
convex hull. The u-closure property is a very well known
thorem for convex sets:

Theorem: Let A; and As be two convex sets. Then:

1. conv(conv(A1) U Az) = conv(A; U As)

2. conv(conv(Az2) U conv(Az)) = conv(A1 U A»)

Since the u-closure property is satisfied for convex sets it
follows that by using convex hulls we can devise exact incre-
mental and distributed learning agents in the general case
(IN-datasets). Let VConv(A) denote the vertices that define
the convex hull of a convex set A. It can be easily shown
that:

1. VConv(VConv(A1) U Az) = VConv(A:1 U Aj)
2. VConv(VConu(A2)UVConv(Az)) = VConv(A1UA3)

Suppose that we have two datasets D; and Dy such that
D1 U D is linearly separable. Let D;(+) and D;(—) denote
the positive and negative instances in the data set D;. Sim-
ilarly, let D(+) and D(—) denote the positive and negative
instances in the data set D. Let SV M (D) denote the re-
sult of applying the SVM algorithm to the data set D. The
incremental SVM learning agents can be designed as follows:

1. Have the learning agent compute VConv(D:(+)) and
VConv(D1(-))

2. Add VConv(D1(+)) to D2(+) to obtain Dj(+)
3. Add VConwv(D1(—)) to D2(—) to obtain D5(—)

3. Have the learning agent compute V Conv(D5(+)) and
V Conv(Dh(—)).

4. Generate a training
D13 = VConuv(D5(+)) U VConu(D5(—)).
Compute SV M(D;i3).

Similarly, agglomerative distributed learning agents can be
constructed as follows:

1. Have a learning agent A; compute V Conv(D:(+)) and
VConu(D1(-)).

2. Have a learning agent A» compute VConv(D2(+)) and
V Conv(D3z(-)).

3. Have a learning agent Az compute
D12(+) = VConv(conv(D1(+)) UV Conv(D2(+)) and
D;2(—) = VConv(conv(D1(—)) UV Conv(D2(—)).

4. Generate a training set D12 = D12(4+)UD12(—). Com-
pute SV M (D12).

The above approach can be easily generalized to work with
an arbitrary number of datasets yielding agents for incre-
mental learning in distrubuted and incremental settings.
The proposed algorithms are exact in the sense that the
solution found in the incremental and distributed settings
are guaranteed to be identical to that obtained in the batch
setting for any given training set.

5. EXPERIMENTAL RESULTS

In order to demonstrate the effectiveness of the proposed
algorithm we conducted a few experiments on carefully con-
structed artificial datasets. The purpose of these experi-
ments is to compare the working of the SVM algorithm
in the batch setting with that of naive and sophisticated
approaches to incremental learning with SVM. The exper-
iments presented used 2-dimensional data to facilitate vi-
sualization although the algorithms can work for any finite
number of dimensions. In each experiment, we generated
two datasets D (figure 6) and D, (figure 7) so that the pos-
itives examples in D; contain boundary information which
is important for determining the maximal margin separat-
ing hyperplane in the batch setting. This information is lost
when a naive approach (suggested in [20]) to incremental or
distributed learning is used. The convex-hull based SVM
algorithm preserves the necessary boundary information en-
suring that the decision boundary found in the distributed
and incremental settings is identical to that obtained in the
batch setting. The points labeled ”+” and ”0” denote pos-
itive and negative examples respectively. The hyperplane
with a slope of -1 in figure 8 corresponds to an incorrect so-
lution and the other hyperplane corresponds to the correct
solution (i.e., that found by the SVM algorithm in the batch
setting). The data points that lie between the two hyper-
planes (lower right corner in figure 8) represent the critical
points. By varying the fraction of the number of critical
points in the training set, we can demonstrate the degrada-
tion of the performance of the naive approach relative to the
convex-hull based approach to incremental learning. In the
first experiment the fraction of critical points was approx-
imately half that in the second experiment. In each case,

Table 1: Comparison of batch (BSVM), naive dis-
tributed (NDSVM), naive incremental (NISVM),
convex hull-based incremental (CISVM), and
convex-hull based distributed (CDSVM) Learning.
D; — D> in the incremental case denotes the fact
that D; is learned first followed by D,. Similarly
D> — D; denotes that D, is learned first followed by

D;.

EXPERIMENT 1

ALG. TRAIN Acc. TEST Acc.
BSVM 100.00 100.00
NDSVM 85.06 75.00
NISVM 1 — 2 85.06 75.00
NISVM 2 —» 1 100.00 100.00
CISVM 1 — 2 100.00 100.00
CISVM 2 — 1 100.00 100.00
CDSVM 100.00 100.00
EXPERIMENT 2

ALG. TRAIN Acc. TEST Acc.
BSVM 100.00 100.00
NDSVM 72.32 61.00
NISVM 1 — 2 75.32 61.00
NISVM 2 —» 1 100.00 100.00
CISVM 1 — 2 100.00 100.00
CISVM 2 — 1 100.00 100.00
CDSVM 100.00 100.00

the test samples were generated from the same distribution
as that corresponding to D1 U Da. We used SVM' 9™ [13]
as an implementation of SVM algorithm and qhull [2] for
computing the convex hull.

The results of the experiments are shown in table 1. Note
that the SVM algorithm finds the separating hyperplane
with 100% training accuracy. It turns out that this accuracy
is matched on the test set as well. This is not too surpris-
ing because the data set D; U D, is linearly separable and
the training and test data are drawn from identical distribu-
tions. In all experiments, the convex-hull based incremental
(CISVM) and distributed (CDSVM) algorithms produced
a set of support vectors that was exactly identical to that
produced by the SVM in the batch setting (BSVM) thereby
verifying the theoretical results presented in section 4. It is
worth noting that the naive approach to incremental learn-
ing using SVM (NISVM) performs well when the data set
D, is presented first followed by D;. This is not surprising
since D; contains the critical samples. For the same reason,
NISVM performs poorly when D is presented first followed
by D;. Furthermore, the performance of NISVM worsens
(in terms of both training and test accuracy) as the data
distribution is changed so as to increase the relative density
of critical points. In conclusion, the experimental results
support the claims made in section 4, showing that the con-
vex hull based SVM algorithms yield exact incremental and
exact distributed learning.

6. SUMMARY AND DISCUSSION

Many applications of agent-based systems call for the design
of learning agents and inter-agent interaction mechanisms
that support learning from interaction with open-ended, dy-
namic environments that include multiple autonomous data
and knowledge sources (including other agents). Examples

Var 2

Figure 6: Dataset D; in the first experiment

o
S &
o 7o
[e] Ooo
cob%c%
24 08 &
o o o
o o ©
++ O@Oo
« + ® o0 087
8 °1 + +
> + +|0 ®
+ Pty 2B ©
#ﬁ +,.0F o
+ o
++ +
R I o)
+F 4
+
#++ +
o |+t +

Figure 7: Dataset D, in the first experiment

of such domains include distributed information networks
for selective information retrieval, information extraction,
information fusion, and data-driven collaborative knowledge
discovery e.g., in bioinformatics, complex systems monitor-
ing and control applications [12].

Although some incremental and distributed learning have
been proposed in the literature, many of them ([7, 17, 18])
have the disadvantage that the learning is not exact. Fur-
thermore, most of them do not guarantee generalization ac-
curacies that are provably close to those obtainable in the
batch learning scenario. At present, with the exception of
some interesting results (e.g., mistake bounds) for the closely
related problem of online learning ([14, 15, 23, 3]), a char-
acterization of hypothesis classes that admit efficient and
scalable designs for learning agents for exact or approximate
distributed or incremental learning is lacking. Yet from a
practical standpoint, the design and implementation of such
agents is clearly of interest.

Var 2

Figure 8: D = D; U D; in the first experiment

Against this background, we have explored distributed and
incremental learning agents that are variants and extensions
of the support vector machine (SVM) family of learning al-
gorithms. In particular, we have shown that a naive SVM-
based incremental learning agents (based on an approach
first proposed in [20] can produce classifiers that are arbi-
trarily worse (in terms of generalization) relative to a classi-
fier that is learned by an SVM-based learning agent on the
same data set in the batch learning setting. We showed that
the instances that constitute the vertices of the convex hulls
(respectively) of the positive examples and the negative ex-
amples in the data sets are sufficient for exact incremental
and exact agglomerative distributed learning.

Our experiments using carefully constructed artificial data
sets verify the soundness of this approach. However, since
complexity of convex hull computation has a linear depen-
dence on the number of facets of the convex hull (and the
number of facets can be exponential in dimension of the
space), this approach is likely to be practical only when the
convex hulls are simple (i.e., have relatively few facets) [8,
19] A closer examination of the underlying computational
task reveals that it is possible to characterize a minimal
subset of the training set that satifies the u-closure property
that provides a sufficient condition for incremental and dis-
tributed learning. In fact, such a subset is the minimal set
of training instances that determine the space of separating
hyperplanes that cannot be ruled out as possible candidates
on the basis of examples processed at any stage in the learn-
ing process. We call these instances extended support vec-
tors (ESV). SV form a subset of ESV and ESV are included
in the convex hulls of the samples that belong to the two
classes. Efficient algorithms for either exact or approximate
identification and incremental update of the set of ESV is a
topic of ongoing research.

In this paper, in establishing the sufficient conditions for
incremental and distributed learning, we have made the as-
sumption that the output of the learning algorithm is rep-
resented essentially in the form of a subset of the training
examples. It is possible to relax this assumption by intro-

ducing additional classes of learning operators (e.g., hypoth-
esis refinement, hypothesis composition, etc.) that can be
used to realize learning agents. Work in progress is aimed
at the elucidation of the necessary and sufficient conditions
that guarantee the existence of exact or approximate cumu-
lative multi-agent learning systems in general, and different
types of incremental and distributed learning agents in par-
ticular, in terms of the properties of instance and hypothesis
representations and learning operators, communication op-
erators, and knowledge requirements of agents. Also of inter-
est are PAC-style analysis of multi-agent learning systems.
Long term goals of this research include: design of such theo-
retically well-founded multi-agent systems for learning from
interaction with open-ended dynamic environments that in-
clude multiple data and knowledge sources (including other
agents) and application of such multi-agent learning systems
to large-scale data-driven knowledge discovery tasks in ap-
plications such as bioinformatics.

7. REFERENCES

[1] D.W. Aha, D. Kilber, and M.K. Albert. Instance-based
learning algorithms. In: Machine Learning, 6:37-66,
1991.

[2] C.B. Barber, D.P. Dobkin, and H. Huhdanpaa. The
Quickhull Algorithm for Convex Hulls. ACM
Transactions on Mathematical Software, Vol.22, No.4,
1996.

[3] A. Blum. On-line Algorithms in Machine Learning (a
survey). In: Dagstuhl Workshop on On-line Algorithms,
Dagstuhl, Germany, 1996.

[4] M. Brown, W. Grundy, D. Lin, N. Christianini, C.
Sugnet, T. Furey, M. Ares Jr., and D. Haussler.
Knowledge Based Analysis of Microarray Gene
Expression Data Using Support Vector Machines, Tech.
Rep. UCSC CRL-99-09. In: Computing Research
Laboratory, University of California at Santa Cruz,
Santa Cruz, CA, 1999.

[5] D. Caragea, A. Silvescu, and V. Honavar. Distributed
and Incremental Learning Using SupportVector
Machines. Tech. Rep. ISU-CS-TR 2000-04.
Department of Computer Science, Iowa State
University, Ames, Towa. March 2000.

[6] C. Cortes, and V. Vapnik. Support Vector Networks.
Machine Learning 20, 273-297, 1995.

[7] P. Domingos. Knowledge Acquisition from Examples
Via Multiple Models. In: Proceedings of the Fourteenth
International Conference on Machine Learning
Nashville, TN, 1997.

[8] H. Edelsbrunner, and E.P. Mucke. Three-dimensional
alpha shapes. ACM Transactions on Graphics,
13:43-72, 1994.

[9] Y. Freund, and R. Schapire. Large Margin
Classification using the Perceptron Algorithm. Machine
Learning, To appear.

[10] P.M. Gruber, and J.M. Wills. Handbook of Convex
Geometry. Elsevier Science Publishers B.V., 1993.

[11] M.A. Hearst, B. Schlkopf, S. Dumais, E. Osuna, and
J. Platt. Trends and Controversies - Support Vector
Machines. IEEE Intelligent Systems, 13(4):18-28, 1998.

[12] V. Honavar, L. Miller, and J. Wong. Distributed
Knowledge Networks. In: Proceedings of the IEEE
Conference on Information Technology, Syracuse, NY,
1998.

[13] T. Joachims. Making Large-Scale SVM Learning
Practical. In: Advances in Kernel Methods-Support
Vector Learning, MIT Press, 1997.

[14] N. Littlestone. Learning when irrelevant attributes
abound. Machine Learning, 2:285-318, 1988.

[15] N. Littlestone. The weighted majority algorithm.
Information and Computation, 108:212-261, 1994.

[16] E. Osuna, R. Freund, and F. Girosi. Support Vectors
Machines: Training and Applications. Advances in
Kernel Methods-Support Vector Learning, MIT Press,
1997.

[17] A.L. Prodromidis, and P.K. Chan. Meta-learning in
distributed data mining systems: Issues and
Approaches. Book on Advances of Distributed Data
Mining, editors Hillol Kargupta and Philip Chan,
AAAT press (under review), 1999.

[18] F. Provost, and D. Hennessy. Scaling Up: Distributed
Machine Learning with Cooperation. In: Proceedings of
the Fourteenth National Conference on Artificial
Intelligence, 1996.

[19] S.S. Skiena. The Algorithm Design Manual.
Springer-Verlag New York, Inc., 1997.

[20] N.A. Syed, H. Liu, and K.K. Sung. Incremental
Learning with Support Vector Machines. In:
Proceedings of the KDD Conference, San Diego, CA,
1999.

[21] S. Thrun, C. Faloutsos, M. Mitchell, and L.
Wasserman. Automated Learning and Discovery:
State-of-the-art and research topics in a rapidly
growing field. AI Magazine, 1999.

[22] V. Vapnik. Statistical Learning Theory.
Springer-Verlag, New York, 1998.

[23] V. Vovk. Aggregating Strategies. In: Proceedings of
the Third Annual Workshop on Computational
Learning Theory, 1990.

