
Collaborative Ontology Building with Wiki@nt
- A multi-agent based ontology building environment

Jie Bao and Vasant Honavar
Artificial Intelligence Research Laboratory

Computer Science Department
Iowa State University

Ames, IA USA 50010
Email: {baojie,honavar}@cs.iastate.edu

Abstract— Collaborative ontology building requires both
knowledge integration and knowledge reconciliation. Wiki@nt
is an ontology building environment that supports collaborative
ontology development. Wiki@nt is based onOSHOQP(D), an
extension toSHOQ(D) with O (partial order on axioms) and P
(localized axioms in package) constructors. Wiki@nt supports in-
tegration and reconciliation of multiple independently developed,
semantically heterogeneous, and very likely inconsistent ontology
modules. A web browser based editor interface is provided, with
features to support team work, version control, page locking, and
navigation.

Version: July 30, 2004

I. I NTRODUCTION

A. Ontology Editing is a Knowledge Integration Process

Semantic Web [BLHL01] aims to support seamless and
flexible access, use of semantically heterogeneous, networked
data, knowledge, and services. The success of the semantic
web enterprise relies on the availability of a large collection
of domain or application specific ontologies and mappings
between ontologies ontologies to allow integration of data
[CSC+03]. However, by its very nature, ontology construction
is a collaborative process which involves direct cooperation
among individuals or groups of domain experts, knowledge en-
gineers or/and software agents, or indirect cooperation through
reuse or adaptation of previously published, autonomously
developed ontologies.

In such settings, typically, different participants have only
partial knowledge of the domain, and hence can contribute
only partial ontologies of the domain. A common task involves
refinement of a predefined ontology. Another common task
involves integration of several such partial ontologies to obtain
a coherent ontology that covers a much larger portion of
the domain. Semantic mismatches and logical inconsistencies
between independently developed ontologies are unavoidable.
Thus, there is an urgent need for principled approaches and
flexible tools for allowing individuals to collaboratively build,
refine, and integrate existing ontologies as needed in specific
contexts or for specific applications e.g., data-driven knowl-
edge acquisition from semantically heterogeneous, distributed
data sources [CSC+03], [Car04].

B. Motivating Examples: Pop Music Ontology

Suppose we want to build an ontology about pop music
called PopOnt. John is a teenager who knows a great deal
about pop music. He’d like to share his knowledge with other
pop music enthusiasts. Like John, there are thousands of pop
music fans who have knowledge relevant for characterizing
the domain of pop music. Suppose some of the pop music of
them may willing to spend a few minutes each day to write
down a few simple assertions like “M. Jackson isn’t a
country music artist ” and review, discuss, and pro-
pose changes to assertions made by others in their community.

There are also some information channels, such as mailing
lists, newsgroups, weblogs, p2p applications and websites
about pop music that can continually provide information
about pop music. Some simple assertions could be vali-
dated across that information. For example, if “M. Jackson”
hardly cooccurs with “country music”, it’s more likely “M.
Jackson isn’t a country music artist ” is true.
The goal then is to develop a tool that can be used by virtually
anyone to participate in the construction of PopOnt.

C. Proposed Approach

While there has been a great deal of work on ontology
languages, inference mechanisms, as well as ontology edit-
ing environments, relatively little attention has been paid
to the development of principled approaches and tools for
collaborative ontology building. Existing ontology editing and
discovery tools are mostly focused on stand-alone ontology
development rather than collaborative construction of ontolo-
gies. In this paper, we propose @nthill, a general architecture
of an ontology editing, ontology refinement, and ontology
integration environment. @nthill exploitsOSHOQP(D), a
modular ontology representation language with preference
partial order on axioms;Wiki@nt , a light-weight, browser-
based ontology editor which requires minimal user effort and
allows concurrent editing and integration of ontologies.

The rest of the paper is organized as follows: Section II de-
scribes ontology language features needed to support modular
ontology design and ontology reconciliation; Section III gives
the architecture of Wiki@nt; Section IV gives brief discussion
of related work; Section V concludes with a summary and
some directions for future work.

II. COLLABORATIVE ONTOLOGY BUILDING AS

KNOWLEDGE INTEGRATION AND RECONCILIATION

We start with a brief discussion of the theoretical basis of
Wiki@nt including logical foundations of ontology languages.
We then introduce a modular representation of ontologies and
discuss some problems in reasoning with modular ontologies
as they relate to the tasks of ontology integration and recon-
ciliation.

A. Description Logic as a Knowledge Representation Lan-
guage

Ontologies are typically described using ontology languages
nowadays, such as DAML+OIL [Hor02] or OWL [SD04].
Description logic [BN03] is used to express the formal se-
mantics of an ontology written in such ontology languages. A
description logic consists of a Tbox and an Abox, where the
Tbox is a finite set of terminological axioms such asC v D,
and the Abox is a finite set of assertional statements such as
C(a) or R(a, b).

In particular, the description logicSHIQ is the formal
background model for OWL. However, this correspondence
is incomplete, since some important features of OWL, such
as concrete data typesand named individuals, are not sup-
ported bySHIQ. SHIOQ(D), an extension of the influ-
ential SHOQ(D) description logic, attempts overcome these
two limitations, by allowing data types (D) and named
individuals(O) and is a proper DL model for OWL. However,
ontology languages withI (i.e. inverse roles) constructor, such
asSHIOQ(D), suffers from complexity and/or intractability
problems when they are used to represent and reason with
ontologies when combined with combined withO or (D).
Hence, in this paper, we useSHOQ(D) as the basis for a
collaborative ontology development environment.

We assume that we have an abstract domain4I , and a set of
data typesD and associate with eachd ∈ D, a setdD ⊆ 4D

where4D is the domain of all types. Table I summarizes
the constructors that can be used to form complex concept
expressions inSHIOQ(D). A complete list ofSHIOQ(D),
eg. OWL DL axiom constructors can be found in [HPSvH03].

An example Animal Ontology is given here:

SubClassOf(Dog , Carnivore)
SubClassOf(Dog , Pet)
SubClassOf(Carnivore, Animal)

restriction(eats allValueFrom(Animal))
ObjectProperty(eats) domain(Animal)
individual (billy type(Dog))

B. Package-Extended Ontology

Collaborative ontology building demands modularized on-
tology representation by its very nature .Current ontology
languages like DAML+OIL and OWL, while they offer some
degree of modularization by restricting ontology segments
into separate XML namespaces, fail to fully support localized
semantics, ontology evolution, distinction between semantic
and organizational hierarchies over concepts and properties,

TABLE I

PART OF SYNTAX AND SEMANTICS OFSHIOQ(D) EXPRESSIONS

Constructor Syntax Semantics
atomic conceptC A AI ⊆ 4I
abstract roleRA R RI ⊆ 4I ×4I
concrete roleRD T TI ⊆ 4I ×4D

nominalI {o} {o}I ⊆ 4I , #oI = 1
data typesD d dD ⊆ 4D

¬d (¬d)D = 4D\dD

conjunction C uD (C uD)I = CI uDI
disjunction C tD (C tD)I = CI tDI
negation ¬C (¬C)D = 4I\CI
subclass C v D CI ⊆ DI
exists res. ∃R.C (∃R.C)I = {x|∃y : (x, y)

∈ RIand y ∈ CI}
value res. ∀R.C (∃R.C)I = {x|∀y : (x, y)

∈ RI ⇒ y ∈ CI}
atleast res. ≥ nR.C (≥ nR.C)I = {x|#{y|(x, y)

∈ RIandy ∈ CI} ≥ n}
atmost res. ≤ nR.C (≤ nR.C)I = {x|#{y|(x, y)

∈ RIandy ∈ CI} ≤ n}
datatype exists ∃T.d (∃T.d)I = {x|∃y : (x, y)

∈ TIand y ∈ dD}
datatype value ∀T.d (∀T.d)I = {x|∀y : (x, y)

∈ TI ⇒ y ∈ dD}
inverse role R− (R−)I = (RI)−

ontology reuse, and knowledge hiding. In our previous work
[BH04], we have argued for package based ontology language
extensions to overcome these limitations. In the resulting
ontology language P-OWL, apackageis an ontology module
with clearly defined access interface. Mapping between pack-
ages is performed byviewswhich define a set of queries on the
referred packages. Semantics are localized by hiding semantic
details of a package by defining appropriateinterfaces(special
views). Packages provide an attractive way to compromise
between the need for knowledge sharing and the need for
knowledge hiding in collaborative design and use of ontolo-
gies. The structured organization of ontology entities (classes,
properties, instances) in packages bring to ontology design
and reuse, the same benefits as those provided by packages in
software design and reuse in software engineering.

Some feature of the P-OWL language [BH04] include:

• A syntax specification that yields an OWL/RDF compat-
ible language for package-extended ontologies.

• Package-extended ontologies to support localized seman-
tics, flexible knowledge hiding as well as knowledge shar-
ing. Ontology entities are defined with “Scope Limitation
Modifier” that restrict their accessibility, and organized in
module called ”package”.

• A mechanism for view-based information integration over
modular ontologies with localized semantics. View is
a set of queries over one or more ontology packages.
Connecting ontologies with views could hiding semantic
details of a package to the outside, as while as also be
beneficent to flexible reuse of existing ontology.

• A distributed reasoning algorithm over a package-
extended ontology to support locally-consistent reasoning
across autonomous ontology modules even in scenarios

2

TABLE II

SYNTAX AND SEMANTICS OF SHOQP(D)

Constructor Syntax Semantics
Package p pP ∈ 4P

View v vI ∈ 4P

Global Pkg p0 p0 ∈ 4P

InPackage RP RIP ⊆ 4IT ×4P

HomePackage HP (t) HP (t)I = {p|(tI , p) ∈ RIP }
NestedIn ∈N ∈IN∈ 4P ×4P

∈IN= (∈IN)+

SLM SLM(t, p) p ∈ 4P can accesst ∈
4IT iff SLM(t,p)=true

public(t, p) ∀p, public(t, p) = true
private(t, p) ∀p, private(t, p) :=

(p = HP (t))
protected(t, p) ∀p, protected(t, p) :=

(p = HP (t)or p ∈N HP (t))
Import im(P1, P2) P2 is imported intoP1

in which common global semantics is unavailable. The
reasoning process is built upon local reasoning offered
by individual modules.

Table II gives the syntax and semantics of constructors in
P-OWL. LetP be the set of all packages. We define4P as the
domain ofP . We assume that the domain of interpretation of
all packages4P is disjoint from the concrete datatype domain
4D, the abstract concept domain4I , the abstract role domain
4I × 4I and concrete role domain4I × 4D. We define
the term domain4I

T as4I
T = 4P ∪ 4I ∪ (4I × 4I) ∪

(4I×4D). The resultingpackage-extendeddescription logic
language is calledSHOQP(D) whereP stands for “package-
extended”.

C. Ontology Reconciliation

As noted earlier, semantic mismatches and possible logical
inconsistencies between independently developed ontology
modules make the combining of such modules into larger
ontologies a challenging task. Specifically, in the case of two
ontology modulesα, β, it is possible that althoughα ² t,
the module resulting from combiningα andβ may not entail
t i.e., {α, β} 2 t That is, any system for collaborative
ontology building has to provide mechanisms for handling
nonmonotonicity.

An example (adapted from [HV02]) illustrates this problem.
A dog is carnivore; however, a sick dog sometimes eats grass.
Formally, we add new axioms to the Animal Ontology:

DisjointClasses(Plant,Animal)
SubClassOf(SickDog, Dog)

restriction(eats someValueFrom(Plant))

The resulting knowledge base will be inconsistent because a
sick dog (which is a dog) now can eat grass (which contradicts
the assertion that dogs are carnivores). Several techniques have
been developed to reconcile inconsistent ontology system,
such as default logic [BH93] [BH92] and defeasible logic
[SH02] [HV02]. In this paper, we extend our P-OWL with
the OSHOQ(D) proposed in [SH02]. An axiom is said to
be defeasibleif some other axiom coulddefeat(or override)

it. The resulting ontology language is calledOSHOQP(D)
whereO denotes a strict partial order on the axioms.

Definition 1: A OSHOQP(D)-knowledge base is a tuple
〈T , <〉, whereT is a SHOQP(D)-knowledge base and<
is a strict partial order between axioms ofT . For each pair
a1 < a2, a2 is said to bedefeasiblewhile a1 is a (possible)
defeater of a2

Definition 2: A local interpretation of a package Pi

is a pair Ii =< 4Ii , (.)Ii >, where the concept space
4Ii contains a nonempty set of objects and the role space
(.)I is a function over4Ii × 4Ii such that for class
c, InPackage(c, Pi) ⇐⇒ cIi ⊆ 4Ii ; property
p, InPackage(p, Pi) ⇐⇒ pIi ⊆ 4Ii × (4Ii ∪ dD) ;
instance i, InPackage(i, Pi) ⇐⇒ iIi ∈ 4Ii .

Definition 3: A distributed interpretation of a set of
packages{Pi}, i = 1, · · ·m is a family Id = {Ii} where
Ii =< 4Ii , (.)Ii > is the local interpretation ofPi. The
union of all 4Ii is the distributed concept space4Id and
(.)Id ={functions over4Id × 4Id } is the distributed role
space.

The notion of defeat is formalized in the following definition
(adapted from [SH02])

Definition 4: Let Σ = 〈T , <〉 be an OSHOQP(D)-
knowledge base, andI =< 4I , (.)I > an interpretation of
Σ, A terminological axiomA v B ∈ T is
- applicable w.r.t x ∈ 4I andI iff x ∈ AI

- applied w.r.t x ∈ 4I iff it is applicable w.r.t.x andx ∈ BI

- [classically] satisfiedw.r.t x ∈ 4I iff it is applied w.r.t x
where it is applicable w.r.tx
- defeated w.r.t x ∈ 4I iff ∃C v D < A v B such that
C v D is applied w.r.tx. In this case, we say thatC v D
defeatsA v B w.r.t x.

Although definition 4 is defined on TBox(terminological
axiom) only, it’s easy to simulate the ABox with TBox axioms:

C(a) ⇐⇒ {a} v C

R(a, b) ⇐⇒ {a} v ∃R.{b}

For example, if we revisit the Animal Ontology in
OSHOQP(D), The terminologyT could be rewritten as

package(1)
(1a) public(Dog, 1)
(1b) 1 : Dog v 1 : Carnivore
(1c) 1 : Dog v 1 : Pet
(1d) public(Animal, 1)
(1e) public(eats, 1)
(1f) 1 : Carnivore v 1 : Animal
(1g) 1 : Carnivore v ∀1 : eats.1 : Animal
(1h) {1 : betty} v 1 : Dog

package(2)
(2a) im(2, 1) ; import package 1
(2b) public(Plant, 2)
(2c) 2 : Plant u 1 : Animal v⊥
(2d) 2 : SickDog v 1 : Dog u ∃1 : eats.2 : Plant

3

A simple combination of packages 1 and 2 is inconsistent
on (1g) and (2d), i.e. there is no model for it. However, with
a partial order<, this logical inconsistency can be eliminated.
One such possible partial order is (2d)<(1g) (read as axiom
(2d) isstronger thanaxiom (1g) or axiom (1g) isweaker than
axiom (2d)). In this case, a specific axiom (2d)defeatsthe
general rule (1g). When there is a logical conflict between a
pair of axioms, the weaker of the two is discarded.

The specification of the partial order< for resolving in-
consistencies between independently developed ontologies is
best left to the user interested in combining the ontologies in
question. It may be based on principles of the sort described
in [AvH04]: If the source of one axiom may be more reliable
than the source of another axiom, or has higher authority or
social order, the former one may have higher priority; A more
recent axiom may be preferred over an earlier one; exceptions
are stronger than the general rules. In collaborative ontology
building scenarios, it is reasonable to assign higher priority
to local package axioms relative to axioms from imported
packages in cases where a local package can be seen as an
extension or an exception to a general ontology. Other partial
order assignment policies may be based on the social order
of the agents in the Wiki@nt community, such as ontology
administrator, package manager and common user.

D. Reasoning

Ontology editing requires some support for reasoning with
ontologies. For example, when we define a new instance of
a class C, the properties associated with the instance should
be consistent with the superclass hierarchy of C, and the
restrictions of each of C’s (direct and indirect) superclasses.
When an new axiom is proposed to be added to a package,
the reasoning engine ideally should verify that the addition of
the proposed axiom does not introduce any inconsistencies.

1) Reasoning inSHOQ(D) Ontology: One of the most
important reasoning problems is the subsumption reasoning
problem - the problem of determining if a class is a subclass of
another class. Many other reasoning problems can be reduced
to subsumption. For example
1. C and D are equivalent⇐⇒ C is subsumed by D and D
is subsumed by C.
2. C and D are disjoint⇐⇒ C u D is subsumed by⊥(bottom
concept).
3. a is a member of C⇐⇒ {a} is subsumed by C

The standard reasoning algorithm in DL is the Tableau
algorithm. We restrict our discussion to the language of
SHOQ(D) [HS01]. The general idea behind the standard
Tableau algorithm is to reduce the subsumption problem
to (un)satisfiability problem and try to construct a possible
interpretation for given terminology. The reduction is easy to
understand sinceC v D ⇐⇒ C u ¬D is unsatisfiable.
Transform C u ¬D into negation normal form (NNF), i.e.
negation occurs only in front of concept names. Denote the
transformed expression asC0, the algorithm starts with an
ABox A0 = {C0{x0}}, and apply consistency-preserving
transformation rules (tableaux expansion) to the ABox as far

as possible. If one possible ABox is found,C0 is satisfiable
and the subsumption is not true. If no possible ABox could
be found, the subsumption is true. Interested reader is refered
to [BN03] for Tableau algorithm and [HS01] for NNF trans-
formation rules and tableaux expansion rules ofSHOQ(D).

2) Distributed Reasoning in Modular Ontology:Now
we turn to the reasoning in package-extended ontology
SHOQP(D). Reasoning in package-extended ontology can
be seen as distributed reasoning among autonomous ontology
modules where no global semantics is guaranteed. Therefore,
the whole reasoning process has to be built on local reasoning
offered by individual modules.

SubsumptionAnswer (C, D, O)
Input: ConceptC andD, OntologyO =< P, W >
Return:True or False

1) Construct an ABoxA = {(C u ¬D)(x)}
2) TransformA into NNF according to [BN03]
3) FOR all package/views P being referred inA
4) RETURN Satisfiable (A, P)
5) END FOR

Satisfiable (S, P)
Input: Initial ABox setS, package/viewP
Return:True or False

1) FOR all ABoxesAi in S
2) Transform concepts inAi into NNF w.r.t. visible

entities from P
3) Do SHOQ(D) tableau transformation onAi, get an

augmented set of ABoxesSi

4) S′ = S ∪ Si

5) IF ∃A ∈ Si is complete and consistent
6) RETURN True;
7) ELSE
8) FOR ∀P ′, im(P, P ′)
9) IF Satisfiable (S′, P ′) = True

10) RETURN True;
11) END IF
12) END FOR
13) END IF
14) END FOR
15) RETURN False;

The basic idea ofSatisfiable algorithm is that a package or
view can answer aSatisfiablerequest if a possible interpreta-
tion is found locally; otherwise it has to consult the packages
and views in its domain. Although no global semantics is
available, an interpretation of the ”global” model is incremen-
tally constructed by querying the relevant packages through the
corresponding views. (Note that if two packages are mutually
imported, one or both of them could be called more than once
while with different parameterS. If the tableaux expansion
can yield a complete and logical clash-free completion ABox
set,Satisfiable will terminate even if mutually importing, or
more generally, cyclic importing is possible).

4

It is easy to prove from the properties of the Tableau Algo-
rithm that theSubsumptionAnswer algorithm is sound, ter-
minable, complete and decidable, when each of the modules is
limited to useSHOQ(D)-concept description. Since we know
satisfiability of SHOQ(D)-concept description isPSPACE-
complete in each of the package, theSubsumptionAnswer
is alsoPSPACE-complete for this case.

3) Dynamically Loaded Distributed Reasoning:The cost
of communication between modules is an important consider-
ation in distributed reasoning In theSatisfiablealgorithm, the
communication occurs on line 9). The local communication
cost in a single call toSatisfiableis the size of fed parameters
size(S)+size(P). size(S) =

∑n
i=1 size(Si), wheresize(Si)

is the number of axioms inSi. size(S) increases along
recursive iteration pathes sinceS is augmented by the tableaux
expansions.size(P) is trivially 1. The total communication
cost in a single call toSatisfiable includes both the local
communication cost and the communication costs in all its
sub (recursive) calls. It depends on both the complexity of
ABox set of expandedA = {(Cu¬D)(x)} and the importing
topology of the ontology. Suppose the domain of each module
(package or view) is finite and the expanded importing path
for every package has finite length, the final call times of
Satisfiable is PSPACE-complete. Generally, the simpler the
importing topology, the lower is the communication cost.
We can reduce communication cost with loading or caching
referred ontology modules in local storage such as memory.
However, creating a centralized ontology model in memory
defeats the very purpose of having a modular ontology. Hence,
a tradeoff should be made between communication cost and
memory cost. A (local or remote) partial ontology model
will be dynamically loaded into local memory in a reasoning
process only if it is needed. The partial model could be a
package, a small part of a package, or even an axiom. As we
will see in the next section, dynamically loaded distributed
reasoning is essential in Wiki@nt since there is even no
persistent in-memory model for a package when it is referred.

4) Nonmonotonic Reasoning in Modular Ontology:As
noted earlier, collaborative ontology development using the
proposed approach requires support for nonmonotonic rea-
soning inOSHOQP(D). Hence, we developed an algorithm
for nonomonotonic reasoning in a package-extended ontology
based on the result of reasoning inOSHOQ(D) [SH02].
The basic idea is to choose a preferredSHOQP(D) model
based on the specified partial order< when we construct
the interpretation(model) by tableau expansion. For example,
given the Animal Ontology (in II-C), if new axioms are added
to say that if a sick dog is sent to pet hospital (i.e., it is a
TreatedDog), it will not eat grass:
(2e) 2 : TreatedDog v 2 : SickDog
(2f) 2 : TreatedDog v ¬∃1 : eats.2 : Plant
(2g) {1 : billy} v 2 : SickDog
and the partial order is (2f)<(2d)<(1g). Given the fact that
betty is a sick dog, two possible interpretations of the ontology
are given in table III. [SH02] gives a formal definition of a
preferred model:

Definition 5: The support for a modelI of Σ =< T , <>
is the setSI = {(x,A v B)|x ∈ 4I , A v B ∈ T is
classically satisfied (see definition 3) w.r.t.x andI} ([SH02]
Definition 3)

Definition 6: A model I of a knowledge baseΣ is pre-
ferred over another modelJ of Σ, denotedI ¹ J if ∀(x,A v
B) ∈ SJ \SI ,∃(x,C v D) ∈ SI\SJ , C v D < A v B (
[SH02] Definition 4)

Definition 7: A model I of a knowledge baseΣ is a
preferred model of Σ if there is no other modelJ of Σ
each thatJ ¹ I ([SH02] Definition 5)

The intuition behind this definition is a ”good” model
should defeat least preferred axioms. Intuitively,I1 is less
preferred thanI2 becauseI1 makes stronger assumption that
billy is a TreatedDog and defeats 2d, whileI2 defeats only
a weaker axiom 1g. ThusI2 is a preferred model. A modified
version ofSatisfiable is given as following:

Satisfiable’ (S, P, <)
Input: Initial ABox setS, package/viewP , partial order<
Return:True or False

1) FOR all ABoxesAi in S
2) Transform concepts inAi into NNF w.r.t. visible

entities from P
3) Do SHOQ(D) tableau transformation onAi, get an

augmented set of ABoxesSi

4) S′ = {x|x ∈ S ∪ Si andx is a preferred model}
5) IF ∀A ∈ S′ are complete and consistent
6) RETURN True;
7) ELSE
8) FOR ∀P ′, im(P, P ′)
9) IF Satisfiable (S′, P ′, <) = False

10) RETURN False;
11) END IF
12) END FOR
13) RETURN True;
14) END IF
15) END FOR

The basic idea of this algorithm is to limit the search only to
preferred models; if all preferred models assert thatC v D,
then C v D is acceptable in theOSHOQP(D) ontology.
Formally, we call C is defeasibly subsumed by D ifSub-
sumptionAnswer(C,D,Σ) returnsTrue

Definition 8: For concept C and D in KBΣ , C is defea-
sibly subsumedby D , denote asΣ Ã C v D, iff CI ⊆ DI

for each preferred modelI of Σ ([SH02] Definition 7)

III. A RCHITECTURE

OSHOQP(D) gives us an expressive language to build
ontology from autonomous, distributed, and possibly incon-
sistent ontology modules. Wiki@nt is the implementation of
an ontology editor based onOSHOQP(D) to support col-
laborative ontology building by a community of autonomous
domain experts, organizations, or even software agents.

5

TABLE III

POSSIBLE INTERPRETATIONS OF THEANIMAL ONTOLOGY

Dog SickDog TreatedDog ∃eats.P lant ∀eats.Animal ... satisfies
I1 billy billy billy ∅ billy ... all but 2d
I2 billy billy ∅ billy ∅ ... all but 1g

Jena Ontology

Model

Wiki
File(s)

DB

or

C

D

E

F

G

H

Users

Wiki Storage

K

AgnetInf

Agents

Users or Agents

I J

Import/Export

L

Fig. 1. The Architecture of Wiki@nt

The name ”Wiki@nt” suggests that it has a wiki-like editing
environment. Wiki is originally a collaborative documentation
writing/website building tool. Typical wiki system includes a
script language (usually a simplified subset of HTML tags),
a set of wiki pages written in the script language and shown
in translated HTML pages,a RCS version control system to
record modification of contents, an user profile and concurrent
conflict management system to enable multiple user editing the
same contents, a content navigation system such as showing
link-in and link-out pages, and a simple-to-use, browser-based
editing environment to generate or modify content on the fly.

We find that those features are quite desirable in a col-
laborative ontology editor. While most widely-used ontology
editors, such as Protege and OilEd, work very well for the
task of developing a single ontology module, they do not lend
themselves to collaborative ontology building. This is due to
the lack of a built-in formalism to support modular ontology
representation, and the lack of support for communication and
cooperation among multiple individuals in editing a shared
ontology consisting of multiple, independently developed,
possibly partially overlapping modules. To overcome those
deficiencies, we propose to use wiki to editOSHOQP(D)
ontology. An ontology module is composed of one or more
wiki pages; multiple users can edit the same content, with
version control and transaction management; Ontology are
loaded into or uploaded from a set of wiki pages and managed
by a ontology repository. Figure 1 shows the architecture of
Wiki@nt.

A. Wiki: markup script and the editor

We defined a set of markup script tags to correspond to
the syntax of the ontologies. When a wiki page is under
editing, its wiki markup script is loaded and translated to

user friendly text, such as HTML web page. The syntax
is a extension to OWL to support package and partial
order on axioms. Wiki markup script is a human readable
syntax equivalent to the N-Triple syntax. N-Triple syntax
is an alternative to the RDF/XML syntax and each line
in N-Triple serialization is a triple statement with subject,
predicate and object. For example, axiom SubClassOf(Dog
, Carnivore) in the Animal Ontology could be represented
by N-Triple syntax as:<http://mydomain.org/animal#Dog>
<http://www.w3.org/2000/01/rdf-schema#subClassOf>
<http://mydomain.org/animal#Carnivore>, or in
short form <animal:Dog> <rdfs:subClassOf>
<animal:Carnivore>. It’s wiki script is [animal:Dog]
[rdfs:subClassOf][animal:Carnivore]

Each axiom is assigned a URI (uniform
resource identifier) as label. Thus, for example,
http://mydomain.org/animal/package1#Dog represents
Dog v Carnivore in package(1), Animal Ontology. A
partial order can be specified as [uri1] [wiki:stronger][uri2].

User can create a new page or modify the source script
of an existing page. The editing action is assisted by several
wizards (such as class creating wizard) and a browser (eg.
Show subclass and superclass of the class in question).

B. Wiki Engine

A wiki engine
• Provides a web interface for ontology editor and browser.
• Translates the Wiki@nt script to HTML code to be shown

in the web browser.
• Manages the storage of wiki pages, in plain file or

database.
• Provides version control. When a modification for an

axiom is submitted, the previous version is stored and
could be restored when the committed version is found
incorrect or impropriate.

• Provides transaction management. Wiki@nt denies the
write-access of agents to a page,or possibly also related
pages such as subclasses in the class hierarchy, if it is
locked by some other agents.

• Generates reference report for each wiki pages. All terms
be used in an axiom group, and all other groups that
referring this group, are listed for browsing purpose.

• Generates a RSS feed for ontology repository updates.
The wiki engine we utilized is based on the JSP-
Wiki(http://www.jspwiki.org) and implemented in Java and
JSP.

C. Wiki pages : axiom groups

While most of the popular ontology editors have in-memory
model for edited ontology, Wiki@nt doesn’t maintain a in-

6

Fig. 2. a Wiki@nt page

memory model for each resident ontology for several reasons:
An in-memory model limits the scalability of the system with
respect to both the axioms number in one ontology and the
number of ontologies in the Wiki@nt ontology repository; In-
memory model implicitly assumes the existence of a global
ontology during the ontology development process and re-
quires monotonic behavior of the ontology - neither of these
assumptions is desirable in a collaborative ontology building
scenario.

Note that that even when the size of the ontology in question
is huge, usually only a small fraction of its axioms are involved
during an editing action. Hence, we store the ontology as a
set of separate, possibly distributed blocks in Wiki@nt. Each
block is serialized to external storage when it’s not being
actively edited, and being loaded into the memory only if it’s
edited or referred. This is inspired by widely used techniques
of database memory management where partial content of
the database is dynamically loaded and unloaded to allow
manipulation of of a much larger volume of data than can
fit in limited memory.

Although different decompositions of an ontology package
are logically equivalent, the size of each ontology block will
affect the convenience and efficiency of ontology editing and
reasoning. It should not be too big (i.e. the whole package), or
too small (e.g., a single triple). In Wiki@nt, we choose axiom
groups as ontology blocks. Each axiom group contains triples
with same subject. For example, the axiom groups in Animal
Ontology package(1) will be Dog, Carnivore, eats, and billy.
Restrictions and anonymous classes, are assigned to the terms
from where they are referred. Each axiom group is translated
to wiki markup script and stored as a wiki page. An ontology
could be stored distributedly in multiple pages, physically in
file or database ,and could be dynamically, partially loaded
when necessary. Figure2 shows a example of axiom group.

D. Ontology exporting/importing

When an ontology is needed e.g., for reasoning, we export
wiki pages as a single ontology file or read an ontology file

into Wiki Ontology Repository. The relevant portion of an
ontology is extracted or assembled from the wiki pages. We
use the Jena toolkit to create the in-memory model and as
parser/writer for ontology files.

Each loaded ontology is assigned a unique name, eg.
http://mydomain.org/animal/, and it’s member packages, eg.
http://mydomain.org/animal/package1, are registered to that
ontology. It’s also possible that packages from different ontolo-
gies could be reassembled into a new ontology, thus provide
a flexible way for ontology reuse and integration.

E. The Agent Interface

While fully automatic ontology construction and inter-
ontology mapping are impossible, software agents can assist
humans in several aspects of collaborative ontology devel-
opment e.g., finding useful concepts and relations among
concepts from original data sources. Small pieces of ontolo-
gies, such as consistent concept (term) in data or concurrence
of two concepts, can be generated by software agents. The
results may be subjected to review of domain experts, or even
other software agents. Hence, although our current design of
Wiki@nt does not include support for software agents, we do
reserve an RPC interface that enables agents to communicate
with Wiki@nt. Thus, in principle, it is possible for software
agents to participate in collaborative ontology building using
Wiki@nt.

IV. RELATED WORK

A. Modular Representation and Reasoning in Description
Logic

1) Distributed Logics: : A number of distributed logics
system have been studied during recent years. Examples
include Local Model Semantics [GG01] and Distributed First
Order Logic (DFOL) [GS98] which emphasize local semantics
and the compatibility relations among local models. Inspired
by DFOL, [BS02] extends the description logic to obtain a
distributed description logic (DDL) system. A DDL system
consists of a set of distributed TBoxes and ABoxes connected
by ”bridge rules”. Bridge rules are unidirectional thereby
ensuring that there is no ”back-flow” of information among
modules being connected by a bridge rule. When the number
of modules to be connected is large, the explicit declaration
of such bridge rules becomes tedious. [QG04] extends local
model semantics and harmonizes local models via agreement
on vocabulary provenance.

2) Modular Ontologies:Two approaches to integration of
separate ontologies have been developed based on DFOL and
DDL. The Modular Ontology, [SK03] offers a way to exploitat
modularity in reasoning. It also defines an architecture that
supports local reasoning by compiling implied subsumption
relations. It also offers a way to maintain the semantic integrity
of an ontology when it undergoes local changes. In the ”view-
based” approach to integrating ontologies, all external concept
definitions are expressed in the form of queries. However, A-
Box is missing in the query definition, and the mapping be-

7

tween modules is unidirectional making it difficult to preserve
local semantics.

3) Contextual Ontology:: Contextual logic, a formalism
based on DDL, emphasizes localized semantics in ontologies.
Contextual ontology keeps contents local and maps the con-
tent to other ontologies via explicit bridge rules. [BDSZ02]
proposed CTXML, which includes a hierarchy-based ontology
description and a context mapping syntax. [PB03] combined
CTXML and OWL into Context OWL (C-OWL), a syntax for
bridge rules over OWL ontology. Our approach based on P-
OWL has several improvements over C-OWL by introducing
scope limitation modifiers (SLM) and query-based views.
Bridge rules can be viewed as special cases of queries and
SLM offers a controllable way to keep content local by
definition.

B. Non-monotonic Reasoning in Description Logic

Nonmontonic reasoning in description logic has received
considerable attention in the literature. [BH93] and [BH92]
introduced defaults in the description logic. [QR93] stud-
ied preferred models and split axioms into defeasible and
not defeasible axioms. [SH02], [HV02] extended defeasible
reasoning to description logic, with a partial order defined
on axioms, “stronger” axioms can defeat “weaker” axioms.
Our approach further extends the non-monotonic DL to the
distributed setting, and provides a tableau-based reasoning
algorithm.

Specifically,OSHOQP(D) proposed in this paper offers a
possible extensions to the OWL language to support default
reasoning. The system allows inherited values to be overridden
by more specific classes, treating the inherited values as
default.OSHOQP(D) embodies a closed-world assumption
(a statement is assumed to be true when it negation cannot be
proved), as opposed to the open-world assumption (a statement
cannot be assumed true on the basis of failure to prove its
negation) currently adopted by OWL. A careful investigation
of the relative advantages of the closed versus open world
assumptions in specific application scenarios deserves further
attention.

C. Collaborative Ontology Editor

Several ontology editors have been reported in the litera-
ture [Den02] [Ont]. However, most existing ontology editors
including the most widely used ontology editors Protege
[GMF+02] and OilEd [BHGS01] provide little support for
collaborative ontology development. The ontology editors that
support collaborative ontology editing are listed in TableIV.
Most of them provide concurrent access control with trans-
action oriented locking, and in some cases, even rollback.
However, none of the existing ontology editors, to the best
of our knowledge, provides principled approaches for manip-
ulating independently developed, semantically heterogeneous
ontology modules or for reconciling logical inconsistencies
between such modules.

D. Collaborative Knowledge Base Construction

Some collaborative knowledge base construction projects,
although not focused on ontology building, address similar
problems.

1) Nooron: Nooron1 is a knowledge publishing system and
has a wiki for ontology browsing.

2) MnM: MnM [VVMD +02] is an annotation tool which
provides both automated and semi-automated support for
annotating web pages with semantic contents. MnM integrates
a web browser with an ontology editor and provides open APIs
to link to ontology servers and for integrating information
extraction tools. However, it doesn’t have concurrent access
control.

3) FOAF: FoaF2 is an acronym for ”Friend of a Friend” ,
an experimental project and vocabulary for the Semantic Web.
It is based on the idea of a machine-readable version of the
current World Wide Web, with homepages, mailing lists, travel
itineraries, calendars, address books and the likes. The project
is open and allows participants to add their own information.
The result is an RDF based knowledge base containing contact
and acquaintance information about the participants.

4) WikiPedia: WikiPedia 3 is a wiki-based open-content
encyclopedia that is available in several languages. There are
315,000 articles in English alone as of July, 2004. It is an open
encyclopedia that is editable by participants. WikiPedia works
and assumes that that most of people in the community behave
in a manner that benefits the community. Articles in WikiPedia
are written in natural language, and the relation between items
is not formal. Nevertheless, articles can be seen as concepts
and links between them seen as properties among them, in a
informal sense.

5) Open Directory Project:or called DMOZ4 is an online,
open, collaborative taxonomy building project for web catalog.
Now it has about 64,200 editors and a taxonomy tree of over
590,000 categories and over 4 million sites classified into
categories. The relations between DMOZ concepts is just strict
”subClassOf”. Both WikiPedia and DMOZ knowledge base
are open source inspired and freely available.

Although these projects lack formalized and full-fledged
ontologies, they offer interesting demonstrations of the fea-
sibility of collaborative ontology development. The Wiki@nt
collaborative ontology development environment proposed in
this paper is inspired by the success of DMOZ and WikiPedia,
and aims to provide support for such efforts using a formal on-
tology language to facilitate machine interpretable annotations
of data.

V. SUMMARY AND DISCUSSION

In this paper we have described

• A OSHOQP(D) description logic to support defeasi-
ble reasoning with modular ontologies for collaborative

1http://www.nooron.org
2http://www.foaf-project.org/
3http://en.wikipedia.org/
4http://www.dmoz.org/

8

TABLE IV

COLLABORATIVE ONTOLOGY EDITORS

Tool Base Language Import/Export More Information

DOME CLASSIC & FaCT OKBC, XML http://more.btexact.com/projects/ibsr/dome/index.htm
IODE KIF KIF, UML, RDB, XML,DTD http://www.ontologyworks.com/
KAON KAON RDFS http://kaon.semanticweb.org/

LinKFactory Workbench Extended description logic XML, RDF(S), DAML+OIL/OWL http://www.landc.be/
Onto-Builder LOK DAML+OIL; XML, LOK, KIF http://ontology.univ-savoie.fr

OntoEdit [SEA+02] F-Logic RDFS; F-Logic; DAML+OIL RDB http://www.ontoprise.de/com/ontoedit.htm
Ontolingua [FFPR95] Ontolingua DAML+OIL, KIF, OKBC, Loom, http://www.ksl.stanford.edu/software/ontolingua/

Prolog, Ontolingua, CLIPS,...
Ontosaurus Loom KIF, Loom, OKBC http://www.isi.edu/isd/ontosaurus.html

OpenKnoMe GRAIL CLIPS, XML http://www.topthing.com/
WebKB FS (extended CGs) DAML/RDF; CGIF; KIF http://meganesia.int.gu.edu.au/ phmartin/WebKB/

WebODE Prolog DAML+OIL, RDFS, X-CARIN, http://delicias.dia.fi.upm.es/webODE/
FLogic, Prolog, XML

WebOnto OCML RDF, RDFS, GXL, Ontolingua, OIL http://kmi.open.ac.uk/projects/webonto/

ontology construction, ontology integration and reconcil-
iation.

• Distributed reasoning algorithms in both monotonic mod-
ular ontology and defeasible modular ontology.

• A distributed ontology representation and storage
methodology based on wiki.

• A Light-weight ontology editor to support collaborative
ontology building

Some interesting directions for future work include:
• Incorporation of transaction management and incorpo-

ration of safe mechanisms for handling simultaneous
editing and modification of ontologies

• Detailed complexity analysis of the reasoning algorithm
in SHOQP(D) andOSHOQP(D) including bounds on
the communication cost for the tableu based reasoing for
SHOQ(D)

• Investigation of useful policies for assigning partial order
among axioms, including those that are base don machine
learning or probabilistic approaches [GL02], [DP04].

• Investigation of learning agents for generating ontolo-
gies (e.g., taxonomies over attribute values) from data
[KSZH04]. Such agents can assist domain experts in
ontology building.

• Applications of collaborative ontology building environ-
ments for information integration from autonomous, dis-
tributed, semantically heterogeneous information sources
[CPH04] in knowledge and data intensive domains like
bioinformatics, security informatics, and more generally,
semantic web [BLHL01].

ACKNOWLEDGMENTS

This research is supported in part by grants from the
National Science Foundation (0219699) and the National
Institutes of Health (GM 066387) to Vasant Honavar

REFERENCES

[AvH04] Grigoris Antoniou and Frank van Harmelen.A Semantic Web
Primer. The MIT Press, 2004.

[BDSZ02] P. Bouquet, A. Dona, L. Serafini, and S. Zanobini. Conceptual-
ized local ontologies specification via ctxml. InWorking Notes
of the AAAI-02 workshop on Meaning Negotiation, Edmonton
(Canada), 2002.

[BH92] Franz Baader and Bernhard Hollunder. How to prefer more
specific defaults in terminological default logic. Technical
Report RR-92-58, 1992.

[BH93] Franz Baader and Bernhard Hollunder. Embedding defaults
into terminological knowledge representation formalisms.
Technical Report RR-93-20, 1993.

[BH04] J Bao and V Honavar. Ontology language extensions to support
localized semantics, modular reasoning, collaborative ontology
design and reuse. 2004.

[BHGS01] Sean Bechhofer, Ian Horrocks, Carole Goble, and Robert
Stevens. OilEd: A reason-able ontology editor for the semantic
Web.Lecture Notes in Computer Science, 2174:396–408, 2001.

[BLHL01] T Berners-Lee, J Hendler, and Ora Lassila. The semantic web.
Scientific American, 284(5):34–43, May 2001.

[BN03] F. Baader and W. Nutt. Basic description logics. In
Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele
Nardi, and Peter F. Patel-Schneider, editors,The Description
Logic Handbook: Theory, Implementation, and Applications,
pages 43–95. Cambridge University Press, 2003.

[BS02] A. Borgida and L. Serafini. Distributed description logics:
Directed domain correspondences in federated information
sources, 2002.

[Car04] Doina Caragea.Learning Classifiers From Distributed, Seman-
tically Heterogeneous, Autonomous Data Sources.PhD thesis,
Iowa State University, 2004.

[CPH04] Doina Caragea, J Pathak, and Vasant Honavar. Learning
classifiers from semantically heterogeneous data. InVLDB
2004 Workshop on the Semantic Web and Databases (SWDB
2004), To appear, 2004.

[CSC+03] Jaime A Reinoso Castillo, Adrian Silvescu, Doina Caragea,
Jyotishman Pathak, and Vasant G Honavar. Informa-
tion extraction and integration from heterogeneous, dis-
tributed,autonomous information sources - a federated
ontology-driven query-centric approach. InProceedings of
the IEEE International Conference on Information Reuse and
Integration, 2003.

[Den02] Michael Denny. Ontology building: A survey of editing tools.
Technical report, O’Reilly XML.com, November 06, 2002.

[DP04] Z. Ding and Y Peng. A probabilistic extension to the web
ontology language owl. InThirty-Seventh Hawaii International
Conference on System Sciences (HICSS-37), 2004.

[FFPR95] A. Farquhar, R. Fikes, W. Pratt, and J. Rice. Collaborative
ontology construction for information integration, 1995.

[GG01] C. Ghidini and F. Giunchiglia. Local model semantics, or
contextual reasoning = locality + compatibility.Artificial
Intelligence, 127(2):221–259, 2001.

[GL02] Rosalba Giugno and Thomas Lukasiewicz. P-shoq(d): A
probabilistic extension of shoq(d) for probabilistic ontologies
in the semantic web. In8th European Conference on Logics
in Artificial Intelligence (JELIA’02), Cosenza, Italy, Lecture
Notes in Artificial Intelligence. Springer, September 2002
2002.

9

[GMF+02] J. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso,
M. Crubzy, H. Eriksson, N. F. Noy, and S. W. Tu. The
evolution of protege: An environment for knowledge-based
systems development. Technical Report SMI-2002-0943, SMI,
Stanford, 2002.

[GS98] C. Ghidini and L. Serafini.Frontiers Of Combining Systems
2, Studies in Logic and Computation, chapter Distributed First
Order Logics, pages 121–140. Research Studies Press, 1998.

[Hor02] Ian Horrocks. DAML+OIL: a description logic for the semantic
web. IEEE Data Engineering Bulletin, 25(1):4–9, 2002.

[HPSvH03] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harme-
len. From SHIQ and RDF to OWL: The making of a web
ontology language.Journal of Web Semantics, 1(1), 2003.

[HS01] Ian Horrocks and Ulrike Sattler. Ontology reasoning in the
shoq(d) description logic. In B. Nebel, editor,Proceeding of
the 17th Int. Joint Conf. on Artificial Intelligence, pages 199–
204. AAAI, Morgan Kaufmann, 2001.

[HV02] S. Heymans and D. Vermeir. Using preference order in
ontologies, 2002.

[KSZH04] Daeki Kang, A. Silvescu, Jun Zhang, and Vasant Honavar.
Generation of attribute value taxonomies and their use in
data-driven construction of accurate and compact naive bayes
classifiers. InProceedings of the ECML/PKDD Workshop on
Knowledge Discovery and Ontologies (KDO-2004), In press,
2004.

[Ont] Ontoweb. Deliverable 1.3: A survey on ontology tools. Tech-
nical report.

[PB03] F. van Harmelen etc. P. Bouquet, F. Giunchiglia. C-OWL:
Contextualizing ontologies. InSecond International Semantic
Web Conference, volume 2870 ofLecture Notes in Computer
Science, pages 164–179. Springer Verlag, 2003.

[QG04] Yuzhong Qu and Zhiqiang Gao. Interpreting distributed on-
tologies. In Alternate track papers & posters of the 13th
international conference on World Wide Web, pages 270–271.
ACM Press, 2004.

[QR93] J.J. Quantz and M. Ryan. Preferential default description
logics. Technical Report KIT 110, Technische Universitat,
Berlin, 1993.

[SD04] G. Schreiber and M. Dean. Owl web ontology language
reference, February 2004.

[SEA+02] Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and
D. Wenke. OntoEdit: Collaborative ontology development for
the semantic web. InProceedings of the first International
Semantic Web Conference 2002 (ISWC 2002), June 9-12 2002,
Sardinia, Italia.Springer, LNCS 2342, 2002.

[SH02] D. Vermeir S. Heymans. A defeasible ontology language.
In et al. (Eds.) R. Meersman, Z. Tari, editor,On the Move
to Meaningful Internet Systems 2002: CoopIS, DOA, and
ODBASE : Confederated International Conferences CoopIS,
DOA, and ODBASE 2002, Lecture Notes in Computer Science,
volume 2519, pages 1033–1046. Springer-Verlag Heidelberg,
2002.

[SK03] Heiner Stuckenschmidt and Michel Klein. Modularization of
ontologies. Technical report, WonderWeb: Ontology Infras-
tructure for the Semantic Web, IST Project 2001-33052,, 2003.
Version 1.0.

[VVMD +02] Maria Vargas-Vera, Enrico Motta, John Domingue, Mattia
Lanzoni, Arthur Stutt, and Fabio Ciravegna. Mnm: Ontology-
driven tool for semantic markup. In Siegfried Handschuh,
Niegel Collier, Rose Dieng, and Steffen Staab, editors,Pro-
ceedings Workshop on Semantic Authoring, Annotation and
Knowledge Markup (SAAKM 2002), pages 43–47, 2002.

10

