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Abstract. Development of high throughput data acquisition technolo-
gies, together with advances in computing, and communications have
resulted in an explosive growth in the number, size, and diversity of
potentially useful information sources. This has resulted in unprece-
dented opportunities in data-driven knowledge acquisition and decision-
making in a number of emerging increasingly data-rich application
domains such as bioinformatics, environmental informatics, enterprise in-
formatics, and social informatics (among others). However, the massive
size, semantic heterogeneity, autonomy, and distributed nature of the
data repositories present significant hurdles in acquiring useful knowl-
edge from the available data. This paper introduces some of the algo-
rithmic and statistical problems that arise in such a setting, describes
algorithms for learning classifiers from distributed data that offer rigor-
ous performance guarantees (relative to their centralized or batch coun-
terparts). It also describes how this approach can be extended to work
with autonomous, and hence, inevitably semantically heterogeneous data
sources, by making explicit, the ontologies (attributes and relationships
between attributes) associated with the data sources and reconciling the
semantic differences among the data sources from a user’s point of view.
This allows user or context-dependent exploration of semantically hetero-
geneous data sources. The resulting algorithms have been implemented
in INDUS - an open source software package for collaborative discovery
from autonomous, semantically heterogeneous, distributed data sources.

1 Introduction

Recent development of high throughput data acquisition technologies in a num-
ber of domains (e.g., biological sciences, environmental sciences, atmospheric
sciences, space sciences, commerce) together with advances in digital storage,
computing, and communications technologies have resulted in the proliferation of
a multitude of physically distributed data repositories created and maintained by
autonomous entities (e.g., scientists, organizations). The resulting increasingly
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data rich domains offer unprecedented opportunities in computer assisted data-
driven knowledge acquisition in a number of applications including in particular,
data-driven scientific discovery in bioinformatics (e.g., characterization of protein
sequence-structure-function relationships in computational molecular biology),
environmental informatics, health informatics; data-driven decision making in
business and commerce, monitoring and control of complex systems (e.g., load
forecasting in electric power networks), and security informatics (discovery of
and countermeasures against attacks on critical information and communication
infrastructures). Machine learning algorithms [1, 2, 3, 4, 5, 6, 7] offer some of the
most cost-effective approaches to knowledge acquisition (discovery of features,
correlations, and other complex relationships and hypotheses that describe po-
tentially interesting regularities) from large data sets. However, the applicability
of current approaches to machine learning in emerging data rich applications in
practice is severely limited by a number of factors:

(a) Data repositories are large in size, dynamic, and physically distributed. Con-
sequently, it is neither desirable nor feasible to gather all of the data in
a centralized location for analysis. Hence, there is a need for efficient al-
gorithms for learning from multiple distributed data sources without the
need to transmit large amounts of data. In other domains, the ability of au-
tonomous organizations to share raw data may be limited due to a variety
of reasons (e.g., privacy considerations). In such cases, there is a need for
knowledge acquisition algorithms that can learn from statistical summaries
of data (e.g., counts of instances that match certain criteria) that are made
available as needed from the distributed data sources in the absence of access
to raw data.

(b) Autonomously developed and operated data sources often differ in their
structure and organization (relational databases, flat files, etc.) and the op-
erations that can be performed on the data source (e.g., types of queries -
relational queries, restricted subsets of relational queries, statistical queries,
keyword matches; execution of user-supplied code to compute answers to
queries that are not directly supported by the data source; storing results
of computation at the data source for later use) and the precise mode of
allowed interactions can be quite diverse. Hence, there is a need for theoreti-
cally well-founded strategies for efficiently obtaining the information needed
for learning within the operational constraints imposed by the data sources.

(c) Autonomously developed data sources differ in terms of their underlying
ontological commitments [8], i.e., assumptions concerning the objects that
exist in the world, the properties or attributes of the objects, the possible
values of attributes, and their intended meaning, as well as the granularity
or level of abstraction at which objects and their properties are described.
The increasing need for information sharing between organizations, indi-
viduals and scientific communities have led to significant community-wide
efforts aimed at the construction of ontologies in many areas: Gene Ontol-
ogy - GO (www.geneontology.org) [9] for molecular biology, Unified Medical
Language System -UMLS (www.nlm.nih.gov/research/umls) for heath infor-
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matics, Semantic Web for Earth and Environmental Terminology - SWEET
(sweet.jpl.nasa.gov) for geospatial informatics. While explicit declaration of
the ontology associated with a data repository helps standardize the seman-
tics to an extent, because the ontological commitments associated with a
data source (and hence its implied semantics) are typically determined by
the data source designers based on their understanding of the intended use
of the data repository and because data sources that are created for use in
one context or application often find use in other contexts or applications,
semantic differences among autonomously designed, owned, and operated
data repositories are simply unavoidable. Effective use of multiple sources
of data in a given context requires reconciliation of such semantic differ-
ences from the user’s perspective [10, 11]. Collaborative scientific discovery
applications often require users to be able to analyze data from multiple,
semantically disparate data sources there is no single privileged perspective
that can serve all users, or for that matter, even a single user, in every con-
text. Hence, there is a need for methods that can dynamically and efficiently
extract and integrate information needed for learning (e.g., statistics) from
distributed, semantically heterogeneous data based on user-specified ontolo-
gies and user-specified mappings between ontologies.

Against this background, we consider the problem of data driven knowl-
edge acquisition from autonomous, distributed, semantically heterogeneous, data
sources. The rest of this paper is organized as follows:

2 Learning from Distributed Data

2.1 Problem Formulation

Given a data set D, a hypothesis class H , and a performance criterion P , an
algorithm L for learning (from centralized data D) outputs a hypothesis h ∈ H
that optimizes P . In pattern classification applications, h is a classifier (e.g., a
decision tree, a support vector machine, etc.) (See Figure 1). The data D typi-
cally consists of a set of training examples. Each training example is an ordered
tuple of attribute values, where one of the attributes corresponds to a class la-
bel and the remaining attributes represent inputs to the classifier. The goal of
learning is to produce a hypothesis that optimizes the performance criterion e.g.,
minimizing classification error (on the training data) and the complexity of the
hypothesis.

In a distributed setting, a data set D is distributed among the sites 1, ..., p
containing data set fragments D1, ..., Dp. Two common types of data fragmen-
tation are: horizontal fragmentation and vertical fragmentation. In the case of
horizontal fragmentation, each site contains a subset of the data tuples that
make up D, i.e., D = ∪p

i=1Di . In the case of vertical fragmentation each site
stores the subtuples of data tuples (corresponding to a subset of the attributes
used to define data tuples in D). In this case, D can be constructed by taking the
join of the individual data sets D1, ..., Dp (assuming a unique identifier for each
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Fig. 1. Learning from centralized data

data tuple is stored with the corresponding subtuples). More generally, the data
may be fragmented into a set of relations (as in the case of tables of a relational
database, but distributed across multiple sites) i.e., D =

⊗p
i=1 Di (where

⊗

denotes the join operation). If a data set D is distributed among the sites 1, ..., p
containing data set fragments D1, ..., Dp, we assume that the individual data
sets D1, ..., Dp collectively contain (in principle) all the information needed to
construct the dataset D. More generally, D may be fragmented across multiple
relations [12, 13, 14, 15, 16].

The distributed setting typically imposes a set of constraints Z on the learner
that are absent in the centralized setting. For example, the constraints Z may
prohibit the transfer of raw data from each of the sites to a central location while
allowing the learner to obtain certain types of statistics from the individual sites
(e.g., counts of instances that have specified values for some subset of attributes).
In some applications of data mining (e.g., knowledge discovery from clinical
records), Z might include constraints designed to preserve privacy.

The problem of learning from distributed data can be stated as follows: Given
the fragments D1, ..., Dp of a data set D distributed across the sites 1, ..., p, a set
of constraints Z, a hypothesis class H , and a performance criterion P , the task of
the learner Ld is to output a hypothesis that optimizes P using only operations
allowed by Z. Clearly, the problem of learning from a centralized data set D is
a special case of learning from distributed data where p = 1 and Z = φ. Having
defined the problem of learning from distributed data, we proceed to define some
criteria that can be used to evaluate the quality of the hypothesis produced by
an algorithm Ld for learning from distributed data relative to its centralized
counterpart. We say that an algorithm Ld for learning from distributed data
sets D1, ..., Dp is exact relative to its centralized counterpart L if the hypothesis
produced by Ld is identical to that obtained by L from the data set D obtained
by appropriately combining the data sets D1, ..., Dp.

Example: Let Ld be an algorithm for learning a Support Vector Machine
(SVM) classifier [Cortes and Vapnik, 1995] hd : RN → {−1, 1} under a set of
specified constraints Z from horizontally fragmented distributed data D1, ..., Dp,
where each Di ⊂ D ⊂ RN×{−1, 1} . Let L be a centralized algorithm for learning
an SVM classifier h : RN → {−1, 1} from data set D ⊂ RN ×{−1, 1} . Suppose
further that D = ∪p

i=1Di Then we say that Ld is exact with respect to L if and
only if ∀X ∈ RN , h(X) = hd(X).

Proof of exactness of an algorithm for learning from distributed data rel-
ative to its centralized counterpart ensures that a large collection of existing
theoretical (e.g., sample complexity, error bounds) as well as empirical results
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obtained in the centralized setting apply in the distributed setting. We can de-
fine exactness of learning from distributed data with respect to other criteria of
interest (e.g., expected accuracy of the learned hypothesis). More generally, it
might be useful to consider algorithms for learning from distributed data that
are provably approximate relative to their centralized counterparts. However, in
the discussion that follows, we focus on algorithms for learning from distributed
data that are provably exact with respect to their centralized counterparts in
the sense defined above.

2.2 A General Framework for Designing Algorithms for Learning
from Distributed Data

Our general strategy for designing an algorithm for learning from distributed
data that is provably exact with respect to its centralized counterpart (in the
sense defined above) follows from the observation that most of the learning
algorithms use only certain statistics computed from the data D in the process
of generating the hypotheses that they output. (Recall that a statistic is simply
a function of the data. Examples of statistics include mean value of an attribute,
counts of instances that have specified values for some subset of attributes, the
most frequent value of an attribute, etc.) This yields a natural decomposition of
a learning algorithm into two components:

(a) an information extraction component that formulates and sends a statistical
query to a data source and

(b) a hypothesis generation component that uses the resulting statistic to mod-
ify a partially constructed hypothesis (and further invokes the information
extraction component as needed).

A statistic s(D) is called a sufficient statistic for a parameter θ if s(D), loosely
speaking, provides all the information needed for estimating the parameter from
data D. Thus, sample mean is a sufficient statistic for the mean of a Gaussian
distribution. A sufficient statistic s for a parameter θ is called a minimal suf-
ficient statistic if for every sufficient statistic sθ for θ, there exists a function
gsθ

(sθ(D)) = s(D) [17, 18].
We have, inspired by theoretical work on PAC learning from statistical queries

[19], generalized this notion of a sufficient statistic for a parameter θ into a suf-
ficient statistic sL,h(D) for learning a hypothesis h using a learning algorithm L
applied to a data set D [20].

Trivially, the data D is a sufficient statistic for learning h using L. However,
we are typically interested in statistics that are minimal or at the very least,
substantially smaller in size (in terms of the number of bits needed for encoding)
than the data set D. In some simple cases, it is possible to extract a sufficient
statistic sL,h(D) for constructing a hypothesis h in one step (e.g., by querying the
data source for a set of conditional probability estimates when L is the standard
algorithm for learning a Naive Bayes classifier). In such a case, we say that
sL,h(D) is a sufficient statistic for learning h using the learning algorithm L if
there exists an algorithm that accepts sL,h(D) as input and outputs h = L(D).
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In a more general setting, h is constructed by L by interleaving information
extraction (statistical query) and hypothesis generation operations. For example,
a decision tree learning algorithm would start with an empty initial hypothesis
h0, obtain the sufficient statistics (expected information concerning the class
membership of an instance associated with each of the attributes) for the root
of the decision tree (a partial hypothesis h1), and recursively generate queries
for additional statistics needed to iteratively refine h1 to obtain a succession of
partial hypotheses h1, h2 culminating in h (See Figure 2).

Fig. 2. Learning = Statistical Query Answering + Hypothesis Generation

We say that s(D, hi) is a sufficient statistic for the refinement of a hypothesis
hi into hi+1 (denoted by shi→hi+1) if there exists an algorithm R which accepts
hi and s(D, hi) as inputs and outputs hi+1 . We say that sh(D, h1, ..., hm) is a
sufficient statistic for the composition of the hypotheses (h1...hm) into h (denoted
by s(h1,...,hm)→h ) if there exists an algorithm C which accepts as inputs h1...hm

and sh(D, h1, ..., hm) and outputs the hypothesis h. We say that shi→hi+k
(where

i ≥ 0 and k > 0 are positive integers) is a sufficient statistic for iteratively re-
fining a hypothesis hi into hi+k if hi+k can be obtained through a sequence of
refinements starting with hi . We say that s(h1,...,hm)→h is a sufficient statistic
for obtaining hypothesis h starting with hypotheses h1, ..., hm if h can be ob-
tained from h1, ..., hm through some sequence of applications of composition and
refinement operations. Assuming that the relevant sufficient statistics (and the
procedures for computing them) can be defined, the application of a learning al-
gorithm L to a data set D can be reduced to the computation of s(h0,...,hm)→h )
through some sequence of applications of hypothesis refinement and composition
operations starting with the hypothesis h (See Figure 3). In this model, the only
interaction of the learner with the repository of data D is through queries for the
relevant statistics. Information extraction from distributed data entails decom-
posing each statistical query q posed by the information extraction component
of the learner into sub queries q1, ..., qn that can be answered by the individual
data sources D1, ..., Dp respectively, and a procedure for combining the answers
to the sub queries into an answer for the original query q. (See Figure 3).

It is important to note that the general strategy for learning classifiers from
distributed data is applicable to a broad class of algorithms for learning classi-
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Fig. 3. Learning from Distributed Data = Statistical Query Answering + Hypothesis

generation

fiers from data[20]. This follows from the fact that the output h of any learning
algorithm is in fact a function of the data D, and hence by definition, a statis-
tic. Consequently, we can devise a strategy for computing h from the data D
through some combination of refinement and composition operations starting
with an initial hypothesis (or an initial set of hypotheses). When the learner’s
access to data sources is subject to constraints Z, the resulting plan for infor-
mation extraction has to be executable without violating the constraints Z. The
exactness of the algorithm Ld for learning from distributed data relative to its
centralized counterpart, which requires access to the complete data set D follows
from the correctness (soundness) of the query decomposition and answer com-
position procedure. The separation of concerns between hypothesis construction
and extraction of sufficient statistics from data makes it possible to explore the
use of sophisticated techniques for query optimization that yield optimal plans
for gathering sufficient statistics from distributed data sources under a specified
set of constraints that describe the query capabilities of the data sources, opera-
tions permitted by the data sources (e.g., execution of user supplied procedures),
and available computation, bandwidth, and memory resources.

2.3 Representative Algorithms for Learning Classifiers from
Distributed Data

We have applied the general framework described above for construction of al-
gorithms for learning classifiers from distributed data to design provably exact
algorithms for learning Naive Bayes, Nearest Neighbor, and Decision Tree classi-
fiers from distributed data under horizontal as well as vertical data fragmentation
[21], and Support Vector Machine (SVM) Classifiers under horizontal data frag-
mentation [22, 23]. We briefly summarize our results on learning decision tree
classifiers and SVM classifiers from distributed data We have obtained similar
results for algorithms for learning Naive Bayes, Neural Network, and Bayesian
Network classifiers [24].

Algorithms for Learning Decision Tree Classifiers from Distributed
Data. Algorithms that construct decision tree classifiers [25, 26] search in a
greedy fashion for attributes that yield the maximum amount of information for
determining the class membership of instances in a training set D of labeled
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instances. The information gain associated with an attribute under considera-
tion at a particular node can be expressed in terms of the relative frequencies of
instances that satisfy certain constraints on attribute values (determined by the
path from the root to each of the nodes resulting from the split) for each pos-
sible class [21, 27, 28]. We have devised provably sound strategies for gathering
the necessary statistics from distributed data sets, thereby obtaining distributed
decision tree learning algorithms that are provably exact relative to their central-
ized counterparts [21]. This approach to learning decision trees from distributed
data provides an effective way to learn classifiers in scenarios in which the dis-
tributed data sources provide only statistical summaries of the data and the set
of unique keys on demand but prohibit access to data instances. Even when it
is possible to access the raw data, the proposed algorithm compares favorably
with the centralized counterpart which needs access to the entire data set when-
ever the communication cost incurred by the former is lower than the cost of
collecting the entire data set in a central location. Let |D| be the total number
of examples in the distributed data set; |A|, the number of attributes; V the
maximum number of possible values per attribute; p the number of sites across
which the data set D is distributed; M the number of classes; and size(T ) the
number of nodes in the decision tree. Our analysis [20] has shown that in the
case of horizontally fragmented data, the distributed algorithm has an advantage
when MV p size(T ) < |D|. In the case of vertically fragmented data, the corre-
sponding conditions are given by size(T ) < |A|. Our experiments have shown
that these conditions are often met in the case of large, high-dimensional data
sets that are encountered in several applications (e.g., construction of decision
trees for classification of protein sequences into functional families) [29, 30] in
computational biology.

Learning Support Vector Machine Classifiers from Distributed Data.
Support Vector Machine (SVM) algorithm [31, 32] constructs a binary classifier
that corresponds to a separating hyperplane that maximizes the margin of sep-
aration in RN between instances belonging two classes. Because the weight vec-
tor that defines the maximal margin hyperplane can be expressed as a weighted
sum of a subset of training instances (called support vectors), the support vec-
tors and the associated weights also constitute a sufficient statistic for SVM. In
a distributed setting under horizontal fragmentation of data, it is possible to
compute the maximal margin separating hyperplane by making several passes
through the distributed data sets (without having to gather all of the data in
a centralized place), and updating the hyperplane on each pass so as to max-
imize the margin of separation. We have shown (based on convergence results
for SVM algorithms proved by [33]) that this strategy yields a provably exact
algorithm for learning an SVM classifier from distributed data under horizontal
fragmentation [22, 23].

2.4 Related Work on Learning Classifiers from Distributed Data

Srivastava et al. [34] propose methods for distributing a large centralized data
set to multiple processors to exploit parallel processing to speed up learning.
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Grossman and Guo [35], and Provost and Kolluri [36] survey several methods
that exploit parallel processing for scaling up data mining algorithms to work
with large data sets. In contrast, the focus of the our work is on learning classifiers
from a set of autonomous distributed data sources. The autonomous nature of
the data sources implies that the learner has little control over the manner in
which the data are distributed among the different sources.

Distributed data mining has received considerable attention in the literature
[37]. Domingos [38] and Prodromidis et al. [39] propose an ensemble of classi-
fiers approach to learning from horizontally fragmented distributed data which
essentially involves learning separate classifiers from each data set and combining
them typically using a weighted voting scheme. This requires gathering a subset
of data from each of the data sources at a central site to determine the weights to
be assigned to the individual hypotheses (or shipping the ensemble of classifiers
and associated weights to the individual data sources where they can be executed
on local data to set the weights). In contrast, our approach is applicable even
in scenarios which preclude transmission of data or execution of user-supplied
code at the individual data sources but allow transmission of minimal sufficient
statistics needed by the learning algorithm. A second potential drawback of the
ensemble of classifiers approach to learning from distributed data is that the
resulting ensemble of classifiers is typically much harder to comprehend than a
single classifier. A third important limitation of the ensemble classifier approach
to learning from distributed data is the lack of strong guarantees concerning
accuracy of the resulting hypothesis relative to the hypothesis obtained in the
centralized setting.

Bhatnagar and Srinivasan [40] propose an algorithm for learning decision
tree classifiers from vertically fragmented distributed data. Kargupta et al. [41]
describe an algorithm for learning decision trees from vertically fragmented dis-
tributed data using a technique proposed by Mansour [42] for approximating a
decision tree using Fourier coefficients corresponding to attribute combinations
whose size is at most logarithmic in the number of nodes in the tree. At each
data source, the learner estimates the Fourier coefficients from the local data,
and transmits them to a central site. These estimates are combined to obtain a
set of Fourier coefficients for the decision tree (a process which requires a subset
of the data from each source to be transmitted to the central site). A given set
of Fourier coefficients can correspond to multiple decision trees. At present, such
approaches offer no guarantees concerning the performance of the hypothesis
obtained in the distributed setting relative to that obtained in the centralized
setting.

Unlike the papers summarized above, our approach summarized in Section
2.2 [20] offers a general framework for the design of algorithms for learning from
distributed data that is provably exact with respect to its centralized coun-
terpart. Central to our approach is a clear separation of concerns between hy-
pothesis construction and extraction of sufficient statistics from data, making
it possible to explore the use of sophisticated techniques for query optimization
that yield optimal plans for gathering sufficient statistics from distributed data
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sources under specified set of constraints Z that describe the query capabilities
and operations permitted by the data sources (e.g., execution of user supplied
procedures). Our approach also lends itself to adaptation to learning from seman-
tically heterogeneous data sources (see below). Provided the needed mappings
between ontologies can be specified, our approach to learning from distributed
data can be extended to yield a sound approach to learning from heterogeneous
distributed data encountered in practical applications (see Section 3).

3 Information Integration from Semantically
Heterogeneous Distributed Data

3.1 Semantic Data Integration Problem

In order to extend our approach (summarized in Section 2.2) to learning from
distributed data (which assumes a common ontology that is shared by all of
the data sources) into effective algorithms for learning classifiers from semanti-
cally heterogeneous distributed data sources, techniques need to be developed for
answering the statistical queries posed by the learner in terms of the learner’s
ontology O from the heterogeneous data sources (where each data source Di has
an associated ontology Oi). Thus, we have to solve a variant of the problem of
integrated access to distributed data repositories - the data integration problem
[43] in order to be able to use machine learning approaches to acquire knowl-
edge from semantically heterogeneous data. This problem is best illustrated by
an example: Consider two academic departments that independently collect in-
formation about their Students. Suppose a data set D1 collected by the first
department is described by the attributes ID, Student Level, Monthly Income
and Internship and it is stored into a table as the one corresponding to D1 in
Table 1. Suppose a data set D2 collected by the second department is described
by the attributes Student ID, Student Program, Hourly Income and Intern and
it is stored into a table as the one corresponding to D2 in Table 1.

Table 1. Student data collected by two departments and a university statistician

ID Student Level Monthly Income Internship
34 M.S. 1530 yes

D1 49 1st Year 600 no
23 Ph.D. 1800 no

SID Student Program Hourly Income Intern
1 Master 14 yes

D2 2 Doctoral 17 no
3 Undergraduate 8 yes

SSN Student Status Yearly Income Intern
475 Master 16000 ?

DU 287 Ph.D. 18000 ?
530 Undergrad 7000 ?
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Consider a user, e.g., a university statistician, who wants to construct a pre-
dictive model based on data from two departments of interest from his or her own
perspective, where the representative attributes are Student SSN, Student Sta-
tus, Yearly Income and Industry Experience. For example, the statistician may
want to construct a model that can be used to infer whether a typical student
(represented as in the entry corresponding to DU in Table 1) drawn from the
same population from which the two departments receive their students is likely
to have completed an internship. This requires the ability to perform queries
over the two data sources associated with the departments of interest from the
user’s perspective (e.g., fraction of doctoral students who completed an intern-
ship). However, because the two data sources differ in terms of semantics from
the user’s perspective the user must recognize the semantic correspondences be-
tween the attributes ID in the first data source, Student ID in the second data
source and Student SSN in the user data; the attributes Student Level, Student
Program and Student Status, etc. From our perspective, a data integration sys-
tem should: allow users to specify what information is needed instead of how it
can be obtained; allow each user to impose his or her own points of view (onto-
logical commitments) on the data sources and post queries specified using terms
in that ontology; hide the complexity of communication and interaction with
heterogeneous distributed data sources; automatically transform user queries
into queries that are understood by the respective data sources; map the results
obtained into the form expected by the user and store them for future analy-
sis; allow incorporation of new data sources as needed; and support sharing of
ontologies (hence ontological commitments) and among users as needed [10].

3.2 INDUS: An Ontology Based Federated Query Centric Data
Integration System

Our recent work has led to the development of a federated, query-centric ap-
proach to information integration from heterogeneous, distributed information
sources which has been implemented in the data integration component of
INDUS (Intelligent Data Understanding System) prototype [10, 11, 44] (See
Figure 4).

The choice of the federated (as opposed to data warehouse) and query centric
(as opposed to source centric) approach to information integration was motivated
by characteristics of a class of scientific applications of data-driven knowledge
acquisition. A detailed discussion of the design rationale of INDUS can be found
in [10, 20, 44]. In brief, a federated approach lends itself much better to settings
where it is desirable to postpone specification of user ontology O and the map-
ping M(O, O1, · · · , Op) = {M(O, O1), · · ·M(O, Op)} between O and data source
specific ontologies O1, · · · , Op until when the user is ready to use the system.
The choice of a query centric approach in INDUS enables users the desired flexi-
bility in integrating data from multiple autonomous sources in ways that match
their own context or application specific ontological commitments whereas in a
source centric approach, the semantics of the data (what the data from a source
should mean to a user) are determined by the source. INDUS enables a scientist
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Fig. 4. INDUS (Intelligent Data Understanding System) for Information Integration

from Heterogeneous, Distributed, Autonomous Information Sources. D1, D2, D3 are

data sources with associated ontologies O1, O2, O3 and O is a user ontology. Queries

posed by the user are answered by a query answering engine in accordance with the

mappings between user ontology and the data source ontologies, specified using a user-

friendly editor.

to view a collection of physically distributed, autonomous, heterogeneous data
sources (regardless of their location, internal structure, and query interfaces) as
though they were relational databases, (i.e. a collection of inter-related tables.
Each data source in INDUS has associated with it, a data source description
which includes the ontology of the data source and a description of the query
capabilities of the data source (i.e., the schema of the data source). INDUS makes
explicit the (sometimes implicit) ontologies associated with data sources. This
allows the specification of semantic correspondences between data sources [11]
which can be expressed in ontology-extended relational algebra (independently
developed by [45]).

We assume that each data source has associated with it, an ontology that
includes hierarchies corresponding to attribute value taxonomies (AVT) (See Fig-
ure 5). We specify the correspondence between semantically similar attributes,
by mapping the domain of the type of one attribute to the domain of the type
of the semantically similar attribute (e.g., Hourly Income to Yearly Income or
Student Level to Student Status) [11]. Explicit specification of mappings between
AVTs in the user ontology OU and data source ontologies O1 and O2 allows the
user to view data D1 and D2 from his or her own perspective. Such mappings can
be used to answer user queries that are expressed in terms of OU from the data
sources D1 and D2. Let < D1, O1, S1 >, · · · , < Dp, Op, Sp > be an ordered set
of p ontology-extended data sources and U a user that poses queries against the
heterogeneous data sources D1, · · · , Dp. A user perspective PU is given by a user
ontology OU and a set of semantic correspondences or interoperation constraints
IC that define relationships between terms in O1, · · · , Op, respectively, and the
terms in OU . The semantic correspondences take one of the two forms: x ≤ y
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Fig. 5. Attribute value taxonomies (ontologies) O1 and O2 associated with the at-

tributes Student Level, Student Program in two data sources of interest. OU is the

ontology for Student Status from the user’s perspective. An example of user-specified

semantic correspondences between the user ontology OU and data source ontologies

O1 and O2 respectively is also shown.

(x is semantically subsumed by y), x ≥ y (x semantically subsumes y), x ≡ y
(x is semantically equivalent to y), x 	= y (x is semantically incompatible with
y), x ≈ y (x is semantically compatible with y) (inspired by bridge rules intro-
duced by Bouquet et al. [46]). See 5 for an illustration of user-defined semantic
correspondences between data sources O1 and O2, respectively, and OU .

Let O1, · · · , Op (respectively) be the ontologies associated with the data
sources D1, · · · , Dp. Let PU = (OU , IC) a user perspective with respect to these
ontologies. We say that the ontologies O1, · · ·Op, are integrable according to
the user ontology OU in the presence of semantic correspondences IC if there
exist p partial injective mappings M(OU , O1), · · · , M(OU , Op) from O1, · · · , Op,
respectively, to OU . Examples of such mappings include functions for converting
monthly income and hourly income (respectively) from the ontologies associ-
ated with data sources D1 and D2 (see Figure 5) into yearly income in terms
of user ontology OU ; or for mapping instances corresponding to 1st year stu-
dents from data source D1 into instances described as Freshman from the user
perspective. We have completed the implementation of a working prototype of
the INDUS system to enable users with some familiarity with the relevant data
sources to rapidly and flexibly assemble data sets from multiple data sources
and to query these data sets. This can be done by specifying a user ontol-
ogy, simple semantic mappings between data source specific ontologies and the
user ontolgy and queries - all without having to write any code. The current
implementation of INDUS which has been released under Gnu public license
(http://www.cild.iastate.edu/software/indus.html) includes support for:

(a) Import and reuse of selected fragments of existing ontologies and editing of
ontologies [47].
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(b) Specification of semantic correspondences between a user ontology OU and
data source ontologies [11]. Semantic correspondences between ontologies can
be defined at two levels: schema level (between attributes that define data
source schemas) and attribute level (between values of attributes). Consis-
tency of semantic correspondences is verified by reasoning about subsump-
tion and equivalence relationships [48]

(c) Registration of a new data source using a data-source editor for defining
the schema of the data source (the names of the attributes and their cor-
responding ontological types), location, type of the data source and access
procedures that can be used to interact with a data source.

(d) Specification and execution of queries across multiple semantically heteroge-
neous, distributed data sources with different interfaces, functionalities and
access restrictions. Each user may choose relevant data sources from a list
of data sources that have been previously registered with the system and
specify a user ontology (by selecting an ontology from a list of available on-
tologies or by invoking the ontology editor and defining a new ontology).
The user can select mappings between data source ontologies and user on-
tology from the available set of existent mappings (or invoke the mapings
editor to define a new set of mappings). The data needed for answering
a query is specified by selecting (and possibly restricting) attributes from
the user ontology, through a user-friendly interface. Queries posed by the
user are sent to a query-answering engine (QAE) that automatically decom-
poses the user query expressed in terms of the user ontology into queries
that can be answered by the individual data sources. QAE combines (af-
ter applying the necessary mappings) to generate the answer for the user
query. The soundness of the data integration process (relative to a set of
user-specified mappings between ontologies) follows from the soundness of
the query decomposition procedure, and the correctness of the behavior of
the query answering engines associated with the individual data sources, and
the answer composition procedure [11].

(e) Storage and further manipulation of results of queries. The results returned
by a user query can be temporarily stored in a local relational database.
This in effect, represents a materialized relational view (modulo the map-
pings between user and data source specific ontologies) across distributed,
heterogeneous (and not necessarily relational) data repositories. The cur-
rent design of INDUS supports further analysis (e.g., by applying machine
learning algorithms) on the retrieved data.

In summary, INDUS offers the functionality necessary to flexibly integrate in-
formation from multiple heterogeneous data sources and structure the results
according to a user-supplied ontology. INDUS has been used to assemble several
data sets used in the exploration of protein sequence-structure-function relation-
ships [44].

3.3 Related Work on Data Integration

Hull [49], Davidson et al. [50] and Eckman [51] survey alternative approaches
to data integration. A wide range of approaches to data integration have been
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considered including multi-database systems [52, 53, 54], mediator based ap-
proaches [55, 56, 57, 58, 59, 60, 61, 62]. Several data integration projects have
focused specifically on integration of biological data [63, 64, 65, 66, 67]. Toma-
sic et al. [68] proposed an approach to scaling up access to heterogeneous data
sources. Haas et al. [69] investigated optimization of queries across heterogeneous
data sources. Space does not permit a detailed survey of the extensive literature
on data integration. Rodriguez-Martinez and Roussoloulos [70] proposed a code
shipping approach to design of an extensible middleware system for distributed
data sources. Lambrecht et al. [71] proposed a planning framework for gathering
information from distributed sources. These efforts addressed, and to varying
degrees, solved the following problems in data integration: design of query lan-
guages and rules for decomposing queries into sub queries and composing the
answers to sub queries into answers to the initial query. Maluf and Wiederhold
[72] proposed an ontology algebra for merging of ontologies. Our group developed
an approach to specifying semantic correspondences between ontologies and for
querying semantically heterogeneous data using ontologies and inter-ontology
mappings [10]. This approach is similar to the ontology-extended relational al-
gebra developed by Bonatti et al. [45]. The design of INDUS [10, 11, 44] was
necessitated by the lack of publicly available data integration platforms that
could be used as a basis for learning classifiers from semantically heterogeneous
distributed data. INDUS draws on much of the existing literature on data in-
tegration and hence shares some of the features of existing data integration
platforms. But it also includes some relatively novel features (See Section 3.2).

4 Knowledge Aquisition from Semantically
Heterogeneous Distributed Data

The stage is now set for developing sound approaches to learning from seman-
tically heterogeneous, distributed data (See Figure 6). While it is possible to
retrieve the data necessary for learning from a set of heterogeneous data sources
using INDUS, store the retrieved data in a local database, and then apply stan-
dard (centralized) learning algorithms, such approach is not feasible when the
amounts of data involved are large, and bandwidth and memory are limited,
or when the query capabilities of the data sources are limited to answering a
certain class of statistical queries (e.g., counts of instances that satisfy certain
constraints on the values of their attributes). Hence, the development of sound
approaches to answering statistical queries from semantically heterogeneous data
sources a variety of constraints and assumptions motivated by application sce-
narios encountered in practice is a key element of our research plan.

4.1 Partially Specified Data

Our approach to design of algorithms for learning classifiers from semantically
heterogeneous distributed data is a natural extension of our approach to learning
from distributed data discussed in Section 2 (See Figure 3) which assumed a com-
mon ontology that is shared by all of the data sources. We propose to extend this
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Fig. 6. General Framework for learning classifiers from semantically heterogeneous

distributed data. The learner generates statistical queries expressed in terms of user

ontology). These queries have to be mapped into queries expressed in terms of data

source specific ontologies that can be executed directly on the data sources and the

results combined and mapped into the answer to the query posed by the learner.

framework to work with semantically heterogeneous distributed data sources by
developing techniques for answering the statistical queries posed by the learner
in terms of the learner’s ontology O using the heterogeneous data sources (where
each data source Di has an associated ontology Oi) (See Figure 6).

Before we can discuss approaches for answering statistical queries from se-
mantically heterogeneous data, it is useful to explore what it means to answer a
statistical query in a setting in which autonomous data sources differ in terms
of the levels of abstraction at which data are described. We illustrate some of
the issues that have to be addressed using an example: Consider the data source
ontologies O1 and O2 and the user ontology OU shown in Figure 5. The at-
tribute Student Status in data source D1 is specified in greater detail (lower
level of abstraction) than in D2. That is, data source D1 carries information
about the precise categorization of Undergrad students into 1st year, 2nd year,
3rd year, and 4th year students, whereas data source D2 makes no such distinc-
tions among Undergraduate students. Now suppose that D1 contains 5, 10, 15, 10
instances (respectively) of 1st year, 2nd year, 3rd year, and 4th year (undergrad)
students and 20 instances of Grad students. Suppose D2 contains 20 instances
of Undergraduate students, 40 instances of Graduate students respectively.

Suppose a statistical query qOU is posed by the user against the two data
sources D1 and D2 based on ontology OU : What fraction of students are Under-
grads? The answer to this query can be computed in a straightforward fashion as
the ratio of number of Undergrad students ((5+10+15+10)+20=60) divided by
the total number of students whose Student Status is recorded in the two data
sources (60+20+40=120) yielding an answer of 0.5.

Now consider a different statistical query rOU : What fraction of the students
in the two data sources are sophomores? The answer to this query is not as
straightforward as the answer to the previous query qOU . This is due to the fact
that the Student Status of student records in data source D2 are only partially
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specified [73, 74] with respect to the ontology O. Consequently, we can never know
the precise fraction of students that are Sophomores based on the information
available in the two data sources. However, if it is reasonable to assume that the
data contained in both D1 and D2 are drawn from the same universe (i.e., can
be modeled by the same underlying distribution), we can estimate the fraction
of students that are Sophomores in the data source D2 based on the fraction of
Undergrad students that are Sophomores in the data source D1 (i.e., 10 out of
40) and use the result to answer the query rOU . Under the assumption that the
population of students in D1 and D2 can be modeled by the same distribution,
the estimated number of Sophomore students in D2 is given by (10

40 )(20) = 5 .
Hence, the estimated number of Sophomore students in D1 and D2 = 10+5 = 15.
Thus, the answer to the query rOU is 15

120 = 0.125. Note that the answer to
query qOU is completely determined by the data source ontologies O1, O2, the
user ontology OU and the mappings shown in Figure 5. However, answer to
the query rOU is only partially determined by the ontologies and the mappings
shown in Figure 5. In such cases, answering statistical queries from semantically
heterogeneous data sources requires the user to supply not only the mapping
between the ontology and the ontologies associated with the data sources but
also additional assumptions of a statistical nature (e.g., that data in D1 and
D2 can be modeled by the same underlying distribution) and the validity of the
answer returned depends on the validity of the assumptions and the soundness
of the procedure that computes the answer based on the supplied assumptions.

Hence, the development of algorithms for learning classifiers from seman-
tically heterogeneous data requires addressing the problem of learning classi-
fiers from partially specified data. Specifically, this entails development provably
sound methods based extensions to our current formulations of ontology-based
query decomposition and answer composition methods in INDUS [11] for an-
swering statistical queries from semantically heterogeneous data sources under
alternative statistical assumptions.

4.2 The Problem of Learning Classifiers from Partially Specified
Data

Let us start by considering a partially specified centralized data set D with
an associated ontology O. Let {A1, A2, ..., An} be an ordered set of nominal
attributes, and let dom(Ai) denote the set of values (the domain) of attribute
Ai. An attribute value taxonomy Ti for attribute Ai is a tree structured concept
hierarchy in the form of a partially order set (dom(Ai),≤), where dom(Ai) is a
finite set that enumerates all attribute values in Ai, and ≤ is the partial order
that specifies isa relationships among attribute values in dom(Ai) (see any of the
ontologies in Figure 5). Collectively, O = {T1, T2, ..., Tn} represents the ordered
set of attribute value taxonomies associated with attributes {A1, A2, ..., An} (see
Figure 7).

Let Nodes(Ti) represent the set of all values in Ti, and Root(Ti) stand for
the root of Ti. The set of leaves of the tree, Leaves(Ti), corresponds to the
set of primitive values of attribute Ai (e.g., Freshman, Sophomore, etc. in the
hierarchy corresponding to the attribute Student Status in Figure 5). The internal
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nodes of the tree (i.e., Nodes(Ti) − Leaves(Ti)) correspond to abstract values
of attribute Ai (e.g., Undergrad, Grad, Ph.D. in in the hierarchy corresponding
to the attribute Student Status Figure 5). Each arc of the tree corresponds to
a isa relationship over attribute values in the AVT. Thus, an AVT defines an
abstraction hierarchy over values of an attribute.

The set of abstract values at any given level in the tree Ti form a partition
of the set of values at the next level (and hence, the set of primitive values of
Ai). For example, in Figure 5, the nodes at level 1, i.e., Undergrad, Grad, define
a partition of attribute values that correspond to nodes at level 2 (and hence, a
partition of all primitive values of the Student Status attribute). After Haussler
[75], we define a cut γi of an AVT Ti as a subset of nodes in Ti satisfying the
following two properties: (1) For any leaf l ∈ Leaves(Ti), either l ∈ γi or l is a
descendent of a node n ∈ γi; and (2) For any two nodes f, g ∈ γi, f is neither a
descendent nor an ancestor of g. Cuts through AVT Ti correspond to a partition
of Leaves(Ti). Thus, the cut corresponding to Undergrad, Master, Ph.D. defines
a partition over the primitive values of the Student Status attribute.

Fig. 7. Global cut through a set of attribute value taxonomies

The original instance space I in the absence of AVT is an instance space
defined over the domains of all attributes. Let Γ = {γ1, ..., γn} be a global cut
through T , where γi stands for a cut through Ti (see Figure 7). The cut Γ defines
an abstract instance space IΓ . A set of AVT O = {T1, T2, ..., Tn} associated with
a set of attributes A = {A1, A2, ..., An} induces an instance space IO = ∪Γ IΓ

(the union of instance spaces induced by all the cuts through the set of AVT
O). We say that an instance x ∈ IO is partially specified if one or more of its
attribute values are not primitive. A partially specified data set DO (relative to
a set O of AVT) is a collection of instances drawn from IO where each instance
is labeled with the appropriate class label from C = {c1, c2, ..., ck}, a finite set
of mutually disjoint classes. Thus, DO ⊂ IO × C.

The problem of learning classifiers from AVT and partially specified data
can be formulated as follows: Given a user-supplied set of AVT O and a data
set DO of (possibly) partially specified labeled instances, construct a classifier
hO : IO → C for assigning appropriate class labels to each instance in the
instance space IO.
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4.3 Learning from Partially Specified Semantically Heterogeneous
Data

Suppose that a data set D is distributed over the data sources D1, · · · , Dp,
where each data source Di contains only a horizontal fragment (subset of data
tuples) of the data D. Each distributed data set Di is described by the set of
attributes {Ai

1, · · · , Ai
n} and their corresponding AVT Oi = {T i

1, · · · , T i
n}. Let

{AU
1 , · · · , AU

n } be the set of attributes that describe the data D in a user view
and let OU = T U

1 , ..., T U
n be a user-supplied collection of taxonomies over the set

of attributes AU
1 , ..., AU

n . Let Ψ = {ϕ1, ϕ2, · · · , ϕp} be a collection of user-defined
mappings from data source taxonomies Oi to user taxonomies OU , respectively.
A global cut Γ U in the user’s collection of taxonomies OU = {T U

1 , · · · , T U
n }

determines cuts {Γ1, Γ2, · · · , Γn} in the data source taxonomies, through the
means of user-defined mappings Ψ . The abstract instance space defined by Γ U

is denoted by IΓ U and is given by IΓU = ϕ1(IΓ1) ∪ ϕ2(IΓ2)... ∪ ϕp(IΓn). The set
of user AVT OU = T U

1 , ..., T U
n induces an instance space IOu = ∪Γ U IΓ U . We

say that an instance x ∈ IOU is partially specified if one of more of its attribute
values are not primitive. A partially specified data set DOU (relative to a set OU

of user AVT) is a collection of instances drawn from IOU where each instance is
labeled with the appropriate class label from C = {c1, c2, · · · , ck}, a finite set of
mutually disjoint classes. Thus, DOU ⊂ IOU × C.

The problem of learning classifiers from distributed, semantically heteroge-
neous data sources can be formulated as follows: Given a collection of (possibly)
partially specified data sources D1, · · · , Dp and their associated collections of
taxonomies {O1, ..., Op}, a user collection of taxonomies OU and a set of map-
pings Ψ from data source taxonomies Oi to user taxonomies OU , construct a
classifier hOU : IOU → C for assigning appropriate class labels to each instance
in the instance space IOU .

4.4 AVT-Guided Learning Algorithms

AVT-guided learning algorithms extend standard learning algorithms in princi-
pled ways so as to exploit the information provided by AVT. We have designed
and implemented AVT-NBL [74] and AVT-DTL [73] for learning AVT-guided
Naive Bayes and Decision Tree classifiers, respectively. The standard Decision
Trees or Naive Bayes learning algorithms can be viewed as special cases of AVT-
DTL or AVT-NBL, where the AVT associated with each attribute has only one
level. The root of such an AVT corresponds to the value of the attribute being
unknown and the leaves correspond to the primitive values of the attribute. We
will use Naive Bayes Learner (NBL) as an example to illustrate our approach
to AVT-guided learning algorithms. Naive Bayes classifier operates under the
assumption that each attribute is independent of the others given the class.
Thus, the joint class conditional probability of an instance can be written as
the product of individual class conditional probabilities corresponding to each
attribute defining the instance. The Bayesian approach to classifying an instance
x = {v1, · · · , vn} is to assign it to the most probable class cMAP (x). We have:
cMAP (x) = argmax

cj∈C
p(v1, · · · , vn|cj)p(cj) = argmax

cj∈C
p(cj)

∏

i

p(vi|cj).
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Therefore, the task of the Naive Bayes Learner (NBL) is to estimate the class
probabilities p(cj) and the class conditional probabilities p(vi|cj), for all classes
cj ∈ C and for all attribute values vi ∈ dom(Ai). These probabilities can be
estimated from a training set D using standard probability estimation methods
[1] based on relative frequency counts. We denote by σ(vi|cj) the frequency
count of a value vi of the attribute Ai given the class label cj , and by σ(cj) the
frequency count of the class label cj in a training set D.

AVT-guided NBL, called AVT-NBL [74] efficiently exploits taxonomies de-
fined over values of each attribute in a data set to find a Naive Bayes classifier
that optimizes the Conditional Minimum Description Length (CMDL) score
[Friedman et al., 1997]. More precisely, the task of AVT-NBL is to construct a
Naive Bayes classifier for assigning an unlabeled instance x ∈ IO to its most
probable class cMAP (x). As in the case of NBL, we assume that each attribute
is independent of the other attributes given the class. A Naive Bayes classifier
defined on the instance space IO is completely specified by a set of class con-
ditional probabilities for each value of each attribute. Suppose we denote the
table of class conditional probabilities associated with values in γi by CPT (γi).
Then the Naive Bayes classifier defined over the instance space IO is specified
by h(Γ ) = {CPT (γ1), · · · , CPT (γn)}.

AVT-NBL starts with the Naive Bayes Classifier that is based on the most
abstract value of each attribute (the most general hypothesis) and successively
refines the classifier (hypothesis) using a criterion that is designed to tradeoff
between the accuracy of classification and the complexity of the resulting Naive
Bayes classifier. Successive refinements of Γ correspond to an ordering of Naive
Bayes classifiers based on the structure of the AVTs in O. For example, in Figure
8, Γ ′ is a refinement of Γ , and hence the corresponding hypothesis h(Γ ′) is a
refinement of h(Γ ) [74].

The scoring function that we use to evaluate a candidate AVT-guided refine-
ment of a Naive Bayes Classifier is an adaptation (for the case of classifiers con-
structed from partially specified data) of the Conditional Minimum Description
Length (CMDL) criterion [76] and captures the tradeoff between the accuracy
and the complexity of the resulting Naive Bayes classifier [74].

The parameters that define the classifier can be estimated from the observed
class distribution in the data D based on frequency counts σi(cj)) and pi(v|cj) is
the class conditional probability of value v of attribute Ai given the class label cj .

Fig. 8. Global cut through a set of attribute value taxonomies
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The value of pi(v|cj) can similarly estimated from the frequency counts σi(v|cj))
obtained from the data set D. When some of the data are partially specified, we
can use a 2-step process for computing σi(v|cj)). First we make an upward pass
through the AVT for each attribute aggregating the class conditional frequency
counts based on the specified attribute values in the data set; Then we propagate
the counts associated with partially specified attribute values down through the
tree, augmenting the counts at lower levels according to the distribution of values
along the branches based on the subset of the data for which the corresponding
values are fully specified [73, 74]. This procedure can be seen as a special case of
EM (Expectation Maximization) algorithm for estimation of σi(v|cj) under the
assumption that the attributes are independent given the class [74].

Thus, AVT-NBL produces a hypothesis h that intuitively trades off the com-
plexity of Naive Bayes classifier (in terms of the number of parameters used to
describe the relevant class conditional probabilities) against accuracy of clas-
sification. The algorithm terminates when none of the candidate refinements
of the classifier yield statistically significant improvement in the CMDL score
[74]. Our experiments with several synthetic as well as real-world data sets have
demonstrated the efficacy of AVT-NBL [74] and AVT-DTL [73].

4.5 Learning Classifiers from Partially Specified Semantically
Heterogeneous Data

Our approach to AVT-guided learning from partially specified semantically het-
erogeneous data [77] relies on our general strategy for transforming algorithms
for learning from data into algorithms for learning from distributed, semantically
heterogeneous data [11, 20]. As mentioned before, this strategy is based on the
decomposition of the learning task into an information extraction component
(when sufficient statistics needed for learning are gathered) and a hypothesis
generation component (that uses the sufficient statistics to generate or refine a
current hypothesis).

Recall that a statistic sL(D) is a sufficient statistic for learning a hypothesis
h using a learning algorithm L applied to a data set D if there exists a procedure
that takes sL(D) as input and outputs h [20]. For example, in the case of NBL,
the frequency counts σ(vi|cj) of the value vi of the attribute Ai given the class
label cj in a training set D, and the frequency count σ(cj) of the class label cj in
a training set D completely summarize the information needed for constructing
a Naive Bayes classifier from D, and thus, they constitute sufficient statistics
for NBL. As noted in Section 2, some simple learning algorithms such as NBL
sL(D), the sufficient statistics required for constructing the classifier can be
computed in one step, in general, a learning algorithm may require assembly
of sL(D) through an interleaved execution of the information extraction and
hypothesis generation components [20].

We illustrate our approach to using this strategy to design AVT-guided al-
gorithms for learning classifiers from semantically heterogeneous data using the
Naive Bayes classifier as an example. However, the proposed approach can be
extended to a broad range of machine learning algorithms including variants
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of Decision Tree, Bayesian networks (Naive Bayes and Tree-Augmented Naive
Bayes classifiers), generalized linear models, support vector machines.

Sufficient Statistics for AVT-NBL. As we have shown, AVT-NBL starts
with a Naive Bayes classifier h0 = h(Γ0) corresponding to the most abstract
cut Γ0 in the attribute value taxonomy associated with the data (i.e., the most
general classifier that simply assigns each instance to the class that is apriori most
probable) and it iteratively refines the classifier by refining the corresponding
cut until a best cut, according to the performance criterion, is found. More
precisely, let hi be the current hypothesis corresponding to the current cut Γ
(i.e., hi = h(Γ )) and Γ ′ a (one-step) refinement of Γ (see Figure 8).

Let h(Γ ′) be the Naive Bayes classifier corresponding to the cut Γ ′ and let
CMDL(Γ |D) and CMDL(Γ ′|D) be the CMDL scores corresponding to the
hypotheses h(Γ ) and h(Γ ′), respectively. If CMDL(Γ ) > CMDL(Γ ′) then
hi+1 = h(Γ ′), otherwise hi+1 = h(Γ ). This procedure is repeated until no (one-
step) refinement Γ ′ of the cut Γ results in a significant improvement of the
CMDL score, and the algorithm ends by outputing the classifier h(Γ ).

Thus, the classifier that the AVT-NBL finds is obtained from h0 = h(Γ0)
through a sequence of refinement operations. The refinement sufficient statistics
sL(D, hi → hi+1) are identified below.

Let hi be the current hypothesis corresponding to a cut Γ and CMDL(Γ |D)
its score. If Γ ′ is a refinement of the cut Γ , then the refinement sufficient statis-
tics needed to construct hi+1 are given by the frequency counts needed to con-
struct h(Γ ′) together with the probabilities needed to compute CLL(h(Γ ′)|D)
(calculated once we know h(Γ ′)). If we denote by domΓ ′(Ai) the domain of
the attribute Ai when the cut Γ ′ is considered, then the frequency counts
needed to construct h(Γ ′) are σ(vi|cj) for all values vi ∈ domΓ ′ (Ai) of all at-
tributes Ai and for all class values cj ∈ domΓ ′(C), and σ(cj) for all class values
cj ∈ domΓ ′(C). To compute CLL(h(Γ ′)|D) the products

∏
j ph(Γ ′)(vij |ck) for

all examples xi = (vi1, · · · , vin) and for all classes ck ∈ C are needed.
The step i+1 of the algorithm corresponding to the cut Γ ′ can be briefly de-

scribed in terms of information gathering and hypothesis generation components
as follows:
(1) Compute σ(vi|cj) and σ(cj) corresponding to the cut Γ ′ from the training

data D
(2) Generate the NB classifier h(Γ ′)
(3) Compute

∏
j ph(Γ ′)(vij |ck) from D

(4) Generate the hypothesis hi+1

Learning Naive Bayes Classifiers from Semantically Heterogeneous
Data. Let {D1, · · · , Dp} be a set of semantically heterogeneous data sources
with associated ontologies {O1, · · ·Op}. Let OU be a user collection of AVT and
Γ a cut through the user AVT.

The step i + 1 (corresponding to the cut Γ ′ in the user ontology) of the
algorithm for learning Naive Bayes classifiers from distributed, semantically het-
erogeneous data sources D1, · · · , Dp can be described in terms of information
gathering and hypothesis generation components as follows:
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(1) Compute σ(vi|cj) and σ(cj) corresponding to the cut Γ ′ from the distributed
data sources D1, · · · , Dp

(2) Generate the NB classifier h(Γ ′) at the user location and send it to the data
sources D1, · · · , Dp

(3) Compute
∏

j ph(Γ ′)(vij |ck) from D1, · · · , Dp

(4) Generate the hypothesis hi+1 at the user location

Thus, using the decomposition of an AVT-guided algorithm for learning clas-
sifier from partially specified data into information extraction and hypothesis
generation components, we reduce the problem of learning classifiers from dis-
tributed, semantically heterogeneous data sources to the problem of querying
for sufficient statistics from such data sources (e.g., frequency counts σ(vi|cj)
and σ(cj) corresponding to a cut). This involves design of procedures for decom-
posing statistical queries into sub-queries corresponding to the distributed data
sources and procedures for combining the partial answers into a final answer to
the initial queries (e.g., adding up counts) [77].

4.6 Related Work on Learning Classifiers from Partially Specified
Data

Walker [78] first used attribute value taxonomies in information retrieval from
large databases. DeMichiel [79], and Chen and Tseng [80] proposed database
models to handle imprecision using partial values and associated probabilities
where a partial value refers to a set of possible values for an attribute. McClean
et al. [81] proposed aggregation operators defined over partial values. While this
work suggests ways to aggregate statistics so as to minimize information loss,
it does not address the problem of learning from AVT and partially specified
data. The problem of learning classifiers from AVT and partially specified data
was formulated and solved in the case of decision tree classifiers by Zhang and
Honavar [73] and in the case of Naive Bayes classifiers by Zhang and Honavar [74].
Development of approaches to exploit abstractions over attribute values and class
labels to optimally exploit partially specified data. The use of prior knowledge
or domain theories specified typically in first order logic or propositional logic to
guide learning from data has been explored in ML-SMART [82], FOCL [83] and
KBANN [84] systems as well as in the work of Aronis et al. [85] and Aronis and
Provost [86]. However, the work on exploiting domain theories in learning has
not focused on the effective use of AVT to learn classifiers from partially specified
data. Approaches to exploiting abstractions in learning from fully specified data
have been studied by several authors [87, 88, 89, 90, 91, 92, 93, 94, 95]. We have
developed simple algorithms for learning decision tree [73] and Naive Bayes [74]
classifiers from partially specified data. These methods assume independence of
attributes in estimating answers to statistical queries from partially specified
data based on the distribution of observed values. in fully specified instances. It
is also of interest to investigate methods based on multiple imputation [96, 97, 98]
which has been used with success in a number of applications such as studies of
air quality [99], employment [100], and health care [101] to cope with missing
observations. Multiple imputation aims to: (a) use available information to make
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good predictions of the missing values and (b) reflect uncertainty due to the fact
that some of the data were in fact not observed. Some causes of missing data
such as when an individual does not answer a particular question, and when an
individual refuses to answer any questions, but some demographic information
such as the identity of the data source that the person is associated with is
available, have been considered in the statistical literature [102, 103, 104].

5 Summary and Discussion

Biological, environmental, ecological, engineering, social, and biomedical sciences
are in the midst of being transformed from data poor sciences into data rich sci-
ences, in large part, due to rapid advances in experimental and data acquisition
methods. Recent advances in computer science, statistical methods, and infor-
mation theory provide powerful conceptual tools for extracting knowledge from
data and for developing algorithmic models of causal interactions within and
across multiple levels of organization in complex systems. Advances in comput-
ing, storage, communication, and software technologies (e.g., web services that
can be invoked and on the Internet and executed on remote computers or data
repositories) provide unprecedented opportunities for exploiting disparate data
and knowledge to address fundamental scientific questions. Because data sources
that are created for use by one scientific community (e.g., structural biologists)
find use in other contexts (e.g. exploration of macromolecular function), given
the prevalence of discipline-specific terminologies (ontologies), semantic differ-
ences among autonomous data repositories are simply unavoidable. Effective
use of multiple sources of data in a given context requires reconciliation of such
semantic differences from the user’s point of view. This is especially true in
emerging areas of scientific inquiry at the boundaries of established disciplines
(e.g., computational biology) that draw on multiple areas of inquiry (e.g., molec-
ular biology, biophysics, structural biology). Furthermore, because many of the
data sources of interest are autonomous and geographically distributed, it is
neither desirable nor feasible to gather all of the data in a centralized location
for analysis. Hence, there is an urgent need for algorithms and software for col-
laborative discovery from autonomous, semantically heterogeneous, distributed
information sources. Against this background, the research summarized in this
paper has led to:

(a) The development of a general theoretical framework for learning predictive
models (e.g., classifiers) from large, physically distributed data sources where
it is neither desirable nor feasible to gather all of the data in a centralized
location for analysis [20]. This framework offers a general recipe for the design
of algorithms for learning from distributed data that are provably exact
with respect to their centralized counterparts (in the sense that the model
constructed from a collection of physically distributed data sets is provably
identical to that obtained in the setting where the learning algorithm has
access to the entire data set). A key feature of this framework is the clear
separation of concerns between hypothesis construction and extraction and
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refinement of sufficient statistics needed by the learning algorithm from data
which reduces the problem of learning from data to a problem of decomposing
a query for sufficient statistics across multiple data sources and combining
the answers returned by the data sources to obtain the answer for the original
query. This work has resulted in the identification of sufficient statistics
for a large family of learning algorithms including in particular, algorithms
for learning decision trees [20], neural networks, support vector machines
[23] and Bayesian networks, and consequently, provably exact algorithms for
learning the corresponding classifiers from distributed data.

(b) The development of theoretically sound yet practical variants of a large class
of algorithms [20, 23] for learning predictive models (classifiers) from dis-
tributed data sources under a variety of assumptions (motivated by practi-
cal applications) concerning the nature of data fragmentation, and the query
capabilities and operations permitted by the data sources (e.g., execution of
user supplied procedures), and precise characterization of the complexity
(computation, memory, and communication requirements) of the resulting
algorithms relative to their centralized counterparts.

(c) The development of a theoretically sound approach to formulation and ex-
ecution of statistical queries across semantically heterogeneous data sources
[11]. This work has demonstrated how to use semantic correspondences and
mappings specified by users from a set of terms and relationships among
terms (user ontology) to terms and relations in data source specific ontolo-
gies to construct a sound procedure for answering queries for sufficient statis-
tics needed for learning classifiers from semantically heterogeneous data. An
important component of this work has to do with the development of statis-
tically sound approaches to learning classifiers from partially specified data
resulting from data described at different levels of abstraction across different
data sources [73, 74].

(d) The design and implementation of INDUS, a modular, extensible, open-
source software toolkit (http://www.cild.iastate.edu/software/indus.
html) for data-driven knowledge acquisition from large, distributed, au-
tonomous, semantically heterogeneous data sources [44, 11].

(e) Applications of the resulting approaches to data-driven knowledge acquisi-
tion tasks that arise in bioinformatics [30, 44, 105, 106].

Work in progress is aimed at:

(a) Extending the INDUS query answering engine to flexibly interact with dif-
ferent data sources that might support different functionalities or impose
different constraints on users (For example, some data sources might answer
only restricted classes of statistical queries. Others might allow retrieval of
raw data. Still others might allow execution of user-supplied procedures at
the data source, there by allowing the users to effectively extend the query
capabilities of the data source);

(b) Investigation of resource-bounded approximations of answers to statistical
queries generated by the learner; develop approximation criteria for evalu-
ation of the quality of classifiers obtained in the distributed setting under

http://www.cild.iastate.edu/software/indus.
html
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a given set of resource constraints and query capabilities relative to that
obtained in the centralized setting with or without such constraints. This is
especially important in application scenarios in which it is not feasible to ob-
tain exact answers to statistical queries posed under the access and resource
constraints imposed by the distributed setting;

(c) Development of tools to support modular development of ontologies, interac-
tive specification of mappings between ontologies including automated gen-
eration of candidate mappings for consideration by users, and reasoning al-
gorithms for ensuring semantic integrity of user-specified mappings between
ontologies;

(d) Development of sophisticated approaches to estimation from partially spec-
ified data, of the statistics needed by learning algorithms; and

(e) Application of the resulting algorithms and software to collaborative discov-
ery problems that arise in areas such as computational biology e.g., discovery
of relationships between macromolecular sequence, structure, expression, in-
teraction, function, and evolution; discovery of genetic regulatory networks
from multiple sources of data (e.g., gene expression, protein localization,
protein-protein interaction).
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