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ABSTRACT
Supervised methods for learning sequence classifiers rely on
the availability of large amounts of labeled data. However,
in many applications because of the high cost and effort
involved in labeling the data, the amount of labeled data
is quite small compared to the amount of unlabeled data.
Hence, there is a growing interest in semi-supervised meth-
ods that can exploit large amounts of unlabeled data to-
gether with small amounts of labeled data. In this paper,
we introduce a novel Abstraction Augmented Markov Model
(AAMM) based approach to semi-supervised learning. We
investigate the effectiveness of AAMMs in exploiting unla-
beled data. We compare semi-supervised AAMMs with: (i)
the Markov models (MMs) (which do not take advantage
of unlabeled data); and (ii) an expectation maximization
(EM) based approach to semi-supervised training of MMs
(that make use of unlabeled data). The results of our exper-
iments on three protein subcellular localization prediction
tasks show that semi-supervised AAMMs: (i) can effectively
exploit unlabeled data; and (ii) are more accurate than both
the MMs and the EM based semi-supervised MMs.

Categories and Subject Descriptors
I.2.6 [Learning]: Semi-supervised learning; H.2.8 [Database
Applications]: Data mining; J.3 [ Life and Medical Sci-
ences]: [Biology and genetics]

General Terms
Semi-supervised learning; Markov models; Expectation Max-
imization

1. INTRODUCTION
Many problems in computational biology, e.g., protein func-
tion prediction, subcellular localization prediction, can be
formulated as sequence classification tasks [2]. Sequence
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data contain intrinsic dependencies between their constituent
elements. Hence, effective sequence models need to incorpo-
rate these dependencies. Markov models (MMs) are exam-
ples of such sequence models [12]. They capture dependen-
cies between neighboring elements in a sequence and, thus,
provide more accurate models of the data. The accuracy of
MMs obtained in a supervised setting depends on the avail-
ability of large amounts of labeled data. Labeling sequences
often involves costly and time consuming manual curation.

Recent advances in sequencing technologies have resulted
in an exponential increase in the rate at which DNA and
protein sequence data are being acquired [1]. Because of
the growing gap between the rate of acquisition of sequence
data and the rate of manual curation, there is significant
interest in semi-supervised algorithms that can exploit large
amounts of unlabeled data together with limited amounts of
labeled data in training sequence classifiers [32].

Formally, the semi-supervised learning problem can be de-
fined as follows: Given training data D = (DL,DU ) of la-
beled and unlabeled examples, whereDL = (xl, yl)l=1,··· ,|DL|,

xl ∈ Rd, yl ∈ Y, and DU = (xu)u=1,··· ,|DU |, xu ∈ Rd,
|DL| � |DU |, respectively; a hypothesis space H; and a
performance criterion P , a learning algorithm L outputs a
classifier h ∈ H that optimizes P . If |DL| = 0, the problem
reduces to supervised learning; if |DU | = 0, it reduces to
unsupervised learning. The input x can represent sequences
over a finite alphabet X , x ∈ X ∗. During classification, the
task of the classifier h is to accurately assign a new example
xtest to a class label y ∈ Y.

We introduce a novel approach to semi-supervised learning
of sequence classifiers. Specifically, we use abstraction aug-
mented Markov models (AAMMs), which are variants of
Markov models, to incorporate information available in the
unlabeled data. AAMMs model the dependency of each el-
ement in a sequence on abstractions of k preceding elements
[7]. The abstractions are organized into an abstraction hi-
erarchy that groups together k-grams that induce similar
conditional probabilities of the next letter in the sequence.
An AAMM corresponds to a generative model for sequence
data expressed in terms of random variables whose values
correspond to abstractions over k-grams, in addition to the
MMs random variables [7]. AAMMs provide a simple way
to incorporate unlabeled data into the model: first, the ab-
straction hierarchy is constructed using the entire training
set including the unlabeled data. Next, the labeled data is



used to estimate the parameters of a set of AAMMs (one for
each class) based on the resulting abstraction hierarchy.

Thus, in effect, AAMMs: (i) exploit the relatively large
amount of unlabeled data to discover abstractions that trans-
form the sequence data x and, hence, effectively reduce the
number of parameters used to specify the probability p(x);
and (ii) use the resulting representation to estimate the pos-
terior probability p(y|x). Hence, AAMMs are likely to yield
more robust estimates of p(y|x) than MMs when the amount
of labeled data is much smaller compared to the amount of
unlabeled data.

To test our hypothesis, we compare AAMMs that use both
labeled and unlabeled data with AAMMs that use only la-
beled data, with the standard MMs, which can not make
use of unlabeled data, and also with MMs that can incor-
porate unlabeled data through an expectation maximization
approach (EM-MM). The results of our experiments show
that AAMMs can make effective use of unlabeled data and
significantly outperform EM-MMs when the amount of la-
beled data are very small, and relatively large amounts of un-
labeled data are readily available. Here, because of the small
amounts of labeled data available for estimating parameters,
the ability of AAMMs to minimize overfitting (through pa-
rameter smoothing) turns out to be especially useful.

The rest of the paper is organized as follows: We discuss
related work in Section 2 and provide some background on
Markov models for sequence classification in Section 3. We
describe our novel AAMM-based approach to semi-supervised
learning in Section 4. We present results of experiments
comparing AAMMs, MMs and EM-MMs in Section 5. We
conclude with a summary and discussion in Section 6.

2. RELATED WORK
A variety of approaches to semi-supervised learning have
been studied in the literature (see [9], [32] for reviews). Most
of the existing semi-supervised learning algorithms including
those based on co-training [5], Expectation Maximization
(EM) [25], Transductive Support Vector Machines (TSVM)
[19], cluster kernel [30], manifold based approaches [4, 18],
essentially involve different means of transferring labels from
labeled to unlabeled samples in the process of learning a clas-
sifier that can generalize well on new unseen data.

EM-based methods provide a way to estimate the param-
eters of a generative model from incomplete data [10], i.e.,
samples that contain missing values for some of the vari-
ables. Semi-supervised learning is a special case of such
inference where it is the class labels that are missing for a
subset of the data [25]. Specifically, the parameters of the
model are estimated initially from the labeled fraction of the
training data, DL, and the resulting model is used to pre-
dict p(y|x) for each of the unlabeled samples in DU . The
parameters are re-estimated using the entire training data
D and this process is repeated until the estimates converge.
Co-training [5] is a variant of this approach where unlabeled
data are labeled with two different classifiers trained on dif-
ferent subsets of the features in x.

Several semi-supervised learning algorithms based on dis-
criminative approaches to classification have been investi-

gated. TSVM [19] can be seen as a discriminative coun-
terpart of EM. TSVM starts by training an SVM on the
labeled data and uses the trained SVM to label the unla-
beled data. The algorithm iteratively attempts to maximize
the margin of separation between the sets of samples labeled
by the SVM (by considering at each iteration, alternative la-
bels for pairs of originally unlabeled samples that have been
assigned different labels by the SVM). A similar outcome
can be achieved by adding an additional regularization term
for unlabeled data to the objective function optimized by
SVM [32]. Similar approaches for exploiting unlabeled data
in training discriminative classifiers include [23], [29], [16],
[17].

An alternative approach to exploiting unlabeled data relies
on the manifold assumption: high-dimensional data lies on a
lower dimensional manifold, making it possible to propagate
labels from labeled samples to unlabeled samples based on
some measure of closeness of the data points on the man-
ifold. The manifold can be approximated by a weighted
graph in which the nodes correspond to data samples and
the weights on the links between nodes correspond to the
pairwise similarity of the corresponding data points [3]. A
number of techniques for label propagation have been pro-
posed [4], [18]. Note that graph laplacian based techniques
can be interpreted as a more general type of regularization
where not only the L2 norm of the hypothesis is penalized
but also the L2 norm of the hypothesis gradient.

Semi-supervised learning methods have been successfully ap-
plied in many areas including text classification [25], [5], [19],
natural language processing [26], [15], [27], image annotation
[6], and more recently bioinformatics and computational bi-
ology, [20], [22], [21].

In contrast to the approaches reviewed above, we present a
novel abstraction-based approach to semi-supervised learning
of sequence classifiers.

3. PRELIMINARIES
Before introducing our abstraction-based approach to semi-
supervised learning, we first provide some background on
standard Markov models and their use for sequence classifi-
cation.

3.1 Markov Models
Markov models (MMs) are probabilistic generative models
that assume a mixture model as the underlying model that
generated the sequence data. Each mixture component cor-
responds to a class cj ∈ C = {c1, · · · , c|C|}. A sequence is
generated according to a set of parameters, denoted by θ,
that define the model.

Let x = x0 · · ·xn−1 be a sequence over a finite alphabet X ,
x ∈ X ∗, and let y denote x’s class (note that if x was gen-
erated by the jth mixture component, then y = cj). Let
Xi, for i = 0, · · · , n− 1, denote the random variables corre-
sponding to the sequence elements xi in x. In a kth order
MM, the sequence elements satisfy the Markov property:

Xi ⊥⊥ {X0, · · · , Xi−k−1} | {Xi−k, · · · , Xi−1}.

That is, Xi is conditionally independent of X0, · · · , Xi−k−1

given Xi−k, · · · , Xi−1 for i = k, · · · , n − 1. Xi−k, · · · , Xi−1



X0 · · · Xi−k−1 Xi−k · · ·Xi−1| {z }
Si−1

Xi Xi+1 · · ·Xn−1

Figure 1: Dependency of Xi on Xi−k, · · · , Xi−1 in a
kth order Markov model.

are called parents of Xi. Figure 1 shows the dependency of
Xi on Xi−k, · · · , Xi−1 in a kth order MM. Hence,

p(xi|x0 · · ·xi−1, cj ; θ) = p(xi|xi−k · · ·xi−1, cj ; θ). (1)

The probability of x given its class cj , p(x|cj ; θ), can be
written as follows: p(x|cj ; θ) =

p(cj |θ)p(x0 · · ·xk−1|cj ; θ)
n−1Y
i=k

p(xi|xi−k · · ·xi−1, cj ; θ). (2)

Let Si−1 denote the parents Xi−k · · ·Xi−1 of Xi. The values
of Si−1 represent instantiations of Xi−k · · ·Xi−1, which are
substrings of length k (i.e., k-grams) over the alphabet X .
Let S denote the set of k-grams over X , s denote a k-gram
in S, and σ a symbol in X . The cardinality of S is |X |k and
is denoted by N .

The set of parameters θ of an MM is: θ = {θσ|s,cj
: σ ∈

X , s ∈ S, cj ∈ C; θs|cj
: s ∈ S, cj ∈ C; θcj : cj ∈ C}, where

θσ|s,cj
= p(σ|s, cj ; θ), θs|cj

= p(s|cj ; θ), and θcj = p(cj |θ).

3.2 Learning Markov Models
Given a labeled training set DL = (xl, yl)l=1,··· ,|DL|, learning
a Markov model reduces to estimating the set of parameters
θ from DL, using the maximum likelihood estimation [8].

The estimate θ̂σ|s,cj
of θσ|s,cj

is obtained from DL as follows:

θ̂σ|s,cj
=

1 +
P|DL|
l=1 #[sσ,xl] · p(yl = cj |xl)

|X |+
P
σ
′∈X

P|DL|
l=1 #[sσ′ ,xl] · p(yl = cj |xl)

, (3)

where #[sσ,xl] is the number of times the symbol σ“follows”
the k-gram s in the sequence xl, and p(yl = cj |xl) ∈ {0, 1}
is obtained based on the sequence label.

The estimate θ̂s|cj
of θs|cj

is obtained from DL as follows:

θ̂s|cj
=

1 +
P|DL|
l=1 #[s,xl] · p(yl = cj |xl)

|S|+
P
s
′∈S

P|DL|
l=1 #[s′ ,xl] · p(yl = cj |xl)

, (4)

where #[s,xl] is the number of times s occurs in xl.

The class prior probabilities θ̂cj are estimated as follows:

θ̂cj =
1 +

Pr
l=1 p(yl = cj |xl)
|C|+ |DL|

. (5)

We used Laplace correction to obtain smoothed estimates.

3.3 Using Markov Models for Classification
Classification of a new sequence x requires computation of
conditional probability p(y = cj |x; θ̂). Applying Bayes rule:

p(y = cj |x; θ̂) ∝ p(x|cj ; θ̂)p(cj |θ̂). (6)

The class with the highest posterior probability, arg maxj p(y =

cj |x; θ̂) is assigned to x.

4. SEMI-SUPERVISED AAMM
We first provide the AAMM definitions and then describe
how we learn AAMMs in a semi-supervised setting.

4.1 AAMMs
AAMMs effectively reduce the number of parameters of a
kth order MM (which is exponential in k) by learning an
abstraction hierarchy (AH) over the set of k-grams S.

Definition 1 (Abstraction Hierarchy) An abstraction
hierarchy T over a set of k-grams S is a rooted tree such
that: (1) the root of T denotes S; (2) the leaves of T cor-
respond to singleton sets containing individual k-grams in
S; (3) the children of each internal node (say a) correspond
to a partition of the set of k-grams denoted by a. Thus, a
denotes an abstraction or grouping of “similar” k-grams.

Note that each internal node (or abstraction a) contains the
subset of k-grams at the leaves of the subtree rooted at a.
Figure 2(a) shows an example of an AH T on a set S =
{s1, · · · , s9} of 2-grams over an alphabet of size 3.

Definition 2 (m-Cut) An m-cut γm through an abstraction
hierarchy T is a subset of m nodes of T such that for any
leaf s ∈ S, either s ∈ γm or s is a descendant of some node
in γm. The set of abstractions A at any given m-cut γm
forms a partition of S.

Specifically, an m-cut γm partitions the set S of k-grams
into m (m ≤ N = |S|) non-overlapping subsets A = {a1 :
S1, · · · , am : Sm}, where ai denotes the i-th abstraction and
Si denotes the subset of k-grams that are grouped together
into the i-th abstraction based on some similarity measure.
Note that S1 ∪ · · · ∪Sm = S and ∀1 ≤ i, j ≤ m, Si ∩Sj = ∅.
In Figure 2(a), the subset of nodes {a15, a6, a14} represents
a 3-cut γ3 through T .

AAMMs extend the graphical structure of MMs by intro-
ducing new variables Ai that represent abstractions over the
values of Si−1, for i = k, · · · , n − 1 (Figure 2(b)). Each Ai
takes values in the set of abstractions A = {a1, · · · , am} cor-
responding to an m-cut, γm. We model the fact that Ai is an
abstraction of Si−1 by defining p(Ai = ai|Si−1 = si−1) = 1
if si−1 ∈ ai, and 0 otherwise, where si−1 ∈ S and ai ∈ A rep-
resent instantiations of variables Si−1 and Ai, respectively.
Furthermore, in AAMMs, the node Xi directly depends on
Ai instead of being directly dependent on Si−1, as in the
standard MMs. Hence, the probability of x given its class,
p(x|cj ; θ), can be written as follows: p(x|cj ; θ) =

p(cj |θ)p(sk−1|cj ; θ)
n−1Y
i=k

p(xi|ai, cj ; θ)p(ai|si−1). (7)

The set of parameters θ of an AAMM is: θ = {θσ|a,cj
: σ ∈

X , a ∈ A, cj ∈ C; θs|cj
: s ∈ S, cj ∈ C; θcj : cj ∈ C}, where

θσ|a,cj
= p(σ|a, cj ; θ), θs|cj

= p(s|cj ; θ), and θcj = p(cj |θ).

4.2 Learning Semi-Supervised AAMMs
In what follows we show how to learn AAMMs from both la-
beled and unlabeled data. This involves: learning abstraction
hierarchies from both labeled and unlabeled data; and learn-
ing model parameters from labeled data using the resulting
abstraction hierarchy.



a1:s1 a2:s2 a3:s3 a4:s4 a5:s5 a6:s6 a7:s7 a8:s8 a9:s9

a10:{s2,s3}

a11:{s1,s2,s3} a12:{s4,s5}

a15:{s1,s2,s3,s4,s5}

a16:{s1,s2,s3,s4,s5,s6}

a13:{s7,s8}
a14:{s7,s8,s9}

a17:{s1,s2,s3,s4,s5,s6,s7,s8,s9}

(a)

X0 · · · Xi−k−1 Xi−k · · ·Xi−1| {z }
Si−1

Xi Xi+1 · · ·Xn−1

Aiγm

(b)

Figure 2: (a) An abstraction hierarchy T on a set S = {s1, · · · , s9} of 2-grams over an alphabet of size 3. The
abstractions a1 to a9 correspond to the 2-grams s1 to s9, respectively. The subset of nodes A = {a15, a6, a14}
represents a 3-cut γ3 through T ; (b) Dependency of Xi on Ai, which takes values in a set of abstractions A
corresponding to an m-cut γm, in a kth order AAMM.

4.2.1 Learning Abstraction Hierarchies
The algorithm for learning AHs over a set S of k-grams
starts by initializing the set of abstractions A such that
each abstraction aj ∈ A corresponds to a k-gram sj ∈ S,
j = 1, · · · , N . The leaves of the AH T are initialized with
elements of S. The algorithm recursively merges pairs of
abstractions that are most “similar” to each other and ter-
minates with an abstraction hierarchy after N−1 steps. We
store T in a last-in-first-out (LIFO) stack. For a given choice
of the size m of an m-cut through T , the set of abstractions
that define an AAMM can be extracted by discarding m−1
elements from the top of the stack.

We consider two k-grams to be “similar” if they occur within
similar contexts. In our case, we define the context of a k-
gram s ∈ S to be the conditional probability distribution of
the next letter in the sequence given the k-gram, p(Xi|s), in-
dependent of the class variable. Hence, this can be estimated
from both labeled sequences DL and unlabeled sequences DU
as follows: θ̂σ|st =24 1 +

P|DL|
l=1 #[sσ,xl] +

P|DU |
u=1 #[sσ,xu]

|X |+
P
σ
′∈X

hP|DL|
l=1 #[sσ′ ,xl] +

P|DU |
u=1 #[sσ′ ,xu]

i
35
σ∈X

(8)

where #[sσ,xl] and #[sσ,xu] represent the number of times
the symbol σ “follows” the k-gram s in the sequence xl, and
xu, respectively.

Since an abstraction is a set of k-grams, the context of an
abstraction a = {s1, · · · , s|a|} is obtained by a weighted ag-
gregation of the contexts of its k-grams. That is,

θ̂σ|a =

|a|X
t=1

#stP|a|
t=1 #st

· θ̂σ|st , (9)

where #st = |X |+
P|DL|
l=1 #[st,xl] +

P|DU |
u=1 #[st,xu].

We identify the most “similar” abstractions as those that
have the smallest weighted Jensen-Shannon divergence be-
tween their contexts. JS divergence provides a natural way
to compute the distance between two probability distribu-
tions that represent contexts of two abstractions [24].

4.2.2 Learning AAMM Parameters
Given a labeled training set DL = (xl, yl)l=1,··· ,|DL|, learn-
ing an AAMM reduces to estimating the set of parameters
θ from DL, denoted by θ̂. This can be done as follows:

use Equation (3) to obtain the estimates
h
θ̂σ|s,cj

i
σ∈X

ofˆ
θσ|s,cj

˜
σ∈X

for any k-gram s ∈ S (note that these estimates

correspond to the estimates
h
θ̂σ|a,cj

i
σ∈X

when a = {s}, i.e.,

the leaf level in the AH T ). The estimates
h
θ̂σ|a,cj

i
σ∈X

ofˆ
θσ|a,cj

˜
σ∈X

, when a = {s1, · · · , s|a|}, are a weighted aggre-

gation of the estimates of a’s constituent k-grams, i.e.,

θ̂σ|a,cj
=

|a|X
t=1

#stP|a|
t=1 #st

· θ̂σ|st,cj
, (10)

where #st = |X | +
P|DL|
l=1 #[st,xl] · p(yl = cj |xl)]. Use

Equations (4) and (5) to obtain the estimates θ̂s|cj
of θs|cj

and θ̂cj of θcj , respectively.

4.2.3 Using AAMMs for Classification
Given a new sequence x = x0, · · · , xn−1 and an m-cut γm
through T , p(x|cj ; θ̂) can be computed as follows: initialize

p(x|cj ; θ̂) by θ̂x0···xk−1|cj
; parse the sequence from left to

right. For each k-gram xi−k · · ·xi−1 find the abstraction
aw ∈ γm it belongs to and retrieve the parameters associated
with aw. Successively multiply θ̂σ|aw,cj

for i = k, · · · , n− 1

to obtain p(x|cj ; θ̂).

As in MMs, apply Bayes rule to obtain p(y = cj |x; θ̂) and
assign the class with the highest posterior probability to x.

5. EXPERIMENTS AND RESULTS
5.1 Experimental Design
Our experiments are designed to explore the following ques-
tions: (i) How effective are AAMMs at exploiting unlabeled
data to improve classification accuracy when the amount
of labeled data is limited? Specifically, how does the perfor-
mance of an AAMM trained using both labeled and unlabeled
data compare to that of an AAMM trained using only labeled



data when both take advantage of abstraction? (ii) How do
semi-supervised AAMMs which use both labeled and unla-
beled data compare with MMs trained on only labeled data?
(iii) How do AAMMs compare with MMs when both use
unlabeled data? To answer the first question, we compared
AAMMs trained using an abstraction hierarchy constructed
from both labeled and unlabeled data with AAMMs trained
using an abstraction hierarchy constructed only from labeled
data. To answer the second and third questions, we com-
pared AAMMs trained using an abstraction hierarchy con-
structed from both labeled and unlabeled data with the stan-
dard MMs, which can not make use of unlabeled data, and
with MMs that can incorporate unlabeled data through an
expectation maximization approach (EM) [10] .

EM applied to MMs (EM-MMs) involves an iterative pro-
cess of E- and M-steps. Specifically, an initial Markov model
is learned only from labeled sequences DL using Equations
(3), (4), and (5) (initialization step). The current model is
used to assign probabilistic labels to the (originally) unla-
beled sequences DU (i.e., to calculate the probability that

each class generated an unlabeled sequence, p(cj |xu; θ̂), u =
1, · · · , |DU |) using Equation 6 (E-step). Next, a new model
is learned from originally labeled sequences (xl, yl)l=1,··· ,|DL|
combined with the newly probabilistically labeled sequences
(xu, [p(cj |xu)]cj∈C)u=1,··· ,|DU |, which were originally unla-
beled using Equations (3), (4), and (5) (M-step). E- and M-
steps are repeated until the model does not change from one
iteration to another [25].

In the first set of experiments, we fixed the number of unla-
beled examples and varied the number of labeled examples.
Specifically, we performed experiments with 1%, 5%, 10%,
15%, 20%, 25%, 35%, and 50% of the training data being
used as labeled examples, and 50% being treated as unla-
beled examples (by ignoring the class label). To obtain the
subsets of labeled examples and that of unlabeled examples,
we sampled using a uniform distribution, from the training
set. Note that the unlabeled subset of the training data is
the same across all the experiments; the labeled subset of
the training data is successively augmented to increase the
amount of labeled data that is provided to the learner. The
class distribution in each subset is the same as that in the
entire training set.

In the second set of experiments, we fixed the number of la-
beled examples and varied the number of unlabeled examples.
Hence, we performed experiments with (i) 1% of training
data being treated as labeled, while 1%, 10%, 25%, 50%,
75%, 90%, and 99% being treated as unlabeled; (ii) 10% of
training data being treated as labeled, while 1%, 10%, 25%,
50%, 75%, and 90% being treated as unlabeled; (iii) 25% of
training data being treated as labeled, while 1%, 10%, 25%,
50%, and 75% being treated as unlabeled. As before, the
class distribution in each subset is the same as that in the
entire training set.

For all of the experiments, we report the average classifi-
cation accuracy obtained in a 5-fold cross-validation experi-
ment. We define the relative reduction in classification error
between two classifiers to be the difference in error divided
by the larger of the two error rates. To test the statisti-
cal significance of results, we used the 5-fold cross-validated

paired t test for the difference in two classification accuracies
[11]. The null hypothesis that the two learning algorithms
M1 and M2 have the same accuracy on the same test set
can be rejected if |t(M1,M2)| > t4,0.975 = 2.776 (p < 0.05).
We abbreviate |t(M1,M2)| by |t| in what follows.

5.2 Data sets
The problem of predicting subcellular protein localization
is important in cell biology, because it can provide valu-
able information for predicting protein function and protein-
protein interactions, among others.

The first data set used in our experiments, PSORTdb v.2.01

Gram-negative sequences, introduced in [14], contains exper-
imentally verified localization sites. We refer to this data set
as psortNeg. We use all proteins that belong to exactly one
of the following five classes: cytoplasm (278), cytoplasmic
membrane (309), periplasm (276), outer membrane (391)
and extracellular (190). The total number of examples (pro-
teins) in this data set is 1444.

The second and third data sets used in our experiments,
plant and non-plant2, were first introduced in [13]. The
plant data set contains 940 examples belonging to one of
the following four classes: chloroplast (141), mitochondrial
(368), secretory pathway/signal peptide (269) and other (con-
sisting of 54 examples with label nuclear and 108 examples
with label cytosolic). The non-plant data set contains 2738
examples, each in one of the following three classes: mito-
chondrial (361), secretory pathway/signal peptide (715) and
other (consisting of 1214 examples labeled nuclear and 438
examples labeled cytosolic).

5.3 Results
We trained AAMMs, MMs, and EM-MMs using 3-grams
extracted from the data3 (for psortNeg, plant, and non-
plant data sets, the number of 3-grams is 7970, 7965, and
7999, respectively). In the case of AAMMs, we trained clas-
sifiers for m = 1500, where m is the cardinality of the
set of abstractions A used as “features” in the classifica-
tion model (m is set to 1500 because this partitioning of
the set of k-grams produces classifiers that use substantially
smaller number of “features” compared to MMs, i.e., ≈ 8000
k-grams, and at the same time, the model compression is
not very stringent so as to lose important information in the
data through abstraction). We denote by AAMM(l+u) an
AAMM trained using an AH constructed from both labeled
and unlabeled data, and by AAMM(l) an AAMM trained
using an AH constructed only from labeled data, when it
is necessary to distinguish between AAMMs training proce-
dures. Note that EM-MMs are trained on the same fractions
of labeled and unlabeled data as their AAMM(l+u) coun-
terparts, and AAMM(l) and MMs are trained on the same
fraction of labeled data as their AAMM(l+u) counterparts.

1www.psort.org/dataset/datasetv2.html
2www.cbs.dtu.dk/services/TargetP/datasets/datasets.php
3The number of all unique k-grams is exponential in k. How-
ever, for large values of k, many of the k-grams may not
appear in the data (consequently, the counts for such k-
grams are zero). Note that the number of unique k-grams
is bounded by the cardinality of the multiset of k-grams ex-
tracted from |D|.
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Figure 3: Comparison of AAMMs trained using an abstraction hierarchy learned from both labeled and
unlabeled data, AAMM(l+u), with (i) AAMMs trained using an abstraction hierarchy learned only from
labeled data, AAMM(l); (ii) Expectation-Maximization with Markov models, EM-MM; and (iii) Markov
models, MM, on non-plant (left), plant (center), and psortNeg (right) data sets. x axis indicates the number
of labeled examples in each data set corresponding to fractions of 1%, 5%, 10%, 15%, 20%, 25%, 35%, 50% of
training data being treated as labeled data. The fraction of unlabeled data in each data set is fixed to 50%.

Figure 3 shows results of the first set of experiments that
compare AAMM(l+u) with AAMM(l), MM, and EM-MM
on non-plant, plant, and psortNeg data sets. The x axis
indicates the number of labeled examples in each data set.
The number of unlabeled examples is kept fixed and is equal
to the rightmost number of labeled examples on the x axis
of each plot.

Comparison of AAMM(l+u) with AAMM(l) trained
on a fixed amount of unlabeled data and varying
amounts of labeled data. As can be seen from Figure
3, AAMM(l+u) significantly outperforms AAMM(l) on all
three data sets when small fractions of labeled data are avail-
able. For example, with 110 labeled sequences on non-plant
(i.e., 5% of labeled data), AAMM(l+u) achieves 63% accu-
racy while AAMM(l) achieves 52%, which gives 23% reduc-
tion in classification error (|t| = 7.2). Strikingly, on the same
data set, with only 22 labeled sequences (i.e., 1% of labeled
data), AAMM(l+u) achieves 59% accuracy as compared to
43% obtained by AAMM(l), which gives 28% reduction in
classification error (|t| = 9.73). Hence, AAMM(l+u) are
able to incorporate information available in the unlabeled
data (i.e., joint probability distributions of contiguous amino
acids in a sequence) to learn more robust abstraction hierar-
chies than AAMM(l) when the labeled training set is limited
in size (thereby, reducing the risk of overfitting).

Furthermore, AAMM(l+u) decreases the need for large num-
bers of labeled data. Specifically, on non-plant, AAMM(l+u)
achieves 63% accuracy with 110 labeled examples, which is
matched by that of AAMM(l) with 438 labeled examples
(≈ 4 times more labeled data). However, when the fraction
of labeled data is large, and hence, good estimates of model
parameters can be obtained from such data, there is not
much need for unlabeled data. For example, AAMM(l+u)
becomes similar in performance with AAMM(l) on non-
plant using 35% and 50% of labeled data (the null hypoth-
esis is not rejected, |t| = 1.38 and |t| = 0.26, respectively).

As expected, the performance of AAMM(l+u) increases with
the increase in the amount of labeled data. For exam-

ple, on psortNeg with 12 labeled sequences (i.e., 1% of
labeled data), AAMM(l+u) achieves 32% accuracy while
AAMM(l+u) with 289 labeled sequences (i.e., 25% of la-
beled data) achieves 58% accuracy, which corresponds to
38% reduction in classification error.

Comparison of AAMM(l+u) with MM and EM-MM
trained on a fixed amount of unlabeled data and
varying amounts of labeled data. Figure 3 also shows
the comparison of AAMM(l+u) with MM. AAMM(l+u) is
superior in performance to MM, especially when small amounts
of labeled data are available. For example, on plant, with 75
labeled sequences (i.e., 10% of labeled data), MM achieves
39% accuracy as compared to 44% obtained using AAMM(l+u)
(|t| = 3.07). On non-plant, with 219 labeled sequences (i.e.,
10% of labeled data), MM achieves 51% accuracy whereas
AAMM(l+u) achieves 64% (|t| = 14). AAMM(l+u) not only
incorporates information available in the unlabeled data (see
previous comparison), but also performs parameter smooth-
ing. Thus, AAMM(l+u) provides more robust estimates of
model parameters than MMs, and hence, help reduce over-
fitting when the labeled training set is limited in size.

Both AAMM(l+u) and EM-MM make use of information
available in the unlabeled data (i.e., both improve the per-
formance of their counterpart classifiers trained only from
labeled data) on all three data sets, although the improve-
ment is not very large on psortNeg (Figure 3). However,
AAMM(l+u) uses the joint distribution over amino acids
(independent of the class variable) to learn a more robust
abstraction hierarchy (i.e., a finer partitioning of the set of k-
grams), especially when the amount of labeled data is small,
so that better estimates of parameters can be obtained. On
the other hand, EM-MM uses the joint distribution over
amino acids after an initial classifier has made predictions on
the unlabeled data. When small amounts of labeled data are
available, the predictions made by the initial classifier may
not be reliable. As can be seen in Figure 3, AAMM(l+u)
significantly outperforms EM-MMs on non-plant, plant,
and psortNeg data sets, when the fraction of labeled data
is small. For example, with only 22 labeled sequences on
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Figure 4: Comparison of AAMMs with EM-MMs for three different fractions of labeled data (i.e., 1%, 10%,
and 25%) while varying the amount of unlabeled data on non-plant (left), plant (center), and psortNeg (right)
data sets. x axis indicates the number of unlabeled examples in each data set corresponding to fractions of
1%, 10%, 25%, 50%, 75%, 90%, 99% of training data being treated as unlabeled data (by ignoring the class).

non-plant (i.e., 1% of labeled data), AAMM(l+u) achieves
59% accuracy while EM-MM achieves 42%, which gives 29%
reduction in classification error (|t| = 8.83). Similarly, with
only 8 labeled sequences on plant (i.e., 1% of labeled data),
AAMM(l+u) achieves 34% accuracy as compared to 28%
obtained by EM-MM, which gives 8% reduction in classi-
fication error (|t| = 4.66). As the amount of labeled data
increases, EM-MM significantly outperforms AAMM(l+u).
For example, with 767 labeled sequences on non-plant (i.e.,
35% of labeled data), EM-MM achieves 69% accuracy while
AAMM(l+u) achieves 67% (|t| = 4.87).

We conclude that AAMM(l+u) is able to incorporate infor-
mation available in the unlabeled data, and hence, produce
more robust classifiers than AAMM(l), MM, and EM-MM,
when the fraction of labeled data is small. When larger
amounts of labeled data become available, EM-MM makes
better use of unlabeled data than AAMM(l+u).

Comparison of AAMM with EM-MM trained on a
fixed amount of labeled data and varying amounts
of unlabeled data. Figure 4 shows results of the second
set of experiments that compare AAMMs with EM-MMs on
non-plant, plant, and psortNeg data sets, respectively,
while varying the amount of unlabeled data for three dif-
ferent fractions of labeled data (i.e., 1%, 10%, and 25% of
labeled data) that are kept fixed. The x axis indicates the
number of unlabeled examples in each data set.

As can be seen from Figure 4, the improvement in perfor-
mance of AAMMs over EM-MMs is rather dramatic when
the amount of labeled data is quite small. For example,
when only 1% of labeled data is used regardless of the amount
of unlabeled data, AAMMs consistently significantly out-
perform EM-MMs on non-plant and plant data sets (the
largest and smallest t values on non-plant are 10.96 and
5.66, respectively). However, the difference in performance
between AAMMs and EM-MMs diminishes as more and
more labeled data become available (and eventually levels
off). When the amount of labeled data is increased (e.g.,
25% of labeled data), EM-MMs often significantly outper-
form AAMMs (Figures 4(a) and 4(c)). For example, on
non-plant with 25% of unlabeled data, EM-MM achieves

68% accuracy, whereas AAMM achieves 66% (|t| = 7).

Again as can be seen from Figure 4 , the classification accu-
racy of AAMMs typically increases with the amount of un-
labeled data (when the subset of labeled data is fixed). For
example, on non-plant, AAMM with 22 labeled sequences
(i.e., 1% of labeled data) and 219 unlabeled sequences (i.e.,
10% of unlabeled data) achieves an accuracy of 56% as com-
pared to 49% obtained by AAMM with 22 labeled sequences
(i.e., 1% of labeled data) and 22 unlabeled sequences (i.e.,
1% of unlabeled data), 14% reduction in classification error.

We conclude that AAMMs significantly outperforms EM-
MMs when there is less labeled data. Also the more unla-
beled data is available, the higher the performance of AAMMs.

6. SUMMARY AND DISCUSSION
We have introduced a novel abstraction-based approach to
learning sequence classifiers in a semi-supervised setting.
Our approach utilizes abstraction augmented Markov mod-
els [7], which extend higher order Markov models by adding
new variables corresponding to abstractions of k-grams. The
results of our experiments have shown that AAMMs can
make effective use of unlabeled data. The results also show
that AAMMs significantly outperform EM-MMs when the
amount of labeled data is very small, and relatively large
amounts of unlabeled data are readily available. Here, be-
cause of the small amounts of labeled data available, the abil-
ity of AAMMs to minimize overfitting (through parameter
smoothing) turns out to be especially beneficial.

Consistent with the results reported in [25], we found that
EM may decrease rather than increase the accuracy of clas-
sifiers if the generative model assumptions are not satisfied
(Figure 3 on the plant data set). A weighted EM (i.e.,
weighting unlabeled sequences less) helped improved the per-
formance of EM-MMs (data not shown). A similar approach
could be considered in AAMMs.

The results presented in this paper demonstrate the effec-
tiveness of an abstraction-based approach to exploiting un-
labeled data in a semi-supervised setting. Such an approach
can in principle be combined with existing semi-supervised



learning techniques including those that use EM, manifold
assumption (propagation of labels from labeled to unlabeled
samples based on some similarity measure between samples).

Our implementation of AAMM constructs an abstraction hi-
erarchy over the values of the k predecessors of a sequence
element by grouping them together if they induce similar
conditional distributions over that element. It would be in-
teresting to explore alternative approaches to building ab-
straction hierarchies, e.g., probabilistic suffix trees [28].

AAMMs reduce the complexity of the learned model at the
risk of some information loss due to abstraction. It is of
interest to trade off the complexity of the model against its
accuracy, e.g., by designing an MDL-based scoring function
to guide a top-down search for an optimal cut [31].
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