
Checking Consistency of CP-Theory Preferences in Polynomial Time

Erik Rauer1, Samik Basu1, Vasant Honavar2,3,4
1 Department of Computer Science, Iowa State University, USA

2 Artificial Intelligence Research Laboratory
3 Institute for Computational and Data Sciences

4 College of Information Sciences and Technology, Pennsylvania State University, USA
{etrauer,sbasu}@iastate.edu, vuh14@psu.edu

Abstract

We investigate the problem of checking the consistency of
qualitative preferences expressed in CP-theory. This problem
is PSPACE-Complete even when the preferences are locally
consistent or the preference variables have binary domain. We
present a new sufficient condition for consistency of prefer-
ences and show that the condition can be checked in polyno-
mial time in settings of practical relevance (locally consistent
or binary domain preference variables). We further show how
the resulting sufficient condition can be used to efficiently
identify a subset of outcomes that are non-dominated with
respect to a set of qualitative preferences.

Introduction
Representing and reasoning about preferences is central to
rational decision making in a wide range of applications,
from public policy to healthcare, economics, and security.
Preferences can be quantitative (Keeney and Raiffa 1993;
French 1986) or qualitative (Doyle and Thomason 1999).
However, in many real-world applications, it is more natural
to express preferences in qualitative rather than quantitative
terms (Doyle and Thomason 1999). Hence, in the past two
decades, there has been a growing body of work focused
on languages for representing and reasoning with qualita-
tive preferences (Brafman and Domshlak 2009; Doyle and
Thomason 1999; Santhanam, Basu, and Honavar 2016; Cor-
nelio et al. 2021).
Driving Research Question. A key challenge in reasoning
with preferences has to do with the fact that stated prefer-
ences are often inconsistent, that is, they induce dominance
relations over outcomes o and o′ such that o ≻ o′ and o′ ≻ o.
The problem of consistency checking has been shown to
be PSPACE-Complete for languages that can express condi-
tional preferences, e.g., CP-nets (Goldsmith et al. 2008) and
the more expressive CP-theories. The seminal work of Wil-
son (2011) investigated a logic of conditional preferences
that can be used to reason about preferences expressed us-
ing CP-nets and TCP-nets and characterized several suffi-
cient conditions (conditionally acyclic, strongly condition-
ally acyclic, context-uniform conditionally acyclic) for the
consistency of these preferences. This work also showed

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that testing for these sufficient conditions is CoNP-Complete
(even when the domain of preference variables is restricted
to be binary). This raises an important, as yet unanswered
question. Are there sufficient conditions for consistency of
qualitative preferences that can be efficiently checked, e.g.,
in polynomial time?

Key Contributions. We answer the preceding question
by identifying a new sufficient condition, Cardinality-based
Conditional Acyclicity (cc-acyclic), that can be checked in
polynomial time in settings of practical relevance (that is,
locally consistent preferences and for preference variables
with binary domain). This condition is weaker than the fully
acyclic and stronger than the conditional acyclic conditions,
while also being incomparable to the strong conditional and
context uniform conditional acyclic conditions of Wilson
(2011).

The practical importance of this result stems from its use-
fulness in solving problems in which the objective is to find
the top k alternative in a total order that is consistent with
the partial order of outcomes induced by a given set of pref-
erences (Wang et al. 2012; Peng, Wong, and Wan 2012).
The solution of such problems involves the generation of
decision trees (referred to as complete search trees (Wilson
2011)) over preference variables, where leaf-level elements
are organized from left to right in a total order consistent
with the partial order of outcomes induced by preferences.
The process used to generate such trees relies on preferences
satisfying a sufficient condition for their consistency. Armed
with such a sufficient condition, namely, cc-acyclic, that is
polynomially checkable, we can use it to efficiently solve the
problem of finding the top k outcomes in a total order that
is consistent with the partial order of outcomes induced by a
given set of CP-Theory preferences.

Wilson (2011) also showed that for preference statements
satisfying the context-uniform sufficient condition, there ex-
ists a strict partial order extension of the dominance rela-
tion induced by the preferences; and that any dominance
induced by this extension, referred to as an upper approx-
imation (UA), is computable in polynomial time. We show
that when preferences satisfy the cc-acyclic condition, we
can obtain an UA in polynomial time. Such an UA offers an
efficient means of identifying a subset of outcomes that are
non-dominated with respect to the given preferences.

Statement ID Preference Statement

p1 b1 : A = a1 ≻ A = a2 []
p2 a1 : C = c1 ≻ C = c2 []
p3 c1 : A = a2 ≻ A = a1 [B]
p4 a1 : B = b2 ≻ B = b1 [C]
p5 a2 : C = c2 ≻ C = c1 [B]
p6 a2 : B = b1 ≻ B = b2 []

Figure 1: A set P of preference statements

Qualitative Preference Language
CP-nets (Boutilier et al. 2004), TCP-nets (Brafman, Domsh-
lak, and Shimony 2006), and CP-theories (Wilson 2004b)
present languages for expressing complex qualitative pref-
erences over attributes of outcomes. The semantics of these
languages use the well-studied ceteris paribus (“all else be-
ing equal” (Boutilier et al. 2004)) strategy to capture the
dominance of an outcome over another due to a specific
attribute while keeping valuations of all other (except rel-
atively less important) attributes equal. Here, we closely fol-
low the CP-theory-based language.

Notations. Let V be a finite set of variables (attributes /
properties of outcomes) and let dom(X) be the domain of
the variable X ∈ V . Given a set of variables U ⊆ V , a set of
assignments to U is denoted by ϱ ∈

∏
X∈U

dom(X). We use

var(ϱ) to denote the set of variables assigned in ϱ. For any
X ∈ var(ϱ), we use ϱ(X) to denote the valuation of X in
ϱ. The set of outcomes O is such that any o ∈ O is a set of
assignments to all variables in V .
Definition 1 (Satisfiability & Compatibility). We say that ϱ1
satisfies ϱ2, denoted by ϱ1 ⊩ ϱ2, if

∀X [X ∈ var(ϱ2) ⇒ (X ∈ var(ϱ1) ∧ ϱ2(X) = ϱ1(X)]

We say that ϱ1 is compatible with ϱ2, denoted by ϱ1 ▷◁ ϱ2, if

∀X [(X ∈ var(ϱ1) ∧ X ∈ var(ϱ2)) ⇒ ϱ2(X) = ϱ1(X)]

We will use upper-case letters for representing variables
and the lower-case counterpart with or without subscripts
to denote the valuations of the corresponding variable. For
example, A ∈ V is a variable, and a1, a2 are its valuations.

Qualitative Preference Statements: Syntax
A preference statement p in CP-theory (Wilson 2004b) is
of the form ϱ : X = x ≻ X = x′ [Ω], where X ∈ V ,
x, x′ ∈ dom(X), Ω ⊆ V , and sets var(ϱ), {X} and Ω are
pairwise disjoint. Intuitively, a preference statement speci-
fies that in the context of some valuations of variables ϱ (that
is, conditioned on the valuation), the value of X being x is
preferred to x′ regardless of the valuations of the variables
in Ω (variables in Ω are relatively less important than X).

For a given preference statement p in the above form, we
use ϱp, Xp, and Ωp to denote ϱ, X , and Ω.

Qualitative Preference Statements: Semantics
The semantics of preferences induces a dominance relation-
ship between pairs of outcomes (Boutilier et al. 2004).

a1b1c1

a1b1c2

a1b2c1a1b2c2

a2b1c1

a2b1c2

a2b2c1

a2b2c2

p4p4

p3

p3

p2

p4
p4

p3

p3p2

p1

p5

p5

p1

p6

p5

p5

p6

Figure 2: Induced Preference Graph over dominance relation
induced by preferences in Figure 1

Definition 2 (Dominance due to Preferences). Given a pref-
erence statement p of the form ϱ : X = x ≻ X = x′ [Ω]
and two outcomes o, o′ ∈ O, the preferential dominance re-
lation o ≻ o′ is induced by p, denoted by p |= o ≻ o′, if
1. o ⊩ ϱ ∧ o(X) = x,
2. o′ ⊩ ϱ ∧ o′(X) = x′, and
3. ∀Y, Y ∈ V \ ({X} ∪ Ω) ⇒ o(Y) = o′(Y).

[ceteris paribus condition]
Proceeding further, given a set of preference statements P =
{p1, p2, . . . , pm}, the preferential dominance relation o ≻
o′ is induced by P , denoted by P |= o ≻ o′, if
1. o = o1 ≻ o2 ≻ . . . ≻ ok = o′, and
2. ∀i ∈ [1, k − 1],∃j ∈ [1,m] such that pj |= oi ≻ oi+1.

In the above, the dominance modeled by an individual
preference statement is referred to as a “flip”, where a flip
corresponds to an improvement of valuations of a specific
variable in an outcome as presented in a preference state-
ment (Boutilier et al. 2004). The dominance modeled by a
sequence of preference statements corresponds to the tran-
sitive closure of flips. This results in a directed graph where
the vertices in the graph correspond to the outcomes, and the
directed edge from one vertex to another captures the dom-
inance of the destination vertex over the source vertex. This
graph is referred to as the induced preference graph (IPG)
Example 1. Consider the preference statements {pi | i ∈
[1, 6]} over V = {A,B,C} in Figure 1 such that for all
X ∈ V , dom(X) = {x1, x2}. Figure 2 presents the induced
preference graph for the statements. For clarity, we have
not presented the transitive closure of the edge relations.
We have annotated each edge with the preference statement
that induces the edge. For example, the preference statement
p2 induces the edge from a1b1c2 to a1b1c1 and a1b2c2 to
a1b2c1; this is because, according to p2, when the A = a1
variable C’ valuation of c1 is preferred to c2, all else being
equal (in this case the valuation of B is either b1 for both
outcomes being compared, or b2 for both outcomes being
compared).

Consistency Testing of CP-theory Preferences
Background. A set of preference statements is said to be
consistent if the dominance relation of the corresponding

IPG is a partial order. Conversely, if there is a cycle in the
IPG, then the preference statements are inconsistent. A cy-
cle in the IPG results in a scenario in which the preferences
model o ≻ o′ as well as o′ ≻ o. Because consistency test-
ing involves testing for the absence of cycles in the IPG
(where the size of the graph is exponential to the number
of variables), in general, the resulting problem is PSPACE-
Complete (Goldsmith et al. 2008).

There are two consistency requirements for preferences:
intravariable consistency and intervariable consistency. The
intravariable consistency, also referred to as local consis-
tency, requires that (as per the preferences) the valuations
of each variable can be arranged in a partial order under any
possible valuations of the other variables. E.g., the prefer-
ence statements

b1 : A = a1 ≻ A = a2 [] c1 : A = a2 ≻ A = a1 [B]

are locally inconsistent because there exists a valuation of
variables b1c1 for which a1 ≻ a2 ≻ a1. Wilson (2004b)
shows that the determination of local consistency is CoNP-
Complete, although for preference statements P over vari-
ables V with small domain (e.g. binary domain), local con-
sistency can be checked in O(|P |2·|V|) time.

Intervariable consistency, on the other hand, requires that
the conditional dependency and relative importance depen-
dencies between variables should ensure a partial order over
valuations of the set of variables participating in the de-
pendencies. A straightforward albeit restrictive condition for
consistency can be that preferences must be locally consis-
tent and the transitive closure of conditional and relative im-
portance relationship between the variables must be irreflex-
ive. This condition is referred to as the fully acyclic condi-
tion (Wilson 2004b; Goldsmith et al. 2008).

Wilson (2011) introduced several sufficient conditions for
the intervariable consistency of locally consistent prefer-
ences. They are weaker than the fully acyclic condition and
the problem of checking these conditions is CoNP-complete.
In contrast, we present a new sufficient condition for inter-
variable consistency of locally consistent preferences and
prove that it can be checked in polynomial time. Our suf-
ficient condition is stronger than the fully acyclic condition
and is not comparable to the conditions proposed by Wilson.

Dependency Graph with Edge Cardinality
Our sufficient condition uses the dependency graph for CP-
theory preferences. The vertices in this graph correspond to
the variables over which the preferences are specified, and
the directed edges capture different types of dependencies
between the variables. We show that if the dependency graph
satisfies a specific acyclic property, then the corresponding
preference statements are guaranteed to be consistent. We
proceed with the definition of a dependency graph.
Definition 3 (Dependency Graph). Given a set of preference
statements P on variables V , the dependency graph of P is
a directed graph G(P) = (V, E) where E = EC ∪ ER is a
union of the sets EC = {(Y,X) | ∃p ∈ P, Y ∈ var(ϱp) ∧
X = Xp} and ER = {(X,Z) | ∃p ∈ P, X = Xp ∧ Z ∈
Ωp}. We call EC the set of conditional arcs and ER the set
of relative importance arcs.

Note that it is possible EC ∩ ER ̸= ∅. We further define
a function CardP :EC → N that assigns a weight to each
conditional edge of the dependency graph of P equal to the
number of different values of the source variable that are
in the condition of some preference for the target variable.
Formally, given (Y,X) ∈ EC , CardP ((Y,X)) =

|{y ∈ dom(Y) | ∃p ∈ P, y ∈ ϱp ∧X = Xp}|.
We will use the Card(.) when the set P for preferences is

immediate in the context. Next, we describe a subgraph of
G(P) as follows.
Definition 4. Given a set of preference statements P on
variables V , the high cardinality dependency graph of P is
the directed graph H(P) = (V, E′) where

E′ = ER ∪ {e ∈ EC | CardP (e) ≥ 2}
Note that H(P) is the subgraph of G(P) where all edges in
EC \ ER with CardP = 1 are removed.
Example 2. Consider the preference statements of Figure 1.
The corresponding dependency graph G(P) and high cardi-
nality dependency graph H(P) are:

A

B C

EC ,ER

EC
EC

ER

EC

ER

A

B C

ECEC ,ER

ER

ER

G(P) H(P)
The edges (B,A) and (C,A) are not in H(P) since they
only have CardP of 1 (A is only conditionally dependent on
B under b1 due to statement p1 and C under c1 due to p3).

cc-acyclic Sufficient Condition
We discuss a sufficient condition of consistency for CP-
theory preferences based on the acyclicity of H(P).
Theorem 1 (Cardinality-based Conditional Acyclicity).
Given a set P of preference statements, if P is locally con-
sistent and H(P) is acyclic, then P is consistent. We refer
to this condition as the cc-acyclic sufficient condition.

The proof of the above theorem relies on the concept of a
complete search tree (cs-tree) introduced in (Wilson 2006).
In the following, we proceed with the definition and proper-
ties of cs-trees, followed by the proof of Theorem 1.
Definition 5 (Complete Search Tree (Wilson 2011)). A
complete search tree over a set of variables V with
dom(X) being the domain of X ∈ V is a tuple
(V,N ,L, var, con, val, E), where (a) N is the set of inter-
nal nodes, (b) L is the set of leaf nodes, (c) var:N → V
is the labeling of each internal node to some variable in V ,
(d) con:N →

∏
X∈V′⊂V dom(X) is the context of each

internal node described in terms of the valuations of vari-
ables in V , (e) val:L →

∏
X∈V dom(X) is the valua-

tion of all variables associated with each leaf node, and (f)
E:N × dom(X| X ∈ V) → N is the edge relation that
associates a node and valuation of a specific variable with
another node.

The semantics associated with a complete search tree is
as follows. Each internal node is labeled with some variable.
The context of an internal node (con(n)) is the valuations of
all variables from the root of the tree to that internal node.
The context for the root node is ⊤, i.e., it does not have a spe-
cific context. An internal node labeled with a variable X has
|dom(X)| children nodes; an edge to a child is associated
with a specific valuation of X . Furthermore, for each inter-
nal node, the valuations of X (and thus the corresponding
children of the node) are totally ordered from left to right.
The depth of the tree is equal to |V|. Each leaf node in the
tree is associated with a unique assignment to all variables
in V , which corresponds to the assignments on the path from
the root to that leaf node. These valuations are totally or-
dered from left to right at the leaf level. For any leaf l in a
cs tree, val(l) can be interpreted as an outcome. Thus, a cs
tree over V induces a total order on the outcomes defined
over the variables V . Given a set P of preference statements
over V , a complete search tree cs, described over V satisfies
P if the total order at the leaf level of cs extends the partial
order of dominance relations induced by P . This condition
is equivalent to that of Wilson (2011) :
Proposition 1 (Complete Search Tree Satisfying Preference
Statements (Wilson 2011)). A complete search tree cs sat-
isfies a set of preference statements P if and only if the
following two conditions hold for all p ∈ P of the form
ϱp : Xp = xp ≻ Xp = x′

p[Ωp]:

1. for any outcome o such that o ⊩ ϱp, on the path from the
root of cs to leaf l with val(l) = o, Xp appears before
each element of Ωp,

2. for any internal node n, if Xp = var(n) and ϱp ▷◁
con(n) (i.e., ϱp and con(n) are compatible, see Defini-
tion 1), then xp appears to the left of x′

p in the total or-
dering of outgoing children of n.

Finally, Wilson presents the result that characterizes con-
sistency in terms of cs-tree, called the (weak) conditional
acyclic condition:
Lemma 1 (Wilson 2011). If there exists a cs-tree that satis-
fies preference statements P then P is consistent.

Example 3. Consider the locally consistent preference
statements p4 and p5 from Figure 1:

a1 : B = b2 ≻ B = b1 [C] a2 : C = c2 ≻ C = c1 [B]

A cs-tree that satisfies the above preference statements is

a1b2c1 a1b2c2 a1b1c1 a1b1c2 a2b1c2 a2b2c2 a2b1c1 a2b2c1

C C B B

B C

A
a1 a2

b2 b1 c2 c1

c1 c2 c1 c2 b1 b2 b1 b2

The variable A at the root node does not have a context as
per the preference statements. In the left sub-tree, the context
for the node with variable B is the valuation a1 of A. Hence,

in this context, the node labeled with variable C appears af-
ter the node labeled with B (C being relatively less impor-
tant as per the first preference statement p4). Additionally,
the ordering of the children of this node is b2 > b1 which
follows preference statement p4.

We can now present the proof for Theorem 1. The cen-
tral idea is to show that for locally consistent preferences P
with acyclic H(P), one can construct a cs-tree that satisfies
P (as per Proposition 1) and therefore, by Lemma 1, P is
consistent.
Proof of Theorem 1. H(P) is acyclic according to the cc
-acyclic condition, so there exists a total order on the vari-
ables V based on H(P). Let Y1, . . . , Y|V| be this total order.
We construct the complete search tree as follows. For each
internal node n at level i, var(n) = Yi. For any such inter-
nal node n at level i and variable Yj with e = (Yj , Yi) as an
edge in G(P) and CardP (e) = 1, there exists a single valua-
tion a ∈ dom(Yj) such that any preference statement p ∈ P
with Xp = Yi and Yj ∈ var(ϱp) has ϱp(Yj) = a. We denote
all such valuations of Yj’s for preference statements over Yi

by αi. For all other variables Yj with j < i that are not in
var(αi), we denote their valuations in con(n) by β(n).

Finally, γ(n) = αi ∪ β(n) (1)
Consider the relation >X

ω ⊆ dom(X) × dom(X) where
ω is the assignment to variables in W ⊆ V \ X . Let
>X

ω be defined as the transitive closure of all pairs (x, x′)
for which there exists a preference statement of the form
ϱ : X = x ≻ X = x′ [Ω] such that ω ⊩ ϱ. For locally
consistent preferences, for any X , it is immediate that the
relation >X

ω is irreflexive. We can therefore arrange the chil-
dren of n (total) ordered according to the relation >Yi

γ(n).
We now show that the constructed cs-tree satisfies con-

ditions (1.) and (2.) of Proposition 1. Consider a preference
statement p ∈ P of the form ϱp : Xp = xp ≻ Xp =
x′
p [Ωp]. Let the variable Xp be the i-th variable in the total

order used to construct the cs-tree, i.e., Xp is Yi. And Yi is
the variable at the node n of the cs-tree.

For any variable Z ∈ Ωp, if Z is Yj , (Yi, Yj) ∈ ER, and
therefore i < j in our total order. In other words, the assign-
ment to Yi is always decided before the assignment to Yj in
the cs-tree, thus satisfying condition (1.) of Proposition 1.

Let node n be such that var(n) = Xp and ϱp ▷◁ con(n)
(compatible). Consider Yj ∈ V whose valuation a is present
in ϱp. Then e = (Yj , Yi) ∈ EC and there are two possibili-
ties for the cardinality of e: CardP (e) = 1 or CardP (e) ≥ 2.
• If CardP (e) = 1, then a ∈ αi ⊆ γ(n) by definition.
• On the other hand, if CardP (e) ≥ 2, then e ∈ H(P) so
j < i by choice of the total order. Since ϱp ▷◁ con(n),
a ∈ con(n) and a ∈ ϱp as well. So a ∈ β(n) ⊆ γ(n) by
definition of β(n).

In either case (CardP (e) = 1 and CardP (e) ≥ 2) a ∈
γ(n) making ϱp ▷◁ γ(n). Therefore, the order of Yi accord-
ing to the relation >Yi

γ(n) satisfies the ordering where xp ap-
pears to the left of x′

p in the total ordering of valuations of
Yi for the node n. Thus, condition (2.) of Proposition 1 is
satisfied. □

Example 4. Consider the preference statements p1 and p6
from Figure 1:

b1 : A = a1 ≻ A = a2 [] a2 : B = b1 ≻ B = b2 [] (2)

The edge relation that captures the (mutual) conditional de-
pendency between the variables in these preference state-
ments is such that Card((A,B)) = 1 and Card((B,A)) = 1.
Hence, the high cardinality dependency graph (see Defini-
tion 4) has no edges (acyclic)–thus satisfying the cc-acyclic
condition. The cs-trees for the above preference statements:

a1b1 a1b2 a2b1 a2b2

B B

A
a1 a2

b1 b2 b1 b2

a1b1 a2b1 a1b2 a2b2

A A

B
b1 b2

a1 a2 a1 a2

Checking cc-acyclic Condition
We present here a poly-time algorithm to address the prob-
lem of determining whether the cc-acyclic condition holds.
Proposition 2. Given a set of locally consistent preferences
P , checking for the cc-acyclic sufficient conditions can be
done in polynomial time.

Proof. Observe that the dependency graph G(P) contains
a set of edges E where |E|∈ O(|V|·|P |); hence, the car-
dinality of the edges can be set in O(|V|·|P |) time. Upon
building the dependency graph G(P), H(P) can easily
be obtained in O(|V|·|P |) time by removing all edges in
EC \ ER with CardP = 1. From there, one must simply
check whether H(P) is acyclic, which can be done by DFS
in O(|E|+|V|) = O(|V|·|P |+|V|) time.

Finding the top k outcomes
In some applications, it may be necessary to identify the top
k elements in a total ordering of the outcomes that is consis-
tent with the preferences (where k is considerably smaller
than the total number of outcomes) (Peng, Wong, and Wan
2012; Wang et al. 2012).

The cs-tree-based organization of outcomes plays a role
in realizing effective and efficient algorithms for these prob-
lems (Brafman, Domshlak, and Shimony 2006; Wilson
2006). For finding the top k elements, one can construct the
cs-tree in a depth-first fashion (aligning with the preorder
traversal of the tree) and as soon as k leaf nodes are gen-
erated, terminate the algorithm and return the outcomes at
the leaf nodes. Armed with an efficient algorithm for testing
whether cc-acyclic condition holds, if cc-acyclic is found
to hold, we can generate a cs-tree with an appropriate num-
ber of leaf-level nodes to identify the top k outcomes.

Polynomial Upper Approximation
For preferences that are consistent and hence have a satis-
fying cs-tree, Wilson (2006) also introduced the notion of
upper approximation, a partial-order extension of the dom-
inance relations induced by the preferences. We next show
that for preferences that satisfy the cc-acyclic condition, we
can realize a polynomial-time computable upper approxima-
tion.

Definition 6 (Polynomial Upper Approximation (Wilson
2006)). A binary relation ≫ on outcomes is an upper ap-
proximation for a set of preference statements P if for any
pair of outcomes o, o′: P ⊨ o ≻ o′ ⇒ o ≫ o′.

If determining whether o ≫ o′ can be done in polynomial
time for any pair of outcomes, ≫ is said to be a polynomial
upper approximation.

The upper approximation of P defined in terms of cs-tree
is as follows.
Proposition 3 (Wilson 2011). Let R be some subset of com-
plete search trees that satisfy a set of preference statements
P . The relation ≫R is an upper approximation of P , where,
for all outcome-pairs o, o′, o ≫R o′ if and only if for every
cs-tree T ∈ R, o is preferred to o′ in T ’s total order.

We now proceed to introduce some necessary concepts
and notations before presenting the polynomial-time upper
approximation that can be computed for preferences satisfy-
ing the cc-acyclic condition.
Definition 7. Let P be a set of preference statements. Con-
sider outcomes o, o′ such that o ̸= o′.
• ∆(o, o′) is the set of variables where o and o′ differ, that

is, ∆(o, o′) = {X ∈ V | o(X) ̸= o′(X)}.
• Θ(o, o′) is the set of variables in ∆(o, o′) where all of

their parents in the transitive closure of edges in H(P)
are not in ∆(o, o′), i.e. if H∗(P) is the transitive closure
of edges in H(P), then
Θ(o, o′) =

{X ∈ ∆(o, o′) | ∀(Y,X) ∈ H∗(P), Y /∈ ∆(o, o′)}
• For X ∈ Θ(o, o′), we use PA(o, o′, X) to denote the set

consisting of the parents of X in H∗(P), i.e.,
PA(o, o′, X) = {Y ∈ V | (Y,X) ∈ H∗(P)}

We use pa(o, o′, X) to denote the valuations of variables
in PA(o, o′, X) in o,
pa(o,o′, X) =

{y ∈ dom(Y) | Y ∈ PA(o, o′, X) ∧ o(Y) = y}
• For each parent Y of X in G(P) with CardP = 1, c(X)

contains the valuation of Y present in the condition of
the preference statements p ∈ P of the form

ϱp : X = xp ≻ X = x′
p [Ωp] That is,

c(X) =

{
y ∈ dom(Y)

∣∣∣∣∣ (Y,X) ∈ EC \ ER

CardP ((Y,X)) = 1
∃p ∈ P,Xp = X ∧ ϱp(Y) = y

}
• Finally, define d(X)o,o′ = pa(o, o′, X) ∪ c(X).

The following lemma follows from the definitions of d(.)
(Defintion 7) and γ(.) (Equation 1 in Proof of Theorem 1).
Lemma 2. Given a set P of locally consistent prefer-
ence statements over variables V that satisfy the cc-acyclic
condition, consider a cs-tree with the variable ordering
Y1, Y2, . . . , Y|V| constructed following the steps described
in the proof of Theorem 1. For any outcomes o and o′ such
that the first variable on which they differ is Yi, then for node
n in the cs-tree, where var(n) = Yi and o ⊩ con(n), the
relation >Yi

γ(n) is equivalent >Yi

d(Yi)o,o′
.

Proof. Let p ∈ P be a preference statement of the form
ϱp : Xp = xp ≻ Xp = x′

p [Ωp], such that Xp is Yi and
γ(n) ⊩ ϱp. Since Yi is the first variable in the ordering
where o, o′ differ, Yi ∈ Θ(o, o′). Consider Yj ∈ var(ϱp)
with valuation of Yj in ϱp being y. Hence, y ∈ γ(n) (see
Equation 1). If y ∈ αi, then Card((Yj , Yi)) = 1 and
y ∈ c(Yi) (see Definition 7) making y ∈ d(Yi)o,o′ . Fur-
thermore, if y ∈ β(n), then the Card((Yj , Yi)) ≥ 2. Hence,
by definition of PA(o, o′, Yi) (Def. 7), Yj ∈ PA(o, o′, Yi)
and y∈pa(o, o′, Yi). This implies, y∈d(Yi)o,o′ .

A similar argument shows that the same holds for γ(n)
and p ∈ P with d(Yi)o,o′ ⊩ ϱp. Hence, the relations
>Yi

d(Yi)o,o′
and >Yi

γ(n) are equivalent.

Definition 8 (Upper Approximation). Let P be a set of
preference statements that satisfy the cc -acyclic sufficient
conditions. Note that this means that H(P) is acyclic and
therefore Θ(o, o′) must be non-empty if o ̸= o′. Define the
binary relation ≫cc by: o ≫cc o′ if and only if for all
X ∈ Θ(o, o′), o(X) >X

d(X)o,o′
o′(X).

As mentioned, this is an upper approximation of P .

Theorem 2. Let P be a set of preference statements that
satisfy the cc -acyclic sufficient condition. The relation ≫cc

defined above is an upper approximation of P .

Proof. By the cc-acyclic conditions H(P) is acyclic, so
there exists some nonempty set of total orders on the vari-
ables of V , each of which satisfies the partial order over ver-
tices induced by H(P) (i.e., the total order is some topo-
logical ordering of the vertices in acyclic graph H(P)). For
each such a total order, one can construct a cs-tree in a man-
ner similar to that described in the proof of Theorem 1.

Let Rcc be the set of all such cs-trees that can be con-
structed as described in the Theorem 1. We will show that
≫cc is equivalent to the relation ≫Rcc and is thus an upper
approximation by Proposition 3.
Case: ≫cc ⇒ ≫Rcc Consider an arbitrary cs-tree T ∈
Rcc and let o, o′ be a pair of outcomes such that o ≫cc o′.
Consider the total order Y1, . . . , Y|V| on the variables used to
construct T . Let Yi be the first variable in this order where
o and o′ differ, i.e. for all j < i, o(Yj) = o′(Yj). Since o, o′

differ on Yi, Yi ∈ ∆(o, o′) and for all j < i, Yj /∈ ∆(o, o′).
Thus by the choice of total order, Yi ∈ Θ(o, o′) (all parents
of Yi in the transitive closure of H(P) must be a Yj with j <

i). Then o(Yi) >Yi

d(Yi)o,o′
o′(Yi) by the definition of ≫cc.

By Lemma 2, >Yi

d(Yi)o,o′
and >Yi

γ(n) are equivalent, therefore,

o(Yi) >Yi

γ(n) o′(Yi). Since Yi is the highest variable in T

where o and o′ differ, o is more preferred to o′ according to
the total order of the leaves of T . Case: ≫Rcc ⇒ ≫cc Let
o, o′ be a pair of outcomes such that o ≫cc o′ does not hold.
By definition of ≫cc, there exists some Y ∈ Θ(o, o′) such
that o(Y) >Y

d(Y)o,o′
o′(Y) does not hold. Recall that the

cs-trees of Rcc are constructed with some variable ordering
(Y1, . . . , Y|V|) that conforms to the high cardinality graph
(H(P)). Note that there are many such ordering; consider
the ordering where Y (= Yi) appears the earliest (i.e., i is

minimal) and construct a cs-tree T with that ordering. Let
n be the node in T with var(n) = Yi and o ⊩ con(n).
Since Yi ∈ Θ(o, o′), any Yj with j < i has Yj /∈ ∆(o, o′).
Proceeding further, based on the Lemma 2, o(Y) >Y

d(Y)o,o′

o′(Y) not holding implies o(Y) >Y
γ(n) o

′(Y) does not hold.
Since n was the first internal node where o, o′ differ, o does
not appear to the left of o′ at the leaf-level of T .

Example 5. In Example 4, the locally consistent preference
statements in Equation 2 induce the following dominance
a1b1 ≻ a2b1, a2b1 ≻ a2b2 and a1b1 ≻ a2b2. We have
also established that the preference statements satisfy the
cc-acyclic condition and have two cs-trees (satisfying the
preference statements) that are constructed using the strat-
egy described in Theorem 1. The upper approximation of the
preference statements is defined using the relation ≫cc.

Consider, for example, the outcomes o = a1b1 and o′ =
a2b2. The set of variables over which the outcomes are dif-
ferent ∆(o, o′) = {A,B}. Recall that the high dependency
graph H(.) for these preferences is such that the variables
A and B do not have parents. We conclude that Θ(o, o′) =
{A,B}. Proceeding further, pa(o, o′, A) = ∅, c(A) = {b1}
and d(A)o,o′ = {b1}; while pa(o, o′, B) = ∅, c(B) = {a1}
and d(B)o,o′ = {a2}. Therefore, o(A) >d(A)o,o′

o′(A) ac-
cording to the first preference statement (Equation 2) and
o(B) >d(B)o,o′

o′(B) according to the second preference
statement (Equation 2). Hence, o ≫cc o′.

Using the same arguments, we will have

a1b1 ≫cc a2b2, a2b1 ≫cc a2b2, a1b2 ≫cc a2b2,
a1b1 ≫cc a2b1, a1b1 ≫cc a1b2

The above partial order is the intersection of the total orders
captured by all the cs-trees presented in Example 4.
Proposition 4. Given a set P of locally consistent prefer-
ences that satisfy cc-acyclic condition, ≫cc relation can be
computed in polynomial time.

Proof. The runtime complexity for ≫cc depends on the
computation of the relations described in Definition 7.

∆(o, o′) can be computed in O(|V|) time. As G(P) and
thus H(P) can be constructed in O(|V|·|P |) time, Θ(o, o′)
requires exploration of H(P) for each X ∈ ∆(o, o′) and
thus takes O(|V|·|P |) time for each variable. Similarly, for
any X ∈ Θ(o, o′), PA(o, o′, X) can also be computed
in O(|V|·|P |) time. Proceeding further, pa(o, o′, X) can be
found in O(|V|). Additionally, c(X) also requires a traver-
sal of G(P) and so can be done in O(|V|·|P |) time. Hence,
d(X)o,o′ requires O(|V|·|P |) time. Since d(X)o,o′ must be
calculated for the |Θ(o, o′)|∈ O(|V|) variables, the run time
to calculate d(.)o,o′ for all variables is O(|V|2·|P |).

Finally, determining whether o(X) >X
d(X)o,o′

o′(X) re-
quires checking all preference statements p ∈ P with Xp =
X . This results in a total runtime of O(|V|2·|P |2).

Finding a non-dominated set
In some applications, preferences are used to identify a set
of (non-dominated) outcomes that are not less preferred to
any other outcome. Formally, {o ∈ O | ̸∃ o′, P |= o′ ≻ o}.

To find the non-dominated set of outcomes, one can use
a cs-tree and generate the leaf-level outcomes from left to
right. The left-most leaf-level outcome is guaranteed to be
a non-dominated element and will be added to the solution
set. For any new leaf-level element o, we then need to check
whether o is dominated by any element already present in
the solution set. If the answer is affirmative, then o does not
belong to the solution; otherwise, it is added to the solution
set. In short, the non-dominated set can be computed by iter-
atively adding outcomes to a partial solution set (initialized
to an empty set) and each addition requires resolving domi-
nance queries. Dominance testing for CP-theory based pref-
erences is PSPACE-Complete (Goldsmith et al. 2005) and
hence, identifying the non-dominated outcomes is a com-
putationally expensive process. Observe that, the upper ap-
proximation relation ≫ (Definition 6) is such that

{o ∈ O | ̸∃ o′, o′ ≫ o} ⊆ {o ∈ O | ̸∃ o′, P |= o′ ≻ o}.
Therefore, one can use the ≫ relation instead of the ≻ rela-
tion to identify some subset of a nondominated solution. We
have presented ≫cc, a polynomial time computable upper
approximation for preferences satisfying cc-acyclic suffi-
cient condition, and hence can be used to efficiently compute
a subset of the non-dominated set.

Comparison with Other Sufficient Conditions
Wilson et al. (2004b) introduced the fully acyclic suffi-
cient condition for consistency (locally consistent and G(P)
acyclic), which ensures the existence of partial conditional
lexicographic (pcl) ordering over variables. Such a pcl order-
ing implies the consistency of the stated preferences. Since
H(P) is a subgraph of G(P), an acyclic G(P) implies an
acyclic H(P). So, the fully acyclic sufficient condition im-
plies the cc-acyclic sufficient condition (but not vice versa).

Subsequent work by Wilson (2004a, 2011) formalized
different types of sufficient conditions for CP-theory pref-
erences: weak, strong, and context-uniform conditional
acyclic conditions, and characterizes them in terms of com-
plete search trees. The weak conditional acyclic condition is
satisfied by preferences if there exists some cs-tree that sat-
isfies the preferences. It follows from the proof of Theorem 1
that the cc-acyclic condition implies the existence of a satis-
fiable cs-tree (and ensures the weak conditional acyclicity).

The strong conditional acyclic condition requires that for
any assignment to some subset of variables, there exists an
unassigned variable X that is not conditionally dependent
on and is not relatively less important than the unassigned
variables. This implies the existence of a variable that is not
dependent on assignments to any other variables and such
a variable can be used as a root of a cs-tree. Similarly, the
root of a subtree can be identified by considering the as-
signments to the variables appearing above the subtree in
the cs-tree. In short, the strong conditional acyclic condi-
tion implies the weak acyclic condition. Wilson also intro-
duced an even stronger sufficient condition: the context uni-
form conditionally acyclic (cuc) condition, which requires
conditional and relative importance acyclicity in the context
of each outcome. This is similar to the conditional acyclic-
ity of TCP nets (Brafman, Domshlak, and Shimony 2006).

They showed that the TCP-net preferences are consistent if
all possible dependency graphs on the variables correspond-
ing to different valuations of variables that determine the
“direction” of conditional relative importance are acyclic.

We show that the cc-acyclic condition neither implies
nor is implied by either the strong acyclic condition or the
cuc-acyclic condition: The preference statements in Equa-
tion 2 satisfy the cc-acyclic condition as shown in Exam-
ple 4. However, no cs-tree strongly satisfies these statements
since both A and B are conditionally dependent on the
other, so no root can be chosen for a cs-tree that strongly
satisfies the statements. As the cuc-acyclic condition is
stronger than the strong conditional acyclic condition, the
preference statements do not satisfy the cuc -acylic condi-
tion either. Therefore, the cc-acyclic condition implies nei-
ther the strong conditional acyclic condition nor the cuc-
acyclic condition. To see the converse, recall Example 3:
for any outcome o, let the valuation of A be a1 or a2.
When o(A) = a1, the dependency relationship between the
variables is {(A,B), (B,C)}, when o(A) = a2, the de-
pendency relationship is {(A,B), (C,B)}. In either case,
the dependencies are acyclic. So, these preference state-
ments satisfy the cuc-acyclic condition and by definition
also satisfy the strong acyclic condition. However, the high-
cardinality graph H for the above preferences includes the
edges {(B,C), (C,B)} that result in a cycle. This does not
satisfy the cc-acyclic condition. Hence, the cuc-acyclic
condition does not imply the cc-acyclic condition.

Based on the above observations, we have the following
implication order among the sufficient conditions:

Conditionally acyclic

cc-acyclic
Strong Conditionally acyclic

cuc-acyclic

Fully acyclic & locally consistent

However, checking both the strong acyclic and cuc-
acyclic conditions are CoNP-Complete for locally consistent
preferences (and for binary domain variables), while the cc-
acyclic condition can be checked in polynomial time.

Summary and Future Directions
We investigated the problem of checking the consistency of
qualitative preferences expressed in languages based on CP-
theory. We identified cc-acyclic, a new sufficient condition
for the consistency of preferences, and show that the condi-
tion can be checked in polynomial time in settings of practi-
cal relevance (locally consistent or binary domain preference
variables). We showed how cc-acyclic can be used to effi-
ciently identify a subset of outcomes that are non-dominated
with respect to a set of preferences. We plan to investigate
whether the sufficient condition can be relaxed further with-
out sacrificing the poly-time testability. We also plan to im-
plement and empirically compare the cc-acyclic condition
and the resulting upper approximation with those proposed
by (Wilson 2011).

Acknowledgements
This work was supported in part by NSF grants IIS 2225823
and IIS 2225824.

References
Boutilier, C.; Brafman, R. I.; Domshlak, C.; Hoos, H. H.;
and Poole, D. 2004. CP-nets: A Tool for Representing
and Reasoning with Conditional Ceteris Paribus Preference
Statements. Journal of Artificial Intelligence Research, 21:
135–191.

Brafman, R.; and Domshlak, C. 2009. Preference Handling
- An Introductory Tutorial. AI magazine, 30(1).

Brafman, R. I.; Domshlak, C.; and Shimony, S. E. 2006. On
Graphical Modeling of Preference and Importance. Journal
of Artificial Intelligence Research, 25: 389–424.

Cornelio, C.; Goldsmith, J.; Grandi, U.; Mattei, N.; Rossi, F.;
and Venable, K. B. 2021. Reasoning with PCP-Nets. Journal
of Artificial Intelligence Research, 72: 1103–1161.

Doyle, J.; and Thomason, R. H. 1999. Background to Qual-
itative Decision Theory. AI magazine, 20: 55–68.

French, S. 1986. Decision Theory: An Introduction to the
Mathematics of Rationality. Ellis Horwood Limited.

Goldsmith, J.; Lang, J.; Truszczynski, M.; and Wilson, N.
2005. The computational complexity of dominance and con-
sistency in CP-nets. In Proceedings of International Joint
Conference on Artificial Intelligence, 144–149.

Goldsmith, J.; Lang, J.; Truszczynski, M.; and Wilson, N.
2008. The Computational Complexity of Dominance and
Consistency in CP-Nets. JAIR, 33: 403–432.

Keeney, R. L.; and Raiffa, H. 1993. Decisions with Multiple
Objectives: Preferences and Value Trade-Offs. Cambridge
University Press.

Peng, Y.; Wong, R. C.-W.; and Wan, Q. 2012. Finding Top-k
Preferable Products. IEEE Transactions on Knowledge and
Data Engineering, 24(10): 1774–1788.

Santhanam, G. R.; Basu, S.; and Honavar, V. 2016. Repre-
senting and Reasoning with Qualitative Preferences: Tools
and Applications. Synthesis Lectures on Artificial Intelli-
gence and Machine Learning, 10(1): 1–154.

Wang, H.; Zhou, X.; Chen, W.; and Ma, P. 2012. Top-k re-
trieval using conditional preference networks. In Proceed-
ings of the 21st ACM International Conference on Informa-
tion and Knowledge Management, CIKM ’12, 2075–2079.
New York, NY, USA: Association for Computing Machin-
ery. ISBN 9781450311564.

Wilson, N. 2004a. Consistency and constrained optimisa-
tion for conditional preferences. In Proceedings of the 16th
European Conference on Artificial Intelligence, ECAI’04,
888–892. NLD: IOS Press. ISBN 9781586034528.

Wilson, N. 2004b. Extending CP-nets with stronger con-
ditional preference statements. In Proceedings of the 19th
National Conference on Artifical Intelligence, AAAI’04,
735–741. AAAI Press. ISBN 0262511835.

Wilson, N. 2006. An Efficient Upper Approximation for
Conditional Preference. In Proceedings of the 2006 Con-
ference on ECAI 2006: 17th European Conference on Arti-
ficial Intelligence August 29 – September 1, 2006, Riva Del
Garda, Italy, volume 141, 472–476.
Wilson, N. 2011. Computational techniques for a simple
theory of conditional preferences. Artificial Intelligence,
175(7): 1053–1091. Representing, Processing, and Learn-
ing Preferences: Theoretical and Practical Challenges.

