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Abstract

Dominance testing, the problem of determining whether
an outcome is preferred over another, is of fundamental
importance in many applications. Hence, there is a need
for algorithms and tools for dominance testing. CP-nets
and TCP-nets are some of the widely studied languages
for representing and reasoning with preferences. We
reduce dominance testing in TCP-nets to reachability
analysis in a graph of outcomes. We provide an en-
coding of TCP-nets in the form of a Kripke structure
for CTL. We show how to compute dominance using
NuSMV, a model checker for CTL. We present results
of experiments that demonstrate the feasibility of our
approach to dominance testing.

Introduction
Many applications call for techniques for representing and
reasoning about qualitative preferences over a set of alterna-
tives that are described in terms of a set of variables. Be-
cause of the wide range of applications that involve reason-
ing with preferences, there is a need for developing tools
for dominance testing that are useful in practice. CP-nets
(Boutilier et al. 2004), TCP-nets (Brafman, Domshlak, and
Shimony 2006) and Wilson’s extensions to the above (Wil-
son 2004a; 2004b) are among the widely studied languages
for representing preferences over not only the valuations of
the variables, but also the relative importance among them.
They use theceteris paribus(“all else being equal”) inter-
pretation of preference to reason with such preferences.

Ceteris paribus semantics induces a graph, theinduced
preference graph(Boutilier et al. 2004; Brafman, Domsh-
lak, and Shimony 2006); and an outcomeα is said to dom-
inate another outcomeβ if there exists a path consisting of
successively worsening outcomes in this graph fromα to β.
With the exception of special cases such as CP-nets with tree
or polytree structured conditional dependencies (Boutilier
et al. 2004; Brafman, Domshlak, and Shimony 2006),
dominance testing has been shown to be PSPACE-complete
(Goldsmith et al. 2008). However, experience with other
hard problems such as boolean satisfiability (SAT) suggests
that it is often possible to realize acceptable performancein
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practice, using implementations that take advantage of spe-
cialized data structures and algorithms.

Hence, this paper explores a novel approach to dominance
testing that leverages the state-of-the-art techniques inmodel
checking(Clarke, Emerson, and Sistla 1986; Queille and
Sifakis 1982). Our approach reduces dominance testing to
reachability analysis in a graph of outcomes. Specifically,
we formalize the ceteris paribus semantics of preferences in
terms of a direct and succinct representation of preference
semantics usingKripke structures(Clarke, Grumberg, and
Peled 2000) that encode preferences over outcomes as reach-
ability within a graph of outcomes. In this setting, we reduce
dominance testing to the satisfiability of corresponding tem-
poral formulas in the model. We provide a translation from
TCP-nets to the Kripke model specification language of a
widely used model checker NuSMV (Cimatti et al. 2002).
We demonstrate how aproof of dominance can be auto-
matically generated whenever the dominance holds. This
approach allows us to take advantage of the state-of-the-
art model checkers that provide optimized computation of
dominance using specialized data structures and algorithms.
We present results of experiments that demonstrate the fea-
sibility of this approach to dominance testing: Dominance
queries over preference specifications involving 20 or more
variables are answered within a few seconds. While the dis-
cussion in this paper is restricted to TCP-nets, our approach
to dominance testing via model checking can be used for any
preference formalism whose semantics is given in terms of
properties over a graph of outcomes.

Preference Language
Let V = {Xi} be a set of variables, each with a do-
main Di. An outcomeα ∈ O is a complete assign-
ment to all the variables, denoted by the tupleα :=
〈α(X1), α(X2), . . . , α(Xm)〉 such thatα(Xi) ∈ Di for
eachXi ∈ V . The set of all possible outcomes is given
by O =

∏

Xi∈V Di. We consider a preference language
for specifying: (a) conditional intra-variable preferences≻i

that are strict partial orders (i.e., irreflexive and transitive
relations) overDi; and (b) conditional relative importance
preferences⊲ that are strict partial orders overV .

CP-nets (Boutilier et al. 2004) use a compact graphical
model to specify conditional intra-variable preferences≻i

over a set of variablesV . Each node in the graph corre-



sponds to a variableXi ∈ V , and eachdependencyedge
(Xi, Xj) in the graph captures the fact that the intra-variable
preference≻j with respect to variableXj is dependent (or
conditioned) on the valuation ofXi. For any variableXj ,
the set of variables{Xi : (Xi, Xj)is an edge} that influence
≻j are called theparentvariables, denotedPa(Xj). Each
nodeXi in the graph is associated with aconditional pref-
erence table(CPT) that maps all possible assignments to the
parentsPa(Xi) to a total order overDi. An acyclicCP-net
is one that does not contain any dependency cycles.

TCP-nets (Brafman, Domshlak, and Shimony 2006) ex-
tend CP-nets by allowing additional edges(Xi, Xj) to be
specified, describing the relative importance among vari-
ables (Xi ⊲ Xj). Each relative importance edge could be
either unconditional (directed edge) or conditioned on a set
of selectorvariables (analogous to parent variables in the
case of intra-variable preferences). Each edge(Xi, Xj) de-
scribing conditional relative importance is undirected and is
associated with a table (analogous to the CPT) mapping each
assignment of the selector variables to eitherXi⊲Xj or vice
versa. Figure 1 illustrates a TCP-net.

Ceteris ParibusSemantics
A formal semantics in terms of theceteris paribusinterpre-
tation for preference languages involving conditional intra-
variable and relative importance preferences was given by
Brafman et al. in (Brafman, Domshlak, and Shimony 2006).

Definition 1 (Worsening flipping sequence: adapted from
(Brafman, Domshlak, and Shimony 2006)). A sequence of
outcomesα = γ1, γ2, · · ·γn−1, γn = β such that

α = γ1 ≻◦ γ2 ≻◦ · · · ≻◦ γn−1 ≻◦ γn = β

is a worsening flipping sequencewith respect to a set of
preference statements if and only if, for1 ≤ i < n1, either

1. (V-flip) outcomeγi is different from the outcomeγi+1

in the value of exactly one variableXj , andγi(Xj) ≻j

γi+1(Xj), or
2. (I-flip) outcomeγi is different from the outcomeγi+1 in

the value of exactlytwovariablesXj andXk, γi(Xj) ≻j

γi+1(Xj), andXj ⊲ Xk.

The V-flips are induced directly by the conditional intra-
variable preferences≻i, and the I-flips are additional flips
induced by the relative importance⊲ over variables in con-
junction with ≻i. Note that the notion of an I-flip in this
definition revises the one presented in (Brafman, Domshlak,
and Shimony 2006) in order to accurately reflect the seman-
tics of≻◦ 2. Furthermore, this definition adapts the original
definition such that flips are worsening rather than improv-
ing. Given a TCP-netN and a pair of outcomesα andβ,
Brafman et al. have shown thatα ≻◦ β with respect toN

1We assume the dominance relation is irreflexive and transitive
in this paper.

2Specifically, Definition 1 relaxes the stronger requirement(see
Definition 13 in (Brafman, Domshlak, and Shimony 2006)) that
“γi+1(Xj) ≻j γi(Xj) andγi(Xk) ≻k γi+1(Xk)” to a weaker
requirement that “γi+1(Xj) ≻j γi(Xj)” – based on a personal
communication exchanged by the authors with Ronen Brafman.

if and only if there is an worsening flipping sequence with
respect toN from α to β.

An issue with dominance testing with respect to≻◦

is that the interpretation of relative importance statements
is pairwise, as illustrated by Wilson in (Wilson 2004b;
2004a). In this case, I-flips allowonly twovariables to be
flipped at a time. On the other hand, Wilson’s extended
semantics (Wilson 2004b; 2004a) (denoted≻�) defines a
worsening I-flip to allow multiple variables to be changed at
a time in order to produce a worse outcome. This generalizes
the search forflipping sequences to a search forswapping3

sequences.

Definition 2 (Worsening flipping sequence with revised
I-flip: adapted from (Wilson 2004b; 2004a)). A sequence
of outcomesα = γ1, γ2, · · ·γn−1, γn = β such that

α = γ1 ≻� γ2 ≻� · · · ≻� γn−1 ≻� γn = β

is a worsening flipping sequencewith respect to a set of
preference statements if and only if, for1 ≤ i < n, either

1. (V-flip) as in Definition 1
2. (I-flip) outcomeγi is different from the outcomeγi+1

in the value of variablesXj and Xk1
, Xk2

, · · ·Xkn
,

γi(Xj) ≻j γi+1(Xj), and Xj ⊲ Xk1
, Xj ⊲

Xk2
, · · · , Xj ⊲ Xkn

.

Given a TCP-netN and a pair of outcomesα andβ, ac-
cording to Wilson’s semantics we say thatN entailsα ≻� β
iff there is a worsening flipping sequence with respect toN
from α to β.

Dominance Testing via Model Checking
We now proceed to describe our approach to dominance test-
ing using model checking. The key observation behind our
approach is that dominance ofα overβ is given in terms of
the reachability of the worse outcome (β) from the preferred
outcome (α) in the induced preference graph(Boutilier et
al. 2004; Brafman, Domshlak, and Shimony 2006) that cap-
tures the preference semantics.

Definition 3. Given a TCP-netN over a set of variables
V , the induced preference graphδ(N) = G(A, E) is con-
structed as follows. The nodesA correspond to the set of
all possible outcomes, i.e., complete assignments to all vari-
ables inV , and each directed edge(α, β) ∈ E corresponds
to either a V-flip or an I-flip as dictated by the chosen se-
mantics(Definitions 1, 2).

An outcomeα dominatesβ with respect toN if and only
if the node corresponding toβ in δ(N) is reachable from
α. Note thatδ(N) is guaranteed to be acyclic because it
represents an irreflexive and transitive dominance relation.
Example. Consider a TCP-netN of three binary variables,
namely{A, B, C} as shown in Figure 1(a).≻B and≻C

depend on the valuationsA (solid directed edges), and the
nodes are annotated with the respective CPTs.B ⊲ C is
denoted by a dotted edge fromB toC. Figure 1(b) shows the

3To simplify the terminology, we will henceforth use the term
flipping sequence to refer to Wilson’sswappingsequence as well.



A

B C

0 ≻A 1

A = 0 : 0 ≻C 1A = 0 : 1 ≻B 0
A = 1 : 0 ≻B 1 A = 1 : 1 ≻C 0

(a) (b)

Figure 1: (a) TCP-netN ; (b) Transitive Reduction ofδ(N)

transitive reduction of the corresponding induced preference
graphδ(N).

The above formulation of dominance testing in a TCP-net
N in terms of verifying reachability properties in the corre-
sponding induced preference graphδ(N) allows us to take
advantage of the state-of-the-art approaches to model check-
ing. This approach to dominance testing involves addressing
two questions: (a) How to encode the induced preference
graphδ(N) as an input graph to a model checker (we use
NuSMV (Cimatti et al. 2002)), and (b) How to express a
query regarding the dominance of an outcome (α) with re-
spect to another (β) in the form of a test of reachability ofβ
from α in the corresponding graph.

The preference variables of the TCP-net are mapped to the
state variables of the model in a model checker. The V-flips
and the I-flips (Definitions 1 and 2) are directly encoded as
transitions in theKripke structures for the language of the
model checker. This ensures that the state space explored by
the model checker corresponds toδ(N).

Dominance queries over the TCP-nets are then modeled
as temporal logic properties (in CTL (Clarke, Grumberg,
and Peled 2000)) over the state space of the model. This
allows us to take advantage of all the specialized data struc-
tures (e.g., BDDs) and algorithms available in the model
checking engine to efficiently verify the satisfiability of the
corresponding temporal logic properties. In order to check
whether an outcomeα dominates the outcomeβ, we query
the model checker with a CTL formulaϕ such that there
is a model ofϕ if and only if α dominatesβ. If the dom-
inance does hold, then the model checker can be used to
obtain a proof of dominance, i.e., a worsening flipping se-
quence fromα to β.

Kripke Structure Encoding of TCP-net Preferences
We now proceed to describe how TCP-net4 preferences can
be encoded in aKripke structure (Clarke, Grumberg, and
Peled 2000).

Definition 4 (Kripke Structure). A Kripke structure is a tu-
ple 〈S, S0, T, L〉 whereS is a set of states described by the
valuations of a set of propositional variablesP , S0 ⊆ S is a
set of initial states,T ⊆ S×S is a transition relation induc-
ing directed edges between states such that∀s ∈ S : ∃s′ ∈
S : (s, s′) ∈ T , andL : S → 2P is a labeling function such

4To simplify the presentation, we will restrict our discussion
to TCP-nets over binary variables, although our approach can be
extended to variables with other domains as well.

that∀s ∈ S : L(s) is the set of propositions that aretrue in
s.

Given a TCP-netN over a setV = {X1, . . . Xn} of vari-
ables, a Kripke structureKN corresponding to the induced
preference graphδ(N) can be constructed as follows.

1. The statesS are defined by the valuations of propositions
P = V ∪{hi|Xi ∈ V }, where eachhi is a binary variable
indicating whether or not the value ofXi can change in a
transition,

hi =











0 if value ofXi must not change in a
transition in the Kripke structureKN

1 otherwise

(1)

The change variableshi defined above will be used, as
will be shown later, to construct the state spaceS of the
Kripke structureKN that encodes the induced preference
graphδ(N). Note that each outcomeα in δ(N) corre-
sponds to a setSα = {s|s↓V = α} of states, wheres↓V

denotes theprojectionof a states described byP onto
the set of variablesV ⊆ P . By this construction, the
various states inSα differ precisely in the valuations of
the change variables, and since there are|V | change vari-
ables,|Sα| = 2|V |. The start state(s)S0 of KN are spec-
ified based on the dominance query (as described later);
and the labeling functionL is defined such that for any
states ∈ S, L(s) corresponds to the set of variables that
are ‘true’ ins.

2. The transition relationT is defined as follows, withs(Xi)
ands′(Xi) denoting the valuation of the corresponding
variableXi in statess ands′ respectively. For any two
statess, s′ ∈ S, define(s, s′) ∈ T (denoteds → s′) by
the rules:
i. (V-flip)

s → s′ ⇐

{

∃Xi ∈ V : s(hi) = 1 ∧ s(Xi) ≻i s′(Xi)
∧∀Xj ∈ V \ {Xi} : s(hj) = 0∧

s(Xj) = s′(Xj)

ii. (I-flip)

s → s′ ⇐











∃Xi ∈ V : s(hi) = 1 ∧ s(Xi) ≻i s′(Xi)
∧∃W ⊆ V \ {Xi} : ∀Xj ∈ W : Xi ⊲ Xj

∧∀Xk ∈ V \ (W ∪ {Xi}) :
s(hk) = 0 ∧ s(Xk) = s′(Xk)

iii. s → s′ ⇐ ∀Xi ∈ V : s(Xi) = s′(Xi)

In the above encoding of the Kripke structure, transition
rules2(i) − (iii) are exhaustive, thus satisfying the require-
ment that in a Kripke structure all states should have out-
going transitions. Transitions effected through the rules
2(i) and 2(ii) correspond to valid worsening V-flips and
I-flips respectively according to Wilson’s semantics5 (Def-
inition 2). Therefore, all possible edgesE correspond-
ing to V-flips and I-flips of the induced preference graph

5Brafman et al. semantics (Definition 1) can be similarly en-
coded with minor changes to the definition of the transition relation
2(ii) in the Kripke structure.



δ(N) = G(A, E) are captured by the above transition re-
lation. 2(iii) allows only transitions from a states to those
statess′ that agree withs on all variables inV . We now
establish the main theorem which forms the basis for our
approach to dominance testing via model checking.
Remark. The definition of a V- or an I- flip fromα to β
(Definitions 1 and 2) requires the equality ofα andβ with
respect to some of the variables inV . Since NuSMV does
not allow the specification of a transition by constraining the
destination state variables, we usehi to control the allowed
changes to each variableXi ∈ V . Observe that the variables
hi are allowed to take any value in the destination state of
any transition (see rules2(i)− (iii)). This allows the model
checker to explore all possible V-/I-flips from any given out-
come.

Theorem 1. Given a TCP-netN , and the corresponding
Kripke structureKN = 〈S, S0, T, L〉 (constructed from
δ(N) = G(A, E) as described above),

1. ∀α, β : (α, β) ∈ E ⇒ ∃s → s′ : s↓V = α ∧ s′↓V = β

2. ∀s, s′ ∈ S : s → s′ ∧ s↓V 6= s′↓V ⇒ ∃(α, β) ∈ E

Proof. For the first part, let(α, β) ∈ E. Sinceδ(N) is a
cycle-free graph over distinct outcomes,α 6= β. Further,
(α, β) ∈ E requires the existence of either a V-flip or I-flip
from α to β by Definitions 2 and 3. By construction of the
Kripke structure, there exist setsSα andSβ of states such
that∀sα ∈ Sα : sα

↓V = α and∀sβ ∈ Sβ : sβ
↓V = β respec-

tively. Therefore,∀sα ∈ Sα, sβ ∈ Sβ : (sα
↓V , sβ

↓V ) ∈ E.
By the definition of the valuations of the change variables in
Equation(1) and the transition rules2(i) and2(ii), it fol-
lows that∃sα ∈ Sα, sβ ∈ Sβ : sα → sβ.

For the second part, lets, s′ ∈ S : s → s′ ∧ s↓V 6= s′↓V .
Sinces 6= s′, 2(iii) is not applicable, and hence, it must be
the case that the conditions in the right hand side of2(i) or
2(ii) is satisfied. This in turn implies that the transitions →
s′ is due to a V-flip or an I-flip, i.e.,(s↓V , s′↓V ) ∈ E.

EncodingKN in NuSMV

For the TCP-netN specified in Figure 1, the encoding of
the corresponding Kripke structureδ(N) that is provided as
input to the NuSMV model checker (Cimatti et al. 2002) is
shown in Figure 2. TheVAR construct declares the binary
preference variables (a, b, c) and the corresponding change
variables (ha, hb, hc), andASSIGN defines the transition
rules for each variable in the form of the guards and cor-
responding next state valuations (as per rules2(i) − (iii)
in our construction). For example, the V-flips correspond-
ing to variableb whena = 0 is encoded as follows: “if
b = 1&a = 0&ha = 0&hb = 1&hc = 0 then b = 0 in
the next state”. The I-flips induced byb ⊲ c are specified
by guarded transitions allowing (1)b’s valuation to change
regardless of whetherc’s valuation changes or not, and (2)
c’s valuation to change in a transition wheneverb’s valua-
tion changes.

MODULE main

VAR a:{0,1}; b:{0,1}; c:{0,1};

ha:{0,1}; hb:{0,1}; hc:{0,1};

ASSIGN --init(a):=1; init(b):=1; init(c):=1;

init( ha):=0; init( hb):=0; init( hc):=0;

next(a) :=

case -- conditional preferences:

a=0 & hc=0 & hb=0 & ha=1 : 1;

1 : a;

esac;

next(b) :=

case -- conditional preferences:

b=1 & a=0 & hc=0 & hb=1 & ha=0 : 0;

b=0 & a=1 & hc=0 & hb=1 & ha=0 : 1;

-- relative importance: b imp. than c

b=1 & a=0 & hb=1 & ha=0 : 0;

b=1 & a=0 & hb=0 & ha=0 : 1;

b=0 & a=1 & hb=1 & ha=0 : 1;

b=0 & a=1 & hb=0 & ha=0 : 0;

1 : b;

esac;

next(c) :=

case -- conditional preferences:

c=0 & a=0 & hc=1 & hb=0 & ha=0 : 1;

c=1 & a=1 & hc=1 & hb=0 & ha=0 : 0;

-- relative importance: c less imp. than b

((b=1 & a=0) | (b=0 & a=1))

& hb=1 & ha=0 & hc=1 : !c;

((b=1 & a=0) | (b=0 & a=1))

& hb=1 & ha=0 & hc=0 : c;

1 : c;

esac;

Figure 2: Listing of Kripke encoding in NuSMV

Computing Dominance
Given a Kripke structureKN that encodes the induced pref-
erence graph of a TCP-netN , determining whetherα dom-
inatesβ in N can be reduced to verifying appropriate tem-
poral properties in CTL (see (Clarke, Grumberg, and Peled
2000)). Specifically, the CTL formulaϕα → EFϕβ is used
to check whetherα dominatesβ. In the formula,ϕα and
ϕβ are conjunctions of the assignments to the variables in
V in α andβ respectively. A state in the Kripke structure
is said to satisfy the above formula if and only if when the
state satisfiesϕα (i.e., valuations of variables ofV in that
state correspond to those inα), there exists a path or a se-
quence of transitionssα = s1 → s2 → · · · → sn = sβ (s.t.
sα
↓V = α andsβ

↓V = β) such thatn > 1. In short, a state in
the Kripke structureKN corresponding toδ(N) satisfies the
above CTL formula if and only ifα dominatesβ with respect
to N (Theorem 1). We will use the model checker NuSMV
to verify the satisfiability of a CTL formulaϕα → EFϕβ .

Example. For the TCP-netN in Figure 1, the dominance
of α = 〈a = 0,b = 1,c = 1〉 over β = 〈a = 1,b =
0,c = 0〉 corresponds to the satisfiability of the CTL for-
mula ϕ : (a = 0&b = 1&c = 1 → EF(a = 1&b =
0&c = 0)). Note that NuSMV asserts thatϕ is verified
only if everyinitial state satisfiesϕ. Therefore, we initialize
Xi to α(Xi) to restrict the start states toSα in the encoded
Kripke structure. We also initialize all the change variables



hi to 0, so that transitions corresponding to all possible V-
flips and I-flips fromα are explored by the model checker. In
NuSMV, the satisfiability ofϕ can be verified by the spec-
ification SPECϕ, and the verification returns ‘true’ in our
example, thereby establishing that the outcomeα = 〈a =
0,b = 1,c = 1〉 dominatesβ = 〈a = 1,b = 0,c = 0〉.

Extracting a Proof of Dominance
We can use the NuSMV model checker to obtain a proof
that an outcomeα dominates another outcomeβ (i.e., a
worsening flipping sequence fromα to β) as follows. Sup-
poseα dominatesβ. This implies that the CTL formula
ϕ : ϕα → EFϕβ holds. Hence, in this case if we provide
the formula¬ϕ (i.e.,¬(ϕα → EFϕβ)) as input to the model
checker, the model checker will return ‘false’, and provide
us with the sequence of states (as below) corresponding to
the worsening flipping sequence fromα to β.

In our example, sinceα = 〈a = 0,b = 1,c = 1〉 domi-
natesβ = 〈a = 1,b = 0,c = 0〉, when input the formula

SPEC ! (a = 0 & b = 1 & c = 1
-> EF (a = 1 & b = 0 & c = 0))

NuSMV returns the sequence:(0, 1, 1) → (0, 0, 0) →
(1, 0, 0) as shown below.

-> State: 1.1 <-

a = 0

b = 1

c = 1

ha = 0

hb = 0

hc = 0

-> State: 1.2 <-

hb = 1

hc = 1

-> State: 1.3 <-

b = 0

c = 0

ha = 1

hb = 0

hc = 0

-> State: 1.4 <-

a = 1

ha = 0

In the above, the transition from state1.1 to 1.2 is effected
by transition rule2(iii); that from state1.2 to 1.3 by rule
2(ii); and that from state1.3 to 1.4 by rule2(i).

Experiments and Results
We now describe the results of experiments that show the
feasibility of our approach to dominance testing with respect
to (a) the running time for dominance queries, and (b) scala-
bility as a function of the number of preference variables that
can be efficiently handled in practice. We generated random
preference networks6 by varying (a) number of variablessv;
(b) the maximum number of rows in a variable’s conditional
preference tablesc; and (c) number of relative importance
edgessr in the TCP-net. We restricted the maximum degree
of each node (with respect to conditional dependencies) in
the generated preference networks to5. We conducted three
sets of experiments:

1. Set 1: Polytree CP-nets with Binary Variables.We fixed
sd = 2 and sr = 0, and variedsv from 10 to 30 for
eachsc ∈ {5, 10, 15}. In this case we generated only CP-
nets that were singly connected, i.e., polytree structured
CP-nets. We generated20 preference networks for each
choice of the parameterssv andsc. Using each resulting

6We modified the code developed by Cozman et al. (Ide et al.
2004) for generating random Bayesian networks to generate ran-
dom TCP-nets.

Set sv sc sr Avg.Time(sec)

Set1 10 5 − 15 - 0.03
Set1 20 5 − 15 - 0.10
Set1 30 5 − 15 - 11.24
Set2 4 − 20 5 − 15 - 0.10
Set2 21 − 27 5 − 15 - 12.52
Set3 4 − 15 5 − 15 sv/2 0.09
Set3 4 − 15 5 − 15 sv 0.25
Set3 4 − 15 5 − 15 2 × sv 0.68
Set3 16 − 20 5 − 15 sv/2 1.51
Set3 16 − 20 5 − 15 sv 13.96
Set3 16 − 20 5 − 15 2 × sv < 60.0

Table 1: Running times of dominance queries for TCP-nets
with binary variables

Figure 3: Running time vs. number of variables

preference network, we evaluated20 dominance queries
by picking distinct pairs of outcomes at random.

2. Set 2: Acyclic CP-nets with Binary Variables.We fixed
sd = 2 andsr = 0, and variedsv from 4 to 27 for each
sc ∈ {5, 10, 15}. We generated only CP-nets with acyclic
dependencies. We generated20 preference networks for
each choice of the parameterssv andsc. Using each re-
sulting preference network, we evaluated20 dominance
queries by picking distinct pairs of outcomes at random.

3. Set 3: TCP-nets with Binary Variables.We fixedsd = 2,
variedsv from 4 to 20 for eachsc ∈ {5, 10, 15} and for
eachsr ∈ {sv/2, sv, 2 × sv}. We ensured that the gen-
erated TCP-nets are satisfiable (see (Brafman, Domshlak,
and Shimony 2006)), by requiring that the union of the
conditional dependency and relative importance edges in
the generated TCP-net induces an acyclic TCP-net. We
generated5 preference networks for each choice of the
parameterssv, sc andsr. Using each resulting preference
network, we evaluated5 dominance queries by picking
distinct pairs of outcomes at random.

The results (summarized in Table 1) show that our ap-
proach to dominance testing answers dominance queries
within a few seconds for TCP-nets with upto20 to 30 vari-
ables. In the case of polytree structured CP-nets (Set1), the
dominance queries were answered within a few seconds for
upto 30 variables and dependent variables with CPTs with
upto15 rows. For arbitrary acyclic CP-nets (Set2), our so-



lution performs well for CP-nets with close to30 variables
with CPTs with upto15 rows. For TCP-nets (Set3), our
solution is efficient for upto20 variables.

In summary, our experiments show that dominance test-
ing using model checking is quite feasible for TCP-nets that
are large enough to capture preferences in many practical
applications.

Summary and Discussion
We have described, to the best of our knowledge, the first
practical solution to the problem of determining whether an
outcome dominates another with respect to a set of quali-
tative preferences. Our approach relies on a reduction of
the dominance testing problem to reachability analysis in a
graph of outcomes. We have provided an encoding of TCP-
nets in the form of a Kripke structure for CTL.

We have shown how to: (a) directly and succinctly encode
preference semantics as a Kripke structure; (b) compute
dominance by verifying CTL temporal properties against
this Kripke structure; and (c) generate a proof of domi-
nance. We have shown how to compute dominance using
NuSMV, a model checker for CTL. The results of our exper-
iments demonstrate the feasibility of this approach to domi-
nance testing. This approach to dominance testing via model
checking allows us to take advantage of continuing advances
in model-checking.

Although our treatment focused on acyclic CP-nets and
TCP-nets, our approach can be applied to any preference
language for which the semantics is given in terms of the
satisfiability of graph properties (including GCP-nets, cyclic
CP-nets and the language due to Wilson). Our approach can
also be used for reasoning tasks other than dominance test-
ing such as finding whether a given outcome is theleast(or
most) preferredamong all the outcomes.

In our experiments we have reported running times for
dominance testing that are intended merely to demonstrate
the feasibility of our approach. The running times are av-
erages taken over multiple dominance queries over sets of
randomly generated preference networks. The running time
could depend on many factors such as the structure of the
preference network, the number of preference variables and
the CPT size, in addition to the dominance query itself.
Hence, it remains to be studied how the running times and
memory usage of our solution approach are affected by such
factors.

Although we have used the NuSMV model checker in our
implementation, any model checker that accepts a Kripke
structure as input can be used to realize our approach to
dominance testing. Hence, it should be possible to take ad-
vantage of specialized techniques that have recently been
developed to improve the performance of model checkers
(Kahlon, Wang, and Gupta 2009; Cook and Sharygina 2005;
Ciardo, Lüttgen, and Siminiceanu 2001; Wang 2000; Biere
et al. 1999).
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