
A Framework for Semantic Web Services Discovery

Jyotishman Pathak Neeraj Koul∗ Doina Caragea Vasant G Honavar
Artificial Intelligence Research Laboratory

Department of Computer Science
Iowa State University

Ames, IA 50011-1040, USA

{jpathak, neeraj, dcaragea, honavar}@cs.iastate.edu

ABSTRACT
This paper describes a framework for ontology-based flexible
discovery of Semantic Web services. The proposed approach
relies on user-supplied, context-specific mappings from an
user ontology to relevant domain ontologies used to specify
Web services. We show how a user’s query for a Web service
that meets certain selection criteria can be transformed into
queries that can be processed by a matchmaking engine that
is aware of the relevant domain ontologies and Web services.
We also describe how user-specified preferences for Web ser-
vices in terms of non-functional requirements (e.g., QoS) can
be incorporated into the Web service discovery mechanism
to generate a partially ordered list of services that meet user-
specified functional requirements.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services—Web-based services

General Terms
Design, Algorithms

Keywords
Semantic Web, Web Service Discovery, Ontologies, Quality
of Service

1. INTRODUCTION
The creation, deployment, and use of services that meet

the needs of individuals and communities in virtually all ar-
eas of human endeavor is one of the hallmarks of civilization.
We select suitable service providers based on recommenda-
tions from friends, family, acquaintances or experts, or by

∗Neeraj Koul is also affiliated with UGS Corporation, 2321
North Loop Drive, Ames, IA 50010-8615 USA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WIDM’05, November 5, 2005, Bremen, Germany.
Copyright 2005 ACM 1-59593-194-5/05/0011 ...$5.00.

looking them up in directories (e.g., Yellow Pages). Such
human-oriented service selection and utilization serve as mo-
tivation for Web service discovery in a Service-Oriented Ar-
chitecture (SOA) [12]. SOA supports a directory in which
service providers can advertise their services in a form that
enables potential clients to find and invoke them over the
Internet. The notion of Semantic Web services [15] takes
us one step closer to interoperability of autonomously de-
veloped and deployed Web services, where a software agent
or application can dynamically find and bind services with-
out having a priori hard-wired knowledge about how to dis-
cover and invoke them. OWL-S [6] is a specific OWL [4]
ontology designed to provide a framework for semantically
describing such services from several perspectives (e.g., dis-
covery, invocation, composition). During the development
of a service, the abstract procedural concepts provided by
OWL-S ontology can be used along with the domain spe-
cific OWL ontologies which provide the terms, concepts,
and relationships used to describe various service properties
(i.e., Inputs, Outputs, Preconditions, Effects or IOPE’s).
In general, ontology-based matchmaking is used to discover
and invoke service providers against a specific service re-
quest [13, 17]. However, this approach suffers from several
limitations. In a SOA, individual users or communities of
users are expected to query for services of interest to them
using descriptions that are expressed using terms in their
own ontologies. But with proliferation of independently de-
veloped and deployed services, the semantic correspondences
between the user ontology on which the user queries are
based and the domain ontologies on which the service de-
scriptions are based, are likely to vary. Consequently, users
ought to be able to specify inter-ontology correspondences to
facilitate matchmaking between the service requests and ser-
vice advertisements. Current approaches for describing ser-
vices on the Semantic Web (e.g., OWL-S [6]) do not support
for establishing semantic correspondences between ontolo-
gies. Although lately, new frameworks such as, WSMO [7]
and WSDL-S [8], have been proposed to provide support
for the needed inter-ontology translation. Existing state-of-
the-art technologies for publishing and finding web services
(e.g., WSDL [5], UDDI [3]) use static descriptions of ser-
vice interfaces. Consequently, they lack support for service
selection based on non functional attributes such as Qual-
ity of Service (QoS). Some approaches to incorporation of
QoS criteria in service discovery lack support for dealing
with semantic differences among independently developed
service specifications [21]. Finally, with the proliferation of
Web services and service providers, it is inevitable that there

will be services offered by multiple providers with the same
functionality. In such scenarios, the users should be able to
rank (or order) the discovered services based on some crite-
ria e.g., quality of service (QoS) ratings, cost, etc. However,
existing approaches for service selection [13,14,17] make no
provision for user-specified ranking criteria as part of the
service request.

Against this background, this paper builds on the recent
developments on Semantic Web services [15] and ontology-
based solutions for service selection [13, 14, 17] to develop
an approach for discovery of Semantic Web services. In
particular, we allow the users to specify context-specific se-
mantic correspondences between multiple ontologies to re-
solve semantic differences between them. These correspon-
dences are used for selecting services based on the user’s
functional and non-functional requirements, which are then
ranked based on a user-specified criteria.

The rest of the paper is structured as follows. Section
2 describes an example to provide a better formulation of
the problem. In Section 3 we introduce interoperation con-
straints to specify mappings between the user ontologies and
the domain ontologies used for service description, and a
service selection criteria, which provides a way to dynami-
cally select and rank services based on functional and non-
functional aspects. Our prototype implementation is de-
scribed in Section 4. In Section 5 we discuss related work,
and finally, we summarize our work in Section 6.

2. MOTIVATING EXAMPLE
Suppose there exist community-based domain ontologies

which describe various concepts and their properties for home
delivery of food by different restaurants OHomeDelivery (Fig-
ure 1) and different types of Chinese food OChineseFood (Fig-
ure 2). Now assume, there exists a Web service W1 which
allows the users to order Chinese food for home delivery and
uses the domain ontologies (Figure 1 & 2) to specify its ca-
pabilities (i.e., IOPE’s) and the service it offers. W1 may ex-
pect the name of the food item (where, the different types of
food that it serves is specified by OChineseFood), user’s credit
card information and delivery address as its inputs, and an
email confirmation might be sent upon successful completion
of the order (its outputs). In addition, sufficient credit bal-
ance and a valid delivery address could be the pre-requisites
for invoking the service (its preconditions), whereas, charg-
ing the credit card for the appropriate amount of money
and delivering the ordered food (via some delivery person-
nel), the effects after a successful invocation of the service
(its postconditions). Similarly, another Web service W2 may
also provide the same service for home-delivery of Chinese
food and use the domain ontologies to describe its capabil-
ities. However, it might have a different customer rating or
items that are being served.

Now, suppose there exists a user U , who wants to order
some Chinese food from his/her home via the Internet (us-
ing some agent). It is quite conceivable that the user might
have his/her own understanding of the domain in discourse
and hence have user ontologies, OU

Delivery and OU
Chinese,

which might be different from the shared domain ontolo-
gies, OHomeDelivery and OChineseFood. In such a situation,
it is not possible for the user’s agent to discover candidate
services from a repository because the concepts in the dif-
ferent ontologies may be semantically different. To reconcile
such semantic heterogeneity, there is a need for the user (or

Class
HomeDelivery

Class
FoodDelivery

subClassOf

ObjectProperty

Has_Item
ObjectProperty

Has_ShipAddr
ess

ObjectProperty

Has_CCInfo

Class
FoodItem

DeliveryAddress

Class

Class
CreditCardInfo

domain

domain

domain

range range

range

DataTypePropery

Has_Name

type
String

range

domain

DataTypePropery

Has_Quantity

type
Integer

domain

range
DataTypePropery

Has_AptNum

DataTypePropery

Has_CityName

DataTypePropery

Has_Street

DataTypePropery

Has_ZipCode

domain domain

domain

domain

type
Integer

type
String

type
String

type
String

range

range

range

range

Class

CreditCardType

Class

AmericanExpress

Class
Visa

Class
MasterCard

Class
Discover

oneOf

oneOf

oneOf

oneOf

ObjectProperty

Has_CardNa
me

DataTypePropery

Has_CardEx
piryDate

DataTypePropery

Has_CardNu
m

range

type
MonthYear

type
Integerrange

range

domain

domain

domain

ObjectProperty

Has_CreditCard

domain

range

DataTypePropery

Has_CardHol
derName

type
String

range

domain

DataTypePropery

Has_Restuar
antRating

type
Integer

domain

range

Figure 1: Domain Ontology for Home Delivery of

Food

some kind of a mediator/service) to provide mappings or
translations such that, the Web service discovery engine
can translate the concepts in the user’s request in terms of
the concepts in domain ontologies, and hence, can select
candidate service providers (from some repository) by doing
matchmaking.

For example, the user ontology OU
Delivery might have a

concept Food, which could be mapped to concept FoodItem

in the domain ontology OHomeDelivery. Similarly, a con-
cept Chicken (in OU

Chinese) might have a correspondence
to Poultry (in OChineseFood). The user might also define
procedural mappings between the domains of various con-
cepts (e.g., from YY-MM to MM-YY). Furthermore, the
user might want to select those services which have a higher
customer service rating and rank the discovered candidate
service providers based on some criteria (e.g., increasing
physical distance of the restaurant from the delivery loca-
tion). Similarly, another user U ′, with different ontologies,
willing to order Chinese food via the Internet for home de-
livery has to follow the same procedure as U .

Thus, discovering of Semantic Web services comprises of
two important steps:

• Specifying mappings between the terms and concepts
of the user ontologies and the domain ontologies (which
are used to describe the services).

• Specifying a service selection criteria which uses
the mappings to select candidate service providers against

Class
ChineseFood

Class
Appetizer

Class
SeaFood

Class
Poultry

Class
Vegetables

Class
Food

subClassOf

ObjectProperty

Is_Spicy

Class
Spicy

domain

Hot
Class

Class
Mild

No
Class

ObjectProperty

Has_Gravy

domain

Class
Gravy

Class
Yes

Class
SomeWhat

Class
None

subClassOf

subClassOf subClassOf

subClassOf

oneOf

oneOf

oneOf oneOf

oneOf

oneOf

Class
ShrimpToast

oneOf

Class
ChickenWings

Class
CrabRangon

Class
SzechaunChick

en

Class
SesameChicke

n

Class
DicedChicken

Class
JumboShrimpC

urry

Class
AngryCatFish

Class
FriedSalmon

Class
BuddhistDelight

Class
MouShu

Class
GreenSautedB

eans

oneOf

oneOf

oneOf

oneOf
oneOf

oneOf

oneOf

oneOf

oneOf

oneOf

oneOf

range
range

Figure 2: Domain Ontology for Chinese Food

a service request query and rank/order them based on
user-specified ranking criteria.

3. DISCOVERING SEMANTICALLY HET-
EROGENEOUS WEB SERVICES

3.1 Ontologies and Mappings
An ontology is a specification of objects, categories, prop-

erties and relationships used to conceptualize some domain
of interest. We introduce a precise definition of ontologies
as follows.

Definition (hierarchy) [11]: Let S be a partially ordered
set under ordering ≤. We say that an ordering ¹ defines a
hierarchy for S if the following three conditions are satisfied:

(1) x ¹ y → x ≤ y ; ∀ x, y ∈ S. We say (S, ¹) is better
than (S, ≤)),

(2) (S, ≤) is the reflexive, transitive closure of (S, ¹),

(3) No other ordering ⊑ satisfies (1) and (2).

An ontology associates orderings to their corresponding hi-
erarchies. For example, let S = {Food, ChineseFood, Appe-
tizer} (Figure 2). We can define the partial ordering ≤ on
S according to an is-a (or sub-class) relationship. For exam-
ple, Appetizer is-a sub-class of ChineseFood, ChineseFood is-
a sub-class of Food and, also Appetizer is-a sub-class of Food.
Besides, every class can be regarded as a sub-class of itself.
Thus, (S,≤) = {(ChineseFood, ChineseFood), (Appetizer,
Appetizer), (Food, Food), (Appetizer, ChineseFood), (Appe-
tizer, Food), (ChineseFood, Food)}. The reflexive, transi-
tive closure of ≤ is the set: (S,≺) = {(ChineseFood, Food),
(Appetizer, ChineseFood)}, which is the only hierarchy as-
sociated with (S,≤).

In order to make ontologies interoperable, so that the
terms in different ontologies are brought into correspon-
dence, we need to provide mappings. These mappings are
specified through interoperation constraints.

Definition (interoperation constraints) [11]: Let (H1,
¹1) and (H2, ¹2), be any two hierarchies. We call a set

of Interoperation Constraints (IC) the set of relationships
that exist between elements from two different hierarchies.
For two elements, x ∈ H1 and y ∈ H2, we can have one of
the following Interoperation Constraints:- x : H1 = y : H2,
x : H1 6= y : H2, x : H1 ≤ y : H2, and, x : H1 6≤ y : H2.
For example, in the Chinese food domain, assuming that the
ontologies OU

Chinese and OChineseFood associate is-a order-
ings to their corresponding hierarchies, we can have the fol-
lowing interoperation constraints, among others- Chicken :
HU

Chinese = Poultry : HChineseFood, Fish : HU
Chinese =

SeaFood : HChineseFood, Chicken : HU
Chinese 6= Appetizer :

HChineseFood, and so on.

3.2 Service Selection Criteria
The service selection criteria in our framework comprises

of two components: Selection of the service providers and
then, Ranking the selected providers.

3.2.1 Service Selection
The first step in service selection is to determine a set of

service providers which offer the requested functionality. We
call this set as candidate service providers.

Definition (candidate service providers): Let S = {S1,· · · ,
Sn} denote the set of services which are available (or regis-
tered with our system). We call, S′ ⊆ S, the set of candidate
providers, if they meet the requested functional properties
of the user (in terms of IOPE’s).

In general, some services will match all the requested
IOPE parameters, while others will not. To distinguish
between them, we categorize them based on the degree of
match [13, 17]: Exact, Plug-in, Subsumption, Intersection,
and Disjoint. Such a categorization also provides an (im-
plicit) ranking amongst the potential providers (e.g., Exact
match is given the highest rank). Since, the set of services
which fall under Intersection and Disjoint categories do not
match the service request (in terms of functional aspects),
we ignore them for the rest of the service selection process
and only consider the services which belong to Exact, Plug-
in and Subsumption categories.

The second step in the service selection process further
refines the set of candidate service providers based on user-
specified non-functional attributes, namely Quality of Ser-
vice (QoS). In unison with [19], we define Quality of Service
as a set of non-functional attributes that may impact the
service quality offered by a Web service. Because, Web ser-
vices are distributed as well as autonomous by their very
nature, and can be invoked dynamically by third parties
over the Internet, their QoS can vary greatly. Thus, it is
vital to have an infrastructure which takes into account the
QoS provided by the service provider and the QoS desired by
the service requester, and ultimately find the (best possible)
match between the two during service discovery.

However, different aspects of QoS might be important
in different applications and different classes of web ser-
vices might use different sets of non-functional attributes
to specify their QoS properties. For example, bits per

second may be an important QoS criterion for a service
which provides online streaming multimedia, as opposed to,
security for a service which provides online banking. As
a result, we categorize them into: domain dependent and
domain independent attributes. As an example, Figure 3
shows the taxonomy that captures the QoS properties of
those restaurant Web services which provide home deliv-

ery. The domain-independent attributes represent those
QoS characteristics which are not specific to any particu-
lar service (or a community of services). Examples include
Scalability, Availability etc. A detailed list and expla-
nation about such attributes can be found in [19]. On the
other hand, the domain-dependent attributes capture those
QoS properties which are specific to a particular domain.
For example, the attributes Overall RestaurantRating,

PresentationDecor etc. shown in Figure 3 correspond to
the restaurant domain. As a result, the overall QoS taxon-
omy is flexible and enhanceable as different service providers
(or communities) can define QoS attributes corresponding to
their domain.

However, in certain cases, a user might consider some
non-functional attributes valuable for his/her purpose (and
hence, defined in the user ontology), instead of all the at-
tributes in the QoS taxonomy (Figure 3). We use those
attributes to compose a quality vector comprising of their
values for each candidate service. These quality vectors are
used to derive a quality matrix, Q.

Definition (quality matrix): A quality matrix, Q = {V (Qij);
1 ≤ i ≤ m; 1 ≤ j ≤ n}, refers to a collection of quality
attribute-values for a set of candidate services, such that,
each row of the matrix corresponds to the value of a par-
ticular QoS attribute (in which the user is interested) and
each column refers to a particular candidate service. In other
words, V (Qij), represents the value of the ith QoS attribute
for the jth candidate service. These values are obtained from
the profile of the candidate service providers and mapped to
a scale between 0 & 1 by applying standard mathematical
maximization and minimization formulas based on whether
the attribute is positive or negative. For example, the val-

Class
QualityOfService

Class

DomainIndependent

Class
DomainDependent

subClassOf subClassOf

Class
Scalability

Class
Availability

Class

Performance

subClassOf

subClassOf

subClassOf

Class

Throughput

Class

Latency

subClassOfsubClassOf

Class

OverallRestaurantRating

Class

PresentationDecor

subClassOf

subClassOf

Figure 3: Sample QoS Taxonomy

ues for the attributes Latency and Fault Rate needs to be
minimized, whereas Availability needs to be maximized.
Also, to give relative importance to the various attributes,
the users can specify a weight value for each attribute, which
are used along with the QoS attribute values to give rela-
tive scores to each candidate service using an additive value
function, fQoS . Formally,

fQoS(Servicej) =
m

∑

i=1

(V (Qij) × Weighti) (1)

where, m is the number of QoS attributes in Q.
For a particular service request query, our system selects

one or more services which satisfies user’s constraints (in
terms of IOPE’s) and has an overall score (for the non-
functional attributes) greater than some threshold value spec-
ified by the user. If several services satisfy these constraints,
then they would be ranked according to the user-specified
ranking criteria (section 3.2.2). But, if no service exist, then
an exception is raised and the user is notified appropriately.
For example, let S = {S1, S2, S3} be the set of candidate ser-
vice providers which match the requested IOPE’s. Assum-
ing, that the user is interested in attributes Scalability

and Availability, let the quality matrix be:

Q =

S1 S2 S3

Scalability 0.90 0.80 0.30
Availability 0.90 0.45 0.20

Further assuming that, the user specifies WeightScalability
= 0.80, WeightAvailability = 0.50, and threshold score value,
UThreshold = 0.50, only S1 and S2 will be selected (after
calculation of their respective fQoS scores).

3.2.2 Service Ranking
In a real world scenario, given a service request, it is con-

ceivable that there exist scores of service providers, which
not only satisfy the functional requirements of the requester,
but also the non-functional requirements. As a result, it is
of vital importance to let the requesters specify some rank-
ing criteria (as part of the service request query), which
would rank the retrieved results (i.e., the list of potential
service providers). The traditional approach for ranking the
results of matchmaking is completely based on the degree of
match [13, 17] between the profiles of the service requester
and service provider. In our framework also, we use de-
gree of match to categorize (and implicitly order) the set
of candidate service providers based on the functional re-
quirements of the user. We further refine each category and
select only those candidate service providers which satisfy
the non-functional requirements of the user.

Although this is beneficial, we believe the requester should
have additional capabilities to specify personalized ranking
criteria as part of the service request query. For example,
Chinese food restaurants which may not have the highest
quality ratings for food tastiness, but provide speedier home
delivery, may be of higher value for a person who is in hurry
(and hence wants faster food delivery), compared to a food
connoisseur, who will have a preference for tastier food. As
a result, the former user would want to rank the candi-
date service providers based on their promptness of delivery,
whereas the later would prefer to have the service providers
ranked based on the quality of food they serve.

To achieve this, we introduce the notion of ranking at-
tributes and a ranking function (based on those attributes),
which will be used to rank the selected candidate service
providers. Once the service providers are ranked, it is left
at user’s discretion to select the most suitable provider (e.g.,
the user may do some trade off between the services which
meet all the non-functional requirements, but not all the
functional requirements exactly).

Definition (ranking attributes): The set of ranking at-
tributes, RA, comprises of all the concepts (its sub-concepts,
properties) in the domain QoS taxonomy which have corre-
spondences (via interoperation constraints) to the concepts
in the user ontology, OU , that capture the non-functional
aspects/requirements of the user. For example, if OU has

a QoS concept ServicePerformance which has a correspon-
dence to the concept Performance in the domain QoS taxon-
omy (Figure 3), then {Performance, Throughput, Latency}
∈ RA.

Definition (ranking function): Let S represent the set
of candidate services which match the functional and non-
functional requirements of the user, x ∈ RA is the ranking
attribute, and RO ∈ {ascending, descending} is the rank-
ing order, then: fRank(S, x, RO) = S′, is called the ranking
function, which produces S′, the ordered set of candidate
services. For example, let S = {S1, S2} be the set of ser-
vices selected based on the desired QoS properties (from
the previous section/example), x = {Cost}, and, RO =
{ascending}. Assuming, Cost of S1 is more than S2, we
have, fRank(S, x, RO) = {S2, S1} = S′.

4. PROTOTYPE IMPLEMENTATION

Service Provider Service Requester

Ontology
Database,
Mapping
Storage

Service Registering /
Requesting API

Service
Registry

Matchmaking Engine
(based on Jess & Jena)

Service Registration using
OWL-S Descriptions

Service Querying using
OWL-S Descriptions

JESS KB

Specify Mappings between
the Ontologies

Figure 4: Framework for Semantic Web Services

Discovery

Figure 4 shows a simple architecture of our prototype im-
plementation1 for discovery of Web services over the Se-
mantic Web. Initially, the Service Providers advertise their
services (namely, profile, process, grounding in OWL-S [6]
terminology) with the Service Registry. This registry serves
as a repository for the service advertisements, against which
the service request queries are matched. At the time of reg-
istration, the Service Registering API parses the OWL-S de-
scriptions (by using Jena [1]) and converts an OWL ontology
into a collection of JESS [2] facts, which are stored as triples
(i.e., < Subject, Predicate, Object >) in the JESS KB. The
JESS reasoning engine can infer more facts to ensure that all
the < S, P, O > triples implied by the ontology are stored as
facts in JESS KB. The Service Registering API also trans-
lates preconditions and conditions for outputs and effects
in the service description ontology into JESS rules, which
are stored in the JESS KB. Typically, the JESS rules can
be considered to be analogous to the conditional if. . .then
statements used in various programming languages. This
is because a JESS rule consists of a conditional expression,
and a series of commands to execute when that expression
is satisfied. The conditional expression occurs on the Left-
Hand-Side (LHS) of a rule, whereas, the set of commands
to be executed occur on the Right-Hand-Side (RHS). Once
all the JESS facts and rules for the service advertisements

1Additional details can be found in our technical report [18].

are stored in the JESS KB, they are evaluated during the
matchmaking process against a service request.

The Service Requester specifies a request for service se-
lection using the Service Requesting API. Such a request
is described using OWL-S. The requester also specifies the
interoperation constraints (ICs) between the terms and con-
cepts of its ontologies to the domain ontologies. These on-
tologies along with the set of ICs are stored in the Ontology
Database. For our first prototype, the constraints are defined
manually. However, we are working towards incorporating
(semi) automatic approaches for specifying such correspon-
dences [10]. With the help of these translations, the ser-
vice requesting API transforms the requester’s query, into a
domain-specific query. In other words, the API transforms
the original service request description (using the terms and
concepts from the user ontology) into a pseudo description
(using the terms and concepts from the domain ontologies).
These descriptions are also translated into JESS facts and
rules (as described above). The matchmaking engine then
tries to find service advertisement(s) which match the user’s
request. The matchmaking algorithm that we implemented
is based on [17]. This algorithm typically uses subsump-
tion reasoning to find similarity between service advertise-
ments with the requests based on the match between inputs
and outputs. We extend their algorithm2 by incorporat-
ing semantic matching based on service category, precon-
ditions and effects (apart from inputs and outputs). Each
of these matches are individually scored and the results ag-
gregated to determine a set of candidate service providers
(Section 3.2.1), which are then categorized based on their
degree of match. These candidate service providers (for each
category) are further refined based on whether they satisfy
the non-functional requirements of the requester and then
ranked on some user-specified ranking criteria (if any), e.g.,
physical distance between the requester and the service. Fi-
nally, the user selects a service provider (from the ordered
list of services) using his/her prudence.

5. RELATED WORK
Recently, there have been a few proposals for Web ser-

vices discovery based on OWL ontologies [14, 15] and De-
scription Logic [13,17] inferences3. Sycara et al. introduced
LARKS [20] for describing agent capabilities and requests,
and their matchmaking. The discovery/matching engine of
the matchmaker agent is based on various filters of differ-
ent complexity and accuracy which users can choose. How-
ever, the model lacks in defining how service requests will
be specified by users. Also, LARKS assumes the existence
of a common basic vocabulary for all users. METEOR-S
discovery [16] framework addresses the problem of discov-
ering services in a scenario where service providers and re-
questers may use terms from different ontologies. Their ap-
proach relies on annotating service registries (for a particular
domain) and exploiting such annotations during discovery.
The WSMO framework [7] provides ontology translation
to support automatic interoperation between Web services.
Specifically, in the WSMO architecture various mediators
(e.g., OO-Mediators) address the interoperability problems
that arise when various Web services work together. In our

2JESS engine is used for doing subsumption reasoning.
3A more detailed discussion of related work can be found in
our technical report [18].

framework, we realize the OO-Mediators by explicitly spec-
ifying the set of interoperation constraints which are stored
in the Ontology Database (and Mapping Storage) and are
accessed by the matchmaking engine for doing mediation.
Banaei-Kashani et al. developed the WSPDS system [9], a
peer-to-peer discovery service with semantic-level matching
capability. Their framework is guided by the principle that
a decentralized design for Web services discovery is more
scalable, fault tolerant and efficient as opposed to a central-
ized approach (e.g., UDDI [3]). WSPDS also semantically-
annotates the WSDL files using the WSDL-S framework de-
scribed in [8]. One advantage of this approach is that it
makes the WSDL-S file agnostic to any ontology represen-
tation language (e.g., OWL [4], WSMO [7]). However, at the
same time, adopting such a framework means that WSDL
files for the existing Web services would have to re-written,
which is an additional overhead. For related work in in-
corporating QoS attributes with service discovery, Zhou et
al. [21] proposed a DAML-QoS ontology for specifying var-
ious QoS properties and metrics. However, their framework
assumes the existence of a single QoS ontology for the ser-
vice providers and requesters, and hence does not take into
consideration the specification of semantic correspondences.
Also, there is no provision for the users to specify ranking
criteria (based on non-functional attributes) for service se-
lection.

6. CONCLUSION
The work proposed in this paper provides an approach for

flexible discovery of Web services over the Semantic Web.
We lay stress on the fact that, since different users may use
different ontologies to specify the desired functionalities and
capabilities of a service, some kind of ontology mapping is
needed during service discovery, such that terms and con-
cepts in the service requester’s ontologies are brought into
correspondence with the service provider’s ontologies. We
also propose a taxonomy for the non-functional attributes,
namely QoS, which provide a better model for capturing
various domain-dependent and domain-independent QoS at-
tributes of the services. These attributes allow the users
to dynamically select services based on their non-functional
aspects. Finally, we introduced the notion of personalized
ranking criteria, which is specified as part of the service re-
quest, for ranking the (discovered) candidate service providers
(e.g., ranking service providers from high to low based on
their Availability). Such a criteria ‘enhances’ the tradi-
tional ranking approach, which is primarily based on the de-
gree of match [13,17]. Our prototype implementation serves
as a proof-of-concept by executing the examples presented
in this paper. Some of our work in progress is aimed at ex-
tending our approach to service discovery, to support service
invocation and workflow composition for specific data-driven
applications in computational biology.

Acknowledgment. This work was supported in part by a
National Science Foundation grant (IIS 0219699) to Vasant
Honavar.

7. REFERENCES
[1] Jena-A Semantic Web Framework for Java,

http://jena.sourceforge.net/.

[2] Jess-The rule engine for Java Platform,
http://herzberg.ca.sandia.gov/jess.

[3] Universal Description Discovery and Integration,
http://www.uddi.org.

[4] W3C Web Ontology Language,
http://www.w3.org/tr/owl-features/.

[5] W3C Web Services Description Language,
http://www.w3.org/TR/WSDL/.

[6] Web Ontology Language for Web Services,
http://www.daml.org/services/owl-s.

[7] Web Service Modeling Ontology,
http://www.wsmo.org/.

[8] R. Akkiraju, J. Farrell, J.Miller, M. Nagarajan,
M. Schmidt, A. Sheth, and K. Verma. Web Service
Semantics – WSDL-S. In A joint UGA-IBM Technical
Note, version 1.0, 2005.

[9] F. Banaei-Kashani, C.-C. Chen, and C. Shahbi.
WSPDS: Web Services Peer-to-Peer Discovery Service.
In Intl. Symposium on Web Services and Applications,
2004.

[10] J. Bao and V. Honavar. Collaborative Ontology
Building with Wiki@nt. In 3rd Intl. Workshop on
Evaluation of Ontology Based Tools at Intl. Semantic
Web Conference, 2004.

[11] D. Caragea, J. Pathak, and V. Honavar. Learning
Classifiers from Semantically Heterogeneous Data
Sources. In 3rd Intl. Conference on Ontologies,
DataBases, and Applications of Semantics for Large
Scale Information Systems, 2004.

[12] T. Erl. Service-Oriented Architecture: A Field Guide
to Integrating XML and Web Services. Prentice Hall,
New Jersey, 2004.

[13] L. Li and I. Horrocks. A Software Framework for
Matchmaking based on Semantic Web Technology. In
12th Intl. Conference on World Wide Web, 2003.

[14] E. Maximilien and M. Singh. A Framework and
Ontology for Dynamic Web Services Selection. IEEE
Internet Computing, 8(5):84–93, 2004.

[15] S. McIlraith, T. Son, and H. Zeng. Semantic Web
Services. IEEE Intelligent Systems, 16(2):46–53, 2001.

[16] S. Oundhakar, K. Verma, K. Sivashanmugam,
A. Sheth, and J. Miller. Discovery of Web Services in a
Multi-Ontology and Federated Registry Environment.
Intl. Journal of Web Services Research, 1(3), 2005.

[17] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara.
Semantic Matching of Web Services Capabilities. In
1st Intl. Semantic Web Conference, 2002.

[18] J. Pathak, N. Koul, D. Caragea, and V. Honavar.
Discovering Web Services over the Semantic Web. In
Iowa State University, Dept. of Computer Science
Technical Report, ISU-CS-TR 05-20, 2005.

[19] J. Radatz and M. S. Sloman. A Standard Dictionary
for Computer Terminology: Project 610. IEEE
Computer, 21(2), 1988.

[20] K. Sycara, S. Widoff, M. Klusch, and J. Lu. LARKS:
Dynamic Matchmaking Among Heterogeneous
Software Agents in Cyberspace. In Intl. Conference on
Autonomous Agents and Multi-Agent Systems, 2002.

[21] C. Zhou, L. Chia, and B. Lee. Service Discovery and
Measurement based on DAML-QoS Ontology. In
Special Interest Tracks and Posters of 14th World
Wide Web Conference, 2005.

