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Abstract. Comparative analysis of biomolecular networks constructed
using measurements from different conditions, tissues, and organisms
offer a powerful approach to understanding the structure, function, dy-
namics, and evolution of complex biological systems. We explore a class
of algorithms for aligning large biomolecular networks by breaking down
such networks into subgraphs and computing the alignment of the net-
works based on the alignment of their subgraphs. The resulting subnet-
works are compared using graph kernels as scoring functions. We provide
implementations of the resulting algorithms as part of BiNA, an open
source biomolecular network alignment toolkit. Our experiments using
Drosophila melanogaster, Saccharomyces cerevisiae, Mus musculus and
Homo sapiens protein-protein interaction networks extracted from the
DIP repository of protein-protein interaction data demonstrate that the
performance of the proposed algorithms (as measured by % GO term
enrichment of subnetworks identified by the alignment) is competitive
with some of the state-of-the-art algorithms for pair-wise alignment of
large protein-protein interaction networks. Our results also show that
the inter-species similarity scores computed based on graph kernels can
be used to cluster the species into a species tree that is consistent with
the known phylogenetic relationships among the species.

1 Introduction

The rapidly advancing field of systems biology aims to understand the struc-
ture, function, dynamics, and evolution of complex biological systems [9]. Such
an understanding may be gained in terms of the underlying networks of inter-
actions among the large number of molecular participants involved including
genes, proteins, and metabolites [47,16]. Of particular interest in this context is
the problem of comparing and aligning multiple networks e.g., those generated
from measurements taken under different conditions, different tissues, or differ-
ent organisms [40]. Network alignment methods present a powerful approach for
detecting conserved modules across several networks constructed from different
� Corresponding author.
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species, conditions or timepoints. The detection of conserved network modules
may allow the discovery of disease pathways, proteins/genes critical to basic
biological functions, and the prediction of protein functions.

The problem of aligning two networks, in the absence of the knowledge of
how each node in one network maps to one or more nodes in the other net-
work, requires solving the subgraph isomorphism problem, which is known to be
computationally intractable (NP-Hard) [15]. However, in practice, it is possible
to establish correspondence between nodes in the two networks to be aligned
and to design heuristics that strike a balance between the speed, accuracy and
robustness of the alignment of large biological networks. For instance, MaWISh
[29] is a pairwise network alignment algorithm with a runtime complexity of
O(mn) (where m and n are the number of vertices in the two networks being
compared) that relies on a scoring function that takes into account protein du-
plication events as well as interaction loss/gain events between pairs of proteins
to detect conserved protein clusters. Hopemap [44] is an iterative clustering-
based alignment algorithm for Protein-Protein Interaction networks. HopeMap
starts by clustering homologs based on their sequence similarity and already
known KEGG/InParanoid Orthology status. The algorithm then proceeds to
search for strongly connected components and outputs the conserved compo-
nents that statisfy a predefined user threshold [44]. Graemlin 2.0 is a linear time
algorithm that relies on a feature-based scoring function to perform an approx-
imate global alignment of multiple networks. The scoring function for Graem-
lin 2.0 takes into account protein deletion, duplication, mutation, presence and
count as well as edge/paralog deletion across the different networks being aligned
[13]. NetworkBLAST-M [23] is a progressive multiple network alignment algo-
rithm that constructs a layered alignment graph, where each layer corresponds
to a network and edges between layers connect homologs across different net-
works. Highly conserved subnetworks from networks from different species are
first aligned based on highly conserved orthologous clusters, then the clusters
are expanded using an iterative greedy local search algorithm [23].

Against this background, we explore a class of algorithms for aligning large
biomolecular networks using a divide and conquer strategy that takes advantage
of the modular substructure of biological networks [17,36,19]. The basic idea be-
hind our approach is to align a pair of networks based on the optimal alignments
of the subnetworks of one network with the subnetworks of the other. Different
ways of decomposing a network into subnetworks in combination with different
choices of measures of similarity between a pair of subnetworks yield different
algorithms for aligning biomolecular networks.

We utilize variants of state-of-the-art graph kernels [6,7], first developed for
use in training support vector machines for classification of graph-structured
patterns, to compute the similarity between two subgraphs. The use of graph
kernels to align networks offers several advantages: It is easy to substitute one
graph kernel for another (to incorporate different application-specific criteria)
without changing the overall approach to aligning networks; it is possible to com-
bine multiple graph kernels to create more complex kernels [7] as needed. Our
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experiments with the fly, yeast, mouse and human protein-protein interaction
networks extracted from DIP (Database of Interacting Proteins) [38] demon-
strate the feasibility of the proposed approach for aligning large biomolecular
networks.

The rest of the paper is organized as follows: Section 2 precisely formulates the
problem of aligning two biomolecular networks and describes the key elements
of our proposed solution. Section 3 describes the experimental setup and exper-
imental results. Section 4 concludes with a summary of the main contributions
of the paper in the broader context of related literature and a brief outline of
some directions for further research.

2 Aligning Protein-Protein Interaction Networks

2.1 Problem Formulation

We consider the problem of pair-wise alignment of protein-protein interaction
networks. We model protein-protein interaction networks as undirected and un-
weighted graphs. In a protein-protein interaction network, the vertices in the
graph correspond to proteins and the edges denote interactions between the two
proteins. Let the graphs G1(V1, E1) and G2(V2, E2) denote two protein-protein
interaction networks where V1 = {v1

1 , v
1
2 , v

1
3 , ...v

1
n} and V2 = {v2

1 , v
2
2 , v

2
3 , ...v2

m},
respectively, denote the vertices of G1 and G2; and E1 and E2 denote the edges
of G1 and G2 respectively. Let a matrix P with |V1| rows and |V2| columns (i.e,
n × m matrix) denote a set of matches between the vertices of G1 and G2. The
mapping matrix P is defined such that for any two vertices v1

x and v2
y (where

1 ≤ x ≤ n and 1 ≤ y ≤ m) from graphs G1 and G2, respectively, Pv1
xv2

y
= 1 if v1

x

from G1 is matched to v2
y from G2 and Pv1

xv2
y

= 0 if v1
x in G1 is not a match to

v2
y in G2. For example, the matches between nodes may be based on homology

between the sequences of the corresponding proteins. Thus, each node in G1 is
matched to 0 or more nodes of G2 and vice versa. Note that the number of such
matches for any node in G1 is much smaller than the total number of nodes in
G2 and vice versa.

C1(L1, O1) is said to be a subgraph of G1(V1, E1) if L1 ⊂ V1 and O1 ⊂ E1

where O1 consists only of edges whose end points are in L1. We associate with
the graphs G1(V1, E1) and G2(V2, E2) sets of subgraphs S1 = {C1, C2, C3, ...Cl}
and S2 = {Z1, Z2, Z3, .., Zw} (respectively), where Ci(Li, Oi) 1 ≤ i ≤ l is a
subgraph of G1 and Zj(Wj , Qj) 1 ≤ j ≤ w is a subgraph of G2. Our basic
strategy is to find a best match for each subgraph in S1 from S2 by optimizing a
scoring function, K(Ci, Zj), such that we obtain: (i) a set of vertices that satisfy
Pv1

xv2
y

= 1, where v1
x ∈ Li and v2

y ∈ Wj and (ii) a set of edges where: if (v1
x, v1

d) is
an edge in Oi, then (v2

y , v2
g) is an edge in Qj where Pv1

xv2
y

= 1 and Pv1
dv2

g
= 1. The

resulting solution to the network alignment problem satisfies the condition that
each subgraph in S1 has at most one matching subgraph in S2. Thus, a pairwise
alignment of the networks G1(V1, E1) and G2(V2, E2) is expressed in terms of an
optimal alignment among the sets of the corresponding sets of subgraphs in S1

and S2.
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2.2 Divide-and-Conquer Approach to Aligning Protein-Protein
Interaction Networks

As noted earlier, our basic approach to aligning a pair of protein-protein interac-
tion networks involves (a) decomposing each network into a collection of smaller
subnetworks; (b) compute the alignment of the two networks in terms of the op-
timal alignments of the subnetworks of one network with the subnetworks of the
other. Different choices of methods for decomposing a network into subnetworks
in combination with different choices of measures of similarity between a pair
of subnetworks yield different algorithms for aligning protein-protein interac-
tion networks. In our current implementation, we establish the matches between
nodes in the two protein-protein interaction networks to be aligned based on
reciprocal BLASTp [2] hits between the corresponding protein sequences. Thus,
Pv1

xv2
y

= 1 if and only if the correponding protein sequences of v1
x and v2

y are recip-
rocal BLASTp hits [21] for each other (at some chosen user-specified threshold).
Alternatively, the mapping can be established based on known homologies (e.g
between the human WNT1 and mouse Wnt1 proteins) [28,10].

Decomposing Networks into k-hop Neighborhoods. A k-hop
neighborhood-based approach to alignment uses the notion of k -hop neighbor-
hood. The k -hop neighborhood of a vertex v1

x ∈ V1 of the graph G1(V1, E1) is
simply a subgraph of G1 that connects v1

x with the vertices in V1 that are reach-
able in k hops from v1

x using the edges in E1. Given two graphs G1(V1, E1) and
G2(V2, E2), a mapping matrix P that associates each vertex in V1 with zero or
more vertices in V2 and a user-specified parameter k, we construct for each vertex
v1

x ∈ V1 its corresponding k -hop neighborhood Cx in G1. We then use the map-
ping matrix P to obtain the set of matches for vertex v1

x among the vertices in
V2; and construct the k -hop neighborhood Zy for each matching vertex v2

y in G2

and Pv1
xv2

y
= 1. Let S(v1

x, G2) be the resulting collection of k -hop neighborhoods
in G2 associated with the vertex v1

x in G1. We compare each k-hop subgraph Cx

in G1 with each member of the corresponding collection S(v1
x, G2) to identify

the k -hop subgraph of G2 that is the best match for Cx (based on a chosen sim-
ilarity measure). This process is illustrated in figure 1. The runtime complexity
of the k-hop neighborhood based network alignment algorithm is O(bmg) where
m is the number of nodes in the query network G1, b is the maximum number
of matches in the target network G2 for any node in the query network, and g is
the running time of the similarity measure or scoring function used to compare
a pair of k -hop subnetworks.

Decomposing Networks Into Clusters. A graph clustering based align-
ment algorithm works as follows: Given two node-labeled graphs G1(V1, E1)
and G2(V2, E2), and a mapping matrix P that associates each vertex in V1

with zero or more vertices in V2, we first extract collections of subgraphs
H1 = {C1, C2, C3, ...Cl} and H2 = {Z1, Z2, Z3, ...Zw} from G1 and G2 respec-
tively. In principle, any graph clustering algorithm may be used to construct the
subgraph sets H1 and H2. In our experiments, we used the bicomponent clus-
terer as implemented in the JUNG (Java Universal Network/Graph) framework



Aligning Biomolecular Networks Using Modular Graph Kernels 349

Fig. 1. General schematic of the k-hop neighborhood alignment algorithm. The input
to the algorithm are two graphs (G1 and G2) with corresponding relationships among
their nodes using mapping matrix P (similarly colored nodes are sequence homologous
according to a BLAST search, for example Pv2v′

6
= 1). The algorithm starts at an

arbitrary vertex in G1 (red vertex in the figure) and constructs a k-hop neighborhood
around the starting vertex (1-hop neighborhood in the figure). The algorithm then
matches each of the nodes in the 1-hop neighborhood subgraph from G1 to nodes in
G2 using mapping matrix P. 1-hop subgraphs are then constructed around each of the
matching vertices. The 1-hop subgraphs from G2 are then compared using a scoring
function (e.g. a graph kernel) to the 1-hop subgraph from G1 and the maximum scoring
match is returned.

[35,46] to extract H1 and H2. Briefly, the bicomponent clusterer searches for
all biconnected components (graphs that cannot be disconnected by removing
a single node/vertex [18]) by traversing a graph in a depth-first manner (please
see [32] for more details). Once the subgraph sets H1 and H2 of the biconnected
subgraphs of G1 and G2 (respectively) are extracted, an all vs. all comparison
is conducted to identify for each subgraph in H1, the best matching subgraph
in H2 using a scoring function (e.g. a graph kernel, see figure 2). The running
time complexity of this algorithm is O(lwg) where l is the number of clusters
extracted from the query network G1, w is the number of clusters extracted from
the target network G2 , and g is the running time of the scoring function used
to compare a pair of clusters (subgraphs).

2.3 Scoring Functions

We now proceed to describe the similarity measures or scoring functions used
to compare a pair of subgraphs (e.g., a pair of k -hop subgraphs or a pair of
bi-component clusters described above).
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Fig. 2. Schematic for the cluster-based alignment algorithm. The input to the algorithm
are two graphs (G1 and G2) with corresponding relationships among their nodes using
mapping matrix P (similarly colored nodes are sequence homologous according to a
BLAST search, for example Pv2v′

2
= 1). Subgraphs are generated from G1 and G2

using a graph clustering algorithm (e.g. bicomponent clusterer that finds biconnected
subgraphs) and the subgraphs from G1 are compared against the subgraphs from G2

to find the best matching subgraphs using an appropriate scoring function.

Modified Shortest Path Distance Graph Kernel. The shortest path graph
kernel was first described by Borgwardt and Kriegel [6]. As the name implies,
the kernel compares the length of the shortest paths between any two nodes in
a graph based on a pre-computed shortest-path distance. The shortest path dis-
tances for each graph may be computed using the Floyd-Warshall algorithm as
implemented in the CDK (Chemistry Development Kit) package [41]. We modi-
fied the Shortest-Path Graph Kernel to take into account the sequence homology
of nodes being compared as computed by BLAST [2]. The shortest path graph
kernel for subgraphs ZG1 and ZG2 (e.g., k -hop subgraphs, bicomponent clusters
extracted from G1 and G2 respectively) is given by:

K(ZG1 , ZG2 ) = log

⎡
⎢⎣

∑

v1
i

,v1
j
∈ZG1

∑

v2
k

,v2
p∈ZG2

δ(v1
i , v2

k) × δ(v1
j , v2

p) × d(v1
i , v1

j ) × d(v2
k, v2

p)

⎤
⎥⎦

(1)

where δ(v1
x, v2

y) = BlastScore(v1
x,v2

y)+BlastScore(v2
y,v1

x)

2 . d(v1
i , v1

j ) and d(v2
k, v2

p) are
the lengths of the shortest paths between v1

i ,v1
j and v2

k,v2
p computed by the Floyd-

Warshall algorithm. The runtime of the Floyd-Warshall Algorithm is O(n3). The
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Fig. 3. An example of the graph matching conducted by the shortest path graph kernel.
Similarly colored nodes are sequence homologous according to a BLAST search. As can
be seen from the figure, the graph kernel compares the lengths of the shortest paths
around homologous vertices across the two graphs. The red edges show the matching
shortest path in both graphs as computed by the graph kernel. The shortest path
distance graph kernel takes into account the sequence homology score for the matching
vertices across the two graphs as well as the distances between the two matched vertices
within the graphs.

shortest path graph kernel has a runtime of O(n4) (where n is the maximum
number of nodes in larger of the two graphs being compared). Please see figure
3 for a general outline of the comparison technique used by the shortest-path
graph kernel.

Modified Random Walk Graph Kernel. The random walk graph kernel
[45] has been previously utilized by Borgwardt et al. [7] to compare protein-
protein interaction networks. The random walk graph kernel for subgraphs ZG1

and ZG2 (e.g., k -hop subgraphs, bicomponent clusters extracted from G1 and
G2 respectively) is given by:

K(ZG1 , ZG2) = p × (I − λKx)−1 × q (2)

where I is the identity matrix, λ is a user-specified variable controlling the length
of the random walks (a value of 0.01 was used for the experiments in this paper),
Kx is an nm×nm matrix (where n is the number of vertices in ZG1 and m is the
number of vertices in ZG2 resulting from the Kronecker product Kx = ZG1⊗ZG2 ,
specifically,

Kαβ = δ(ZG1ij
, ZG2kl

), α ≡ m(i − 1) + k, β ≡ m(j − 1) + l (3)

Where δ(ZG1ij
, ZG2kl

) =
BlastScore(ZG1ij

,ZG2kl
)+BlastScore(ZG2kl

,ZG1ij
)

2 ; p and q
are 1 × nm and nm × 1 vectors used to obtain the sum of all the entries of the
inverse expression ((I − λKx)−1).
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Fig. 4. An example of the graph matching conducted by the random walk graph kernel.
Similarly colored vertices are sequence homologous according to a BLAST search. As
can be seen from the figure, the graph kernel compares the neighborhood around the
starting vertices in each graph using random walks. Colored edges indicate matching
random walks across the two graphs of up to length 2. The random walk graph kernel
takes into account the sequence homology of the vertices visited in the random walks
across the two graphs as well as the general topology of the neighborhood around the
starting vertex.

We adapted the random walk graph kernel to align protein-protein interaction
networks by taking advantage of the reciprocal BLAST hits (RBH) among the
proteins in the networks from different species [21]. Naive implementation of our
modified random-walk graph kernel, like the original random-walk graph kernel
[45], has a runtime complexity of O(r6) (where r = max(n, m)). This is due
to the fact that the product graph’s adjacency matrix is nm × nm, and the
matrix inverse operation takes O(h3) time, where h is the number of rows in
the matrix being inverted (thus, the total runtime is O((rm)3) or O(r6) where
r = max(n, m)). However, runtime complexity of the random walk graph kernel
(and hence our modified random walk graph kernel) can be improved to O(r3)
by making use of the Sylvester equations as proposed by Borgwardt et al. [7].
Figure 4 illustrates the computation of the random walk graph kernel.

2.4 Implementation

The the k -hop network neighborhood and bicomponent clustering based protein-
protein interaction network alignment algorithms are implemented in BiNA
(http://www.cs.iastate.edu/~ftowfic), an open source Biomolecular Net-
work Alignment toolkit. The current implementation includes variants of the
shortest path and random walk graph kernels for computing similarity between
pairs of subnetworks. The modular design of BiNA allows the incorporation of
alternative strategies for decomposing networks into subnetworks and alternative
similarity measures (e.g., kernel functions) for computing the similarity between
subnetworks.

http://www.cs.iastate.edu/~ftowfic


Aligning Biomolecular Networks Using Modular Graph Kernels 353

3 Experiments and Results

We conducted experiments using k -hop subgraph and bi-component cluster
based strategies for decomposing graphs into collections of subgraphs. In each
case, both modified shortest path and modified random walk graph kernels were
used to compute similarity between pairs of subgraphs. We compare the per-
formance of the resulting algorithms with variants of NetworkBLAST [24] and
HopeMap [44], which are among the state-of-the-art algorithms for pair-wise
alignment of protein-protein interaction networks, using metrics proposed by
Kalaev et al [24]. The NetworkBLAST algorithm uses BLASTp [2] to match the
nodes across the different networks being aligned, whereas HopeMap uses In-
Paranoid [34] orthology groups to match the nodes across different networks. The
HopeMap and NetworkBLAST algorithm were adapted by Tian and Samatova
to utilize KEGG Ortholog (KO) groups to match nodes across different species
(NetworkBLAST-ko and HopeMap-ko) [44]. The results in table 1 for Network-
BLAST, HopeMap, NetworkBLAST-ko and HopeMap-ko are taken from Tian
and Samatova’s HopeMap paper [44].

In addition, we used our network alignment algorithms to generate phyloge-
netic trees from protein-protein interaction networks. We now proceed to de-
scribe the experimental setup and the results of this study.

3.1 Datasets

The yeast, fly, mouse and human protein-protein interaction networks were ob-
tained from the Database of Interacting Proteins (DIP) release 1/26/2009 [38].
The sequences for each dataset were obtained from uniprot release 14 [4]. The
DIP sequence ids were matched against their uniprot counterparts using a map-
ping table provided on the DIP website. All proteins from DIP that had obsolete
uniprot IDs or were otherwise not available in release 14 of the uniprot database
were removed from the dataset. The fly, yeast, mouse and human protein-protein
interaction networks consisted of 6, 645, 4, 953, 424 and 1, 321 nodes and 20, 010,
17, 590, 384 and 1, 716 edges, respectively. The protein sequences for each dataset
were downloaded from uniprot [4]. BLASTp [2] with a cutoff of 1 × 10−10 was
used to match protein sequences across species.

3.2 Comparison with NetworkBLAST and HopeMap

To evaluate the alignments, Kalaev et al.’s approach was implemented as de-
scribed in the NetworkBLAST [24] and the HopeMap [44] papers. Recall from
section 2.1 that the output of the alignment algorithm is a set of subgraphs
S1 and S2 (corresponding to the query and target networks, respectively). The
set of subgraphs S2 = {Z1, Z2, Z3, ..., Zw} in the target network is evaluated by
searching for overrepresented Gene Ontology (GO) categories from the biologi-
cal process annotation [3]. The GOTermFinder [8] tool was utilized to compute
enrichment p-values (p-value significance cutoff = 0.05) that have been corrected
for multiple testing using the false discovery rate. Briefly, GOTermFinder com-
putes p-values for a set of GO annotations for the set of proteins in subgraphs
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Z1..w based on the number of proteins in the subgraph Zx (where 1 ≤ x ≤ w,
and the number of vertices in Zx is r) and the number of proteins in the genome
of the target network (n) and their respective GO annotation. The p-value is
computed based on the hypergeometric distribution as the probability of k or
more out of r proteins being assigned a given annotation (where k is the number
of proteins in the subgraph Zx possessing the GO category of interest), given
that y of n proteins possess such an annotation in the genome in general. The
number of subgraphs, f , that had one or more GO categories overrepresented
is computed (where f ≤ w) and the fraction of subgraphs from the target net-
work that had a significant number of GO categories overrepresented is then
computed ( f

w × 100, % coherent subnetworks). The specificity of the alignment
method is measured by the percent of coherent subnetworks discovered for each
species. The sensitivity of the methods is indicated by the number of distinct
GO categories covered by the functionally coherent subnetworks. The purpose of
this evaluation approach is to determine whether or not the matching subgraphs
found in the target network represent a functional module/pathway (function-
ally coherent subgraphs) based on the GO annotation of the proteins in the
subgraph.

k-hop Neighborhood based Alignment. The results in table 1 show a com-
parison of the performance of the k -hop neighborhood based alignment with
variants of NetworkBLAST [24] and HopeMap [44].

As can be seen from the results in table 1, the performance measured in
terms of % GO enrichment observed when the fly protein-protein interaction
network is aligned with the yeast protein-protein interaction network, and vice-
versa, using k -hop neighborhood based alignment (with k, the number of hops
set equal to 1 and 2) is comparable to that of of variants of NetworkBLAST and
Hopemap algorithms (as reported in [44]). The modified random walk graph
kernel (RWKernel) yields higher % GO enrichment than the modified shortest
path graph kernel (SPKernel) in the case of the fly dataset. The effectiveness of

Table 1. Comparison of the k -hop neighborhood based protein-protein interaction
network alignment algorithm (using the SPKernel and RWKernels) with variants of
NetworkBLAST and HopeMap (as reported in [44]) using the functional coherence
measure: As can be seen from the table, the k-hop neighborhood based algorithm with
k=2 is competitive with variants of NetworkBLAST and Hopemap that use sequence
identity or KEGG ortholog groups (NetworkBLAST-ko and HopeMap-ko, respectively)
for node-matching

Method % GO enrichment in Yeast # GO enriched in
Yeast

% GO enrichment in Fly # GO enriched in
Fly

NetworkBLAST 94.87 67 84.62 62
HopeMap 98.73 65 78.48 46

NetworkBLAST-ko 100 9 100 8
HopeMap-ko 100 24 92.31 24

SPKernel-1Hop 100 (Score cutoff = 800) 51 78 (Score cutoff = 900) 22
SPKernel-2Hop 100 (Score cutoff = 1800) 46 76 (Score cutoff= 2400) 9
RWKernel-1Hop 100 (Score cutoff = 500) 71 85 (Score cutoff = 900) 19
RWKernel-2Hop 100 (Score cutoff = 800) 107 100 (Score cutoff = 3100) 1
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Table 2. Sample comparison of the k-hop alignment algorithm with the SPKernel and
RWKernel on the mouse and human DIP datasets

Method % GO enrichment in
Mouse

# GO enriched in
Mouse

% GO enrichment in
Human

# GO enriched in
Human

SPKernel-1Hop 53 (Score cutoff = 40) 19 85 (Score cutoff = 70) 70
RWKernel-1Hop 100 (Score cutoff = 80) 1 100 (Score cutoff = 50) 8
SPKernel-2Hop 94 (Score cutoff = 450) 4 100 (Score cutoff = 200) 13
RWKernel-2Hop 94 (Score cutoff = 110) 4 100 (Score cutoff = 80) 17

k -hop neighborhood based network alignment algorithm is further confirmed by
results of aligning the human and mouse protein-protein interaction networks
shown in table 2.

It is worth noting that the k -hop based network algorithms which use only
BLASTp hits to match nodes across networks are competitive with variants
of NetworkBLAST and HopeMap (including those that use other evidence for
orthology: InParanoid orthology groups in the case of HopeMap, phylogeny in
the case of NetworkBLAST, and KEGG orthologs in the case of NetworkBLAST-
ko, and HopeMap-ko) or utilize GO annotations as part of their scoring functions
(in case of HopeMap).

Bicomponent Cluster based Alignment. The results in table 3 show
the performance of the bicomponent cluster-based alignment algorithm using
“bicomponent clusterer”, as implemented in JUNG [35] (Java Universal Net-
work/Graph Framework). The clustering algorithm produced 1,236, 2,110, 579
and 1,893 clusters, with 5, 4, 2 and 2.5 proteins per cluster, respectively, on the
yeast, fly, mouse and human datasets extracted from DIP. As can be seen from
table 3, the performance of the bicomponent clustering based alignment is com-
parable to that of k -hop neighborhood based alignment algorithm (see 1) when
the modified random walk graph kernel is used for comparing subgraphs. How-
ever, the performance of the bicomponent clustering based alignment using the
modified shortest path graph kernel is substantially worse than that obtained
using the modified random walk kernel. This is consistent with the observa-
tion that random walk graph kernel is more sensitive to differences between the
graphs being compared than the shortest path kernel.

Table 3. Performance for the cluster-based alignment algorithm with the Shortest
Path graph kernel (SPKernel) and the Random Walk graph kernel (RWKernel) using
the bicomponent clustering algorithm on the fly and yeast DIP datasets

Method % GO
enrichment in

Yeast

# GO enriched in
Yeast

% GO
enrichment in Fly

# GO enriched in
Fly

SPKernel with Bicomponent
Clusterer

67 (Score cutoff
= 5)

2 50 1

RWKernel with Bicomponent
Clusterer

100 (Score cutoff
= 4)

2 100 (Score cutoff
= 4)

1
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Table 4. Performance for the cluster-based alignment algorithm with the Shortest
Path graph kernel (SPKernel) and the Random Walk graph kernel (RWKernel) using
the bicomponent clustering algorithm on the mouse and human DIP datasets

Method % GO
enrichment in

Mouse

# GO enriched in
Mouse

% GO
enrichment in

Human

# GO enriched in
Human

SPKernel with Bicomponent
Clusterer

70 (Score cutoff
= 16)

4 33 (Score cutoff
= 20)

1

RWKernel with Bicomponent
Clusterer

96 (Score cutoff
= 4)

6 83 (Score cutoff
15)

4

3.3 Reconstructing Phylogenetic Relationships from Network
Alignments

The accuracy with which known phylogenetic relationships between species can
be recovered by a protein-protein interaction network alignment algorithm serves
as an additional measure of the quality of network alignments produced by the al-
gorithm. The pairwise similarity scores associated with a pairwise network align-
ment can be used to construct an inter-species similarity graph where the nodes
denote the species and the weight on the links connecting pairs of nodes denote the
pairwise alignment scores output by a network alignment algorithm. The result-
ing inter-species similarity graph can be partitioned (or alternatively, the nodes
of the graph can be clustered) hierarchically to produce a phylogenetic tree.

We constructed the inter-species similarity graph using all possible pair-wise
alignments of protein-protein interaction networks from yeast, fly, human and
mouse obtained with k -hop neighborhood based alignment using the modified
random walk kernel. The resulting inter-species similarity network is shown in
figure 5 (left). We used spectral clustering algorithm [33], to recursively partition

Fig. 5. (Left) Graph representation of the relationships between the mouse (Mm),
human (Hs), yeast (Sc) and fly (Dm) networks compared using the 1-hop RWKernel
algorithm. Higher scores indicate greater similarity between the two connected net-
works. (Right) The tree constructed using a hierarchical spectral clustering algorithm
on the graph shown to the left. The tree figure was created using proWeb Tree viewer
[43].
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the inter-species similarity graph to obtain a hierarchical clustering of species
which is shown in figure 5 (right). We observe that the tree shown in figure 5 is
consistent with the generally accepted phylogenetic relationships among yeast,
fly, human and mouse [20].

4 Summary and Discussion

Aligning biomolecular networks from different species, tissues and conditions al-
lows offers a powerful approach to discover shared components that can help
explain the observed phenotypes. Specifically, applications of network alignment
allow the discovery of conserved pathways among different species [25,42], find-
ing protein groups that are relevant to disease [22,31], discovery of the chemical
mechanism of metabolic reactions [37,26] and more [48,27,39,5,1]. We have ex-
plored a novel class of graph kernel based polynomial time algorithms for aligning
biomolecular networks. The proposed algorithms align large biomolecular net-
works by decomposing them into easy to compare substructures. The resulting
subnetworks are compared using graph kernels as scoring functions. The modu-
larity of kernels [11] offers the possibility of constructing composite kernel func-
tions using existing kernel functions that capture different but complementary
notions of similarity between graphs [7].

The runtime complexity of the k-hop neighborhood based alignment algo-
rithm is O(bmg) where m is the number of nodes in the query network G1, b is
the maximum number of matches in the target network G2 for any node in the
query network, and g is the running time of the similarity measure or scoring
function used to compare a pair of k -hop subnetworks. The running time com-
plexity of this algorithm is O(lwg) where l is the number of clusters extracted
from the query network G1 , w is the number of clusters extracted from the
target network G2 , and g is the running time of the scoring function used to
compare a pair of clusters (subgraphs). In comparison, the run-time complexity
of NetworkBLAST-M (O((np)ds3s)), where n is the number of nodes in each of
the networks, s the number of networks, p an upper bound on the node degree
and d the number of seed spines used to generate the alignment. In the special
case of pairwise network alignment (s=2), the run-time complexity of Network-
BLAST reduces to O((np)d). The runtime complexity of HopeMap is linear in
terms of the total number of nodes and edges in the alignment graph [44], which
is O(2n+2n2) in terms of the input graphs (where each input graph has at most
n nodes).

The k -hop network neighborhood based and bicomponent clustering based
protein-protein interaction network alignment algorithms are implemented in
BiNA (http://www.cs.iastate.edu/~ftowfic), an open source Biomolecular
Network Alignment toolkit. The current implementation includes variants of the
shortest path and random walk graph kernels for computing similarity between
pairs of subnetworks. The modular design of BiNA allows the incorporation of
alternative strategies for decomposing networks into subnetworks and alternative

http://www.cs.iastate.edu/~ftowfic


358 F. Towfic, M.H.W. Greenlee, and V. Honavar

similarity measures (e.g., kernel functions) for computing the similarity between
subnetworks.

Our experiments with the fly, yeast, mouse and human protein-protein in-
teraction networks extracted from DIP (Database of Interacting Proteins) [38]
demonstrate that the performance of the proposed algorithms (as measured by %
GO term enrichment of subnetworks identified by the alignment) is competitive
with variants of the NetworkBLAST and HopeMap, which are among the state-
of-the-art algorithms for pair-wise alignment of large protein-protein interaction
networks [24,44].

Our results show that the inter-species similarity scores computed on the ba-
sis of pair-wise protein-protein interaction network alignments can be used to
cluster the species into a species tree that is consistent with the known phyloge-
netic relationships among the species. Taken together with the results reported
by Frost et al. [14] and Kuchaiev et al. [30] on reconstruction of phylogenetic
relationships by comparing metabolic networks, we conjecture that (a) the ac-
curacy with which a network alignment algorithm can be used to recover known
phylogenetic relationships among species can be used as useful metric for evalu-
ating the algorithm and (b) protein-protein interaction networks can be used as
a useful source of information in reconstructing phylogenies. As this evaluation
approach works at a global level (it only considers the total alignment score be-
tween two species, not the specific alignment scores for the subnetworks), new
evaluation approaches would need to be considered to determine the feasibility
of the specific alignments/matches generated by network alignment algorithms.

Some interesting directions for further work on the biomolecular network
alignment algorithms include:

– Design of alternative measures of performance for assessing the quality of
the generated network alignments.

– Algorithms for aligning networks that contain directed links, such as tran-
scriptional regulatory networks, multiple types of nodes (proteins, DNA,
RNA) and multiple types of links.

– Extensions that allow the alignment of multiple networks.
– The use of more sophisticated graph-clustering algorithms (such as MCL

[12]).
– Automated tuning of parameters (e.g λ for the random walk kernel) using

parameter learning techniques [13].
– Optimizations that reduce the runtime memory requirements of the

algorithm.
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