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Abstract

We consider the problem of learning causal re-
lationships from relational data. Existing ap-
proaches rely on queries to a relational condi-
tional independence (RCI) oracle to establish
and orient causal relations in such a setting.
In practice, queries to a RCI oracle have to
be replaced by reliable tests for RCI against
available data. Relational data present several
unique challenges in testing for RCI. We study
the conditions under which traditional iid-based
CI tests yield reliable answers to RCI queries
against relational data. We show how to con-
duct CI tests against relational data to robustly
recover the underlying relational causal struc-
ture. Results of our experiments demonstrate
the effectiveness of our proposed approach.

1 INTRODUCTION

Determining causal effects from observations and exper-
iments is a central concern of all sciences, and increas-
ingly, of artificial intelligence, data sciences, and statistics
[Pearl, 2000; Spirtes et al., 2000; Rubin, 1974]. Causal
inference allows one to elicit causal effects among vari-
ables given partial knowledge or assumptions about the
data generating process within a domain of interest, often
represented by a causal graph, a directed acyclic graph
where the nodes represent variables of interest and di-
rected edges denote direct causes. Causal discovery is
concerned with obtaining causal knowledge by analyz-
ing data obtained from the system of interest (which can
be a model, population, or nature). However, because
data provides, at best, only partial information about the
underlying system, causal assumptions about the world
are essential for causal discovery. Consequently, different
algorithms for causal discovery often embody different as-

sumptions about the underlying world [Verma and Pearl,
1990; Spirtes et al., 1995].

Most existing causal discovery algorithms are designed
to learn a causal graph over the variables V where data
consists of independent and identically distributed (iid)
instances, where each instance corresponds to an instan-
tiation v of the variables. Conditional independence re-
lations between variables implicit in the data, a sample
of the joint distribution P (v), can partially reveal the
underlying causal graph. However, data in many real-
world settings violate the iid assumption because they are
generated by a system of interacting objects e.g., a col-
laboration network, social network, or entities connected
by relations stored in relational databases. Hence, there
is growing interest in methods for learning causal models
from relational data. Maier et al. [2010] considered a
causal model for relational domains, and devised an al-
gorithm called RPC (Relational PC); Maier et al. [2013]
introduced the Relational Causal Model (RCM), a revised
version of their previous model, and proposed the Rela-
tional Causal Discovery algorithm, for learning a RCM
from data1; Lee and Honavar [2016b] introduced RCD-
Light, a more efficient version of the RCD algorithm; The
same authors [2016a] proposed RpCD, a relational CI
oracle based RCD algorithm, that is sound, and unlike
RCD and RCD-Light, also complete. Unfortunately, this
body of work largely falls short of offering a practical
solution to RCD. One main reason has to do with the
fact that, in practice, the relational CI (RCI) oracle must
be replaced by reliable RCI tests; however, most of the
existing CI tests do not account for the relational struc-
ture underlying relational data, and hence fail to produce
reliable answers for RCI queries. Although several CI
tests for some types of non-iid data have been proposed
in the literature, e.g., the test proposed by Flaxman et al.
[2016], which has been shown to work well for temporal,

1Depending on context, we will use RCD, which stands
for relational causal discovery, to refer to the problem, or the
specific solution proposed by Maier et al. [2013]



spatial, or undirected graph-structured data, such tests are
not directly applicable to relational data. Lee and Honavar
[2017a] proposed KRCIT, a suite of graph kernel based
relational CI tests, which can reduce the false positive
answers to RCI queries resulting from the violation of the
iid assumption when a CI test that designed for iid data
is naively applied to relational data, they suffer from low
power which can result in failure to detect relational CI.

Contributions We propose a relational causal discovery
algorithm that effectively works with the available (nec-
essarily imperfect) relational CI tests. Specifically: 1)
We identify the conditions under which CI tests that as-
sume iid data can reliably answer relational CI queries,
and show how the resulting insights can be exploited by
algorithms for RCD; 2) We examine the consequences
of replacing a relational CI oracle by relational CI tests
from the perspective of relational causal discovery, and
propose ways to increase the robustness RCD algorithms
that use imperfect relational CI tests.

2 PRELIMINARIES

The Relational Causal Model (RCM) [Maier et al., 2013]
marries a relational schema [Chen, 1976] used by rela-
tional databases representing the relational structure of the
domain with the causal Bayesian network (CBN) [Pearl,
2000] used to represent the structure and parameters of
causal models. We borrow many of the notations intro-
duced in the existing literature on RCMs [Maier et al.,
2013; Lee and Honavar, 2016a]. We use an uppercase
letter, e.g., X , to denote a variable, and the correspond-
ing lower case letter, e.g., x, to denote its realization.
We use bold letters, e.g., X or x, to represent sets, and
calligraphic letters to represent complex mathematical
objects. We use the kinship notation, pa, ch, an, de, for
graphical relationships such as parents, children, ances-
tors, descendants. We express the CI statement that the
random variables X and Y are conditionally independent
(CI) given Z, i.e. that P (Y |X,Z) can be expressed as
P (Y |Z), by X ⊥⊥ Y | Z. Throughout the paper, we will
make use of examples adapted from [Maier, 2014].

Relational Domain A relational schema S defines how
entities interact within a given domain of interest where
S = 〈E,R,A, card〉 — a set of entity classes E, rela-
tionship classes R, attribute classes A, and cardinality
constraints (on the number of entities that can participate
in a relationship, i.e, one, many). See Fig. 1a for a con-
crete example. In this domain, there are 3 entity classes,
Employee, Product, and Business Unit (unit for short),
and 2 relationship classes, Develops and Funds with their
attribute classes shown using rounded rectangles. We will
refer to the item classes using the initial letter of their
names (E for Employee etc.): E, P, B, D, and F. Small m

near the line between E and D specifies that an employee
can develop many products; and a unit can fund many
products but a product can be funded by only one unit.

A relational skeleton, denoted by σ ∈ ΣS, is one of possi-
ble realizations of the given relational schema S where ΣS

is a set of all possible relational skeletons (realizations)
of the schema. We denote by σ(B) a set of items in σ
corresponding to an item class B. Attribute value x of an
item i is denoted by i.x. Entities and relationships form a
bipartite graph satisfying the constraints imposed by the
definition of the relationship classes and the cardinality
constraints. If E ∈ E participates in R ∈ R with cardi-
nality ‘one’, then |{r | (e, r) ∈ σ, r ∈ σ(R)}| ≤ 1 for
every e ∈ σ(E). Relational data is then a tuple of the
network structure of the relational skeleton and the values
of attributes of the items. With the example schema, see
Fig. 1b for a relational skeleton where there are 5 em-
ployees, 5 products, and 2 units. The illustration hides
relationship items: The edge between e1 and p1 represents
the existence of a relationship item de1,p1 ∈ σ(D), which
is connected to e1 and p1. The cardinality constraints
impact the relational skeleton: Some employees develop
multiple products and some products are developed by
multiple employees; Every product is funded by at most
one business unit. By definition, there is no requirement
that an entity must participate in any relationship.

Relational Causal Model Relational Causal Model
(RCM) M = 〈S,D,F 〉 is defined with respect to a given
relational schema S to represent causal relations among
attribute classes related via S. It consists of a set of re-
lational dependencies D, which represents causal rela-
tionships among variables (defined in the relational space,
as described below), and a set of functions F , which
specify how attribute values are generated from their re-
spective causes. Fig. 1c informally illustrates a set of
5 relational dependencies as curved edges. A relational
dependency (RD) from competence to salary means that
an employee’s salary depends on the employee’s compe-
tence. The dependency from budget to salary implies that
an employee’s salary (also) depends on the budget of the
unit that funds a product developed by the employee. A
(stochastic) function specifies how an employee’s salary
(say, in dollars) can be obtained from such information.

More formally, a relational dependency is of the form
U → V where U and V are relational variables such that
V represents the attribute class of an item class and U
is an attribute class defined relative to that item class.
A relational variable is of the form e.g., P .X . As a
brief example, aforementioned dependency is expressed
as [EDPFB].Budget→ [E].Salary. Such a sequence of
item classes, [EDPFB], appearing in a relational variable
is called a relational path, which is restricted to a walk
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Figure 1: An example of a relational schema, relational skeleton, relational causal model, and ground graph.

(in a graph theoretic sense) on a relational schema from
the effect’s item class to the cause’s item class.2 A rela-
tional path defines the relationship between the attribute
classes of item classes that are connected by a relational
dependency.3 The first item class in the path is called a
base item class (or perspective), and the last item class is
called a terminal item class. If the relational path of a re-
lational variable is a singleton (which we call canonical),
we use the following notation, VX = [IX ].X where IX
is an item class owning X . A relational dependency, e.g.,
P .X → VY , implies that the base item class of P is IY
and the terminal item class is IX .

A RCM M is a specification of the causal relationships
between the attributes of items of a relational skeleton of a
given relational schema. Given a relational skeleton σ, the
model M is instantiated as a ground graph GM

σ , which is
a CBN made of items’ attributes. For instance, there will
be a directed edge from b2.B to e2.S in Fig. 1d because
there exists a path of items [b2, fp3,b2 , p3, de2,p3 , e2] corre-
sponding to the relational path [BFPDE] where fp3,b2 and
de2,p3 are implicit in Fig. 1b. Formally, we use P .X|σi to
denote the multi-set of X of items reachable from item
i through a path of items in σ corresponding to P . For
instance, [PDE].C|σp3 = {e2.C, e3.C, e4.C}. Then, the ver-
tices of GM

σ correspond to the item attributes and edges
are {j.X→i.Y | P .X→VY ∈D, i∈σ(IY ), j∈P |σi }. A
ground graph plays the role of a causal model for the ob-
served relational data. In other words, the attribute values
appearing in a relational skeleton corresponds to a single
instance sampled from the ground graph. The ground

2This formulation is not unlike that found in early probabilis-
tic statistical relational learning literature, e.g., [Koller, 1999].

3Restricting the relationship to a path in an underlying skele-
ton does limit the expressivity of the resulting RCM. However
such a restriction simplifies analysis of RCMs and yields a char-
acterization of the equivalence class of a RCM, which in turn
leads to a complete RCI-oracle-based RCD algorithm.

graph as shown in Fig. 1d is based on Figs. 1b and 1c.
Although there are directed edges shown upwards, GM

σ is
acyclic with a topological order as defined by the RCM,
i.e., competence, success, revenue, budget, and salary.

Relational Conditional Independence (RCI) RCI (de-
fined below) generalizes CI from the iid setting to the
relational setting. Analogous to a CBN embodying a set
of CI assertions, a RCM M embodies a set of RCI asser-
tions. Hence, this set of RCI assertions, if available (e.g.,
through queries to a RCI oracle or RCI tests against data),
allows us to discover the partial structure of the RCM
responsible for generating the observed relational data.

Let U , V be relational variables of a given base item
class (say B). Let W be a set of relational variables of
the same base item class (B). U and V are said to be
RCI given W , denoted by U ⊥⊥ V | W , if and only if
U |σi ⊥⊥ V |σi |W |σi for every relational skeleton σ ∈ ΣS

and every item i ∈ σ(B). By the definition, RCI is a
property of a RCM. That is, RCI statement considers a
collection of CI statements from all possible relational
skeletons of a relational schema. However, often, only a
single relational skeleton, i.e., a single instance sampled
from the ground graph, is available for testing RCI.

The following examples are intended to further illustrate
the notion of RCI. The independence between a unit’s
budget and the unit’s employees’ competence given the
success of the products funded by the unit can be ex-
pressed as [BFPDE].C ⊥⊥ [B].B | [BDP].S. In contrast,
consider a similar statement from a different perspective:

[EDPFB].B 6⊥⊥ [E].C | [EDP].S, (1)

which is because we can find a d-connection path,
e.g., e1.C→ p1.S← e2.C→ p2.S→ b1.R→ b1.B in
GM
σ where p1.S is a collider. However, as mentioned

earlier, it is not feasible to test whether e1.C 6⊥⊥ b1.B|p1.S
from a single instance of relational data.



3 RELATIONAL CAUSAL DISCOVERY

We first revisit RpCD [Lee and Honavar, 2016a] (See
Appendix for the pseudocode), a sound and complete
algorithm for learning the structure of a RCM from a
given relational schema and access to a RCI oracle. RpCD
was inspired by PC [Spirtes et al., 2000] for CBN, and
RCD [Maier et al., 2013] for RCM. RpCD consists of
two phases where the first phase identifies undirected
RDs (i.e., adjacencies) based on answers to RCI queries
and the second phase orients (a maximal subset of) the
identified RDs based on answers to RCI queries and other
known constraints.

Phase I Phase I of RpCD examines undirected RDs of the
underlying model. The algorithm starts by enumerating
a set of candidate RDs in an undirected form, which is
analogous to preparing a complete (undirected) graph for
CBN for further processing. Then, it removes undirected
RDs of the form P .Y − VX from the set of candidate
RDs if a separating set S between P .Y and VX is found.

Phase II Phase II of RpCD orients a subset of identified
undirected RDs based on the answers of queries posed
to the RCI oracle. Recall that, in the CBN literature,
an undirected path X − Y − Z where X and Z are not
adjacent is called an unshielded triple (UT). The node
Y on the path X → Y ← Z is called a collider. If X
and Z are not adjacent, Y is called an unshielded collider.
The PC algorithm orients edges among vertices in an UT
X − Y − Z by finding a separating set S between X
and Z: Y /∈ S. Lee and Honavar [2016a] generalized
the notion of UTs to the relational setting, and introduced
canonical unshielded triple (CUT for short) which has
testable implications in the underlying RCM:

Definition 1 (Canonical Unshielded Triple). Let M be
a RCM defined on a relational schema S. Suppose
〈i.X, j.Y , k.Z〉 is an unshielded triple in the ground
graph GM

σ for some σ ∈ ΣS. There must be two (not nec-
essarily distinct) dependencies P .Y −VX and Q.Z−VY
of M (ignoring directions) such that j ∈ P |σi and k ∈ Q|σj .
Then, we say that 〈VX , P .Y , R.Z〉 is a canonical un-
shielded triple (CUT) of M for every R ∈ {T | k ∈ T |σi }
where P = {T | j ∈ T |σi }.

If a separating set is found for a CUT through an-
swers RCI queries provided by a RCI oracle, then
the edges between the relational variables in a CUT
can be oriented in a RCM in a manner analogous to
that of UTs in CBN. For example, consider an UT
〈e2.C, p3.S, e4.C〉 in Fig. 1b based on a relational depen-
dency [PDE].C→ [P].S (where X = Z). Then, the cor-
responding CUT is

〈[E].C, {[EDP].S}, [EDPDE].C〉. (2)

[EDPFB].B [E].C [EDP].S

e1 {b1.b} {e1.c} {p1.s}
e2 {b1.b, b2.b} {e2.c} {p1.s, p2.s, p3.s}
e3 {b2.b} {e3.c} {p3.s}
e4 {b2.b} {e4.c} {p3.s, p4.s}
e5 {b2.b} {e5.c} {p4.s, p5.s}

Table 1: A flattened representation of relational data
(Fig. 1b) with respect to a RCI query in Eq. (1).

A separating set S exists such that [E].C ⊥⊥ [EDPDE].C |
S, and S without [EDP].S indicates [E].C→ [EDP].S←
[EDPDE].C, that is, [PDE].S→ [E].C.

RpCD further orients a maximal subset of the rest of the
undirected RDs using simple rules that are analogous to
those used by PC to orient the edges of a CBN (do not
introduce any new unshielded colliders or cycles).

Challenges to be overcome While Lee and Honavar
[2016a] showed that RpCD, when given access to a RCM
oracle, is guaranteed to yield a correct partially-directed
RCM structure, there remain significant hurdles to be
overcome before RpCD becomes useful in practice: i)
a RCI oracle needs to be replaced with a suitable, suf-
ficiently reliable RCI test. Existing CI tests are either
unsuitable for RCI or suffer from low power and hence
inability to detect RCI; ii) Even a well-designed RCI test
may not be sufficiently reliable when applied to small
samples. Incorrect results of RCI tests at early during the
execution of the structure learning algorithm may irrecov-
erably misguide the algorithm. iii) A generic RCI test
may fail to account for the specific characteristics of a
given relational data, thereby yielding suboptimal results.
We address the first challenge in Sec. 4, and the second
and third challenges in Sec. 5.

4 TESTING RCI USING A CI TEST

We proceed to consider the implications of using an ex-
isting CI test designed for iid data (CI test for short) to
reliably answer a RCI query in the context of relational
causal discovery using RpCD. Recall that iid data are of-
ten stored in a single table where the columns correspond
to the variables and rows are populated by (iid) instances.
Suppose, given a RCI query, we were to flatten (or propo-
sitionalize) the relational data to obtain a RCI query spe-
cific single table as follows: To test P .X ⊥⊥ Q.Y | R.Z
against relational data, we create a table wherein each row
corresponds to a base item i ∈ σ(B) of the common base
item class B of P , Q, and R and the three columns of the
table correspond to P .X , Q.Y and R.Z such that the cell
for row i and column P .X is a multi-set P .X|σi . Let us
call the resulting data flattened data for short. For exam-



ple, Tab. 1 shows a table with three columns constructed
to answer a RCI query (Eq. (1)) where the leftmost col-
umn corresponds to the row identifier.4 It is not difficult
to observe that the rows of the table constructed using
the procedure described above are clearly not indepen-
dent because, multiple rows of the table, e.g., P .X|σi and
P .X|σj , can share the same attributes. Needless to say,
flattening does not get rid of the non-iid nature of rela-
tional data, which means that, in general, a CI test when
applied to the table resulting from the flattening process
may incorrectly reject the null hypothesis (independence)
although P .X ⊥⊥ Q.Y | R.Z. In light of the preceding
observation, are there conditions under which a CI test
when applied to the table resulting from the RCI query
specific flattening process described above is guaranteed
to correctly determine whether or not RCI holds? To
answer this question, we revisit the Relational Causal
Markov Condition (RCMC, Maier [2014]), which states
that a canonical relational variable is independent of its
non-descendants given its parents. We first recall the def-
inition of non-descendants of a relational variable of a
RCM before proceeding to revisit RCMC.

Definition 2. Let RCM M be defined on a schema S, and
let W and VX be different relational variables defined
on S sharing a common perspective B. Then, W is non-
descendant of VX if W |σb ∩ de

(
b.X;GM

σ

)
= ∅ for every

σ ∈ ΣS and b ∈ σ(B).

Definition 3 (Relational Causal Markov Condition).
Given a RCM M defined on a relational schema S,
W |σb ⊥⊥ b.X | pa(b.X;GM

σ ) for every X ∈ A, σ ∈ ΣS,
and b ∈ σ(IX) if W is a set of non-descendants of VX .

RCMC implies that W ⊥⊥ VX | pa(VX ;M). A RCI
query of the form U ⊥⊥ VX | Z is said to be RCMC-
related if U is non-descendant of VX , and Z consists
of the parents of VX and does not include any non-
descendant of VX . We claim that any RCI query that
is RCMC-related can be correctly answered using a CI
test (where a random variable can assume values that are
multi-sets) applied to the RCI query-specific flattened ta-
ble constructed using the procedure described above. To
see why this claim is true, note that given pa(VX ;M),
attributes of VX must be independent and identically dis-
tributed, regardless of other conditioned non-descendants.
Thus, the variability of VX across different conditions
arises from external factors that are independent of the
non-descendants of VX . Hence, a traditional CI test ap-
plied to the flattened data can accurately answer a RCMC-
related RCI query against relational data. For example,
consider a generic model where VX ← f(pa(VX ;M), ε).
Given a fixed value for pa(VX ;M), VX can be viewed

4If a cell for P .X or Q.Y is empty, we discard the corre-
sponding row from the table.

as g(ε) for some function g. Since g(ε) is independent of
the non-descendants of VX , a CI test will correctly assert
W ⊥⊥ VX | pa(VX ;M).

Note that although as we showed RCI which is RCMC-
related can be correctly answered using a CI test, we can
offer no such guarantee in the general case of a RCI query
that is not RCMC-related. Specifically, in the general
case, such a procedure can fail to establish RCI although
RCI holds. Fortunately, however, the violation of iid
assumption does not interfere with the CI test rejecting
the null hypothesis (independence) when RCI does not in
fact hold. Based on this understanding of the conditions
under which a CI test can be used to reliably substitute for
RCI tests against relational data, we can modify RpCD
to substitute RCI oracle with a CI test applied to a RCI-
query-specific flattening of the relational data.

5 ROBUST RELATIONAL CAUSAL
DISCOVERY

There has been much work on making causal discov-
ery from iid data robust in the presence of limited data
or violations of key assumptions [Dash and Druzdzel,
1999; Abellán et al., 2006; Ramsey et al., 2006; Cano
et al., 2008; Bromberg and Margaritis, 2009], including
on methods that take advantage of recent advances in
general-purpose Boolean satisfiability solvers [Hyttinen
et al., 2013; Triantafillou and Tsamardinos, 2015; Magli-
acane et al., 2016]. Hence, in what follows, we focus
our discussion primarily on approaches to making causal
discovery robust that are specific to the relational (as con-
trasted with the iid) setting. We proceed to consider the
two key phases of RpCD in turn.

5.1 PHASE I: IDENTIFYING ADJACENCIES

Recall that RpCD starts by initializing a set of candidate
relational dependencies (RDs) given a user-specified max-
imum hop length of RDs to be considered. Let M′ be
an intermediate RCM at an intermediate step during the
execution of phase I of RpCD. In light of the results of
the previous section regarding the conditions under which
RCI tests against relational data can be reliably substi-
tuted by CI tests against an appropriate flattening of the
relational data, we can ensure that RpCD first asks RCI
queries that match RCMC to eliminate spurious candi-
date dependencies, while retaining the genuine dependen-
cies. Recall that RpCD performs RCI tests to determine
whether a candidate neighbors of a canonical relational
variable (CRV) is in fact a genuine neighbor. Since at the
outset, the candidate neighbors of a CRV include the gen-
uine parents of the CRV in the RCM, RpCD will eventu-
ally test (P .X ⊥⊥ VY | pa (VY ;M′)) for any connection



P .X − VY unless it is disconnected with a separating set
other than the parents of the CRV. Note that any incorrect
answers to the RCI queries (i.e., incorrect rejections of
the null hypothesis (independence) by the CI tests) do not
adversely impact the correctness of the algorithm unless
the RCI query matches RCMC. However, there is the pos-
sibility of incorrectly discarding true RDs. For example,
it is possible that P .X → VY ∈ D might be discarded
from the candidate list due to relatively weak dependence.
We proceed to examine a way to contain the deleterious
impact of incorrectly discarding true dependencies.

Order-independence Whenever a true RD is discarded,
it has a cascading deleterious effect on future steps of
the PC algorithm (and its variants) which, as shown by
Colombo and Maathuis [2014], can however be avoided
by making the necessary modifications to render the al-
gorithms independent of the order in which variables are
considered. Such modifications can be directly incorpo-
rated into RpCD: Prepare an empty set, store dependen-
cies to be removed in the set instead of removing them
immediately, and remove dependencies in the set when
the algorithm proceeds to consider larger conditionals.

Asymmetry and Aggregation There exists a notable dif-
ference between an edge in a CBN and a RD in a RCM
with respect to the test for adjacencies — there can be two
different tests for an adjacency.5 Through Phase I, we seek
to ensure that the following holds true (P .X 6⊥⊥ VY |W )
for P .X → VY ∈D for a set of RVs W with base item
class IY and P .X /∈ W . The test for the same adja-
cency must be performed from a different perspective IX ,
(P̃ .Y 6⊥⊥ VX | R) where P̃ corresponds to P reversed.
Performing both tests is essential since the algorithm does
not know in advance the topological order betweenX and
Y , and which RCI queries are in fact RCMC-related.

Consider a RD, [PDE].Competence→ [P].Success. The
dependency between [EDP].S and [E].C can be substan-
tially weaker than the dependency between [PDE].C and
[P].S since there is a set of coworkers whose competence
affects [EDP].S that is not considered. For instance, e2
develops p1, p2, and p3 where the success of p1 and p3 are
also determined by e1, and e3 and e4, respectively, dilut-
ing the strength of the relationship between competence
of the worker(s) and the success of the product.

To protect against the possibility that a RCI test wrongly
failing to reject independence, e.g., (P .X ⊥⊥ VY |W ),
we can perform an additional test. We can first apply an
aggregating function (e.g., mode, average, median, etc),
on P .X ∈ adj (VY ;M′), and then conduct an additional

5Arbour et al. [2016] considered asymmetry in relational
data to infer the orientation of an underlying dependency while
our focus is to improve the power of CI test.

test which (modulo slight abuse of notation) is given by

(f (P .X) ⊥⊥ VY |W )σ

where each P .X|σi is replaced by f (P .X|σi ). Such aggre-
gation does not introduce spurious dependencies. How-
ever, in practice, it can help overcome weak RCI tests as
the mapping reduces not only the dimensionality of the
variables involved in the test but also the variances caused
by exogenous variables.

It is worth noting that aggregation is widely used for
dealing with RVs in relational machine learning [Perlich
and Provost, 2006] as well as relational causal discovery
[Maier et al., 2013]. However, an important distinction
between their use of aggregation and ours is that we do not
apply an aggregate function on the conditionals, for doing
so may result in false positive answers to RCI queries. For
example, consider X → Z → Y where X ⊥⊥ Y | Z. If
we transform onlyX using the aggregation function f , we
get f(X) ← X → Z → Y where f(X) ⊥⊥ Y | Z still
holds true. If Z is transformed through the aggregation
function g, we get X → Z → Y with Z → g(Z), and,
thus, X 6⊥⊥ Y | g(Z) nor f(X) 6⊥⊥ Y | g(Z). Note that
aggregation presented here also applies to Phase II of the
algorithm described in the next subsection.

5.2 PHASE II: ORIENTING RELATIONAL
DEPENDENCIES

A RCI test against a canonical unshielded triple (CUT)
can establish the orientation of edges among the vertices
in the triple. Since the purpose of the test is to find a sep-
arating set, false positives for non-RCMC-related queries
are a non-issue. However, weak dependence can lead to
false negatives, and hence an invalid separating set, which
may include colliders or may exclude non-colliders, re-
sulting in an incorrect orientation of the edges among the
vertices in a CUT.

Since RCM assumes acyclicity at an attribute class level,
once we perform a RCI test on a CUT 〈VX ,P .Y ,R.Z〉,
assuming that the test is reliable, there is no need to
test on other CUTs with matching attribute classes i.e.,
〈X,Y ,Z〉 (or 〈Z,Y ,X〉). However, given the possibility
of erroneous results from RCI tests, we can perform tests
on multiple CUTs to determine the orientation of an edge,
e.g., X → Y ← Z, and make an informed decision by,
e.g., majority rule, two-thirds, etc, based on the results
of multiple tests. The algorithm may even obtain mul-
tiple separating sets against a CUT and check them for
consistency (e.g., orientation-faithfulness [Ramsey et al.,
2006]). However, as we shall show below, care must be
exercised in how these ideas are incorporated into RpCD.

Limitations of CUT-based RCI tests We start by exam-
ining why naively conducting RCI tests against CUTs is



not the best idea. To see why, consider the flattening of
the CUT in Eq. (2) for answering a RCI query using a CI
test. Since e2 develops three products {p1, p2, p3}, e2’s
coworkers are {e1, e3, e4}. Success of p2 is, in fact, irrel-
evant to the competences of the coworkers {e1, e3, e4},
whereas the success of each product depends only on
the competence of the employees who develop it (e.g.,
e1 in the case of p1). (i) Given a CUT 〈VX ,P .Y ,R.Z〉
and some P ∈ P , the association between P .Y and
R.Z seems relatively weaker than that between two RVs
connected by a RD. (ii) Further, R can be long, and the
average dimensionality of {R|σi }i∈σ(I) can be large. If
each employee develops k products, and each product
is developed by m employees, then, each employee can
have up to km− 1 coworkers. (iii) Unlike the unshielded
triples of a CBN, absence of a RD between VX and R.Z
does not imply that there is no connection between i.X
and R.Z|σi for some item i. If R′.Z → VX ∈ D, then
there will be edges from i.X to R.Z|σi ∩R′.Z|σi .

In light of the preceding observations we consider alterna-
tive ways to perform RCI tests that are relevant to CUTs.
We can classify RCI tests for orientating the RDs into the
following categories: (i) relational bivariate orientation
(RBO) which can be further subdivided into split-RBO
and pair-RBO, and (ii) non-RBO.6 We proceed to discuss
each of these in turn.

Split-RBO Relational Bivariate Orientation (RBO) is
an orientation for a CUT where the two ends share the
same attribute class. Given an undirected RD P .X − VY
where P is of cardinality ‘many’, a CUT can be made
〈VX , P̃ .Y ,R.X〉 where one can orient X → Y if it
turns out to be a collider or X ← Y , otherwise. See
Fig. 2 where an item attribute i.Y has three neighbors
for P .X|σi in an intermediate undirected ground graph.
From the perspective of i.Y , P .X|σi can be split into two
parts: a singleton (one) and the rest of the item attributes
(rest). Then, a separating set will be obtained from a
subset of neighbors of VX in an intermediate model. The
corresponding test can be expressed as

one(P .X) ⊥⊥ rest(P .X) | S (3)

where S ⊆ adj(VX ;M′). To carry out the test, we con-
struct a flattened representation as follows. Among σ(IY ),
find items that are connected to at least two IX items
through P in σ. For each element j.X ∈ P .X|σi , create
a row 〈j.X,P .X|σi \ {j.X}〉. Then, refine the resulting
table to ensure that the j.X column is made of unique
item attributes. Columns for S can be added later.

6RBO is proposed as a special rule in Maier et al. [2013]
where a non-collider e.g., not X → Y ← X implies Y → X .
We rather use the term RBO not as an “orientation rule” but as a
way to categorize CUT-based RCI tests.

[PDE].C [PDE].C \ ei.C ei.C

p1 {e1.c, e2.c} {e1.c, e2.c} e1.c
{e1.c, e2.c} e2.c

p3 {e2.c, e3.c, e4.c} {e2.c, e3.c, e4.c} e2.c
{e2.c, e3.c, e4.c} e3.c
{e2.c, e3.c, e4.c} e4.c

p4 {e4.c, e5.c} {e4.c, e5.c} e4.c
{e4.c, e5.c} e5.c

Table 2: Flattened representation (before deduplication)
for split-RBO test ([PDE].C for reference)

i.Y

j.X k.X `.X
P .X|σi \ {j.X}

P .X|σi

Figure 2: An instance in row-j for split-RBO where three
variables are split so as to create three rows. CUT-based
tests will include gray vertices.

As an example, consider a representation to be used for
split-RBO with respect to [EDP].S− [P].C (Tab. 2). Note
that there are multiple employees connected to a prod-
uct. For each such product, we can list product-specific
coworkers who can be split into a singleton and the rest.
One might wonder if we can get by with using an em-
ployee and only one of his/her coworkers. Consider Fig. 2
again where P .X is the cause of VY . Assume, for sim-
plicity, i.Y =

∑
j.X∈P .X|σi

j.x. If we were to consider
only two singletons instead of one singleton and the rest,
the relationship between the two singletons with respect
to their common effect will become low.

Pair-RBO Since split-RBO already covered a case where
P is of cardinality ‘many’, we now consider a type
of RBO with two different candidate undirected RDs
P .X−VY andQ.X−VY where both P andQ are of car-
dinality ‘one’. Due to their cardinalities, P and Q are not
intersectable, and every item attribute j.Y for j ∈ σ(IY ),
there can be at most two item attributes of X represent-
ing P .X and Q.X , i.e., |P .X|σi | ≤ 1 and |Q.X|σi | ≤ 1.
Hence, a separating set is obtained for pairs of singletons.
If multiple RDs are defined for two attribute classes X
and Y , multiple pair-RBO and split-RBO tests can be
used to orient them. Techniques described in Colombo
and Maathuis [2014] for handling conflicting orientations
in a CBN can be adopted to RCM in a relatively straight-
forward manner.

Non-RBO Now, we seek for a principled approach to
orienting RDs when three different attribute classes are
involved in a CUT, say 〈VX , P̃ .Y ,R.Z〉 with P .X−VY
and Q.Z − VY such that X 6= Z. Performing RBO tests



j.Y

k.Z i.X

P .X|σj \{i.X}

P .X|σj

Figure 3: Non-RBO with P .X→VY and Q.Z−VY

before performing any non-RBO tests offers several ad-
vantages: (i) If RBO-tests between X and Y fail to orient
a RD, we can conclude that X and Y exhibit weak de-
pendence in relational data, in which case, it is advisable
to avoid non-RBO tests that involve X and Y , which
may result in incorrect orientations; and (ii) If some of
the RDs are oriented (e.g., X ≺ Z), then we can limit
the tests to be performed to those that seek a separating
set only from VZ . Further, a separating set S will be
pa(VZ ;M′) ⊆ S ⊆ adj(VZ ;M′), which can reduce the
number of tests needed to obtain a separating set. (iii) At
least one of P and Q is of cardinality ‘one’, permitting us
to use a CI test (on suitably flattened data) in place of non-
RBO RCI tests. If both are of cardinality ‘one’, non-RBO
tests can be done in a manner similar to pair-RBO. (iv) Fi-
nally, if Q be of cardinality ‘one’, then the orientation be-
tween X and Y would have already been determined (be-
cause a split-RBO test, it would precede a non-RBO test).
Further, if P̃ .Y → VX then, no RCI test is required since
the CUT is a non-collider. Hence, the only case left for
non-RBO test is P .X → VY −Q.Z ∈M′ with P being
of cardinality ‘many’. Without knowing whether X 6≺ Z
nor whether Z 6≺ X , we may need to examine separating
sets from both IX and IZ perspectives. First, from IZ per-
spective, RCI test can be performed in a table where row-
j for j ∈ σ(IY ) represents 〈k.Z,P .X|σj , . . . ,S`|σk , . . .〉
where {k} = Q|σj and pa(VZ ;M′) ⊆ S ⊆ adj(VZ ;M′).
With IX perspective, we should pick one of P .X|σj ,
i.e., one(P .X), for row-j and test against Q.Z|σj , which
is a singleton. Similarly, a separating set S satisfies
pa(VX ;M′) ⊆ S ⊆ adj(VX ;M′).

Detecting Weak Dependence Ramsey et al. [2006] ex-
plored techniques for determining whether CI tests against
the given data yield consistent orientations of edges in a
CBN. Given an unshielded triple X − Y −Z, one can ex-
amine whether Y appears in every S ⊆ adj({X,Z};G)
such that X ⊥⊥ Z | S and not in W ⊆ adj({X,Z};G)
such that X 6⊥⊥ Z |W . However, because this not only is
time consuming and but also yields very conservative re-
sults, a more pragmatic alternative is to examine whether
both (X ⊥⊥ Z | S) and (X ⊥⊥ Z | S ∪ {Y }) result
independence for some separating set S which does not
include Y . The idea can be incorporated into RpCD where
one can check, for example, with conditionals S∪{P̃ .Y }
in testing against a CUT 〈VX , P̃ .Y ,Q.Z〉 where P̃ ∈ P̃ .
In contrast, given our approaches (i.e., split-, pair-, and

Aggregation Order Ind. Base size Precision Recall

False False 200 98.23 61.91
500 98.90 77.92

True 200 98.86 57.95
500 99.13 76.77

True False 200 97.75 65.44
500 98.87 80.31

True 200 98.75 61.77
500 99.09 79.03

Table 3: Precision and recall (based on macro-average)
for discovering undirected RDs in Phase I.

non-RBO), a better test can be achievable by limiting the
item attributes of Y to only those that are relevant to P .X ,
which is VY . For split-RBO with a separating set S, the
following test can be performed,

one(P .X) ⊥⊥ rest(P .X) | S ∪ {VY }.

This detection mechanism can be applied to pair-RBO
and non-RBO cases.

6 EXPERIMENTS AND RESULTS

Experiments We conducted experiments with synthetic
data generated from known RCMs to assess how the
proposed approaches to replacing RCI oracle with RCI
tests against relational data impact the performance of
RpCD. In our implementation, we used two kernel-based
CI tests, HSIC [Gretton et al., 2005] for marginal, and
SDCIT [Lee and Honavar, 2017b] for conditional RCI
queries. In our kernel-based CI test for multi-set valued
random variables, we used, following Haussler [1999],
K ′(x,y; θ) =

∑
x∈x

∑
y∈yK(x, y; θ). In the case of

real-valued data, K is chosen to be a RBF kernel whose
parameter θ is chosen using the median heuristic [Gretton
et al., 2007]. The resulting kernel matrices are normal-
ized, e.g., Ka,b ←Ka,b/

√
Ka,aKb,b.

We tested the performance of RpCD with the improve-
ments proposed in this paper and the baseline (RpCD us-
ing the CI test for RCI with no other changes) on 300 ran-
domly generated RCMs of varying complexity. For each
RCM, we randomly generated different sizes of relational
data with n = 200 to 500 resulting in approximately n
items per entity class and 2n relationships per relationship
class. We parametrized the RCM using an adaptation of
a linear Gaussian model to a relational setting. We used
Average as the aggregation function. Additional details
about the experimental setup and results are provided in
the Appendix.7

7Code is available at https://github.com/
sanghack81/RRCD



200 500

Acc. C NC Acc. C NC

CUT (RBO) 54.0 46.1 60.7 54.1 46.4 60.6
P+S 68.7 64.7 72.6 75.6 73.4 77.9
w/ detection 71.2 68.4 74.0 77.4 74.7 80.0

CUT 65.5 77.0 61.4 74.1 77.8 72.8
P+S+N 74.0 73.2 74.7 80.4 78.2 82.2
w/ detection 80.9 75.0 85.4 85.7 82.6 88.2

Table 4: Accuracies for orientation tests (overall (Acc.),
collider (C), and non-colliders (NC)), for CUT-based tests,
proposed tests, and with the weak dependency detection
mechanism enabled. P, S, and N stands for Pair-RBO,
Split-RBO, and Non-RBO, respectively.

Phase I Experimental Results We find that (see Tab. 3),
as the size of relational data increases, the performance
of Phase I improves as expected. Order-independence
mitigates the effect of early false negative RCI test results,
perhaps at the expense of a slightly reduced recall of undi-
rected relational dependencies. Aggregation improves the
power of the test at the expense of a slight increase in the
false positive rate of the test. Note that the high precision
and relatively low recall implies that errors of RCI tests
are mainly false negatives.

We additionally investigated the types of queries where re-
lational conditional independence is correctly found to not
hold by the additional aggregation-based tests. Aggrega-
tion was especially effective in reducing the false negative
rate of the tests of independence between a canonical RV
and its child (tests in a reverse direction) while rarely
producing false positives (see Appendix).

Phase II Experimental Results Given the correct set
of dependencies (which correspond to perfect Phase I
results), we first performed experiments to measure the
effectiveness of split-, pair-, and non-RBO tests relative to
the CUT-based tests. Tab. 4 shows the performance based
on the first smallest separating set found. CUT-based
tests do not perform well even with larger relational data
(which also makes relational structure more complicated)
for RBO cases. Proposed RBO tests outperform CUT-
based tests regardless of the type of orientations, colliders
or non-colliders, and show improvements with larger data.
Additional weak dependency detection mechanism helps
refining false negatives. A similar trend is observed when
we also considered non-RBO cases. Note that, unlike
Phase I, false negatives in Phase II might cause wrong
orientations, thus, affecting both precision and recall.

Next, we compared our approach against a naive CUT-
based approach by measuring the average precision and
recall for the final orientations with respect to the true

CPRCM8 instead of the RCM. The final orientations for
our approach were determined as follows: i) a majority
vote rule is used to determine the orientation of each at-
tribute class triple (local)9; ii) the maximal non-conflicting
local orientations are obtained (global). The baseline with
CUT-based tests used the same majority rule but each
orientation is accepted in a sequential manner if it does
not cause conflicts with the already accepted orientations.
Given the perfect Phase I results, the precision and recall
for Phase II based on our approach are 93.5% and 75.4%,
respectively (n = 500), as compared to 75.3% and 69.7%,
respectively, for the CUT-based Phase II. Thus, we see
substantial improvements over the baseline.

7 SUMMARY AND DISCUSSION

We introduced a robust algorithm for learning the struc-
ture of a relational causal model from the given relational
data. We showed how a conditional independence test
designed for iid data can be used to effectively test for re-
lational conditional independence against relational data.
The relational causal Markov condition, a relational vari-
able being independent of its non-descendants given its
direct causes, allows the test to correctly establish rela-
tional conditional independence, whereas the non-iid-ness
of relational data helps the test to reject independence
when independence does not hold. We introduced several
techniques to improve the robustness of the algorithm,
and empirically demonstrated their effectiveness. Despite
these promising results, there is much room for further
improvement, through better methods for testing indepen-
dence of variables whose values are multi-sets, kernels
optimized for the given relational data, as well as im-
proved tests for relational conditional independence.
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Appendix

RPCD ALGORITHM

We present RpCD algorithm in Alg. 1.

Algorithm 1 RpCD [Lee and Honavar, 2016a]
Input: S relational schema, h hop threshold
1: initialize D with candidate RDs up to h hops.
2: initialize an undirected graph M′ with undirected D.
3: `← 0
4: repeat
5: for (P .Y ,VX) s.t. P .Y − VX ∈M′ do
6: for every S ⊆ ne(VX ;M′) \ {P .Y } s.t. |S| = ` do
7: if P .Y ⊥⊥ VX | S then
8: remove {P .Y − VX , P̃ .X − VY } from M′.
9: break

10: `← `+ 1
11: until |ne(VX ;M′)| − 1 < ` for every X ∈ A

12: initialize U with CUTs from M′.
13: N← ∅, H← 〈A, {X − Y | P .Y − VX ∈M′}〉
14: for every 〈VX ,P .Y ,R.Z〉 ∈ U do
15: if 〈X,Y ,Z〉 ∈ N or {X,Z} ∩ ne(Y ;H) = ∅ or
{X,Z} ∩ ch(Y ;H) 6= ∅ then

16: continue
17: if exists S ⊆ adj(VX ;M′) s.t. R.Z ⊥⊥ VX | S then
18: if S ∩ P .Y = ∅ then orient X → Y ← Z in H
19: else if X = Z then orient Y → X in H
20: else add 〈X,Y ,Z〉 to N

21: orient edges in H with sound rules with N.

22: completes (H,N)

23: return
⋃
P .Y−VX∈M′

{
P .Y → VX Y → X ∈ H

P .Y − VX Y −X ∈ H

RELATIONAL DATA

We randomly generated 300 relational schemas of 3
(50%), 4 (25%), and 5 (25%) entity classes with spec-
ified probabilities. Two to five relationship classes are
randomly generated to connect a pair (i.e., binary rela-
tionship) of entity classes or a triple with 75% and 25%
probability, respectively. Cardinalities are selected uni-
formly. One to three attribute classes are generated for
each entity class, and zero or one attribute class is gener-
ated for each relationship class. Finally, created relational
schemas that do not satisfy following rules are excluded:
(i) all item classes are connected and (ii) the total number
of attribute classes are less than or equal to 8.

RCMs are also generated randomly. Given a relational
schema S, max hop length h is selected uniformly be-
tween 2 to 4. The number of dependencies is determined
by b 3|A|

2 c and uniformly selected among all relational
dependencies within the given h. We limit the maximum
number of parents of a canonical relational variable by

3. We reject generated RCMs if there exists an isolated
attribute class that does not involve any relational depen-
dency. Further, if the CPRCM (a maximally-oriented
RCM representing the Markov equivalence class of a
RCM) of the generated RCM has no directed dependen-
cies, that is, the orientation of relational dependencies
is impossible in theory. We adopt a linear model with
additive Gaussian noise using average aggregators:

i.X ←
∑

P .Y ∈pa(VX ;M)

βP .Y ,VX

|P .Y |σi |

( ∑
j.Y ∈P .Y |σi

j.Y

)
+ ε

where βP .Y ,VX = 1 + |γ| where γ ∼ N
(
0, 0.12

)
for

every P .Y ∈ pa (VX ;M) for every X ∈ A. ε ∼
N
(
0, 0.12

)
. The set of parameters will likely yield a re-

lational data less hostile for our learning algorithm given
that β ≥ 1 and the variance of noise is relatively small.
This fulfills our intention to assess the behavior of learn-
ing algorithm across different settings. If we wanted to
exploit the fact that the generated RCMs are based on
an average aggregator, we could incorporate this into the
choice of kernel so that R-convolution kernel is not nec-
essary but a simple RBF kernel on averaged values is
sufficient.

Random relational skeletons are generated with a user-
specified base size n. Given n, the number of relation-
ships (i.e., relationship instances or relationship items)
for each relationship class is the twice of the base size if
the cardinality is ‘many’ for every its participating entity
class and the same as base size, otherwise. The number
of entities per entity class can be computed as b1.2k · nc
where k is the number of related relationship classes with
all-‘one’ cardinalities. For each RCM, we generate 4 rela-
tional skeletons corresponding to base size from 200 to
500, increased by 100.

ROBUSTIFICATION of RPCD VS. NAIVE RPCD

For the robust RpCD, we adopted features mentioned in
the main paper: order-independence for Phase-I, and split-
RBO, pair-RBO, non-RBO tests, and weak dependence
detection for Phase-II. Aggregation-based additional tests
are applied to both phases. Separating sets are sought
from the smallest size of conditionals to the largest. If a
separating set is found with size k, the algorithm checks
the existence of other separating sets of the same size,
which we call ‘minimal separating sets’. Then, the orien-
tation of relational dependencies is based on a majority
vote for the orientation of each pair of attribute classes.
At the end of the algorithm, different orientations are com-
bined to yield a partially-oriented RCM (PRCM) which
maximally satisfies obtained test results. If there are mul-
tiple candidate PRCMs matching the same number of test



Aggregation Order Ind. Base size precision recall

True False 200 97.70% 63.71%
300 97.61% 70.93%
400 98.42% 76.21%
500 98.81% 78.74%

True 200 98.64% 60.12%
300 98.99% 69.27%
400 99.00% 74.52%
500 99.04% 77.32%

False False 200 98.02% 60.39%
300 98.02% 68.40%
400 98.32% 73.77%
500 98.82% 76.29%

True 200 98.76% 56.45%
300 98.94% 66.23%
400 98.86% 71.83%
500 99.06% 75.03%

Table 5: Performance based on micro-average of Phase-I.

Base Size Aggregation Order Ind. TP FP

200 False True 4.843 0.060
False 5.143 0.090

True True 5.103 0.067
False 5.350 0.130

500 False True 6.373 0.057
False 6.493 0.093

True True 6.523 0.063
False 6.633 0.090

Table 6: Performance of Phase-I with average num-
ber of true positives (TP) and of false positives (FP)/
FPs are reduced to about two thirds by adopting order-
independence.

results, then we choose a PRCM, which has the most
common orientations with other competitors.

PHASE-I

We first report the performance of Robust RpCD for
Phase-I. Micro-averaged precision and recall for undi-
rected dependencies are reported (see Tab. 5). As the size
of data increases, more accurate RCMs are discovered
since RCI tests can better catch genuine dependencies.
We observe relatively high precision in general even with
a small-sized relational data, which implies that the main
problem of the structure learning is false negatives due to
weak dependencies.

Order-independence Fig. 4a depicts plots of perfor-
mance with and without order-independence — the aver-
age number of true and false positives without additional
aggregation-based tests. First, order-dependence can yield
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200 300 400 500
base size

0.0

0.1

0.2

0.3

0.4

0.5
counts

right direction
reverse direction
false positive

200 300 400 500
base size

0.0

0.2

0.4

0.6

0.8

1.0

proportions

Figure 5: RCI query saved by aggregation-based tests

a higher number of both true and false positives. We can
observe that order-independence reduces the number of
false positives (see Tab. 6).

Aggregation In Fig. 4b, aggregation-based CI tests
yield higher true positives without increasing false posi-
tives much. Since the non-aggregated test and its corre-
sponding aggregated test are correlated, doubling the test
does not significantly increase the false positive rate.

We explored which types of RCI queries are ‘saved’ by
aggregated tests, i.e., (U ⊥⊥ V |W)∧ (f (U) 6⊥⊥ V |W)
such that U is adjacent to V at the end of Phase I. We
report three cases: i) false positive, U 6∈ adj (V ;M); ii)
right direction, U ∈ pa (V ;M); and iii) reverse direction,
U ∈ ch (V ;M). We expected that the aggregation-based
test is particularly useful when U ∈ ch (V ;M) since V
affects each of item attribute in U ‘individually’. Then,
averaging values might help reducing noises. In Fig. 5,
we illustrate the average number of saved dependencies
in the three categories and their proportions. Note that, an
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Figure 6: Effect of detection mechanism

adjacency P .X − VY , which is also P̃ .Y − VX , can be
counted twice. We can first observe that the total number
of saved relational dependencies decreases as data size
increases since the original (i.e., non-aggregation-based)
test will catch weak dependencies better. RCI tests in a
reverse direction, e.g., U ∈ ch (V ;M), are mostly saved
by aggregation. The use of aggregation will become more
useful as the relationships in a relational skeleton become
more complicated.

PHASE-II

We first overview how each feature affects the perfor-
mance of orientation in terms of precision and recall as-
suming perfect Phase-I, which allows us to judge better
how different features work. More specifically, ‘correctly
directed’ relational dependencies lie in the intersection
of oriented relational dependencies through Phase-II and
true relational dependencies. Then, precision and recall
are the proportion of correctly directed relational depen-
dencies among directed relational dependencies through
Phase-II, and among directed relational dependencies in
the corresponding CPRCM, respectively.

Size Precision Recall F-measure

200 65.8 61.0 63.3
300 74.2 67.8 70.8
400 71.9 66.6 69.1
500 75.3 69.7 72.4

Table 7: Orientation performance of a naive approach
with CUT-based RCI tests.

Agg. Size Detection Prec. Recall F

False 200 False 79.0 64.5 71.0
300 84.7 68.7 75.8
400 88.1 72.8 79.7
500 87.8 73.6 80.1

False 200 True 88.6 69.4 77.8
300 92.4 73.0 81.5
400 94.2 76.2 84.2
500 93.6 75.9 83.8

True 200 True 88.3 70.1 78.2
300 91.5 73.6 81.6
400 93.8 76.6 84.3
500 93.5 75.4 83.5

Table 8: Orientation performance with our proposed ap-
proach using RCI tests.

We report micro-average for precision and recall in Tabs. 7
and 8 for a naive approach (i.e., CUT-based RCI tests with
a majority vote rule and a simple sequential strategy to
resolve conflicts among orientations.) and our approach
(i.e., the proposed RCI tests with the weak dependence de-
tection mechanism, the majority vote rule and a maximal
non-conflicting orientations strategy), respectively. The
differences in both precision and recall between the two
approaches are due to the effectiveness of our proposed
RCI tests (as shown in the main text) and the fact that
finding a maximally non-conflicting orientations works
as a majority vote rule for final orientations of relational
dependencies.

DETECTING CONFLICTS FOR RBO AND NON-
RBO We investigate how weak dependency detection
mechanisms for RBO and non-RBO work. In Fig. 6, we
illustrate the average number of RCI tests which turned
out to be colliders or non-colliders, and whether the RCI
test results were right or wrong.

Without detection (the top row), we observe that there ex-
ists a non-negligible amount of wrong collider test results.
This implies that a set of conditionals without blocking
P̃ .Y (or Q̃.Y ) yields wrong independence. This, again,
suggests how false negatives dominate the performance
of the learning algorithm.

With the detection mechanism enabled, the middle row



in the figure shows the average orientation results only
when an empty set as a separating set is considered. Black
bars represent cases where a pair of tests turned out to
be dependent, that is, an orientation was not determined.
Gray bars (nearly invisible) show cases where both tests
returned independence. We can clearly see that the mech-
anism catches colliders better than without it.

The last row in the figure illustrates orientation results for
the undetermined in the previous case (black bars). Note
that, since the algorithm seeks for more than one separat-
ing set, the lengths of bars in the last row are longer than
the lengths of black bars in the middle row. Collider-fail
represents a condition where the detection mechanism re-
jects a collider since both tests yield independence. More
than a half of cases, the mechanism correctly rejected
false colliders, yielding a relatively low false collider
rate.


