
Ontology-Extended Component-Based
Workflows: A Framework for Constructing

Complex Workflows from Semantically
Heterogeneous Software Components

Jyotishman Pathak, Doina Caragea, and Vasant G. Honavar

Artificial Intelligence Research Laboratory,
Department of Computer Science,

Iowa State University,
Ames, IA 50011-1040, USA

{jpathak, dcaragea, honavar}@cs.iastate.edu

Abstract. Virtually all areas of human endeavor involve workflows -
that is, coordinated execution of multiple tasks. In practice, this requires
the assembly of complex workflows from semantically heterogeneous
components. In this paper, we develop ontology-extended workflow
components and semantically consistent methods for assembling such
components into complex ontology-extended component-based work-
flows. The result is a sound theoretical framework for assembly of
semantically well-formed workflows from semantically heterogeneous
components.

Keywords: Workflows, Ontologies, Components.

1 Introduction

Almost all areas of human activity - education, business, health care, science,
engineering, entertainment, defense - involve use of computers to store, access,
process, and use information. The term workflow typically refers to coordinated
execution of multiple tasks or activities [16, 1, 12]. Processing of an invoice, the
protocol for data acquisition and analysis in experimental science, responding to
a natural disaster, could all be viewed as workflows.

Examination of workflows in specific domains reveals that many activities
(e.g., the task of credit evaluation in financial services workflows) are common
to several workflows. Encapsulation of such activities in the form of reusable
modules or workflow components, which can be assembled to create complex
workflows, can greatly reduce the cost of developing, validating, and maintaining
such workflows [21]. Hence, component-based approaches to designing workflows
has begun to receive considerable attention in the literature [6, 8, 15,21].

A component [10, 19] is a piece of software that can be independently de-
veloped and delivered as a unit. Well-defined interfaces allow a component to
be connected with other components to form a larger system. Component-based

C. Bussler et al. (Eds.): SWDB 2004, LNCS 3372, pp. 41–56, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

42 J. Pathak, D. Caragea, and V.G. Honavar

software development [9] provides a flexible and cost-effective framework for
reuse of software components. Compositionality ensures that global properties of
the resulting system can be verified by verifying the properties of the constituent
components. By analogy with software components, a workflow component can
be viewed as a workflow module (i.e., an executable piece of software) which can
be connected to other workflow modules through well-defined interfaces.

A simple workflow consisting of two simple components: F-Sensor and
Weather Description is shown in Figure 1. The function of this workflow is to

F-Sensor Weather
Description

Input Signals / Bit
Streams

Temperature
(in F)

Temperature
(in F)

Hot

Warm

Cold

If (temperature > 80) then Hot
if (50 < temperature < 80) then Warm

if (temperature < 50) then cold

Fig. 1. Weather Description with F-Sensor

determine whether the day is hot, or warm or cold based upon the tempera-
ture. The input to the F-Sensor component consists of signals from one or more
sensors and its output is the current temperature (in degree F) and the input
to the Weather Description component is the current temperature (in degree F
from the output of F-Sensor component) and its output is a description of the
day (hot or warm or cold). Note that in this example, the output produced by
the F-Sensor component has the same semantics as the input of the Weather
Description component; furthermore, the name Temperature used in the vocab-
ulary associated with the F-Sensor component has the same meaning as the term
Temperature in the vocabulary associated with the Weather Description compo-
nent. In the absence of syntactic or semantic mismatches between components,
their composition is straightforward.

However, it is unrealistic to expect such syntactic and semantic consistency
across independently developed workflow components libraries. Each such work-
flow component library is typically based on an implicit ontology. The workflow
component ontology reflects assumptions concerning the objects that exist in
the world, the properties or attributes of the objects, the possible values of at-
tributes, and their intended meaning from the point of view of the creators of
the components in question. Because workflow components that are created for
use in one context often find use in other contexts or applications, syntactic and
semantic differences between independently developed workflow components are
unavoidable. For example, consider a scenario where we replace the F-Sensor
component with a new component: C-Sensor. Suppose C-Sensor behaves very
much like F-Sensor except that it outputs the temperature, denoted by Temp,
and measured in degrees Centigrade instead of degrees Fahrenheit. Now we can
no longer compose C-Sensor and Weather-Description components into a sim-
ple workflow, because of the syntactic and semantic differences between the two

Ontology-Extended Component-Based Workflows 43

components. Effective use of independently developed components in a given con-
text requires reconciliation of such syntactic and semantic differences between
the components. Because of the need to define workflows in different application
contexts in terms of vocabulary familiar to users of the workflow, there is no
single privileged ontology that will serve all users, or for that matter, even a
single user, in all context.

Recent advances in networks, information and computation grids, and WWW
have made it possible, in principle, to assemble complex workflows using a diver-
sity of autonomous, semantically heterogeneous, networked information sources
and software components or services. Existing workflow management systems
(WfMS) allow users to specify, create, and manage the execution of complex
workflows. The use of standard languages for defining workflows [1] provides for
some level of portability of workflows across different WfMS. A major hurdle
in the reuse of independently developed workflow components in new applica-
tions arise from the semantic differences between the independently developed
workflow components. Hence, realizing the vision of the Semantic Web [2], i.e.,
supporting seamless access and use of information sources and services on the
web, in practice calls for principled approaches to the problem of assembly of
complex workflows from semantically heterogeneous components - the workflow
integration problem.

The workflow integration problem can be viewed as a generalization of the
Information Integration problem [14]. Hence, we build on recent developments
in component-based workflow design [6,8,15,21] to extend ontology-based solu-
tions of the information integration problem [7, 18] to develop principled solu-
tions to the workflow integration problem. Specifically, in this paper, we develop
ontology-extended workflow components and mappings between ontologies to fa-
cilitate assembly of ontology-extended component-based workflows using seman-
tically heterogeneous workflow components. The proposed ontology-extended
component-based workflows provide a sound theoretical framework for assembly
of semantically well-formed workflows from semantically heterogeneous informa-
tion sources and software components.

2 Ontology Extended Component Based Workflows

2.1 Ontologies and Mappings

An ontology is a specification of objects, categories, properties and relationships
used to conceptualize some domain of interest. In what follows, we introduce a
precise definition of ontologies.

Definition (Hierarchy) [4]: Let S be a partially ordered set under ordering
≤. We say that an ordering � defines a hierarchy for S if the following three
conditions are satisfied:
(1) x � y → x ≤ y ; ∀ x, y ∈ S. We say (S, �) is better than (S, ≤)),
(2) (S, ≤) is the reflexive, transitive closure of (S, �),
(3) No other ordering � satisfies (1) and (2).

44 J. Pathak, D. Caragea, and V.G. Honavar

Example: Let S = {Weather, Wind, WindSpeed}. We can define the partial
ordering ≤ on S according to the part of relationship. For example, Wind is part
of the Weather characteristics, WindSpeed is part of the Weather characteristics,
and WindSpeed is also part of Wind characteristics. Besides, everything is part
of itself. Thus, (S, ≤) = {(Weather, Weather), (Wind, Wind), (WindSpeed,
WindSpeed), (Wind, Weather), (WindSpeed, Weather), (WindSpeed, Wind)}.
The reflexive, transitive closure of ≤ is the set: (S, �) = {(Wind, Weather),
(WindSpeed, Wind)}, which is the only hierarchy associated with (S, ≤).

Definition (Ontologies) [4]: Let ∆ be a finite set of strings that can be used
to define hierarchies for a set of terms S. For example, ∆ may contain strings
like isa, part-of corresponding to isa or part-of relationships, respectively. An
Ontology O over the terms in S with respect to the partial orderings contained in
∆ is a mapping Θ from ∆ to hierarchies in S defined according to the orderings
in ∆. In other words, an ontology associates orderings to their corresponding
hierarchies. Thus, if part-of ∈ ∆, then Θ(part-of) will be the part-of hierarchy
associated with the set of terms in S.

Example: Suppose a company K1 records information about weather in some
region of interest (see Figure 2). From K1’s viewpoint, weather is described by
the attributes Temperature, Wind, Humidity and Outlook which are related to
weather by part-of relationship. For example, Wind is described by WindSpeed.
The values Cloudy, Sunny, Rainy are related to Outlook by the is-a relation-
ship. In the case of a measurement (e.g., Temperature, WindSpeed) a unit of
measurement is also specified by the ontology. In K1’s ontology, O1, Tempera-
ture is measured in degrees Fahrenheit and the WindSpeed is measured in miles
per hour. For contrast, an alternative ontology of weather O2 from the viewpoint
of a company K2 is shown in Figure 3.

Weather

Temperature Wind Humidity Outlook

WindSpeed Cloudy Sunny Rainy

Ontology O 1

Fig. 2. Weather Ontology of Company K1

Suppose O1,...,On are ontologies associated with components C1,...,Cn, re-
spectively. In order to compose workflow using those semantically heterogeneous
components, the user needs to specify the mappings between these ontologies of
the various components. For example, a company K3, with ontology O3 uses me-
teorology workflow components supplied by K1 and K2. Suppose in O3, Weather

Ontology-Extended Component-Based Workflows 45

Weather

Temp Wind Humidity Prec

WindSpeed

HeavyRain LightRain

Ontology O 2

WindDir
Rain

NoPrec
Snow

LightSnowHeavySnow

Fig. 3. Weather Ontology of Company K2

is described by Temperature (measured in degrees Fahrenheit), WindSpeed (mea-
sured in mph), Humidity and Outlook. Then, K3 will have to specify a suitable
mapping MO1 �→O3 from K1 to K3 and a mapping MO2 �→O3 from K2 to K3. For
example, Temperature in O1 and Temp in O2 may be mapped by MO1 �→O3 and
MO2 �→O3 respectively to Temperature in O3. In addition, conversion functions to
perform unit conversions (e.g. Temp values in O2 from degrees Centigrade to de-
grees Fahrenheit) can also be specified. Suppose K3 considers Precipitation in O2
is equivalent to Outlook in O3 and maps Rain in O2 to Rainy in O3. This would
implicitly map both LightRain and HeavyRain in O2 to Rainy in O3. These
mappings between ontologies are specified through interoperation constraints.

Definition (Interoperation Constraints) [7, 4]: Let (H1, �1) and (H2, �2), be
any two hierarchies. We call the set of Interoperation Constraints (IC) the set of
relationships that exists between elements from two different hierarchies. For two
elements, x ∈ H1 and y ∈ H2, we can have one of the following Interoperation
Constraints:

– x : H1 = y : H2
– x : H1 �= y : H2
– x : H1 ≤ y : H2
– x : H1 �≤ y : H2

Example: For the weather domain, if we consider part-of hierarchies associated
with the companies K1 and K2, we have the following interoperation constraints,
among others- Temperature : 1 = Temp : 2, Outlook : 1 = Prec : 2, Humidity :
1 �= Wind : 2, WindDir : 2 �≤ Wind : 1, and so on.

Definition (Type, Domain, Values) [7,4]: We define T = {τ | τ is a string} to
be a set of types. For each type τ , D(τ) = {v|v is a value of type τ} is called the
domain of τ . The members of D(τ) are called values of type τ .

Example: A type τ could be a predefined type, e.g. int or string or it can be a
type like USD (US Dollars) or kmph (kilometers per hour).

Definition (Type Conversion Function) [7, 4]: We say that a total function
f(τ1, τ2): D(τ1) �→ D(τ2) that maps the values of τ1 to values of τ2 is a type

46 J. Pathak, D. Caragea, and V.G. Honavar

conversion function from τ1 to τ2. The set of all type conversion functions satisfy
the following constraints:

– For every two types τ i, τ j ∈ T, there exists at most one conversion function
f(τi, τj).

– For every type τ ∈ T, f(τ, τ) exits. This is the identity function.
– If f(τi, τj) and f(τj , τk) exist, then f(τi, τk) exists and f(τi, τk) = f(τi, τj)

◦ f(τj , τk) is called a composition function.

In the next few sections, we incorporate these definitions into our framework.

2.2 Component-Based Workflows

Definition (Primitive Component): A primitive component is a coherent pack-
age of software, that can be independently developed and delivered as a unit,
and that offers interfaces by which it can be connected, unchanged, with other
components.

Definition (Component): A component can be recursively defined as follows:

– A primitive component is a component.
– The composition of two or more components is a component.

Definition (Component-Based Workflow): A component-based workflow can be
recursively defined as follows:

– A component is a workflow.
– The composition of two or more workflows is a workflow.

We can see that components are the building blocks upon which a workflow
can be designed and composed.

Workflow Languages [1] facilitate precise formal specification of workflows.
Graph-Based Workflow Language (GBWL) [20] allows us to model various as-
pects of traditional workflows which are relevant to our work. A GBWL specifica-
tion of a workflow, known as workflow schema (WFS), describes the components
of the workflow and the characteristics of the environment in which the workflow
will be executed. The workflow schemas are connected to yield directed graphs
of workflow schemas, called workflow schema graphs (WSG). The nodes of a
WSG correspond to the workflow components and edges specify the constraints
between the components. Figure 4 shows a WSG consisting of three components.
Note that each workflow component trivially has a WSG description. When a
workflow is to be executed, a WFS is instantiated resulting in the creation of a
workflow instance (WFI). Each WFI created from a well-formed WFS is guar-
anteed to conform to the conditions specified by the WFS. The functional aspect
of a workflow schema specifies the task to be performed by the corresponding
workflow instances. The information aspect of a WSG specifies the data flow
between the individual components. Associated with each component is a set of
typed inputs and outputs. At the initiation of a workflow, the inputs are read,
while on termination the results of the workflow are written to the outputs. The

Ontology-Extended Component-Based Workflows 47

a

b

c q y

p x

Input to Workflow

Output of Workflow

1 2 3

d

e s

r w

z

Data Flow Link

Control Flow Link

Fig. 4. Workflow Schema Graph

data flow which is defined in terms of the inputs and outputs, models the transfer
of information through the workflow. For example, in Figure 4, component 1 has
inputs a and b and an output c, and component 2 has an input p and an output
q. Note that the data flow between components 1 & 2 is represented by the data
flow link (c, p). The behavioral aspect of a WFS specifies the conditions under
which an instance of the component will be executed. The behavior of a workflow
is determined by two types of conditions: Control conditions and Instantiation
conditions. The relation between the components is determined by the control
conditions, which are expressed by the control flow links. These control flow links
specify the execution constraints. For example, Figure 4 shows control flow links
(e, r) specifying that the execution of component 1 has to precede the execution
of component 2. In order for a workflow component to be executed, its instanti-
ation conditions have to be set to T rue. Specifically, the existence of a control
flow link from 1 to 2 does not imply that 2 will necessarily be executed as soon
as 1 is executed (unless the instantiation conditions are satisfied). In general, it
is possible to have cyclic data and control flow links. However, in the interest of
simplicity, we limit the discussion in this paper to acyclic WSG.

2.3 Ontology-Extended Workflow Components

From the preceding discussion it follows that a workflow can be encapsulated
as a component in a more complex workflow. Thus, to define ontology-extended
component-based workflows, it suffices to show how components can be extended
with ontologies and how the resulting ontology-extended components can be
composed to yield more complex components (or equivalently, workflows).

Recall that a component has associated with it, input, output and control flow
attributes. The control flow attributes take values from the domain D(CtrlType)
= {true, false, φ}, where the value of φ corresponds to the initial value of a control
flow attribute indicating that the control flow link is yet to be signaled.

Definition (Ontology-Extended Workflow Component): An ontology-extended
workflow component, s, consists of (see Figure 5):

48 J. Pathak, D. Caragea, and V.G. Honavar

Weather Description

component S with

ontology Os

cout s

Control Input

 Attribute Input Attributes

Output Attributes
Control Output Attribute

Temperature

Day

cins

Fig. 5. Ontology-Extended Workflow Component

– An associated ontology Os.
– A set of data types τ1, τ2,..., τn, such that τ i ∈ Os, for 1 ≤ i ≤ n.
– A set of input attributes inputs represented as an r -tuple (A1s :τ i1 ,...,Ars :τ ir)

(e.g., Temp:C is an input attribute of type Centigrade).
– A set of output attributes outputs represented as a p-tuple

(B1s :τ j1 ,...,Bps
:τ jp

) (e.g., Day:DayType is an output attribute of type
DayType whose enumerated domain is {Hot, Warm, Cold}).

– A control input attribute, cins, such that τ(cins) ∈ CtrlType. A true value
for cins indicates that the component s is ready to start its execution.

– A control output attribute, couts, such that τ(couts) ∈ CtrlType. A true
value for couts indicates the termination of the execution of component s.

The composition of two components specifies the data flow and the control flow
links between the two components. In order for the meaningful composition of
ontology-extended workflow components to be possible, it is necessary to resolve
the semantic and syntactic mismatches between such components.
Definition (Ontology-Extended Workflow Component Composition): Two
components s (source) (with an associated ontology Os) and t (target) (with
an associated ontology Ot) are composable if some (or all) outputs of s are used
as inputs for t. This requires that there exists:

– A directed edge, called control flow link, Clink(s, t), that connects the source
component s to the target component t. This link determines the flow of
execution between the components. We have:

Clink(s, t) ∈ couts × cint,

which means that there exists x ∈ couts and y ∈ cint such that τ(x) ∈
CtrlType and τ(y) ∈ CtrlType. For example, in Figure 4, (e, r) is a control
flow link between the components 1 and 2.

– A set of data flow links, Dlink(s, t) from the source component s to the
target component t. These links determine the flow of information between
the components. We have:

Dlink(s, t) ⊆ outputs × inputt,

Ontology-Extended Component-Based Workflows 49

which means that there exist attributes x ∈ outputs and y ∈ inputt, such
that τ(x) = τ i ∈ Os and τ(y) = τ j ∈ Ot. For example, in Figure 4, (c, p) is
a data flow link between the components 1 and 2.

– A set of (user defined) interoperation constraints, IC(s, t), that define a
mappings set MS(s, t) between outputs of s in the context of the ontology
Os and inputs of t in the context of the ontology Ot. Thus, if x : Os = y : Ot

is an interoperation constraint, then x will be mapped to y, and we write x
�→ y.

– A set of (user defined) conversion functions CF (s, t), where any element
in CF (s, t) corresponds to one and only one mapping x �→ y ∈ IC(s, t).
The identity conversion functions may not be explicitly specified. Thus,
|IC(s, t)| ≤ |CF (s, t)|.
Note that, in general, a component may be connected to more than one source

and/or target component(s). The mappings set MS(s, t) and the conversion
functions CF (s, t) together specify a mapping component, which performs the
mappings from elements in Os to elements in Ot.

Definition (Mapping Component): A mapping component, MAP (s, t), which
maps the output and the control output attributes of the source s to the input
and the control input attributes of the target t respectively, consists of:

– Two ontologies, Os and Ot, where Os is associated with the inputs of
MAP (s, t), and Ot is associated with its outputs.

– A set of mappings MS(s, t) and their corresponding conversion functions
CF (s, t) that perform the actual mappings and conversions between inputs
and outputs.

– A set of data inputs inputmap=(A1M
: τs1 , · · · , ApM

: τsp
), which correspond

to the output attributes of component s, that is, inputmap ≡ outputs. Also,
τ s1 ,..., τ sp is a set of data types such that τ si ∈ Os, ∀ 1 ≤ i ≤ p.

– A set of data outputs outputmap=(B1M
: τ t1 ,...,BrM

: τ tr), which correspond
to the input attributes of component t, that is, outputmap ≡ inputt. Also,
τ t1 ,...,τ tr

is a set of data types such that τ ti
∈ Ot, ∀ 1 ≤ i ≤ r.

– A control input cinmap, which corresponds to the control output attribute,
couts of component s. Also, τ(cinmap) = CtrlType.

– A control output coutmap, which corresponds to the control input attribute,
cint of component t. Also, τ(coutmap) = CtrlType.

Ontology-extended workflow component instances (see Figure 6) are obtained
by instantiating the ontology-extended workflow components at execution time.
This entails assigning values to each of the component attributes. These values
need to be of the type specified in the component schema. If a component in-
stance ins is based on a component schema sch of the component s, we say that
hasSchema(ins) = sch. We also say that for a given attribute, p, v(p) ∈ D(t)
refers to its value, if τ(p) = t ∈ Os.

Definition (Ontology-Extended Workflow Component Instance): The instance
corresponding to an ontology-extended workflow component s has to satisfy the
following constraints:

50 J. Pathak, D. Caragea, and V.G. Honavar

Weather Description

Instance Component i

true

true

87

Hot

Fig. 6. Ontology-Extended Workflow Component Instance

– For every input attribute x ∈ inputs, v(x) ∈ D(t), if τ(x) = t ∈ Os (e.g.,
Temperature = 87).

– For every output attribute y ∈ outputs, v(y) ∈ D(t), if τ(y) = t ∈ Os (e.g.,
DayType = Hot).

– For the control input attribute, cins ∈ {true, false, φ}, a true value indicates
that the component s is ready for execution.

– For the control output attribute, couts ∈ {true, false, φ}, a true value indi-
cates that the component s has finished its execution.

– For an instantiation condition, inscs ∈ {true, false}. If the evaluation of
this condition returns true, then the execution of the component begins.
This condition is defined as:

inscs ≡ {(cins) Λ (∀ x ∈ inputs, ∃ v(x))},

such that τ(x) = t and t ∈ Os.

Semantic Consistency of composition of ontology extended workflow compo-
nents is necessary to ensure the soundness of component-based workflow assembly.
Definition (Consistent Workflow Component Composition): The composition
of any two ontology-extended workflow components s (source) and t (target) is
said to be consistent, if the following conditions are satisfied:

– The data & control flow between s and t must be consistent, i.e., control
flow should follow data flow.

– The data and control flow links must be syntactically consistent i.e., there
should be no syntactic mismatches for data flow links.

– The data and control flow links must be semantically consistent, i.e., there
should be no unresolved semantic mismatches along the data & control flow
links. (Semantic mismatches between workflow components are resolved by
mapping components)

– Data & control flow links should be acyclic (free of cycles).

Definition (Ontology-extended Workflow Consistency): An ontology-extended
workflow W is semantically consistent if the composition of each and every pair
of source and target components is consistent.

Recall that the composition of two components s and t is consistent if it
ensures data and control flow, syntactic, semantic and acyclic consistencies.

Ontology-Extended Component-Based Workflows 51

– Data and Control Flow Consistency : By the definition of the ontology-
extended component composition, for any composition there exists a set
of data flow links ∈ Dlink(s, t) and there exists a control link ∈ Clink(s, t).
According to the definition of the ontology-extended component instance,
the instantiation conditions insct for t have to be satisfied, which means
that all the inputs ∈ inputt are instantiated when cint becomes true (it also
means that couts = true). Thus, the control flow follows the data flow.

– Syntactic and Semantic Consistency : For every data flow link (x, y) ∈
Dlink(s, t), there exists a conversion function corresponding to a mapping
introduced by an interoperation constraint (if such a function is not defined,
it is assumed to be the identity). Thus, all the syntactic and semantic mis-
matches are resolved by the mapping component corresponding to the com-
ponents s and t, and the syntactical and semantical consistency is ensured.
Note that, for Clink(s, t) there exists no syntactic differences.

– Acyclic Consistency : Our framework does not allow any cycles for data or
control flow links.

3 Weather Description Workflow Example

In this section we illustrate ontology-extended component-based workflows using
a sample workflow whose goal is to determine whether the day is hot, or warm or
cold based upon the temperature (see Figure 7). This workflow is composed of
two main components: C-Sensor component which calculates the current temper-
ature upon the reception of the signals/bit streams from some external sensors
and Weather Description component which determines the type of day (hot,
warm, cold) based on the temperature. The two components are semantically
heterogeneous and we show how they can be composed into a workflow using
our framework.

Ontology-Extended Workflow Components: The components used in the sam-
ple workflow are described as follows:

– For the source component, C,
• OC is the associated ontology, which describes a Sensor by Signals and

Temp, where τ(Signals) = Bits and τ(Temp) = Centigrade.
• Bits, Centigrade ∈ OC are the data types.
• inputC = (Signals : Bits).
• outputC = (Temp : Centigrade).
• c1 and c2 are the control input and control output attributes, respec-

tively.
– For the target component, W,

• OW is the associated ontology, which describes the Weather by Tem-
perature and Day, where τ(Temperature) = Fahrenheit and τ(Day) =
DayType and D(DayType) = {Hot, Warm, Cold}.

• Fahrenheit, DayType ∈ OW are the data types.
• inputW = (Temperature : Fahrenheit).

52 J. Pathak, D. Caragea, and V.G. Honavar

Signal/Bit
Streams

Temp
(in C)

Temperature
(in F)

Temperature
(in F)

Day

C-Sensor
Component

Mapping
Component

Weather
Description
Component

Temp
(in C)

c1

Actual Workflow with two
components

c5

c6

 Virtual Control Flow Link

Virtual Data Flow Link
c2

c3

c4

Actual Data Flow Link

 Actual Control Flow Link

Fig. 7. Sample Workflow for Weather Description

• outputW = (Day : DayType).
• c5 and c6 are the control input and control output attributes, respec-

tively.

Composition of Ontology-Extended Workflow Components: The composition
of the components C and W is defined as follows:

– Ontologies OC and OW (defined above).
– The control flow link, (c2, c5) ∈ Clink(C, W), where c2 ∈ coutC and c5 ∈

cinW .
– The data flow link, (Temp, Temperature) ∈ Dlink(C, W), where Temp ∈

outputC and Temperature ∈ inputW .
– The interoperation constraint, Temp:OC = Temperature:OW . Thus, there

also exist a mapping from Temp to Temperature, denoted as, (Temp �→
Temperature) ∈ MS (C, W).

– The conversion function, f (Temp, Temperature) ∈ CF (C, W) , which
converts a value in Centigrade (Temp) to Fahrenheit (Temperature).

Mapping Component : Based on the interoperation constraints mentioned above,
the mapping component, MAP (C, W), can be defined as follows:

Ontology-Extended Component-Based Workflows 53

– Ontologies OC and OW are associated with its inputs and outputs, respec-
tively.

– (Temp �→ Temperature) ∈ MS (C, W) and f (Temp, Temperature) ∈ CF (C,
W) are the mapping and conversion function.

– inputmap = (Temp : Centigrade).
– outputmap = (Temperature : Fahrenheit).
– Attribute c3 ∈ cinmap is the control input attribute.
– Attribute c4 ∈ coutmap is the control output attribute.

Instances of Ontology-Extended Workflow Components : The instantiation con-
dition for each of the component are shown below:

– C-Sensor component : The instantiation condition of the C-Sensor component
is given by:

inscC ≡ {(c1) Λ (∃ v(signals))} = true

The value of c1 is considered to be true whenever the C-Sensor receives
signal/bit streams from some external sensor(s). That is, the instantiation
condition of the component instance is evaluated when the component re-
ceives signals, and if it evaluates to true, the execution of the instance begins.
The component does some internal processing with its input signal streams
and outputs the current temperature Temp. Also, a true value at c2 indicates
the termination of execution of the component instance.

– Mapping component : The instantiation condition of the Mapping component
is given by:

inscmap ≡ {(c3) Λ (∃ v(Temp))} = true

The presence of a true value at c2 (when C-Sensor component terminates
its execution), results in a true value at c3, of the mapping component.
Upon successful evaluation of the instantiation condition of the component
instance, the execution is initiated. On the termination of the component
instance, it writes its output attribute Temperature (in degree F). Also, a
true value at c4, indicates the termination of execution of the component
instance.

– Weather Description component : The instantiation condition for the
Weather Description component is given by:

inscW ≡ {(c5) Λ (∃ v(Temperature))} = true

The termination of the execution of the mapping component places a true
value in c5 at an instance of the workflow component. A true evaluation of
the instantiation condition of the component instance, initiates its execution.
The input attribute of this component, Temperature, corresponds to the
output attribute of the mapping component. Note that both these attributes
are syntactically and semantically identical. On termination of instance, it
writes its output attribute Day. Finally, a true value at c6 indicates the
termination of execution of the component instance and also the termination
of the workflow.

54 J. Pathak, D. Caragea, and V.G. Honavar

From the definitions above, the workflow is consistent because:

– The instantiation conditions ascertain that the control flow follows data flow.
– The mapping component guarantees that there are no syntactic and semantic

mismatches.
– There are no cycles between data or control flow links.

4 Summary and Discussion

4.1 Summary

Recent advances in networks, information and computation grids, and WWW
have made it possible, in principle, to access and use multiple, autonomous,
semantically heterogeneous, networked information sources and software com-
ponents or services. Development of tools that can contribute to substantial
gains in productivity in specific application domains such as scientific discovery
(e.g., bioinformatics), national defense (e.g., security informatics), business (e.g.,
e-commerce), manufacturing (e.g., virtual enterprises) and government calls for
theoretically sound approaches for assembly of complex networks of coordinated
activities or workflows from independently developed, semantically heteroge-
neous information sources and software components. Against this background,
the framework of ontology-extended component-based workflows developed in
this paper builds on recent advances in ontology-driven information integra-
tion [7,4,18,17] and component-based workflows [6,8,15,21] to address the need
for a theoretically sound basis for composition of semantically heterogeneous
workflow components into semantically consistent workflows.

4.2 Related Work

Benatallah et al. [3] introduce the Self-Serv framework for Web services compo-
sition. Their approach is based on two main concepts, namely, composite service
and service container. The function of a composite service is to bring together
various other services that collaborate to implement a set of operations, whereas,
a service container facilitates the composition of a potentially large and chang-
ing set of services. However, the emphasis in this work has been more on the
dynamic and scalable aspects of web service composition, and less on resolving
semantic heterogeneity among the Web services, which remains as a major chal-
lenge in realizing the vision of the Semantic Web [2]. Cardoso et al. [8] provide
metrics to select web services for composition into complex workflows. These
metrics take into account various aspects like purpose of the services, quality of
service (QOS) attributes, and the resolution of structural and semantic conflicts.
Fileto [11] designed the POESIA framework for Web service composition using
an ontological workflow approach. POESIA uses domain specific ontologies for
ensuring semantic consistency in the composition process.

Our approach is similar to the approach in [11], where ontologies are used for
component (or Web service) composition, and hence, for bridging the semantic

Ontology-Extended Component-Based Workflows 55

gap between them. However, we allow users to specify the interoperation con-
straints and define the type conversion functions between attributes in different
domains, thereby supporting flexible resolution of semantic mismatches between
the distributed, heterogeneous and autonomous components.

4.3 Future Work

Some directions for future work include:

– Design and implementation of an environment for workflow assembly and
execution from semantically heterogeneous software components, ontologies,
and user-supplied mappings between ontologies.

– Development of an approach to verification of consistency of user-specified
interoperation constraints using Distributed Description Logics [13,5].

– Development of workflows for specific data-driven knowledge acquisition
from autonomous, distributed information sources in computational molec-
ular biology applications (e.g., discovery of protein sequence-structure-
function relationships).

– Analyzing the dynamics and behavioral aspects of workflow execution.

Acknowledgment. This research was supported in part by grants from the
National Science Foundation (0219699) and the National Institutes of Health
(GM066387) to Vasant Honavar.

References

[1] The Workflow Reference Model: (http://www.wfmc.org/)
[2] Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American

(2001)
[3] Benatallah, B., Sheng, Q., Dumas, M.: The self-serv environment for web services

composition. IEEE Internet Computing 7 (2003) 40–48
[4] Bonatti, P., Deng, Y., Subrahmanian, V.: An ontology-extended relational alge-

bra. In: Proc. IEEE International Conference of Information Reuse and Integra-
tion. (2003)

[5] Borgida, A., Serafini, L.: Distributed description logics: Assimilating information
from peer sources. Journal of Data Semantics (2003) 153–184

[6] Bowers, S., Ludascher, B.: An ontology-driven framework for data transformation
in scientific workflows. In: Intl. Workshop on Data Integration in the Life Sciences.
(2004)

[7] Caragea, D., Pathak, J., Honavar, V.: Learning from Semantically Heterogeneous
Data. In: 3rd International Conference on Ontologies, Databases, and Applica-
tions of Semantics for Large Scale Information Systems (2004)

[8] Cardoso, J., Sheth, A.: Semantic e-workflow composition. Journal of Intelligent
Information Systems 21 (2003) 191–225

[9] Cox, P., Song, B.: A formal model for component-based software. In: Proc. IEEE
Symposia on Human Centric Computing Languages and Environments. (2001)

[10] D’Souza, D., Wills, A.: Object, Components and Frameworks with UML - The
Catalysis Approach. Addison-Wesley, Reading, MA (1997)

56 J. Pathak, D. Caragea, and V.G. Honavar

[11] Fileto, R.: POESIA: An Ontological approach for Data And Services Integration
on the Web. PhD thesis, Institute of Computing, University of Campinas, Brazil
(2003)

[12] Fischer, L.: Workflow Handbook. Future Strategeis Inc., Lighthouse Point, FL
(2004)

[13] Ghidini, C., Serafini, L.: Distributed first order logics. In: Frontiers of Combining
Systems 2. Volume 7. (2000) 121–139

[14] Levy, A.: Logic-Based Techniques in Data Integration. Kluwer Academic Pub-
lishers, Norwell, MA (2000)

[15] Ludascher, B., Altintas, I., Gupta, A.: A modeling and execution environment
for distributed scientific workflows. In: 15th Intl. Conference on Scientific and
Statistical Database Management. (2003)

[16] Marinescu, D.: Internet-Based Workflow Management: Toward a Semantic Web.
Wiley, New York (2002)

[17] Reinoso-Castillo, J.: Ontology driven information extraction and integration from
autonomous, hetergoneous, distributed data sources - a federated query centric
approach. MS. thesis, Department of Computer Science, Iowa State University,
USA (2002)

[18] Reinoso-Castillo, J., Silvescu, A., Caragea, D., Pathak, J., Honavar, V.: Informa-
tion extraction and integration from heterogeneous, distributed and autonomous
sources: A federated ontology-driven query-centric approach. In: Proc. IEEE In-
ternational Conference of Information Reuse and Integration. (2003)

[19] Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman, Reading, MA (1998)

[20] Weske, M.: Workflow Management Systems: Formal Foundation, Conceptual
Design, Implementation Aspects (Habilitationsschrift). PhD thesis, Fachbereich
Mathematik und Informatik, Universitt Mnster, Germany (2000)

[21] Zhuge, H.: Component-based workflow systems development. Decision Support
Systems 35 (2003) 517–536

	Introduction
	Ontology Extended Component Based Workflows
	Ontologies and Mappings
	Component-Based Workflows
	Ontology-Extended Workflow Components

	Weather Description Workflow Example
	Summary and Discussion
	Summary
	Related Work
	Future Work

