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Abstract

We present two algorithms for learning the structure of a

Markov network from discrete data: GSMN and GSIMN.

Both algorithms use statistical conditional independence

tests on data to infer the structure by successively constrain-

ing the set of structures consistent with the results of these

tests. GSMN is a natural adaptation of the Grow-Shrink

algorithm of Margaritis and Thrun for learning the struc-

ture of Bayesian networks. GSIMN extends GSMN by ad-

ditionally exploiting Pearl’s well-known properties of condi-

tional independence relations to infer novel independencies

from known independencies, thus avoiding the need to per-

form these tests. Experiments on artificial and real data sets

show GSIMN can yield savings of up to 70% with respect to

GSMN, while generating a Markov network with comparable

or in several cases considerably improved quality. In addition

to GSMN, we also compare GSIMN to a forward-chaining

implementation, called GSIMN-FCH, that produces all pos-

sible conditional independence results by repeatedly apply-

ing Pearl’s theorems on the known conditional independence

tests. The results of this comparison show that GSIMN is

nearly optimal in terms of the number of tests it can infer,

under a fixed ordering of the tests performed.

1 Introduction and Related Work

Graphical models (Bayesian and Markov networks) are
an important subclass of statistical models that possess
advantages that include clear semantics and a sound
and widely accepted theoretical foundation (probability
theory). Graphical models can be used to represent
efficiently the joint probability distribution of a domain.
They have been used in numerous application domains,
ranging from discovering gene expression pathways in
bioinformatics [6] to computer vision ([7, 2], and more
recently [12]). One problem that naturally arises is the
construction of such models from data [9, 3]. A solution
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accuracy measures and general advice on the theory of undirected

graphical models.

to this problem, besides being theoretically interesting
in itself, also holds the potential of advancing the state-
of-the-art in application domains where such models are
used.

In this paper we focus on the task of learning
the structure of Markov networks (MNs) from data
in discrete domains. MNs are graphical models that
consist of two parts: an undirected graph (the model
structure), and a set of parameters. An example Markov
network is shown in Fig. 1. Learning such models from
data therefore consists of two interdependent problems:
learning the structure of the network, and, given the
learned structure, learning the parameters. In this
work we only focus on the learning of the structure of
the MN of a domain from data. The structure of a
Markov network encodes graphically the independencies
existing among the variables in the domain. These
independencies are by themselves a valuable source
of information for several fields of study (e.g., social
sciences) that rely more on qualitative than quantitative
models.

There exist two broad classes of algorithms for
learning the structure of graphical models: score-based
[14, 8] and independence-based or constraint-based [20].
Score-based approaches conduct a search in the space of
legal structures (of size super-exponential in the number
of variables in the domain) in an attempt to discover
a model structure of maximum score. Independence-
based algorithms are based on the fact that a graphical
model implies that a set of independencies exist in the
distribution of the domain, and therefore in the data set
(under assumptions, see below) provided as input to the
algorithm; they work by conducting a set of conditional
independence tests on data, successively restricting the
number of possible structures consistent with the results
of those tests to a singleton (if possible), and inferring
that structure as the only possible one.

While score-based algorithms are more robust for
smaller data sets, independence-based approaches have
the advantage of requiring no search, and are amenable



to proofs of correctness (under assumptions). In this
work we present two algorithms that belong to the latter
class. For Bayesian networks, the independence-based
approach has been mainly exemplified by the SGS [20],
PC [20], and the Grow-Shrink (GS) [15] algorithms, as
well as algorithms for restricted classes such as trees
[4] and polytrees [17]. Markov networks have been
used in the physics and computer vision communities
[7, 2] where they have been historically called Markov
random fields. Recently there has been interest in
their use for spatial data mining, which has applications
in geography, transportation, agriculture, climatology,
ecology and others [19].

Considerable work in the area of structure learning
of undirected graphical models has concentrated on the
learning of decomposable (also called chordal) MNs [21],
as they render parameters learning and inference more
tractable. These approaches proceed by constraining
the output network to be in the class of decomposable
structures. In this work we concentrate on obtaining
the most accurate model (i.e., the one that best encodes
the independencies in the domain), without any further
restrictions other than the results of independence tests
conducted on the data.

An example of learning (non-decomposable) MNs
is presented by Hofmann and Tresp in [11], which is a
score-based approach for learning structure in contin-
uous domains with non-linear relationships among the
domain attributes. There are no cases in the literature
of independence-based structure learning of Markov net-
works that the authors are aware of. The present paper
introduces two such algorithms: GSMN (Grow-Shrink
Markov Network) and GSIMN (Grow-Shrink Inference
Markov Network).

The GSMN algorithm is an adaptation to MNs of
the GS algorithm by Margaritis and Thrun in [15], orig-
inally for learning the structure of Bayesian networks.
GSMN works by first learning the local neighborhood
of each variable in the domain (also called the Markov
blanket of the variable), and then using this informa-
tion in subsequent steps to improve efficiency. Although
interesting in itself, GSMN serves as a point of refer-
ence (given the lack of alternatives) of the performance
in regard to time complexity and accuracy achieved by
GSIMN, which is the main result of this work. The
GSIMN algorithm extends GSMN by using Pearl’s the-
orems on the properties of the conditional independence
relation [16] to infer additional independencies from a
set of independencies resulting from statistical tests and
previous inferences.

The rest of the paper is organized as follows:
Section 2 introduces notation, definitions and presents
intuition behind the two algorithms. In Section 3

Figure 1: Example Markov network. The nodes repre-
sent variables in the domain V = {0, 1, 2, 3, 4, 5, 6, 7}.

we present the GSMN algorithm and in Section 4
the Triangle theorem, which is used in the GSIMN
algorithm of Section 5. We evaluate GSMN and GSIMN
and present out results in Section 6, which is followed
by a summary of our work and possible directions of
future research in Section 7.

2 Notation and Preliminaries

We denote random variables with capitals (e.g., X,Y, Z)
and sets of variables with bold capitals (e.g., X,Y,Z).
In particular, we denote by V = {1, . . . , n} the set of
all n variables in the domain. Note that we name the
variables by their indices in V. For instance, we refer
to the third variable in V simply by 3.

We assume that all variables in the domain are
discrete. We denote the data set as D and its size
in numbers of data points as N . We use the notation
(X ⊥⊥ Y | Z) to denote that X is independent of Y
conditioned on Z, for disjoint sets of variables X, Y,
and Z. (X 6⊥⊥ Y | Z) denotes conditional dependence.
We will use (X ⊥⊥ Y | Z) as shorthand for ({X} ⊥⊥
{Y } | Z).

A Markov network is an undirected graphical
model which represents the joint probability distribu-
tion over V. Each node in the graph represents one of
the random variables in the domain, while the absence of
edges encodes conditional independencies among them.
We assume the underlying probability distribution to be
graph-isomorph [16], which means that it has a faith-
ful undirected graph. A graph G is said to be faithful
to some distribution if its graph connectivity represents
exactly those dependencies and independencies existent
in the distribution. This is equivalent to saying that for
all disjoint sets X,Y,Z ⊆ V, X is independent of Y
given Z if and only if the set of vertices Z graphically
separates the set of vertices X from the set of vertices
Y in G (e.g., in figure 1, set of variables {0, 5} separates
variable 7 from variable 3). It has been shown [16] that
a necessary and sufficient condition for a distribution to
be graph-isomorph is that its set of independencies sat-
isfies the properties shown in Eqs. (1.1). In this paper



[ Symmetry ]

[ Decomposition ]

[ Intersection ]

[ Strong Union ]

[ Transitivity ]

(X ⊥⊥ Y | Z) ⇐⇒ (Y ⊥⊥ X | Z)

(X ⊥⊥ Y ∪W | Z) ⇐⇒ (X ⊥⊥ Y | Z) ∧ (X ⊥⊥W | Z)

(X ⊥⊥ Y | Z ∪W) ∧ (X ⊥⊥W | Z ∪Y) =⇒ (X ⊥⊥ Y ∪W | Z)

(X ⊥⊥ Y | Z) =⇒ (X ⊥⊥ Y | Z ∪W)

(X ⊥⊥ Y | Z) =⇒ (X ⊥⊥ γ | Z) ∨ (γ ⊥⊥ Y | Z)

(1.1)

we assume faithfulness as well as no errors in the statisti-
cal tests conducted, which are standard assumptions for
formally proving the correctness of independence-based
structure learning algorithms [20].

2.1 Statistical Independence Testing. To deter-
mine conditional independence between two variables X
and Y given a set S from data we use Pearson’s condi-
tional independence chi-square (χ2) test (see [1] for de-
tails of its calculation). The χ2 test returns a p-value,
denoted as p, which is the probability of the error of
assuming that the two variables are dependent when in
fact they are not. We conclude independence if and only
if 1− p is greater than a certain confidence threshold α.
We use the standard value of α = 0.95 in all our experi-
ments. Denoting by χ2(X ⊥⊥ Y | S) the p-value for the
χ2 test on (X,Y | S), we conclude that

(X ⊥⊥ Y | S) ⇐⇒ χ2(X ⊥⊥ Y | S) < 1− α.

A practical consideration regarding the reliability
of a conditional independence test is the size of the
conditioning set as measured by the number of variables
in the set, which in turn determines the number of
values that the variables in the set may jointly take.
Large conditioning sets produce sparse contingency
tables (count histograms) and unreliable tests: The
number of possible configurations of the variables grows
exponentially with the size of the conditioning set e.g.,
there are 2n cells in a test involving n binary variables.
To fill such a table with one data point per cell we
would need a data set of exponential size i.e., N = 2n.
Exacerbating this problem, more than that is typically
necessary for a reliable test: As recommended by [5],
if more than 20% of the contingency tables has less
than 5 counts the tests is deemed unreliable. Both
GSMN and GSIMN algorithms (presented later in the
paper) attempt to minimize the conditioning set size
by choosing an order of visiting the variables such
that irrelevant variables are visited last. However,
it is unavoidable that for small data sets we may
not have enough data for a reliable determination of
independence and therefore some tests will fail the
aforementioned test of reliability. In these cases we
must make an a priori decision: assume dependence
or assume independence. While the assumption of

dependence might appear to be the safer choice, in
practice this would result in overly dense (sometimes
completely connected) networks, which are hard to
use in practice and of limited value to a researcher
e.g., inference in Markov networks is exponential in
the size of the largest clique. We therefore assume
independence in these cases. As will be seen in the
Experiments section, this does not affect the accuracy of
the resulting networks, as measured by the correctness
of the independencies present in the domain that they
represent.

Finally, a subtle but important point is the fact
that the time complexity of a statistical test on triplet
(X,Y | S) is linear in the size N of the data set
and the size of the conditioning set i.e., O(N(|S| +
2)), and not exponential in the number of variables
involved (as a näıve implementation might assume).
This is because we can construct all non-zero entries
in the contingency table by examining each data point
in the data set exactly once, in time proportional
to the number of variables involved in the test i.e.,
proportional to |{X,Y } ∪ S|.

However, due to the linearity with the data set size
N , the run time of the tests still has a major influence on
the overall run time of an independence-based structure
learning algorithm (as the algorithms presented in this
paper). For this reason, the work presented in this paper
concentrates on reducing the weighted number of tests,
defined as the sum of all tests performed weighted by
the size of their conditioning sets (plus two).

2.2 Independence Based Approach to Struc-
ture Learning. GSMN and GSIMN are independence-
based algorithms for learning the structure of the net-
work. This approach works by conducting a number
of statistical conditional independence tests on the in-
put data set D, reducing the set of structures consistent
with the results of these tests to a singleton (if possible),
and inferring that structure as the only possible one.

In a faithful domain, an edge exists between two
variables X 6= Y ∈ V in the Markov network of that
domain if an only if they are dependent conditioned on
all remaining variables in the domain, i.e.,

(X,Y ) is an edge iff (X 6⊥⊥ Y | V − {X,Y })



Thus, to learn the structure, it suffices to perform only
n(n−1)/2 tests, one for each triplet (X,Y | V−{X,Y })
with X,Y ∈ V, X 6= Y . Unfortunately this approach
requires a data set of exponential size due to the size
of the conditioning sets, as discussed in section 2.1. To
address this problem, the approach taken by previous
algorithms (e.g., the PC algorithm [20] for learning
the structure of Bayesian networks) was to perform
conditional tests of increasing conditioning set size.
Since there are 2n−2 possible conditioning sets for each
pair of variables X and Y , one question is how to
order these possible tests—different algorithms present
different orderings for the conditioning sets. In this
paper we use an existing algorithm, namely GS, as a
starting point. Since GS was designed for Bayesian
networks, we first present an adaptation for Markov
networks, and then present its extension GSIMN.

3 GSMN algorithm

In this section we discuss our first algorithm, GSMN
(Grow-Shrink Markov Network), for learning the struc-
ture of a MN. Given as input a data set D and a set of
variables V, GSMN returns the sets of nodes (variables)
BX adjacent to each variable X ∈ V, which completely
determine the structure of the domain MN. The algo-
rithm is shown in two parts, the main part (algorithm
1) and the independence test (algorithm 2).

The algorithm starts with an initialization stage.
For reasons of clarity of exposition, we explain this stage
near the end of this section. GSMN then executes its
main loop that examines each variable in V (lines 14–
39), according to the visit order π. Each iteration of
the main loop (i.e., a visit) includes three phases: the
grow phase (lines 18–26), the shrink phase (lines 27–
33), and the collaboration phase (lines 35–38). The
order that variables are examined during the grow phase
of variable X is called the grow order λX of variable X.

The grow phase of X proceeds by attempting to
add each variable Y to the current set of hypothesized
neighbors of X, contained in S. S is initially empty but
at each iteration of the grow loop of X a variable Y is
added to S if and only if Y is found dependent with
X given the current value of S. Due to the heuristic
ordering that the variables are examined (determined
by the priority queue λX), at the end of the grow
phase, some of the variables in S might not be true
neighbors of X in the underlying MN—these are called
false positives. This justifies the shrink phase of the
algorithm, which removes each false positive Y by
testing for independence with X conditioned on S−{Y }.
If Y is found independent of X, it cannot be a true
neighbor (i.e., there cannot be an edge X − Y ), and
GSMN removes it from S. Assuming faithfulness and

Algorithm 1 GSMN(V, D)

1: /* Initialization. */
2: for all X,Y ∈ V, X 6= Y do
3: KXY ← ∅

4: pXY ← χ2(X ⊥⊥ Y | ∅)
5: t← (pXY < 1− α)
6: add (∅, t) to KXY and KY X

7: end for
8: initialize π s.t. i < i′ iff avg

j

pπij < avg
j

pπi′ j

9: for all X ∈ V do
10: BX ← ∅

11: initialize λX s.t. j < j′ iff pXλXj
< pXλXj′

12: remove X from λX

13: end for
14: /* Main loop. */
15: while π not empty do
16: X ← dequeue(π)
17: S← ∅

18: /* Grow phase. */
19: while λX not empty do
20: Y ← dequeue(λX)
21: if ¬I(X,Y,S) then
22: S← S ∪ {Y }
23: else
24: remove X from λY

25: end if
26: end while
27: /* Shrink phase. */
28: for all Y ∈ S do
29: if I(X,Y | S− {Y }) then
30: S← S− {Y }
31: remove X from λY

32: end if
33: end for
34: BX ← S
35: /* Collaboration phase. */
36: for all Y ∈ BX do
37: BY ← BY ∪ {X}
38: end for
39: end while

Algorithm 2 I(X,Y | S)

1: if (S, true) ∈ KXY return true

2: if (S, false) ∈ KXY or Y ∈ BX return false

3: t ← (χ2(X ⊥⊥ Y | S) < 1 − α) /* Statistical test.
*/

4: add (S, t) to KXY and KY X

5: return t

no errors in the statistical tests conducted, by the end of
the shrink phase BX contains exactly the neighbors of X
(proof of correctness omitted due to space restriction).



Figure 2: Illustration of the operation of GSMN. The
figure shows the growing phase of two consecutively
visited variables 5 and 3 as dictated by visit ordering
π.

After the neighbors of each X are produced in BX ,
GSMN executes a collaboration phase. During this
phase, the algorithm adds X to BY of every node Y that
is in BX . This is justified by the fact that in undirected
graphs, X is adjacent to Y if and only if Y is adjacent
to X.

As mentioned above, the order that variables are
examined in the main loop and the grow phase is com-
pletely determined by the visit order π and grow orders
λX . These are implemented as priority queues and are
(initially) permutations of V (λX is a permutation of
V − {X}) such that the position of a variable in the
queue denotes its priority e.g., π = [2, 0, 1] means that
variable 2 has higher priority (will be visited first), fol-
lowed by 0 and 1. In this way, the first variable in
the visit (grow) order is X (Y ) where X = π0 and
Y = λX = λπ0

.
The visit (π) and grow (λ) orders are determined in

the initialization phase. During this phase the algorithm
computes the unconditional p-value χ2(X ⊥⊥ Y | ∅)
for each pair of variables X 6= Y , denoted pXY in the
algorithm. For visit order π, we give higher priority
(i.e., visit earlier) to those variables with lower average
p-value (line 8). This average is defined as follows:

avg
Y

pXY =
1

|V| − 1

∑

Y 6=X∈V

pXY

whereas for growing order λX of variable X, we give
higher priority to those variables Y whose p-value with
variable X is smaller (line 11). This ordering is a
heuristic justified by the intuition of a well-known “folk-

theorem” (as Koller and Sahami [13] put it) that states
that probabilistic influence or association between at-
tributes tends to attenuate over distance in a graphical
model. This suggests that pair of variables X and Y
with low unconditional p-value are less likely to be di-
rectly linked. It should also be noted that the computa-
tional price for pXY is low due to the empty conditioning
set.

We can represent the operation of GSMN graph-
ically using an independence graph. An independence
graph is an undirected graph where conditional inde-
pendencies and dependencies between single variables
are represented by one or more annotated edges between
them. A solid (dotted) edge between variables X and
Y annotated by Z represents the fact that X and Y are
dependent (independent) given Z. If the conditioning
set Z is enclosed in parentheses then this edge repre-
sents an independence or dependence that was inferred
from Eqs. (1.1) (as opposed to computed from statistical
tests). Shown graphically:

X Y
Z

(X 6⊥⊥ Y | Z)

X Y
Z

(X ⊥⊥ Y | Z)

X Y
(Z)

(X 6⊥⊥ Y | Z) (inferred)

X Y
(Z)

(X ⊥⊥ Y | Z) (inferred)

For instance, in figure 2, the dotted edge between 5
and 1 annotated with 3, 4 represents the fact that
(5 ⊥⊥ 1 | {3, 4}). The absence of an edge between two
variables indicates the absence of information about the
independence or dependence between these variables
under any conditioning set.

Example. Fig. 2 illustrates the operation of GSMN in
the domain whose underlying Markov network is shown
in Fig. 1. The figure shows the independence graph of
the grow phases of the first two variables (5 and 3)
according to visit order π. We do not discuss in this
example the initialization phase of GSMN. Instead, we
assume that the visit (π) and grow (λ) orders are given,
and are as shown in the figure.

Variable 5 is examined first by the algorithm (i.e.,
first in queue π). According to d-separation (equivalent
to vertex separation in faithful domains) on the under-
lying network (Fig.1), variables 3, 4, 6, and 7 are found
dependent with 5 during the growing phase i.e.,

¬I(5, 3 | ∅),

¬I(5, 4 | {3}),

¬I(5, 6 | {3, 4}),

¬I(5, 7 | {3, 4, 6})



Figure 3: Independence graph depicting the Triangle
theorem. Edges in the graph are labeled by sets and
represent conditional independencies or dependencies.
A solid (dotted) edge between X and Y labeled by
Z means that X and Y are dependent (independent)
given Z. A set label enclosed in parentheses means the
edge was inferred by the theorem.

and are therefore successively added to S. Variables 1,
2, and 0 are found independent i.e.,

I(5, 1 | {3, 4}),

I(5, 2 | {3, 4, 6}),

I(5, 0 | {3, 4, 6, 7}),

and are not incorporated into S. The final value of
S at the end of the growing phase of variable 5 is
S = {3, 4, 6, 7}.

4 The Triangle Theorem

In this section we present and prove a theorem that
is used in the subsequent GSIMN algorithm. As will
be seen, the main idea behind the GSIMN algorithm
is to attempt to decrease the number of tests by ex-
ploiting the properties of the conditional independence
relation, i.e., Eqs. (1.1). These properties can be seen as
inference rules that can be used to derive new indepen-
dencies from ones that we know to be true. A careful
study of these axioms suggests that only two simple in-
ference rules, stated in the Triangle theorem below, are
sufficient for inferring most of the useful independence
information that can be inferred by a systematic appli-
cation of the inference rules (as will be confirmed by our
experiments).

Theorem 4.1. (Triangle theorem) Given
Eq. (1.1), for every variable X, Y , W and sets Z1 and
Z2 such that {X,Y,W} ∩ Z1 = {X,Y,W} ∩ Z2 = ∅,

(X 6⊥⊥W | Z1) ∧ (W 6⊥⊥ Y | Z2) =⇒ (X 6⊥⊥ Y | Z1 ∩ Z2)

(X ⊥⊥W | Z1) ∧ (X 6⊥⊥ Y | Z1 ∪ Z2) =⇒ (X ⊥⊥ Y | Z1).

We call the first relation the “D-triangle rule” and the
second the “I-triangle rule.”

Proof. We are using the Strong Union and Transitivity
of Eq. (1.1) as shown or in contrapositive form.
(Proof of D-triangle rule):

• From Strong Union and (X 6⊥⊥ W | Z1) we get
(X 6⊥⊥W | Z1 ∩ Z2).

• From Strong Union and (W 6⊥⊥ Y | Z1) we get
(W 6⊥⊥ Y | Z1 ∩ Z2).

• From Transitivity, (X 6⊥⊥ W | Z1 ∩ Z2), and
(W 6⊥⊥ Y | Z1 ∩ Z2), we get (X 6⊥⊥ Y | Z1 ∩ Z2).

(Proof of I-triangle rule):

• From Strong Union and (X 6⊥⊥W | Z1∪Z2) we get
(X 6⊥⊥ Y | Z1).

• From Transitivity, (X ⊥⊥ W | Z1) and (X 6⊥⊥ Y |
Z1) we get (X ⊥⊥ Y | Z1).

�

We can represent the Triangle theorem graphically
using the independence graph construct, defined in
section 3. Fig. 3 depicts the two rules of the Triangle
theorem using two independence graphs.

The Triangle theorem can be used to infer addi-
tional conditional independencies from tests conducted
during the operation of GSMN. An example of this is
shown in figure 4(a), which illustrates the application
of the Triangle theorem to the example presented in fig-
ure 2(a). The independence information inferred from
the Triangle theorem is shown by curved edges (note
that the conditioning set of each such edge is enclosed
in parentheses). For example, edge (4, 7) can be inferred
by the D-triangle rule from the adjacent edges (5, 4) and
(5, 7), annotated by {3} and {3, 4, 6} respectively. The
annotation for this inferred edge is {3}, which is the
intersection of the annotations {3} and {3, 4, 6}. An
example application of the I-triangle rule is edge (1, 7),
which is inferred from edges (5, 1) and (5, 7) with anno-
tations {3, 4} and {3, 4, 6} respectively. The annotation
for this inferred edge is {3, 4}, which is the difference of
the annotations {3, 4, 6} and {3, 4}.

5 The GSIMN Algorithm

This section introduces the GSIMN algorithm. In the
previous section we saw the possibility of using the
triangle rules to infer the result of novel tests during the
grow phase. The GSIMN algorithm uses the Triangle
theorem in a similar fashion to extend GSMN and infer
the value of a number of tests that GSMN executes, thus
making it unnecessary to conduct these on the data set.

GSIMN works similarly to GSMN but differs in two
important ways. First, it updates the visit and grow
orders (the π and λ queues respectively) during its main
loop. These updates are driven by the outcomes of the



Figure 4: Illustration of the operation of GSIMN. The figure shows the grow phase of two consecutively visited
variables 5 and 7. Contrary to GSMN (figure 2), the variable visited second is not 3 but 7, according to the change
in the visit order π in line 32. The set of variables enclosed in parentheses correspond to tests inferred by the
Triangle theorem using two adjacent edges as antecedents. For example, the results (7 6⊥⊥ 3 | ∅), (7 6⊥⊥ 4 | {3}),
(7 6⊥⊥ 6 | {3, 4}), and (7 6⊥⊥ 5 | {3, 4, 6}) in (b) were not executed but inferred from the tests done in (a).

tests conducted up to that point and their purpose is to
maximize the number of inferences possible through the
use of the Triangle theorem. Second, it uses a different
test procedure I ′ (algorithm 4) which first attempts
to infer the independence value of its input variables
by either Strong Union or the Triangle theorem. If it
succeeds, it returns that value, otherwise it returns the
outcome of a statistical test on the data set.

The operation of GSIMN is illustrated in Fig. 4, and
the reader may want to refer to it during the following
explanation.

We first describe the novel ordering used in GSIMN.
The new visit order (lines 32–37) dictates that the next
variable to be visited is the last to be added to S during
the growing phase that still has not been visited (i.e.,
it is still in π). This is illustrated in Fig. 4 where the
variable visited after 5 is 7, instead of 3 (as was done in
GSMN and as dictated by the initial π). The change in
order is conducted by the subroutine changepos(q,X, j)
which moves X from its current position in queue q to
position j. For example, if q = [5, 3, 1, 7], after applying
changepos(q, 7, 0) the queue changes to q = [7, 5, 3, 1].

The change in growing order (lines 22–26) occurs
inside the grow phase of the currently visited variable X.
If, for some variable Y , ¬I ′(X,Y,S), then all the
variables that were dependent with X before Y (i.e., all
variables currently in S) are promoted to the beginning
of the grow order λY . This is illustrated in Fig. 4
for variable 7, for which the grow order changes from

λ7 = [2, 6, 3, 0, 4, 1, 5] to λ7 = [3, 4, 6, 5 | 2, 0, 1] after the
grow phase of variable 5 is complete.

The function I ′ (algorithm 4), which replaces I of
GSMN, attempts to infer the independence value of the
input triplet (X,Y | S). It first attempts to apply
Strong Union. This is done by checking whether the
knowledge base (K) contains: (i) a test (X ⊥⊥ Y | A)
with A ⊆ S (line 2), or (ii) a test (X 6⊥⊥ Y | A) with
A ⊇ S (line 3). If this fails, it attempts to infer the
input triplet using the Triangle theorem. The search
for antecedents focuses on those that could be used
to infer only the input triplet (X,Y | S). For that
reason it searches for a variable W ∈ V such that (i)
(Y ⊥⊥ W | A) and (X 6⊥⊥ W | B) with A ⊆ S and
B ⊇ A; or (ii) (Y 6⊥⊥ W | A) and (X 6⊥⊥ W | B)
with sets A and B both supersets of S. According to
I-triangle rule (i) and (ii) implies (X ⊥⊥ Y | S) and
(X 6⊥⊥ Y | S) respectively.

The curved edges in Figure 4 shows those tests that
can be inferred during a growing phase. The change
in visit and grow order described above was chosen
so that these inferred tests are those required by the
algorithm in some future stage. In particular, note
in the example that the set of inferred dependencies
between each variable found dependent with 5 before 7
are exactly those required during initial part of the grow
phase of variable 7 (Figure 4(b)).

Similarly to GSMN, assuming faithfulness and no
errors in the statistical tests conducted, by the end of



Algorithm 3 GSIMN(V, D)

/* Initialization. */
for all X,Y ∈ V, X 6= Y do

KXY ← ∅

pXY ← χ2(X ⊥⊥ Y | ∅)
t← (pXY < 1− α)
add (∅, t) to KXY and KY X

end for
initialize π s.t. i < i′ ⇐⇒ avg

j

pπij < avg
j

pπi′ j

for all X ∈ V do
initialize λX s.t. j < j′ ⇐⇒ pXλj

< pXλj′

remove X from λX

end for
/* Main loop. */
while π not empty do

X ← dequeue(π)
S← ∅

/* Grow phase. */
while λX not empty do

Y ← dequeue(λX)
if ¬I ′(X,Y,S) then

add Y at the end of S
/* Change grow order. */
changepos(λY , X, 0)
for W = S|S|−2 to S0 do

changepos(λY ,W, 0)
end for

else
remove X from λY

end if
end while
/* Change visit order. */
for W = S|S|−1 to S0 do

if W ∈ π then
changepos(π,W, 0)
goto 38

end if
end for
/* Shrink phase. */
for Y = S|S|−1 to S0 do

if I ′(X,Y | S− {Y }) then
remove Y from S
remove X from λY

end if
end for
BX ← S
/* Collaboration phase. */
for y = BX

0 to BX
|BX |−1

do

add (V − {X,Y }, false) to KXY and KY X

end for
end while

Algorithm 4 I ′(X,Y | S)

1: /* Attempt to use Strong Union. */
2: if ∃ (A, true) ∈ KXY s.t. A ⊆ S return true

3: if ∃ (A, false) ∈ KXY s.t. A ⊇ S return false

4: /* Attempt to use the Triangle theorem. */
5: for all W ∈ V do
6: if ∃ (A, true) ∈ KY W such that A ⊆ S ∧

∃ (B, false) ∈ KXW such that B ⊇ A
then

7: /* Infer independence by the I-triangle rule. */
8: add (A, true) to KXY and KY X

9: return true

10: end if
11: if ∃ (A, false) ∈ KY W such that A ⊇ S ∧

∃ (B, false) ∈ KXW such that B ⊇ S
then

12: /* Infer dependence by the D-triangle rule. */
13: add (A ∩B, false) to KXY and KY X

14: return false

15: end if
16: end for
17: /* Else do statistical test on data. */
18: t← (χ2(X ⊥⊥ Y | S) < 1− α)
19: add (S, t) to KXY and KY X

20: return t

Algorithm 5 I ′′(X,Y,S)

1: /* Query knowledge base. */
2: if ∃ (S, t) ∈ KXY then
3: return t
4: end if
5: t ← (χ2(X ⊥⊥ Y | S) < 1 − α) /* Statistical test.

*/
6: add (S, t) to KXY and KY X

7: run forward chaining on K, update K
8: return t

the shrink phase BX contains exactly the neighbors of
X. The correctness proof follows from the correctness
of GSIMN, which was omitted for space restriction. As
pointed out above, GSIMN only differs from GSMN by
the visit and grow orderings and the test subroutine I ′.
This subroutine differs from its GSMN counterpart I in
that it uses strong union and triangle theorem to infer
novel tests. The proof of correctness of GSMN makes
no assumptions on any particular visit (π) or grow (λ′s)
ordering, and thus the correctness of GSIMN follows
from the correctness of GSMN, the triangle theorem and
strong union.

5.1 Optimality of GSIMN. One reasonable ques-
tion about the actual performance of GSIMN is to what
extend it is complete i.e., from all those tests that



GSIMN needs during its operation, how does the num-
ber of them that it infers by use of the Triangle the-
orem (rather than executing a χ2 statistical test on
data) compares to the number of tests that can be
inferred (e.g., using an automated theorem prover on
Eqs. (1.1))? In this section we describe how we evalu-
ate its completeness, and present the actual results of
this evaluation in the Experimental Results section. To
evaluate completeness, we compared the number of tests
done by GSIMN with the number done by an alternative
algorithm, which we call GSIMN-FCH (GSIMN with
Forward Chaining). GSIMN-FCH differs from GSIMN
only in function I ′′ (algorithm 5), replacing function I ′

of GSIMN, that exhaustively produces all independence
statements that can be inferred through the properties
of Eqs. (1.1). The process iteratively builds a knowledge
base K containing the truth value of a set of conditional
independence predicates in a fashion similar to previous
algorithms. Whenever the outcome of a test is required,
it queries K (line 2 of I ′′ in algorithm 5). If the value
of the test is found in K, it is returned (line 3). If not,
GSIMN-FCH performs the test on data and uses the re-
sult in a standard forward chaining automatic theorem
prover subroutine (line 7) to produce all independence
statements that can be inferred by the test result and K,
adding these new facts to K. Comparisons of the num-
ber of tests required by GSIMN vs. GSIMN-FCH are
presented and discussed in the results section below.

6 Experimental Results

We conducted experiments on both artificial and real-
world data. We measured the following quantities:

• Total weighted number of tests: The number
of tests executed can be used to assess the benefit of
using inference instead of executing statistical tests
on data for GSIMN. As discussed in section 2.1,
the each conditional independence test should be
weighted by the size of the conditioning set (plus
two) to properly reflect the execution time required.

• Accuracy of the resulting network (real-
world data only): Accuracy is used to assess the
impact of inference on the quality of the outcome
network. Actual statistical tests may be unreliable
as discussed in section 2.1, and clearly, inferred in-
dependencies based on unreliable antecedents tests
could be even less reliable. We explain how we
measure accuracy below and explain why it makes
sense for real-world data sets only.

• Average neighborhood size of the result-
ing network (real-world data only): Average
neighborhood size can be used to assess the com-

Table 1: Comparison of weighted number of tests of
GSIMN and GSIMN-FCH algorithms. These values are
plotted in figure 5.

τ = 0.05 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.9
n GSIMN FCH GSIMN FCH GSIMN FCH GSIMN FCH GSIMN FCH

2 2 2 2 2 2 2 2 2 2 2
3 6 6 8.7 8.7 11.7 11.7 13.8 13.8 14.7 14.7
4 12 12 20.5 19.1 32.2 31.5 35.9 35.6 39.2 39.2
5 20.9 20.5 41.7 40.4 78 74.8 81.6 80.8 80.9 80.9
6 30.6 30.6 80 76.3 139 137.1 147 146 146.1 145.5
7 45 45 158.3 151.1 233.5 222.5 243 238.6 240.3 239.3
8 62 61.3 229.5 222.9 357 345.6 378.1 370.8 365.7 365
9 77.7 77.7 378.2 370.9 559.8 551.8 559.3 547.1 527.2 525.5

plexity of the resulting networks. This is impor-
tant because these output networks are rarely the
final result aimed for by a data analyst. Commonly
a Markov network is used for statistical inference.
The size of the largest clique in the network has a
great impact in the complexity of inference proce-
dures, as well as on the learning of the parameters
of the graphical model.

6.1 Artificial Data. This section presents two sets
of experiments that compare the weighted number of
tests of GSIMN vs. GSIMN-FCH, and GSIMN vs.
GSMN. The experiments are conducted on randomly
generated networks, referred to as true networks here.

Experimental results on artificial data has the ad-
vantage of allowing a systematic study of the impact
of the use of the Triangle theorem by GSIMN on the
weighted number of tests. By querying the true net-
work for independence these tests can be performed
much faster than actual statistical tests on data, allow-
ing a check of the impact of inference for much larger
networks—we were able to conduct experiments of do-
mains containing up to 100 variables.

Each true network with n nodes was generated
randomly as follows: the network was initialized with n
variables and no edges. The set of edges was determined
by a user-specified connectivity probability parameter
τ ∈ [0, 1]; an edge was added to the network if a number
p, sampled uniformly from interval [0, 1], was smaller
than τ . The process was repeated for each pair of
variables. Testing for conditional independence in these
experiments was conducted using vertex separation
(corresponding to d-separation in faithful domains) on
the true network. Because graph-isomorphism holds,
vertex-separation satisfies all the axioms (1.1), and the
network resulting from GSMN, GSIMN or GSIMN-
FCH matches exactly the true network. Therefore
comparisons of the accuracy of the resulting network
and the average neighborhood size are not useful.

In the first set of experiments, we compared the
weighted number of tests between GSIMN-FCH and
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GSIMN. The ratios of these numbers are shown in
table 1 and plotted in figure 5. Ten networks were
generated randomly for each pair n, τ . We used τ =
0.05, 0.3, 0.5 and 0.9 and n up to 100. The table
and the figure shows the mean value over these ten
runs. Unfortunately GSIMN-FCH was not able to
complete execution on domains containing more than
9 variables. However, we could still make an assessment
of the reduction in tests required by GSIMN-FCH for
n ≤ 9. The figure shows that for every n and every τ
the ratio is above 0.95 with the exception of a single
pair (n = 4, τ = 0.3) i.e., almost all inferable tests
were produced by the use of the Triangle theorem in
GSIMN. The small difference is greatly compensated
by the very large increase in efficiency of the inference
process (i.e., use of the Triangle theorem vs. automatic
theorem proving on Eq. (1.1)).

In the second set of experiments, we compared
the weighted number of tests required by GSMN and
GSIMN for networks of up to 100 variables. The results
are summarized in figure 6, showing the ratio between
weighted number of tests of GSIMN vs. GSMN. Again,
ten true networks were generated randomly for each pair
n, τ , and the figure shows their mean value. The figure
shows that, while for small numbers of variables GSIMN
performs similar to GSIMN, for large number of nodes
GSIMN performs considerably better: The reduction in
number of tests is close to 40% for n = 100 regardless of
the connectivity of the underlying domain. This shows
the clear advantage of GSIMN vs. GSMN in terms of
number of tests required, especially in large, difficult
domains, regardless of the density of the underlying
Markov network model.
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6.2 Real-World Data. While artificial data set
studies have a number of unique advantages (see pre-
vious section), they have the disadvantage of a ran-
dom network topology and they fulfill the assumption
of faithfulness. Real data on the other hand, may come
from non-random topologies (e.g., a lattice in many
cases of spatial data), but most importantly the un-
derlying probability distribution may not be faithful,
allowing a more realistic assessment of the performance
of GSIMN.

We conducted experiments on a substantial number
of data sets obtained from the UCI KDD archive [10].
Although some of these data sets are artificially gener-
ated (e.g., Alarm), they are not necessarily generated
from a probability distribution that is faithful to any
Markov network. Data sets containing continuous vari-
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numbers in the x-axis are references to the data sets as
shown in Table 2.

ables were discretized using Sturges’s method, which is
a simple method widely recommended in introductory
statistics texts [18] that dictates that the optimal num-
ber of equally-spaced discretization bins for each contin-
uous variable is k = 1 + log2 N , where N is the number
of points in the data set. For each data set and each al-
gorithm, we report the weighted number of conditional
independence tests conducted to discover the network,
the accuracy with respect to the data, and the average
neighborhood size.

For real data the true network is unknown. In order
to measure the quality of a network produced by GSMN
and GSIMN, we propose a measure of accuracy that
compares the result (true or false) of a number of
unseen conditional independence tests on the network
(using vertex separation) to their true value, obtained
by performing these tests on the data set (using a χ2

test). This procedure measures how the output network
generalizes on unseen tests.

Since the number of possible tests is exponential,
we sampled 1,000 triplets (X,Y,Z) randomly in the
following fashion: First, two variables X and Y were
drawn randomly from V. Second, a number k ∈
{0, · · · , |V| − 2} was picked uniformly to serve as the
size of the conditioning set Z. Third, k variables were
drawn randomly and without replacement from V to
form set Z. Finally, the sampled triplet was discarded
if it corresponded to a test already added to the set of
tests generated so far (i.e., if it is a duplicate).

Denoting by T this set of 1,000 triplets, by t ∈ T a
triplet, by Idata(t) the result of a test performed on the
data, and by Inetwork(t) the result of a test performed

on the output network produced by either GSMN or
GSIMN, the accuracy is defined as:

̂accuracy =
1

|T |

∣

∣

∣

∣

{

t ∈ T | Inetwork(t) = Idata(t)
}

∣

∣

∣

∣

.

In practice, a triplet t ∈ T may result in an unreli-
able statistical test Idata(t) when tested on data (section
2.1). Counting the comparison of such unreliable test
with the outcome of the test performed on the output
network Inetwork(t) can only lead to unrealistic values of
the accuracy. Therefore, triplets that yielded unreliable
tests were replaced in T with new random triplet.

For each of the data sets, Table 2 shows the detailed
results for accuracy, number of tests conducted and
average neighborhood size for GSMN and GSIMN. It
also serves as key for each data set index appearing in
figures 7 and 8.

Figure 7 shows the average neighborhood size (av-
erage |BX | over X ∈ V) of GSMN and GSIMN for dif-
ferent data sets, in decreasing order of difference. The
graph indicates that the average neighborhood sizes of
the networks produced by GSMN and GSIMN are com-
parable.

Figure 8 shows the ratio of the weighted number of
tests of GSIMN versus GSMN (i.e., a number smaller
than 1 shows improvement of GSIMN vs. GSMN)
together with the difference of the accuracies of GSIMN
and GSMN (i.e., a positive histogram bar shows an
improvement of GSIMN vs. GSMN) for different data
sets. The numbers in the x-axis are indices to the data
sets as shown in Table 2.

As shown in figure 8, GSIMN reduced the weighted
number of tests on every data set, with maximum
savings of 70%. Moreover, in the 17 out of 21 data sets
GSIMN resulted in improved accuracy, with 6 of these
showing a considerable improvement in addition to an
approximate average savings of 50% in the weighted
number of tests.

7 Conclusions and Future Research

In this paper we presented two algorithms, GSMN and
GSIMN, for learning the structure of a Markov network
of a domain from data using the independence-based
approach. We evaluated their performance through
the measurement of the weighted number of tests they
require to learn the structure of the network, the quality
of the networks learned from real-world data sets, and
the average neighborhood size. GSIMN has shown
a decrease of the number of tests in difficult (large)
domains by a factor of 2, with an output network quality
comparable to that of GSMN, with some cases showing
great improvements. In addition, GSIMN was shown
to be nearly optimal in the number of tests executed



Table 2: Total weighted number of tests, accuracy, and
average neighborhood size (average |BX | over X ∈ V)
for several real-world data sets. For each evaluation
measure, the best performance between GSMN and
GSIMN is indicated in bold. n denotes the number
of variables in the domain and N is the number of
instances in each data set.

Data set #(tests) Accuracy Avg |B|
# name n N GSMN GSIMN GSMN GSIMN GSMN GSIMN

0 hepatitis 20 80 456 393 0.885 0.908 0.80 1.20
1 hayes-roth 6 132 38 30 0.905 0.933 0.33 0.67
2 cmc 10 1473 227 272 0.714 0.731 1.80 2.80
3 bands 38 277 2844 1457 0.101 0.881 4.95 1.26

4 imports-85 25 193 646 600 0.945 0.970 0.72 0.64

5 balance-s 5 625 28 20 0.182 0.864 1.60 0.80

6 baloons 5 20 20 20 1.000 1.000 0.00 0.00
7 flag 29 194 1028 872 0.851 0.905 0.97 1.24
8 tic-tac-toe 10 958 263 164 0.654 0.552 3.00 4.00
9 bridges 12 70 151 138 0.951 0.944 0.33 0.83
10 car 7 1728 77 42 0.719 0.719 1.14 0.57

11 crx 16 653 341 255 0.918 0.881 1.00 1.50
12 monks-1 7 556 44 42 0.969 0.968 0.29 0.57
13 echocardio 14 60 689 191 0.379 0.706 3.71 1.14

14 flare2 13 1065 500 264 0.438 0.700 3.54 2.92

15 haberman 5 305 49 20 0.704 0.625 1.60 0.80

16 nursery 9 12960 137 72 0.775 0.760 0.89 0.44

17 dermat 35 358 1707 1314 0.853 0.893 1.14 1.37
18 optdigits 65 5620 12080 7045 0.158 0.829 4.58 1.38

19 connect-4 43 65534 8544 3246 0.747 0.412 5.58 6.88
20 alarm 37 20001 2761 1999 0.312 0.782 3.30 4.11
21 adult 10 32561 219 178 0.695 0.623 1.80 2.80

compared to GSIMN-FCH, which uses an exhaustive
search to produce all independence information that
can inferred from Pearl’s axioms. Some directions of
future research include an investigation into the way the
topology of the underlying Markov network affect the
number of tests required and quality of the resulting
network, esp. for popular topologies such as grids.
Another research topic in the the impact on execution
time of other visit and grow orderings of the variables.
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