
Noname manuscript No.
(will be inserted by the editor)

A Software Fault Tree Approach to Requirements Analysis of an Intrusion
Detection System

Guy Helmer, Johnny Wong, Mark Slagell, Vasant Honavar, Les Miller, Robyn Lutz

e-mail:{ghelmer, wong, slagell, honavar, lmiller, rlutz}@cs.iastate.edu

The date of receipt and acceptance will be inserted by the editor

Abstract Requirements analysis for an Intrusion Detection System (IDS) involves deriving requirements for the IDS
from analysis of the intrusion domain. When the IDS is, as here, a collection of mobile agents that detect, classify,
and correlate system and network activities, the derived requirements include what activities the agent software should
monitor, what intrusion characteristics the agents should correlate, where the IDS agents should be placed to feasibly
detect the intrusions, and what countermeasures the software should initiate. This paper describes the use of software
fault trees for requirements identification and analysis in an IDS. Intrusions are divided into seven stages (following
Ruiu), and a fault subtree is developed to model each of the seven stages (reconnaissance, penetration, etc.). Two
examples are provided. This approach was found to support requirements evolution (as new intrusions were identified),
incremental development of the IDS, and prioritization of countermeasures.

Key words Software fault tree, requirements analysis, intrusion detection system, mobile agents, coloured petri nets

1 Introduction

A secure computer system provides guarantees regarding the confidentiality, integrity, and availability of its objects
(such as data, processes, or services). However, systems generally contain design and implementation flaws that result
in security vulnerabilities. An intrusion takes place when an attacker or group of attackers exploit security vulnerabil-
ities and thus violate the confidentiality, integrity, or availability guarantees of a system. Intrusion detection systems
(IDSs) detect some set of intrusions and execute some predetermined action when an intrusion is detected.

Intrusion detection systems use audit information obtained from host systems and networks to determine whether
violations of a system’s security policy are occurring or have occurred [1]. Our Multi-Agents Intrusion Detection
System (MAIDS) [2] uses mobile agents [3] in a distributed system to obtain audit data, correlate events, and discover
intrusions. The MAIDS system is comprised of (1) stationary data cleaning agents that obtain information from system
logs, audit data, and operational statistics and convert the information into a common format, (2) low level agents that
monitor and classify ongoing activities, classify events, and pass on their information to other agents, and (3) data
mining agents that use machine learning to acquire predictive rules for intrusion detection from system logs and audit
data.

However, we found the lack of a sound theoretical model and systematic method for the construction to be an
impediment to development of the system in our early work. Existing intrusion detection systems tend to be built
by selecting a set of data sources and developing a classification system to identify some set of intrusions using the

2 Guy Helmer et al.

selected data [2]. It is difficult to determine exactly what data elements should be correlated to determine whether an
intrusion is taking place on a distributed system. It is also difficult to determine what data was necessary to discover
intrusions. Verification of the proper operation of the IDS was possible only informally by executing the IDS and
checking its results.

To bridge this gap, we started to look at IDS models. A model of intrusion detection is necessary to describe how
the data should flow through the system, determine whether the system would be able to detect intrusions, and poten-
tially suggest points at which countermeasures could be implemented. Such a model provides a formal specification of
how to describe intrusions, identify intrusion characteristics and provably detect intrusions based on observable char-
acteristics. Our approach begins with an analysis of intrusions to support a theoretical model of intrusion detection
that answers questions about which intrusions are detectable, how they can be detected, how the data from different
sensors should be correlated, and to what extent we can be assured that a report of an intrusion or a non-intrusion is
accurate.

Software Fault Tree Analysis (SFTA) [4] is used in our approach to model intrusions and develop requirements
for the IDS. SFTA is a method for identifying and documenting the combinations of lower-level software events that
allow a top-level event (or root node) to occur. When the root node is a hazard, the SFTA assists in the requirements
process by describing the known ways in which the system can reach that unsafe state. The safety requirements for
the system can then be derived from the software fault tree, either indirectly [5,6] or directly via a shared model [7].
Software Fault Trees are closely related to threat trees [8].

In the work described here, we use SFTA to assist in determining and verifying the requirements for an intrusion
detection system. The root node of the top-level SFTA is not strictly a hazard, as in a safety analysis, but an intrusion.
An intrusion is a violation of a system’s security policy. Intrusions result in compromise of exclusivity (unauthorized
disclosure of data or use of services), integrity (unauthorized modification of data), or availability (denial of service).
Whereas safety failures are often accidental or unexpected, intrusions are intentional, perpetrated by individuals, and
can be expected to occur. Both safety and security failures represent potentially significant or catastrophic losses.

Intrusions can occur in a variety of ways. The software fault tree models the combinations and sequences of events
by which intrusions can occur. The understanding and capture of domain knowledge needed to accurately define the
requirements on an IDS is difficult. Questions such as what intrusions can be feasibly detected by the IDS software,
at what stage of an intrusion the IDS software should detect each intrusion, and what assurances can be given that the
IDS software detects intrusions must be addressed by the requirements analysis. The goal is not to build a system in
which the root node never occurs, but to build an IDS in which the root node never occurs undetected.

The primary contribution of the work described here is to analyze the intrusion domain using software fault trees
in order to determine the requirements for an IDS. The SFTA models the stages of intrusion in a structure that supports
discovery and reasoning about requirements. In addition, the SFTA supports requirements evolution. The fault tree
can be updated as new intrusions are identified, an essential feature for security applications. The SFTA also allows
incremental development of the IDS as progressively more paths to the root node (or to the root node of a subtree) are
blocked by the software. Inspection of the SFTA provides guidance as to where software monitors in the IDS should
be required. Finally, path coverage metrics provide some verification that the IDS requirements are correct.

The rest of the paper is organized as follows. Section 2 provides some background on SFTA and graph-based IDS.
Section 3 describes fault tree modeling of intrusions. Section 4 elaborates two specific examples from our experience
with SFTA for the requirements determination of an IDS. Section 5 discusses the results of the use of SFTA in terms
of requirements identification and analysis, requirements evolution, and verification. Section 6 contains concluding
remarks.

2 Background

2.1 Software Fault Tree Analysis

The Software Fault Tree Analysis used to model intrusions is a backward search. It begins with a known hazard
(here, an intrusion) as the root node and traces back through the possible parallel and serial combinations of events

A Software Fault Tree Approach to Requirements Analysis of an Intrusion Detection System 3

AND gate indicates that all input events
are required to cause the output event.

Oval indicates a condition. It defines
the state of the system that permits
a fault sequence to occur. It may be
normal or result from failures.

Diamond is used for non−primal events
which are not developed further for lack
of information or insufficient consequences.

House is used for events which normally
occur in the system. It represents the
continued operation of the component.

Circle represents a basic fault
event or primary failure of a component.
It requires no further development.

Rectangle indicates an event
to be analyzed further.

OR gate indicates that one or more of
the input events are required to produce
the output event.

Triangle (in SAPHIRE) is a link to
another tree.

Figure 1 Relevant fault tree symbols

that caused such an intrusion. The fault tree graphically represents this information in a diagram of events and logic
gates leading to each hazard. Normally, the goals of developing a software fault tree include identifying contributing
circumstances to an unsafe state and demonstrating that a system can not reach an unsafe state or that unsafe states
are reached with very low probability [9]. In the intrusion domain, however, widely-deployed existing systems and
protocols which are unsafe (i.e., allow intrusions) are modeled in the intrusion detection domain to enable reasoning
about the possible combinations of events that lead to intrusions.

Figure 1 (a subset of available symbols [4]) shows commonly-used fault tree symbols. The procedure for fault tree
analysis starts with identifying a hazard. The hazard becomes the root of the fault tree. Necessary preconditions for
the hazard are specified in the next level of the tree and joined to the root with a logical AND or a logical OR. Each
precondition is similarly expanded until all leaves are events that occur with some calculable probability or cannot be
further analyzed. Fault tree analysis is used at the system level to identify high-level requirements for software safety.
Software fault tree analysis is then performed on code, design, or requirements specifications [10]. The SAPHIRE
software from the Idaho National Engineering and Environmental Lab was used to draw and edit the fault trees [11].

The OR gates in the fault trees shown are “true” if any input is true. The AND gates are “true” if all inputs are true
in the current context, where the context may be a virtual network connection, a user’s login session, a series of related
transactions, or some other temporal context. Child events of AND gates may take place in any order (left-to-right

4 Guy Helmer et al.

representation has been used where events occur in sequence, but the fault trees do not enforce the order). (Hansen
et al. [7] discuss the ambiguities of traditionally accepted fault trees.)

A cut set is a set of basic events that causes the system to fail [12]. A cut set is called aminimum cut set if no basic
event can be removed from the cut set and the root of the tree is still true [12]. A minimum cut of a fault tree gives a
minimum set of successful events sufficient to satisfy the root. A minimum cut of an intrusion fault tree describes a
scenario of a use case in which an attacker successfully exploits security flaws to achieve the goal of compromising
the system. Manian, et al. [13] use Binary Decision Diagrams as an alternative to cutset-based solutions of fault trees
for large, combinatorial solutions. However, in our current work, the size of the fault trees has been manageable using
traditional cutset-based solutions.

2.2 Graph-Based Models of Intrusion Detection Systems

Several graph-based modeling techniques for IDS exist, but they model the intrusion detection system rather than
the intrusion itself. For example, GrIDS, the Graph-based Intrusion Detection System, detects misuse in a system
by dynamically building graphs that model the communication activities in a network [14]. The graph depends on
user-defined rules to identify suspicious patterns and models intrusion detection, rather than intrusions. ARMD, the
Adaptable Real-time Misuse Detection system, represents misuse signatures as directed acyclic graphs [15]. Unlike
the object/event model used by GrIDS, the graphs are not amenable to aggregation. IDIOT, Intrusion Detection In Our
Time, is an IDS that uses a custom language and a variant of Colored Petri Nets (CPNs) for misuse detection [16,17].

3 Developing Fault Trees for Intrusions

Intrusion fault tree modeling draws from a variety of sources. The standards used in current TCP/IP networks are
publicly available. Proposals and standards for IP networks are published by the Internet Engineering Task Force
(IETF) as Requests for Comment (RFC’s) and Standards (STD’s). Implementations of most network protocols are
freely available in software such as Linux, FreeBSD, and Apache, allowing public review for security issues. Numerous
researchers and hackers actively discover and publish security vulnerabilities in public forums including mail lists such
asbugtraq and web sites such aswww.securityfocus.com.

Faults that are generally UNIX-centric are considered in the fault trees, although many similar problems (e.g.,
buffer overflows) exist in software on other systems. Rather than looking directly at the source code for these systems,
the immense body of publicly-discussed vulnerability information is used for development of the sample fault trees
discussed here.

3.1 Reasonable Fault Trees

Each successful intrusion can vary greatly from all other intrusions, and attempts to analyze complete intrusions are
difficult. A monolithic fault tree that would attempt to describe all intrusions would be huge, unwieldy, and less useful
than several trees divided in a systematic manner. A reasonable approach is to divide intrusions into stages of intrusions
that achieve intermediate goals of the attacker, and to develop fault trees that model each of the stages.

Ruiu’s analysis of intrusions [18] separates intrusions into seven stages: (1) Reconnaissance, (2) Vulnerability
Identification, (3) Penetration, (4) Control, (5) Embedding, (6) Data Extraction & Modification, and (7) Attack Relay.
We use each of the seven stages as a root node in a SFTA, which has turned out to be a useful approach for the
intrusions we have analyzed. Dividing stages in this manner seems to have been beneficial in that common subtrees
can be identified and reused. Certain intrusion techniques (e.g., buffer overflow or printf-style format-string exploits)
are often applied to many different components in a system.

A Software Fault Tree Approach to Requirements Analysis of an Intrusion Detection System 5

3.2 SFTAs for Intrusions

The sample fault trees do not represent all possible combinations of events that make the root nodes true, even for
known intrusions, but represent the known events in the documented intrusions against the systems of interest at this
time. An example of how paths in the trees can describe a successful intrusion is discussed below.

3.2.1 Reconnaissance The reconnaissance phase identifies potential targets within an organization’s networks. Net-
work targets include not only multiuser hosts (e.g., UNIX or Windows/NT systems) but also routers, intelligent hubs,
and perhaps even modems. The services offered by systems and names of users on the systems are also useful infor-
mation for an attacker. Figure 2 shows a sample fault tree for the reconnaissance phase.

3.2.2 Vulnerability Identification Vulnerability identification is closely related to reconnaissance. In this phase, an
attacker searches for vulnerabilities that can lead to penetration. The attacker sequentially scans many ports looking for
versions of remote control services known to be vulnerable to intrusion (e.g., BackOffice or NetBus). Port scanning is a
“noisy” monitorable intrusion, and is usually easy to detect unless done very slowly. The software fault tree in Figure
3 models this vulnerability identification phase of the intrusion (the FTPD node, number A5, is left unexpanded to
allow us to show the diagram in a readable format). Other events, monitorable (such as checking of operating system
version identification strings) and unmonitorable (such as off-site sniffing of network traffic) may also be used for
version identification but were not included in Figure 3 for space reasons to make it readable.

3.2.3 Penetration Penetration occurs when an attacker obtains unauthorized access to a system. Penetration methods
include exploitation of various network server daemon vulnerabilities (poor authentication and buffer overflows),
authenticating with illicitly obtained passwords, and TCP session hijacking. Figures 4, 5, 6, and 7 together represent
a sample fault tree for the penetration stage of intrusions. An example of potential subtree reuse can be seen in Figure
4, where node C2 (Shell Via Buffer Overflow) represents online access to a shell and also could be duplicated under
node B2 (Execute Shell Code) where a shell could be used to execute a command.

3.2.4 Control An attacker needs to gain sufficient privilege in a system to continue to the next stages of the intrusion.
Often an attacker must obtain privileges equivalent to those of the system administrator to gain sufficient control of a
system. If the penetration was particularly effective and sufficient privilege was already gained, this step may not be
necessary.

Mechanisms traced in Figure 8 include exploiting buffer overflows in privileged local programs, exploiting races
in temporary files or signals, exploiting weak permissions on critical files and devices, and cracking a password for an
administrator’s account.

3.2.5 Embedding Embedding involves the installation or modification of a system so that even if the attacker is
discovered and steps are taken to recover the system, the attacker will still be able to enter the system. For example,
the system bootstrap code could be modified to re-insert backdoors if the system executable programs are restored
from backups or installation media. Typical embedding techniques include installing Trojan horses, backdoor, and
other rootkit programs, removing traces of the intrusion from system logs, and disabling detection systems.

Figure 9 identifies two different rootkit installations by matching particular sets of modified system files. A rootkit
is a collection of embedding programs that allow an attacker to hide his activities and may include programs for use in
the next step, data extraction & modification. If attackers do not typically install all the embedding programs in their
kit, Figure 9 would need to be refined to reflect this case.

3.2.6 Data Extraction & Modification In the data extraction and modification phase, the attacker gathers information
about the configuration and operation of the system. Covert channels may be used to move discovered data from the
compromised system to the attacker’s base. Events in this phase of an intrusion tend to resemble normal events (e.g.,
copying files). Anomaly detection seems to be an ideal application for detecting this stage of an intrusion. For these
reasons, we concentrated on the other stages of intrusions and left this stage for later work.

6 Guy Helmer et al.

3.2.7 Attack Relay After a system is fully compromised, it may be used for attack relaying. Intrusions can be
launched against affiliated (trusting) hosts to expand the number of hosts under the attacker’s control. A system also
may simply be used to participate in distributed denial-of-service attacks [19,20,21,22]. Figure 10 represents some
basic faults seen from Stacheldraht, Tribe Flood Network, and Trinoo distributed denial of service attacks. Many other
forms of attack relaying exist, including automated and manual means.

4 Experience with Fault Trees for Intrusions

The relationship of the developed fault trees to the two intrusions is examined in this section. Each intrusion follows
one of the multiple paths through each of the staged subtrees in Figures 2-10. A portion of the fault tree of Figure
7, describing the FTP bounce attack, was selected for further analysis. The FTP bounce attack subtree is particularly
interesting because it involves several time-ordered steps which must take place for the intrusion to be successful.

4.1 Example 1: FTP SITE EXEC Intrusion

The FTP SITE EXEC attack against the wuftpd daemon is a buffer overflow attack [23]. When someone logs into
the wuftpd daemon as the useranonymous or ftp, the daemon requests that the email address be entered as the
password. However, an attacker can instead send malicious shell code in response to the password prompt. Then, if the
SITE EXEC command is enabled, the attacker can send a SITE EXEC command with %-formatting characters that
cause a buffer to overflow with data previously obtained as the password.

In the reconnaissance stage of the intrusion, an intruder discovers an anonymous FTP server host by using any one
or more of the methods under the “HostDiscovery” node in the reconnaissance tree in Figure 2.

The intruder also discovers the availability of the FTP server by one of the methods under the “TCP-Service-
Discovery” node in the reconnaissance tree.

In the next stage of the intrusion, the intruder identifies a vulnerability (a path through the subtree in Figure 3).
The intruder may or may not take the time to make a connection to the FTP server and verify that the version number
reported by the server is vulnerable to the FTP SITE EXEC attack. (Known FTP vulnerabilities are not expanded
under the “FTPD” node in the vulnerability identification tree in Figure 3.)

Figures 4 to 7 show the penetration fault tree as this intrusion scenario continues (this scenario is shown in detail
by a path in the fault tree of Figure 5). The intruder can now connect to the FTP server, give “anonymous” or “ftp”
as the user name, and enter malicious shell code as the password. The intruder then issues a SITE EXEC command
containing printf-style substitution character sequences. This is an attempt to overflow the character buffer on the
process’ stack with the data from the previously-entered “password.” If the overflow is successful, the code provided
by the intruder is executed with root privileges. A successful FTP SITE EXEC attack also gives the attacker control,
so the attacker can move on to the later stages of the intrusion. (In this intrusion scenario, we assume the successful
penetration results in privileged access, so the control phase of the intrusion may be by-passed.)

In the embedding stage, the intruder can install the Linux Rootkit version 4, which replaces a number of programs
with Trojaned implementations that hide the attackers activities. Figure 9 shows the fault tree that matches the changes
to the file system that result from the installation of the Linux Rootkit version 4.

In the data extraction stage, the intruder installs and runs a password sniffer that takes user names and passwords
from telnet and ftp sessions on the LAN.

In the final stage of the intrusion, shown as a path through the intrusion fault tree in Figure 10, the intruder installs
and runs a distributed denial of service agent, such as Trinoo, TFN, or Stacheldraht. The intruder can then use the
system to execute attacks against other networked sites.

4.1.1 Derived IDS Requirements The software fault trees involved in this intrusion helped identify the software
requirements for the mobile agent software tasked with detecting the FTP SITE EXEC intrusion. Examination of the
penetration subtree shows that it is feasible to detect the FTP SITE EXEC attack in software.

A Software Fault Tree Approach to Requirements Analysis of an Intrusion Detection System 7

4.1.2 Countermeasures for the FTP SITE EXEC intrusion Based on the derived requirements, an intrusion detection
system should monitor PASS commands in an FTP session for data that does not represent a valid sequence of printable
characters. That is, an invalid sequence of characters, including a number of characters beyond the maximum allowed
password size or a password containing non-printable characters, is an event in any minimum cut set. The analysis
does not say anything about how the monitoring should be implemented or performed; it merely leads to requirements
for the intrusion detection system for stopping this particular intrusion.

4.2 Example 2: FTP Bounce Intrusion

The FTP bounce attack can be used to transfer data to a network port to which an attacker does not normally have
access [24]. One way to exploit this problem is to send data to a remote shell server that trusts the FTP host via the FTP
server. After an attacker discovers an FTP server and a host running rsh that might trust the FTP server, the attacker
tries this exploit:

1. Uploads a specially-formatted file to the FTP server;
2. Issues an FTP PORT command that directs the FTP server to send its next download to port 514 on the target host;
3. Issues an FTP GET command to “download” the contents of the previously-uploaded file into port 514 on the

target; the GET command opens a connection from the FTP server on port 20 to the rsh daemon on the target.
4. If the target trusts the FTP server, the rsh daemon will accept the contents of the file as if it were user input and

execute the given command.

The following steps in an intrusion based on an FTP bounce attack show how the trees relate to the entire intrusion.
In the Reconnaissance stage of the intrusion, the intruder discovers an FTP server host and a target host, using any

one or more of the methods under the “HostDiscovery” node in the reconnaissance tree. The intruder also discovers
the availability of the FTP server and RSH server by one of the methods under the “TCP-Service-Discovery” node in
the reconnaissance tree.

As in the intrusion discussed in Section 4.1, during the Vulnerability Identification stage, the intruder may or may
not take the time to make a connection to the FTP server and verify that the version number reported by the server is
vulnerable to the FTP bounce attack. In this path through the subtree, the intruder also needs a directory on the FTP
server to which he or she may upload a file; if the intruder has no access to the FTP server other than “anonymous”,
the intruder will have to search for such a directory.

The intruder will likely have to assume that the target host trusts the FTP server host, unless the intruder already
has some access to the target host and can read the/etc/hosts.equiv or ~root/.rhosts files. We have not
considered “insider access” in the vulnerability identification tree.

The intrusion continues through the penetration subtree, with the intruder uploading the shell command file to the
FTP server and issuing the appropriate FTP commands to cause the FTP server to “download” the file into the target’s
RSH service. The “FTP-Bounce” subtree of Figure 7 shows the required FTP commands and responses. The structure
of the subtree enforces the order of the events in the FTP command/response stream.

The successful FTP bounce intrusion mounted against a privileged account on the target also gives the attacker
control, so the attacker can move on to the later stages of the intrusion. These later stages are omitted here for reasons
of space since the path at this point is identical to that of the previously described intrusion.

4.2.1 Derived IDS Requirements Analysis of the subtree concerning the FTP bounce attack shows that, in order to
detect the intrusion, the IDS needs to monitor commands and responses in an FTP session, to monitor rsh connections,
and to correlate outputs from the two monitors to determine whether an FTP bounce attack was attempted and whether
the intrusion was successful. As before, the analysis does not say anything about how the monitoring should be
implemented or performed, but merely yields requirements for the intrusion detection system to stop or identify this
particular intrusion.

8 Guy Helmer et al.

4.2.2 Countermeasures for the FTP Bounce Attack Each of the steps in the intrusion detailed above is part of a
scenario which fits a minimum cut of the corresponding fault tree. Inspecting the minimum cuts for each intrusion
leads us to the best point at which to apply countermeasures. Countermeasures in intrusion detection systems typically
include alerts to the system manager (via email, paging, or simply log messages), termination of network connections
or logins, and disabling user accounts.

We examined the minimum cut from the penetration tree for the FTP Bounce Attack and informally considered
the cost of applying countermeasures at each node. The cost included the complexity of the software required and the
effect on the legitimate users of the system. It appears that the lowest cost countermeasure is to kill the TCP connection
made from the FTP server to the RSH server; countermeasures at other nodes would either be prohibitive to implement,
prevent legitimate uses of the FTP or RSH services, or be too late to terminate the FTP bounce intrusion.

5 Discussion of Results

Software fault trees for intrusions explore the sufficient combinations of events that lead to exploitation of a vulnerabil-
ity. Development of fault trees for intrusions enabled a variety of discovery and verification activities. We summarize
these briefly here and refer the reader to the previous section for examples.

5.1 Requirements Identification & Analysis

Fault trees document properties of intrusions and allow for analysis of intrusion properties.
Domain Understanding and Documentation.
Capturing this domain understanding is frequently difficult in the security arena. Software fault trees provide a

standard, easy-to-use format for documenting properties of intrusions by system and network experts.
Determining Requirements.
Each minimum cut models an intrusion scenario that the software may be required to recognize. Identification

of leaf events in the fault tree illustrates what components of a distributed system must be monitored to detect the
intrusion. In addition, analysis of intrusion fault trees exposes conditions where countermeasures may be successfully
applied by an intrusion detection system to intervene before the intrusion is successful.

Fault Detectability Analysis.
This refers to the ability of the system to detect the problem if it appears during system operation [25]. Determining

which characteristics of intrusions can be monitored is an essential part of the requirements analysis for an IDS. For
example, there exist certain intrusive events that do not have any discernible effect on a site’s distributed system. Such
events include “DNS zone transfers” from off-site secondary name servers and passive password sniffing. Marking
these events appropriately in the fault tree allows analysis of which intrusions would be particularly difficult to detect,
and may give hints regarding ways to prevent such intrusions from occurring.

5.2 Requirements Evolution & Incremental Development

Software fault trees support intrusion detection system development and maintenance activities.
Prioritization of Requirements.
The addition of historical likelihood and severity information [4] or risk vs. reward information [8] on the nodes

(not addressed in this paper) assists in prioritizing requirements. In addition, based on this additional information from
the fault trees, alert priorities may be encoded in an intrusion detection system. For example, most of the intrusions in
the reconnaissance and vulnerability identification SFTAs have a low severity and high likelihood and are given a low
alert priority. Conversely, the intrusions in the penetration and control SFTAs have a high severity and are given a high
alert priority.

New intrusions.

A Software Fault Tree Approach to Requirements Analysis of an Intrusion Detection System 9

Newly-discovered intrusions need to be integrated into the intrusion fault tree. Such new information may en-
courage re-organization of the fault tree, as when a new intrusion depends on a set of circumstances that is already
diagrammed in the fault tree, or the addition of a subtree (either new or reused). The changes necessary in the intrusion
fault tree to incorporate information about newly-discovered intrusions will then guide the necessary modifications of
the intrusion detection requirements and design to detect the new intrusions.

5.3 Verification

Once confidence is established in a software fault tree, primarily through expert review, the design of the intrusion
detection can then be traced to the software fault tree to determine its completeness and correctness.

Based on the testing strategy of Puketza et al. [26] the SFTA can be used to test the design and implementation
of an IDS. Given a subtree of an SFTA that describes related intrusive events, define the subtree to be an equivalence
class for the set of intrusions. Select one or more representative minimum cuts of the subtree to be tested. Then, given
scenarios which are positive and negative examples of the intrusions, execute the intrusions and determine whether the
subtree accurately matches the events. The scenarios form a set of representative test cases for the equivalence class.

We do not interpret the fault tree directly as requirements, unlike the approach used by Hansen et al. [7], where the
fault tree has a formal semantics. A less formal approach was desired in the intrusion application because we want the
fault tree to be developed and maintained by system support personnel rather than by experts in formal specification.
It is primarily the support personnel’s knowledge of the system and its vulnerabilities that the fault tree is intended to
capture. To understand this, a brief description of the larger IDS system is in order.

The intrusion fault tree work described here is the requirements phase of a larger effort to provide a more formal
framework for building IDS [27,28,29]. The IDS will use mobile agents in a distributed system to collect audit data,
classify it, correlate information from the different mobile agents, and detect intrusions. The intrusion fault tree drives
the requirements for these mobile agents and the intrusion detection system. The fault tree is mapped, by a correctness-
preserving transformation, into Colored Petri Nets (CPNs) that serve as the design specification of the mobile agents
in the IDS. Interactive simulation of these CPNs gives additional verification that the design satisfies the requirements
(i.e., blocks the relevant path(s) in the intrusion fault tree). Code for the IDS mobile agents is generated from the CPNs
and tested using, among other scenarios, the minimum cuts through the intrusion fault tree. Currently, prototypes exist
of each of these phases (i.e., some CPNs and some mobile agents for some intrusions) with work on-going to partially
automate the code generation.

6 Summary and Future Work

The use of software fault tree analysis to model intrusions to support requirements identification and analysis for an
IDS has been presented with supporting examples and illustrative uses. Division of fault trees for intrusions into seven
stages was examined, and sample fault trees for the intrusion stages were described. Using these staged subtrees, two
intrusions were examined and software requirements for detection of the intrusions were derived from examination
of the trees and associated minimum cut sets. An example use of SFTA for guiding countermeasures’ requirements
analysis was also described.

SFTAs enable structured analysis of intrusions and may be able to support both requirements evolution as new
intrusions are added and to enable prioritized, incremental development of a distributed, agent-based IDS.

For our IDS prototypes, there has been no requirements specification. Instead, the intrusion fault trees have been
interpreted as specifications of the combinations of events that must be detected. That is, the IDS requirements are that
each of the intrusion sequences possible in the fault tree should be detected as soon (low in the tree) as possible. The
leaf events describe what components of a distributed system must be monitored by the mobile agent software. No
separate requirements specification document has been developed. Software fault tree models of intrusions provide an
indirect requirements description for the design of the IDS. The resulting design is modeled on Colored Petri Nets and
implementable in mobile agents. SFTA models of intrusions may also assist the verification process by providing test

10 Guy Helmer et al.

case scenarios (paths of intrusion) that the IDS is required to detect. Our ongoing research will determine the long-
term effectiveness of SFTA in an IDS development cycle while automating the development process from requirements
engineering through implementation. An example of the progress in this area is Slagell’s technical report [28].

We have begun to formalize the use of the developed software fault trees to drive the development of an intrusion
detection design. We are examining extending SFTAs with additional information. Without this additional system-
specific information, the IDS yields many false positives, detecting intrusions where, in a specific network, there is
none. More information on these constraints is available in Helmer’s dissertation [27].

The SFTAs developed in this work deal with known, staged misuse intrusions. Ideas for future research in the same
view include developing models of anomaly intrusions and non-staged misuse intrusions. Non-staged misuse intru-
sions include intrusions such as denials of service. Such intrusions do not follow the seven stages of an intrusion but
violate the availability, confidentiality, or integrity of a computing system. Some of these intrusions have been exceed-
ingly effective but difficult to detect and counter. Developing a model of these intrusions may assist the development
of detection and countermeasures.

Detecting as-yet-unknown misuse intrusions may be assisted by SFTA. As an expert constructs a fault tree, he
or she should consider reasonable (but as yet unnoticed) events that could contribute to an intrusion. An interesting
possibility for further research would be to build an SFTA in this way and evaluate it against existing systems to
determine whether hypothesized vulnerabilities do, in fact, exist.

A related aspect of SFTA development is the tedious, detailed work and expert analysis required. We are interested
in researching machine learning approaches to support automated development of SFTA.

Anomaly intrusion detection systems are a subject of current research activity, but as with misuse IDSs, tend to
start with a particular data source and match an intrusion detection approach to the data. Analysis and modeling of
anomaly intrusions may assist and improve the development of anomaly IDSs.

Acknowledgements Funded in part by the Department of Defense. This work was performed in part by the Jet Propulsion Labora-
tory, California Institute of Technology, under a contract with NASA. Funded in part by NASA’s Code Q Software Program Center
Initiative, UPN 323-08. The assistance of Palisade Systems, Inc. is gratefully acknowledged. An earlier version of the paper was
presented at the 1st Symposium on Requirements Engineering for Information Security, 2001, Indianapolis, Indiana USA.

References

1. Amoroso, E. Intrusion Detection. Intrusion.Net Books, Sparta, NJ, USA, 1999.
2. Helmer, G., Wong, J. S. K., Honavar, V., and Miller, L. Intelligent agents for intrusion detection. In: Proceedings, IEEE

Information Technology Conference, Syracuse, NY, USA, Sept. 1998, pp. 121–124.
3. Bradshaw, J. M., Ed. An Introduction to Software Agents. MIT Press, Cambridge, MA, USA, 1997.
4. Leveson, N. G. Safeware: System Safety and Computers. Addison-Wesley, Reading, MA, USA, 1995.
5. De Lemos, R., Saeed, A., and Anderson, T. Analyzing safety requirements for process-control systems. IEEE Software 1995;

12(3):42–53.
6. Lutz, R., and Woodhouse, R. M. Requirements analysis using forward and backward search. Annals of Software Engineering

1997; 3:459–475.
7. Hansen, K. M., Ravn, A. P., and Stavridou, V. From safety analysis to software requirements. IEEE Transactions on Software

Engineering July 1998; 24(7):573–584.
8. Amoroso, E. Fundamentals of Computer Security Technology. Prentice-Hall PTR, Upper Saddle River, NJ, 1994.
9. Leveson, N. G., Cha, S. S., and Shimeall, T. J. Safety verification of Ada programs using software fault trees. IEEE Software

July 1991; 8(4):48–59.
10. Lutz, R. R. Targeting safety-related errors during software requirements analysis. Journal of Systems and Software Sept. 1996;

34:223–230.
11. Idaho National Engineering and Environmental Laboratory. SAPHIRE - systems analysis programs for hands-on integrated

reliability evaluations. Online, 2000.http://saphire.inel.gov/.
12. Raheja, D. G. Assurance Technologies: Principles and Practices. McGraw-Hill Engineering and Technology Management

Series. McGraw-Hill, New York, 1991.

A Software Fault Tree Approach to Requirements Analysis of an Intrusion Detection System 11

13. Manian, R., Dugan, J. B., Coppit, D., and Sullivan, K. J. Combining various solution techniques for dynamic fault tree analysis
of computer systems. In: 3rd IEEE International High-Assurance Systems Engineering Symposium, IEEE Computer Society,
1998, pp. 21–28.

14. Staniford-Chen, S., Cheung, S., Crawford, R., et al. GrIDS-a graph based intrusion detection system for large networks. In:
19th National Information Systems Security Conference Proceedings, Oct. 1996, pp. 361–370.

15. Lin, J.-L., Wang, X. S., and Jajodia, S. Abstraction-based misuse detection: High-level specifications and adaptable strategies.
In: Proceedings, IEEE Computer Security Foundations Workshop, Rockport, MA, USA, June 1998, pp. 190–201.

16. Kumar, S., and Spafford, E. H. A pattern matching model for misuse intrusion detection. In: Proceedings of the 17th National
Computer Security Conference, Baltimore, MD, USA, Oct. 1994, pp. 11–21.

17. Kumar, S. Classification and Detection of Computer Intrusions. PhD thesis, Purdue University, West Lafayette, IN, USA, Aug.
1995.

18. Ruiu, D. Cautionary tales: Stealth coordinated attack howto, July 1999.http://www.nswc.navy.mil/ISSEC/CID/
Stealth_Coordinated_Attack.html.

19. Dittrich, D., Weaver, G., Dietrich, S., and Long, N. The “mstream” distributed denial of service attack tool. Online, May 2000.
http://staff.washington.edu/dittrich/misc/mstream.analysis.txt.

20. Dittrich, D. The “stacheldraht” distributed denial of service attack tool. Online, Dec. 1999.http://staff.washington.
edu/dittrich/misc/stacheldraht.analysis.txt.

21. Dittrich, D. The “tribe flood network” distributed denial of service attack tool. Online, Oct. 1999.http://staff.
washington.edu/dittrich/misc/tfn.analysis.txt.

22. Dittrich, D. The DoS Project’s “trinoo” distributed denial of service attack tool. Online, Oct. 1999.http://staff.
washington.edu/dittrich/misc/trinoo.analysis.txt.

23. CERT Coordination Center. Two input validation problems in FTPD. Online, July 2000.http://www.cert.org/
advisories/CA-2000-13.html.

24. CERT Coordination Center. FTP bounce. Online, Dec. 1997.http://www.cert.org/advisories/CA-97.27.
FTP_bounce.html.

25. Del Gobbo, D., Cukic, B., Napolitano, M. R., and Easterbrook, S. Fault detectability analysis for requirements validation of
fault tolerant systems. In: 4th IEEE International High-Assurance Systems Engineering Symposium, IEEE Computer Society,
1999, pp. 231–238.

26. Puketza, N. J., Zhang, K., Chung, M., Mukherjee, B., and Olsson, R. A. A methodology for testing intrusion detection systems.
IEEE Transactions on Software Engineering Oct. 1996; 22(10):719–729.

27. Helmer, G. Intelligent multi-agent system for intrusion detection and countermeasures. PhD thesis, Iowa State University,
Ames, IA, USA, Dec. 2000.

28. Slagell, M. The design and implementation of MAIDS (mobile agent intrusion detection system). Tech. Rep. TR01-07, Iowa
State University Department of Computer Science, Ames, IA, USA, 2001.

29. Helmer, G., Wong, J., Honavar, V., and Miller, L. Lightweight agents for intrusion detection. To appear, Journal of Systems
and Software, 2003.

12 Guy Helmer et al.

v

R
econn

aissance

U
serD

iscovery
H

ostD
iscovery

S
erviceD

iscovery

W
W

W
S

M
T

P
P

assw
dS

niff
F

ing
er

IC
M

P
-E

C
H

O
D

N
S

-Z
O

N
E

-X
F

E
R

T
C

P
-X

M
A

S
S

N
M

P
E

avesdrop
ping

E
cho-U

nicast
E

cho-B
road

cast

T
C

P
-X

M
A

S
T

C
P

-S
Y

N

U
D

P
T

C
P

-S
ervice-D

iscovery
P

assive-S
ervice-D

iscover

R
E

C
O

N
N

A
IS

S
A

N
C

E
-

R
econ

na
ssan

ce
ph

a
se

ofin
trusions

2
00

0/0
7/10

A
1.D

iscovery
ofan

authorized
user

A
2.D

iscovery
ofan

existing
netw

orked
host

A
3.D

iscovery
ofan

existing
service

B
1.U

se
finger

protocolto
discover

user
inform

ation
B

2.S
niffplaintextusernam

es
and

passw
ords

outofnetw
ork

B
3.S

M
T

P
V

R
F

Y
or

E
X

P
N

com
m

ands
verify

existence
ofuser

B
4.W

W
W

personalpages
B

5.U
D

P
packetnotfollow

ed
by

IC
M

P
P

ortU
nreachable

B
6.E

avesdrop
to

discover
services

B
7.A

ctively
discoverT

C
P

services
C

1.P
assively

m
onitor

nettraffic
to

learn
IP

addresses
C

2.IC
M

P
E

cho
R

equest
C

3.D
N

S
Z

one
T

ransfer
C

4.T
C

P
S

can
using

unusualflag
com

binations
(sneaks

through
packetfiltering

firew
alls)

C
5.Q

uery
devices

w
ith

public
S

N
M

P
access

C
6.T

C
P

S
can

using
unusualflag

com
binations

(sneaks
through

packetfiltering
firew

alls)
C

7.T
C

P
S

Y
N

to
prom

ptT
C

P
S

Y
N

/A
C

K
D

1.IC
M

P
E

C
H

O
R

E
Q

U
E

S
T

to
single

host
D

2.IC
M

P
E

C
H

O
R

E
Q

U
E

S
T

broadcast

A
1

A
2

A
3

B
1

B
2

B
3

B
4

B
5

B
6

B
7

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
1D

1
D

2

F
igure

2
R

econnaissance
faulttree

A Software Fault Tree Approach to Requirements Analysis of an Intrusion Detection System 13

V
ul

ne
ra

bi
lit

y-
ID

F
T

P
D

N
F

S
S

M
B

IM
A

P
B

IN
D

P
O

P
W

eb
-V

ul
n

P
C

-R
em

ot
e-

C
on

tr
ol

C
G

I-
V

ul
n

W
eb

-S
er

ve
r

V
ul

n-
S

am
ba

O
pe

n-
S

ha
re

s

qp
op

pe
r

S
C

O
-p

op
S

LM
ai

l-P
O

P
N

et
C

P
lu

s-
P

O
P

B
IN

D
-4

B
IN

D
-8

U
W

as
h-

po
p

U
W

as
h-

im
ap

M
S

-C
IS

-im
ap

Li
nu

x-
nf

sd
O

pe
n-

N
F

S

V
U

LN
E

R
A

B
IL

IT
Y

-I
D

-
V

u
ln

er
a

bi
lit

y
Id

en
tif

ic
at

io
n

2
00

0/
0

7/
1

0

A
1.

R
em

ot
e

co
nt

ro
ld

ae
m

on
s

(B
ac

kO
rf

ic
e,

N
et

B
us

,P
C

-
A

ny
w

he
re

)
A

2.
V

ul
ne

ra
bi

lit
ie

s
vi

a
w

eb
se

rv
er

A
3.

IM
A

P
se

rv
er

vu
ln

er
ab

ili
tie

s
A

4.
N

F
S

vu
ln

er
ab

ili
tie

s
A

5.
F

T
P

se
rv

er
ex

pl
oi

ts
A

6.
V

ul
ne

ra
bl

e
S

M
B

(W
in

do
w

s
fil

e
sh

ar
in

g)
A

7.
P

O
P

se
rv

er
vu

ln
er

ab
ili

tie
s

A
8.

B
IN

D
se

rv
er

vu
ln

er
ab

ili
tie

s

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

B
1

B
2

B
3

B
4

B
5

B
6

B
7

B
8

C
1.

M
ic

ro
so

ft
C

om
m

er
ci

al
In

te
rn

et
S

ys
te

m
im

ap
vu

ln
er

ab
ili

ty
C

2.
U

ni
ve

rs
ity

of
W

as
hi

ng
to

n
im

ap
vu

ln
er

ab
ili

tie
s

C
3.

U
ni

ve
rs

ity
of

W
as

hi
ng

to
n

po
p2

d
C

4.
S

ea
ttl

e
La

bs
S

LM
ai

lP
O

P
vu

ln
er

ab
ili

tie
s

C
5.

Q
ua

lc
om

m
qp

op
pe

r
bu

ff
er

ov
er

flo
w

s
C

6.
S

C
O

O
pe

nS
er

ve
r

P
O

P
se

rv
er

bu
ff

er
ov

er
flo

w
C

7.
N

et
C

P
lu

s
S

m
ar

tS
er

ve
r3

P
O

P
vu

ln
er

ab
ili

ty

B
1.

V
ul

ne
ra

bi
lit

ie
s

in
C

G
I

B
2.

V
ul

ne
ra

bi
lit

ie
s

in
w

eb
se

rv
er

s
th

em
se

lv
es

B
3.

Li
nu

x
nf

sd
bu

ff
er

ov
er

flo
w

B
4.

N
F

S
ex

po
rt

s
av

ai
la

bl
e

to
th

e
w

or
ld

B
5.

V
ul

ne
ra

bl
e

ve
rs

io
ns

of
S

am
ba

(1
.9

.1
7,

2.
0.

4)
B

6.
W

or
ld

-a
cc

es
si

bl
e

sh
ar

es
B

7.
B

IN
D

ve
rs

io
n

4
vu

ln
er

ab
ili

tie
s

B
8.

B
IN

D
ve

rs
io

n
8.

1.
x

C
1

C
2

C
3

C
4

C
5

C
6

C
7

F
ig

ur
e

3
V

ul
ne

ra
bi

lit
y

id
en

tifi
ca

tio
n

fa
ul

tt
re

e

14 Guy Helmer et al.

P
E

N
E

T
R

A
T

IO
N

S
H

E
LL-A

C
C

E
S

S

T
C

P
-H

IJA
C

K

S
P

O
O

F
-T

C
P

-S
E

G
M

E
N

T
S

N
IF

F
-T

C
P

-S
E

Q
N

O

S
H

E
LL-V

IA
-B

U
F

F
-O

V
E

R
F

LO
W

7

N
E

T
-D

A
E

M
O

N
-B

U
F

F
-O

V
E

R
F

LO
W

5

M
O

D
IF

Y
-C

O
N

F
IG

-F
ILE

S

4

LO
G

IN

E
X

E
C

U
T

E
-S

H
E

LL-C
O

D
E

C
G

I

N
P

H
-T

E
S

T
C

O
U

N
T

.C
G

I
T

E
S

T
-C

G
I

P
H

F
P

E
R

L

P
E

N
E

T
R

A
T

IO
N

-
P

en
etration

ph
a

se
ofa

n
in

trusion
2

00
0/0

7/1
0

A
1.P

enetration
phase

ofan
intrusion

B
1.A

ccess
to

a
shell

B
2.E

xecute
shellcode

C
1.H

ijack
existing

T
C

P
login

sessions
C

2.S
hellaccess

directly
via

a
netw

ork
daem

on
buffer

overflow
C

3.M
odify

a
configuration

file
and

login
C

4.Login
via

authorized
m

ethods
C

5.U
ser

inputvulnerabilities
in

C
om

m
on

G
atew

ay
Interface

(C
G

I)
D

1.S
end

a
spoofed

T
C

P
segm

entto
telnet/rlogin/rsh

connection
D

2.S
niffT

C
P

sequence
num

ber
from

an
existing

telnet/rlogin/rsh
D

3.N
etD

aem
on

B
uffer

O
verflow

vulnerability
exploitation

D
4.nph-testC

G
Iscriptinstalled

w
ith

older
w

eb
server

daem
ons

D
5.V

ulnerable
C

G
IC

ount.cgi
D

6.V
ulnerable

C
G

Itest-cgi
D

7.V
ulnerable

C
G

Iphf
D

8.perlor
perl.exe

presentas
a

C
G

I

A
1

B
1

B
2

C
1

C
2

C
3

C
4

C
5

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

F
igure

4
P

enetration
faulttree

A Software Fault Tree Approach to Requirements Analysis of an Intrusion Detection System 15

N
E

T-
D

A
E

M
O

N
-B

U
F

F
-O

V
E

R
F

L
O

W

S
E

N
D

M
A

IL
LP

D
N

A
M

E
D

P
O

P
D

M
O

U
N

TD
S

TA
T

D
IM

A
P

D
F

TP
D

S
IT

E
-E

X
E

C

A
N

O
N

-F
TP

-C
O

D
E

E
X

P
L

O
IT

-S
IT

E
-E

X
E

C

S
E

T
P

R
O

C
TI

TL
E

A
N

O
N

-F
TP

E
X

P
L

O
IT

-S
E

TP
R

O
C

TI
T

LE

N
E

T-
D

A
E

M
O

N
-B

U
F

F
-O

V
E

R
F

LO
W

-
N

et
D

ae
m

o
n

B
u

ffe
r

O
ve

rf
lo

w
vu

ln
er

ab
ili

ty
ex

pl
o

ita
tio

n
2

00
0/

07
/1

7

A
1.

N
et

D
ae

m
on

B
uf

fe
r

O
ve

rf
lo

w
vu

ln
er

ab
ili

ty
ex

pl
oi

ta
tio

n
B

1.
P

O
P

D
ae

m
on

B
uf

fe
r

O
ve

rf
lo

w
B

2.
S

en
dm

ai
lm

ai
lt

ra
ns

fe
r

ag
en

td
ae

m
on

bu
ffe

r
ov

er
flo

w
B

3.
B

er
ke

le
y

Li
ne

P
rin

te
r

D
ae

m
on

bu
ffe

r
ov

er
flo

w
B

4.
B

IN
D

N
am

e
D

ae
m

on
B

uf
fe

r
O

ve
rf

lo
w

B
5.

F
TP

D
B

uf
fe

r
O

ve
rf

lo
w

V
ul

ne
ra

bi
lit

ie
s

B
6.

rp
c.

m
ou

nt
d

N
F

S
m

ou
nt

da
em

on
bu

ffe
r

ov
er

flo
w

B
7.

rp
c.

st
at

d
N

F
S

st
at

us
da

em
on

bu
ffe

r
ov

er
flo

w
B

8.
IM

A
P

m
ai

ld
ae

m
on

bu
ffe

r
ov

er
flo

w
C

1.
S

IT
E

E
X

E
C

(C
A

-2
00

0-
13

)
C

2.
se

tp
ro

ct
itl

e(
)

D
1.

U
S

E
R

ftp
,P

A
S

S
[m

al
ic

io
us

sh
el

lc
od

e]
D

2.
S

IT
E

E
X

E
C

"%
(.

f|c
|s

)+
\|%

p"
D

3.
U

S
E

R
(f

tp
|a

no
ny

m
ou

s)
,P

A
S

S
[a

ny
th

in
g]

D
4.

C
W

D
[b

in
ar

y
sh

el
lc

od
e]

A
1

B
1

B
2

B
3

B
4

B
5

B
6

B
7

B
8

C
1

C
2

D
1

D
2

D
3

D
4

F
ig

ur
e

5
P

en
et

ra
tio

n
fa

ul
tt

re
e:

U
si

ng
bu

ffe
r

ov
er

flo
w

s
in

ne
tw

or
k

da
em

on
s

16 Guy Helmer et al.

M
O

D
IF

Y
-C

O
N

F
IG

-F
ILE

S

C
R

E
A

T
E

-N
E

W
-U

S
E

R
M

O
D

IF
Y

-R
C

M
D

-T
R

U
S

T

M
O

D
IF

Y
-R

H
O

S
T

S

M
O

D
IF

Y
-H

O
S

T
S

.E
Q

U
IV

LO
G

IN

E
N

A
B

LE
S

E
R

V
IC

E
S

M
O

D
IF

Y
IN

E
T

D
.C

O
N

F

E
N

A
B

LE
R

C
M

D

E
N

A
B

LE
R

E
X

E
C

E
N

A
B

LE
R

S
H

E
N

A
B

LE
R

LO
G

IN

E
N

A
B

LE
P

O
P

E
N

A
B

L
E

IM
A

P
E

N
A

B
L

E
T

F
T

P

M
O

D
IF

Y
R

C

R
E

M
O

V
E

R
E

S
T

R
IC

T
IO

N
S

M
O

D
IF

Y
H

O
S

T
S

A
L

LO
WM

O
D

IF
Y

H
O

S
T

S
D

E
N

Y

8

N
E

T
-D

A
E

M
O

N
-B

U
F

F
-O

V
E

R
F

LO
W

C
H

A
N

G
E

-V
IA

-E
X

P
LO

ITN
F

S

E
X

P
LO

IT
-R

E
S

U
LT

M
O

D
IF

Y
-C

O
N

F
IG

-F
ILE

S
-

M
o

d
ify

a
co

n
figu

ratio
n

file
and

lo
g

in
20

00
/07

/11

A
1.M

odify
a

configuration
file

and
login

B
1.C

hange
a

configuration
file

via
an

exploitation
ofa

vulnerability
B

2.R
esultofexploiting

vulnerability
B

3.Login
using

insecure
service

or
new

ly-gained
trust

C
1.N

etD
aem

on
B

ufferO
verflow

vulnerability
exploitation

C
2.M

odify
via

insecure
N

F
S

C
3.C

reate
new

user
in

passw
d

file
C

4.E
nable

additionalservices
C

5.M
odify

trustfiles
for

r-com
m

ands
C

6.R
em

ove
restrictions

on
existing

services
D

1.M
odify

/etc/inetd.conf
D

2.M
odify

an
/etc/rc*

to
starta

vulnerable
long-running

daem
on

D
3.M

odify
a

user's
.rhosts

file
D

4.M
odify

/etc/hosts.equiv
D

5.M
odify

/etc/hosts.allow
D

6.M
odify

/etc/hosts.deny
E

1.E
nable

R
login,rsh,orrexec

E
2.E

nable
P

O
P

E
3.E

nable
IM

A
P

E
4.E

nable
T

rivialF
ile

T
ransfer

P
rotocol

F
1.E

nable
R

exec
rem

ote
com

and
execution

service
F

2.E
nable

R
sh

rem
ote

shellservice
F

3.E
nable

R
login

rem
ote

login
service

A
1

B
1

B
2

B
3

C
1

C
2

C
3

C
4

C
5

C
6

D
1

D
2

D
3

D
4

D
5

D
6

E
1

E
2

E
3

E
4

F
1

F
2

F
3

F
igure

6
P

enetration
faulttree:G

aining
access

by
m

odifying
configuration

files

A Software Fault Tree Approach to Requirements Analysis of an Intrusion Detection System 17

LO
G

IN

P
A

S
S

W
O

R
D

-G
U

E
S

S

S
U

C
C

E
S

S
F

U
L-

L
O

G
IN

F
A

IL
E

D
-L

O
G

IN
S

U
S

E
-I

L
L

-G
A

IN
E

D
-P

W

S
N

IF
F

-P
A

S
S

W
O

R
D

S
O

C
IA

L-
E

N
G

IN
E

E
R

IN
G

W
E

A
K

-A
U

T
H

F
T

P
-B

ou
nc

e

U
p

lo
a

d-
R

S
H

D
o

w
nl

o
ad

-R
S

H

F
T

P
-S

E
T

U
P

F
T

P
-S

T
O

R

F
T

P
-S

T
O

R
-O

K

F
T

P
-S

E
T

U
P

2
F

T
P

-P
O

R
T

F
T

P
-P

O
R

T
-O

K

F
T

P
-R

E
T

R

F
T

P
-R

E
T

R
-O

K

F
T

P
-R

S
H

-C
O

N
N

F
T

P
-R

S
H

-4

F
T

P
-R

S
H

-3

F
T

P
-R

S
H

-2

F
T

P
-R

S
H

-1

F
T

P
-R

S
H

-5

D
N

S
-O

R
-T

C
P

-S
P

O
O

F

R
C

M
D

-D
N

S
-S

P
O

O
F

E
D

S
P

O
O

F
-A

N
D

-C
O

N
N

E
C

T

T
C

P
-S

E
S

S
IO

N
-S

P
O

O
F

IN
G

G
U

E
S

S
-T

C
P

-I
S

N

S
N

IF
F

-T
C

P
-S

E
Q

N
O

M
A

K
E

-T
C

P
-C

O
N

N
E

C
T

IO
N

S

T
R

Y
-G

U
E

S
S

E
D

-I
S

N

R
S

H
-C

O
N

N
E

C
T

R
LO

G
IN

-C
O

N
N

E
C

T

R
C

M
D

-C
O

N
N

E
C

T

LO
G

IN
-

Lo
g

in
vi

a
au

th
o

riz
ed

m
et

ho
ds

20
00

/0
7

/1
0

A
1.

L
og

in
vi

a
au

th
or

iz
ed

m
et

ho
ds

B
1.

L
og

in
w

ith
w

ea
k

p
as

sw
or

d
B

2.
O

bt
ai

n
pa

ss
w

or
d

ill
ic

itl
y

an
d

us
e

it
B

3.
R

lo
gi

n/
rs

h
fr

om
tr

us
te

d
h

os
t

C
1.

O
n

e
or

m
or

e
fa

ile
d

lo
gi

ns
C

2.
S

uc
ce

ss
fu

lL
og

in
af

te
r

lo
gi

n
fa

ilu
re

s
C

3.
O

bt
ai

n
pa

ss
w

or
d

fr
om

cl
ea

rt
ex

tn
et

w
or

k
d

at
a

C
4.

O
bt

ai
n

pa
ss

w
or

d
fr

om
us

er
C

5.
F

T
P

B
ou

nc
e

C
6.

S
p

oo
f

tr
us

te
d

ho
st

an
d

co
nn

ec
t

A
1

B
1

B
2

B
3

C
1

C
2

C
3

C
4

C
5

C
6

D
1

D
2

D
3

D
4

E
1

E
2

E
3

E
4

E
5

E
6

E
7

E
8

F
1.

F
T

P
co

n
ne

ct
io

n
es

ta
bl

is
he

d
an

d
au

th
en

tic
at

ed
F

2.
F

T
P

co
m

m
an

d
"S

T
O

R
pa

th
na

m
e"

F
3.

F
T

P
se

ss
io

n
w

ith
R

E
T

R
co

m
m

an
d

F
4.

T
C

P
co

n
ne

ct
io

n
fr

om
po

rt
2

0
on

F
T

P
ho

st
to

p
or

t
51

4
on

ta
rg

et
ho

st
F

5.
G

ue
ss

T
C

P
In

iti
al

S
eq

ue
nc

e
N

um
be

r
F

6.
T

ry
us

in
g

th
e

gu
es

se
d

n
ex

tT
C

P
in

iti
al

se
q

ue
nc

e
nu

m
b

er
G

1.
F

T
P

se
ss

io
n

w
ith

P
O

R
T

re
sp

on
se

su
cc

es
sf

ul
G

2.
F

T
P

co
m

m
an

d
"R

E
T

R
p

at
hn

am
e"

G
3.

S
ni

ff
T

C
P

se
qu

en
ce

n
um

be
r

fr
om

an
ex

is
tin

g
te

ln
et

/r
lo

gi
n/

rs
h

G
4.

M
ak

e
se

ve
ra

lT
C

P
co

nn
ec

tio
ns

to
d

is
co

ve
r

se
qu

en
ce

nu
m

b
er

p
at

H
1.

F
T

P
se

ss
io

n
w

ith
P

O
R

T
co

m
m

an
d

di
re

ct
ed

to
ta

rg
et

’s
R

S
H

p
or

t
H

2.
F

T
P

re
sp

on
se

"2
xx

co
m

m
an

d
su

cc
es

sf
ul

"
I1

.F
T

P
co

nn
ec

tio
n

es
ta

bl
is

h
ed

an
d

au
th

en
tic

at
ed

I2
.F

T
P

co
m

m
an

d
"P

O
R

T
ta

rg
et

,2
,2

"
to

se
nd

d
at

a
to

ta
rg

et
's

R
S

H
p

or
t(

51
4)

F
1

F
2

F
3

F
4

F
5

F
6

G
1

G
2

G
3

G
4

H
1

H
2

I2
I1

D
1.

U
pl

oa
d

in
pu

tf
or

R
S

H
to

F
T

P
se

rv
er

D
2.

D
ow

n
lo

ad
fil

e
to

R
S

H
p

or
t

on
ta

rg
et

D
3.

S
p

oo
f

D
N

S
or

T
C

P
IS

N
D

4.
C

on
ne

ct
an

d
lo

gi
n

us
in

g
on

e
of

th
e

rc
m

ds
w

ith
ou

t
a

pa
ss

w
or

d
E

1.
U

se
F

T
P

to
st

or
e

“e
gg

”
fil

e
E

2.
F

T
P

re
sp

on
se

"2
xx

T
ra

ns
fe

r
C

om
pl

et
e"

E
3.

R
S

H
C

on
ne

ct
io

n
E

4.
F

T
P

re
sp

on
se

"2
xx

T
ra

ns
fe

r
co

m
pl

et
e"

E
5.

S
p

oo
f

th
e

n
am

e
of

a
tr

us
te

d
ho

st
in

re
ve

rs
e

IN
-A

D
D

R
D

N
S

ta
bl

e
E

6.
T

C
P

S
es

si
on

S
p

oo
fin

g
E

7.
C

on
ne

ct
&

lo
gi

n
vi

a
R

S
H

w
ith

ou
t

pa
ss

w
or

d
E

8.
C

on
ne

ct
an

d
lo

gi
n

vi
a

rl
og

in
w

ith
ou

ta
pa

ss
w

or
d

F
ig

ur
e

7
P

en
et

ra
tio

n
fa

ul
tt

re
e:

G
ai

ni
ng

ac
ce

ss
th

ro
ug

h
ab

us
e

of
au

th
en

tic
at

io
n

m
et

ho
ds

18 Guy Helmer et al.

C
O

N
TR

O
L

P
E

R
M

-F
LA

W
S

P
R

O
C

FS
R

A
W

-D
IS

K
M

O
D

IFY
-A

T
-JO

B

R
A

C
E

-C
O

N
D

ITIO
N

S

B
IN

M
A

IL
M

A
K

E
F

TP
D

-S
IG

N
A

L

B
U

FF
-O

V
E

R
F

LO
W

S

D
TA

C
TIO

N
C

R
O

N
D

X
S

D
C

TM
_C

O
N

V
E

R
T

R
D

IS
T

C
U

S
T-R

E
G

P
IN

G
A

T

M
O

D
IF

Y
-P

R
IV

-P
R

O
C

P
R

O
C

FS

C
R

A
C

K
-P

A
S

S
W

O
R

D
S

P
TR

A
C

E

C
O

N
T

R
O

L
-

C
o

ntro
lpha

se
o

fintrusio
n

s
2

00
0/0

7/1
0

A
1.G

ain
system

privileges
B

1.E
xploitflaw

s
in

file,directory,or
registry

perm
issions

B
2.E

xploitrace
conditions

in
privileged

processes
B

3.E
xploitbuffer

overflow
s

in
privileged

(setuid)
program

s
B

4.M
odify

a
privileged

process
during

execution
B

5.R
un

passw
ord

cracker
on

localpassw
ords

C
1.M

odify
privileged

process
via

procfs
C

2.R
ead/w

rite
raw

disk
(N

etB
S

D
)

C
3.M

odify
jobs

in
/var/at/spool(Linux,F

reeB
S

D
,N

etB
S

D
)

C
4./bin/m

ailsym
link

vulnerability
C

5.m
ake(1)

tem
porary

files

A
1

B
1

B
2

B
3

B
4

B
5

C
6.S

ignals
to

ftpd
allow

reading
&

w
riting

files
as

root
C

7.M
odify

privileged
process

via
procfs

C
8.M

odify
privileged

process
via

ptrace(2)
D

1.S
olaris

dtaction
D

2.Linux
crond

D
3.X

server
D

4.S
olaris

scdtm
_convert

D
5.S

olaris
rdist

D
6.S

G
IO

n-Line
C

ustom
er

R
egistration

program
D

7.S
olaris

ping
D

8.at(1)
on

A
IX

,S
C

O
,S

olaris

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

F
igure

8
C

ontrolfaulttree

A Software Fault Tree Approach to Requirements Analysis of an Intrusion Detection System 19

E
m

b
ed

di
ng

lrk
4 du

ls
lo

gi
n

ch
sh

ch

fn

pa
ss

w
d

ps to
p

in
.r

sh
d

ne
ts

ta
t

ifc
on

fig
sy

sl
og

d
in

et
d

tc
pd

ki
lla

ll
fin

d
pi

do
f

LR
K

-9
6

ne
ts

ta
t9

6
ps

96
lo

gi
n9

6

A
1.

E
m

be
dd

in
g

ph
as

e
of

in
tr

us
io

ns
B

1.
Li

nu
x

ro
ot

ki
tv

er
si

on
4

B
2.

19
96

Li
nu

x
ro

ot
ki

t
C

1.
/u

sr
/b

in
/c

hf
n

ch
an

ge
d

C
2.

/u
sr

/b
in

/c
hs

h
ch

an
ge

d
C

3.
/b

in
/lo

gi
n

ch
an

ge
d

C
4.

/b
in

/ls
ch

an
ge

d
C

5.
/b

in
/d

u
ch

an
ge

d
C

6.
/u

sr
/b

in
/p

as
sw

d
ch

an
ge

d
C

7.
/b

in
/p

s
ch

an
ge

d
C

8.
C

ha
ng

ed
/b

in
/n

et
st

at
C

9.
/b

in
/p

s
ch

an
ge

d
C

10
./

bi
n/

lo
gi

n
ch

an
ge

d

E
M

B
E

D
D

IN
G

-
E

m
b

ed
d

in
g

p
h

as
e

o
fi

n
tr

u
si

o
n

s
20

0
0/

0
6/

0
6

C
11

./
us

r/
sb

in
/tc

pd
ch

an
ge

d
C

12
./

us
r/

sb
in

/in
et

d
ch

an
ge

d
C

13
./

us
r/

sb
in

/s
ys

lo
gd

ch
an

ge
d

C
14

./
sb

in
/if

co
nf

ig
ch

an
ge

d
C

15
./

bi
n/

ne
ts

ta
tc

ha
ng

ed
C

16
./

us
r/

sb
in

/in
.rs

hd
ch

an
ge

d
C

17
./

us
r/

bi
n/

to
p

ch
an

ge
d

C
18

./
bi

n/
pi

do
fa

nd
/o

r
/u

sr
/b

in
/p

id
of

ch
an

ge
d

C
19

./
us

r/
bi

n/
fin

d
ch

an
ge

d
C

20
./

us
r/

bi
n/

ki
lla

ll
an

d/
or

/b
in

/k
ill

al
lc

ha
ng

ed

A
1

C
1

C
2

C
3

C
4

C
5

C
6

B
1

B
2

C
7

C
8

C
9

C
10

C
11

C
12

C
13

C
14

C
15

C
16

C
17

C
18

C
19

C
20

F
ig

ur
e

9
E

m
be

dd
in

g
fa

ul
tt

re
e

20 Guy Helmer et al.

S
TA

C
H

E
LD

R
A

H
T

TR
IN

O
O

T
F

N

S
TA

C
H

-A
G

E
N

T-
IC

M
P

S
TA

C
H

-
M

A
S

TE
R

-IC
M

P
S

TA
C

H
-

F
O

R
G

E
TR

IN
O

O
-D

A
E

M
O

N
-

H
E

LLO
TR

IN
O

O
-M

A
S

TE
R

-
P

N
G

T
F

N
-IC

M
P

-R
E

Q
T

F
N

-IC
M

P
-R

E
P

A
1

A
T

T
A

C
K

-R
E

LA
Y

-
A

ttack
R

elay
p

h
ase

o
fan

in
tru

sio
n

200
0/0

7/1
0

A
T

TA
C

K
-R

E
LA

Y

A
1.S

tacheldrahtD
D

O
S

relay
agent

A
2.

trinoo
D

D
O

S
relay

agent
A

3.Tribe
F

lood
N

etw
ork

D
D

O
S

relay
agent

B
1.IC

M
P

E
C

H
O

R
E

P
LY

packet,ID
=

666
and

data
field

contains
"skillz"

B
2.IC

M
P

E
C

H
O

R
E

P
LY

packet,ID
=

667
and

data
field

contains
"ficken"

B
3.IC

M
P

E
C

H
O

packet,src
IP

=
3.3.3.3,ID

=
666

B
4.U

D
P

packetto
port31335

containing
"*H

E
LLO

*"
B

5.U
D

P
packetto

port27444
containing

"pngl44adsl"
B

6.IC
M

P
E

C
H

O
R

E
P

LY
,seq=

0,to
daem

on,w
ithoutprior

E
C

H
O

request
B

7.IC
M

P
E

C
H

O
R

E
P

LY
,seq=

0,from
daem

on

A
2

A
3

B
1

B
2

B
3

B
4

B
5

B
6

B
7

F
igure

10
A

ttack
relay

faulttree

