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Abstract

Many real-world applications call for learning predictive
relationships from multi-modal data. In particular, in
multi-media and web applications, given a dataset of
images and their associated captions, one might want
to construct a predictive model that not only predicts
a caption for the image but also labels the individual
objects in the image. We address this problem us-
ing a multi-modal hierarchical Dirichlet Process model
(MoM-HDP) - a stochastic process for modeling multi-
modal data. MoM-HDP is an analog of a multi-modal
Latent Dirichlet Allocation (MoM-LDA) with an infi-
nite number of mixture components. Thus MoM-HDP
allows circumventing the need for a priori choice of the
number of mixture components or the computational
expense of model selection. During training, the model
has access to an un-segmented image and its caption,
but not the labels for each object in the image. The
trained model is used to predict the label for each region
of interest in a segmented image. The model parameters
are estimated efliciently using variational inference. We
use two large benchmark datasets to compare the per-
formance of the proposed MoM-HDP model with that of
MoM-LDA model as well as some simple alternatives:
Naive Bayes and Logistic Regression classifiers based
on the formulation of the image annotation and image-
label correspondence problems as one-against-all clas-
sification. Our experimental results show that unlike
MoM-LDA, the performance of MoM-HDP is invariant
to the number of mixture components. Furthermore,
our experimental evaluation shows that the generaliza-
tion performance of MoM-HDP is superior to that of
MoM-HDP as well as the one-against-all Naive Bayes
and Logistic Regression classifiers.

1 Introduction

Recent years have witnessed rapid advances in our abil-
ity to acquire and store massive amounts of data across
different modalities (text, speech, images, etc.). The

growth in the quantity of disparate types of data has
far outstripped our ability to organize, analyze and ex-
tract useful knowledge from such data. Multi-modal
data mining refers to the process of constructing pre-
dictive models from data that spans multiple modal-
ities. Multi-modal data mining presents several chal-
lenges that are largely beyond the current state of the
art in data mining. For example, many web data sources
such as social network communities (i.e. Flickr, Face-
book, etc) offer an abundant source of images with their
associated captions i.e., words that describe the image
content without specifically labeling the individual ob-
jects in the image. Newspaper articles or other types of
digital media contain pictures of the events and the de-
scription of the same events in text; or research articles
contain figures and captions which describe the figures.
In many application scenarios [5], it is not enough to
predict whether or not a particular object appears in
the image; it is necessary to be able to label individual
objects in the image.

Learning the relationships between image regions
and words is an interesting example of multi-modal data
mining. The available training data do not provide
explicit labels for individual objects in an image. As
more and more data becomes available, human annota-
tion and labeling becomes prohibitively time consum-
ing and expensive. This is especially true in the case of
data that is derived from more than one modality (e.g.,
text and images; sound and images). More importantly,
straightforward reductions of multi-modal data mining
problems to standard supervised classification problems
often fail to fully exploit the natural correlations that
might exist among the basic entities within each modal-
ity and across modalities.

Given the expense of obtaining training datasets
of images wherein each object in the image is labeled
by a human annotator, there is a need for methods
that can, given a dataset of images and their associated
captions, learn to label individual objects in an image.



Against this background, this paper focuses on the
following problem: Given a dataset of images and
their associated captions, can we build a model that
not only predicts a collection of labels for an entire
image (the image annotation problem), but specifically
labels the individual objects (or regions of interest)
in the image (the image object-label correspondence
problem)? Consequently, there is a growing interest in
developing principled solutions to the image annotation
problem and the image object-label correspondence
problems [2, 5, 6, 16](see section 4 for details).

We describe an approach to solving the image an-
notation and image correspondence problems using a
multi-modal hierarchical Dirichlet Process (MoM-HDP)
model which is a natural generalization of the multi-
modal latent Dirichlet Allocation model (MoM-LDA)
[5]. Latent Dirichlet Allocation (LDA) is a generative
probabilistic model for independent collections of data
where each collection is modeled by a randomly gener-
ated mixture over latent factors. In topic modeling for
text documents LDA assumes the following generative
process: each document has its own distribution of top-
ics, and given a specific topic, the words are generated.
MoM-LDA is a generalization of LDA where the doc-
uments contain multiple types (modalities) of entities
such as words, image regions (also called blobs). MoM-
LDA describes the following generative process for the
data: each document (consisting of both words and pic-
tures) has a distribution for a fixed number of mixture
components (topics), and given a specific mixture com-
ponent the words and the image features are generated.
However, selecting the number of mixture components
to be used in a MoM-LDA model is difficult. In prac-
tice, several different MoM-LDA models corresponding
to different choices of the number of mixture compo-
nents are trained and evaluated using cross-validation
and the best performing model is chosen.

The proposed MoM-HDP model is based on the
hierarchical Dirichlet Process [25], a stochastic process
that can be thought of as the analog of a mixture model,
but with an infinite number of mixture components
assumed in a mixture model. MoM-HDP thus allows
us to circumvent the need for a priori (and hence
potentially arbitrary) choice of the number of mixture
components or the computational expense of training
multiple MoM-LDA models before choosing one based
on the results of cross-validation. Note however that
in practice, the Dirichlet process is approximated by
truncating it [14].

We compare the performance of the proposed MoM-
HDP model with that of MoM-LDA model on the im-
age annotation and image-label correspondence task on
a dataset with variety of labels and objects using two

datasets which provide the ground truth needed in or-
der to evaluate the performance of the two approaches:
Visual Object Classes (VOC) 2007 challenge data which
has 20 possible labels and a subset of LabelMe, which
has over 1700 possible labels. We also compare MoM-
HDP and MoM-LDA with some simple alternatives:
Naive Bayes and Logistic Regression classifiers based
on the formulation of the image annotation and image-
label correspondence problems as one-against-all classi-
fication problems. Our results show that the general-
ization performance of MoM-HDP is superior to that
of MoM-HDP as well as the Naive Bayes and Logistic
Regression classifiers. The results of our experiments
show that the generalization performance of the MoM-
LDA model is sensitive to the choice of the number of
components that are assumed to exist in the mixture.
In contrast, the performance of the MoM-HDP model is
relatively insensitive to the specific choice of the cutoff
used to truncate the Dirichlet Process.
Thus, the main contributions of this paper are:

e Development of MoM-HDP, a HDP counterpart of
MoM-LDA model for solving image annotation and
image object-label correspondence problems under
fairly general assumptions that circumvents the
need for a priori (and hence potentially arbitrary)
choice of the number of mixture components or the
computational expense of training and evaluating
multiple MoM-LDA models before choosing one
based on the results of cross-validation.

e Experimental results that demonstrate that mod-
eling the problem directly using MoM-LDA and
MoM-HDP produces a better performance than
one-against-all-learning scenario and that MoM-
HDP outperforms MoM-LDA on image annotation
and image-object label correspondence problems.

This paper is organized as follows: We briefly describe
the MoM-LDA model and generalize it to a Dirichlet
process in Section 2. We describe the dataset, experi-
mental setup, evaluation procedure, and the results of
our comparison of MoM-LDA and MoM-HDP models
in Section 3. We conclude the paper with related work
in Section 4 and a summary and a brief discussion of
some directions for further research in Section 5.

2 Multi-modal Hierarchical Dirichlet Process
model

We begin with describing Latent Dirichlet Allocation
and multi-modal Dirichlet allocation, review the main
principles behind the Dirichlet Processes and introduce
our multi-modal hierarchical Dirichlet Process model.



2.1 Notation Let W be the vocabulary of all
the possible words in the captions, and w; =
{wn,...wn, }, w;, € W be the caption for image i. Let B
be the vocabulary of all the possible visual words in the
pictures, and b; = {by,...bas, },bj, € B be the “visual
word” representation of the image. Let D = (wyj, b;)2,
be the corpus of D images so that for each image the
set of caption keywords is known.

2.2 Latent Dirichlet Allocation model for im-
ages and captions (MoM-LDA) We first describe a
multi-modal Latent Dirichlet Allocation model (MoM-
LDA) introduced by Blei and Jordan [5], and then gen-
eralize this model using a hierarchical Dirichlet Process
(MoM-HDP). Informally, the following generative pro-
cess is assumed for images and captions. The image
topic (e.g. horseback riding) generates a distribution
for intermediate level components (e.g. horse, person,
grass, fence, sky, sun, building) and the intermediate
level components generate specific words and image re-
gions observed in the training data (e.g. the words
“horse” and “person”, and the image regions which cor-
respond to horse’s eyes, ears, person’s face, arms and
legs, etc). MoM-LDA assumes a pre-defined number of
clusters which group the related entities in the modali-
ties, and it groups the related visual words and the re-
lated words in the same clusters. In addition, the prob-
ability distribution of the clusters is different for each
image-caption pair, which is achieved by introducing a
Dirichlet prior for the distribution of clusters. Formally,
the images and captions are described by the following
generative process: For each image ¢, pick a distribu-
tion of topics m; ~ Dirichlet(«). For each caption word
J, pick a latent factor ¢;; ~ Mult(m;) and then pick
the word w;; ~ F(t;;). Similarly for each image fea-
ture j, pick a latent factor s;; ~ Mult(m;) and then
pick the feature b;; ~ F(s;;). The graphical model for
this process is shown in Figure 1. Here F(z) can be
any appropriate distribution, such as Multinomial for
words and discrete features, or Gaussian for continuous
features. In our model and in our experiments, we use
discrete-valued image features (visual words). Hence,
we focus our discussion on the MoM-HDP model based
on the multinomial distribution. However, the model
described in this paper can be easily extended to other
distributions.

2.3 Dirichlet Process A limitation of mixture mod-
els is that the need to specify a number of components
to include in the mixture (namely K). The choice of
number of the mixture components can have a major
influence on how well the model fits the data, and its
ability to generalize beyond the training data. Hence,

we consider a model based on a hierarchical Dirichlet
Process (HDP) [25], with countably infinite number of
mixture components. For details on the HDP and their
applications in probabilistic graphical models we refer
the reader to [1], [25] or [4] and we only summarize the
key aspects of DP, and then HDP in this paper.

The Dirichlet Process (DP) is a generalization of
a finite mixture model, and it assumes countably infi-
nite number mixture components. Unlike in the finite
mixture models where the priors for the mixture compo-
nents are assumed to be drawn from some distribution,
the DP assumes that the priors are created according
to some stochastic process.

DP is parametrized by a base distribution Gy and
a scaling parameter « and is denoted by DP(a,Gy).
Let z = {21, 22...} be the mixture components, and let
X1...Xn be a sample from the DP mixture. Then we
can assume the following generative process for the data:
draw mixture priors S ~ DP(«a,Gyp). For each mixture
component z = {z1,23...} draw parameters ¢, ~ Gy
which specify the distribution for the observations X.
For each instance ¢ = 1...N draw parameters 7; which
specify the distribution of the mixture components,
draw a mixture component z; ~ Mult(m;), and from
the mixture component z; draw X; ~ ¢,,.

The two common approaches to constructing the
DP are Chinese Restaurant Process [15], and stick-
breaking construction [22]. In our work, we consider the
latter. Intuitively, stick-breaking construction can be
described as follows: the prior 3 is generated by taking
a stick of length 1, and breaking off segments of the stick
proportional to the remaining stick.

We use S ~ GEM(«a) to denote that 8 = (1, B2...)
is generated according to the stick-breaking distribu-
tion. Let u1,us... be countably infinite proportions that
are generated according to the beta distribution. Then
the weights 3 are defined in terms of 3, = u. [, _,(1—
u). Such construction ensures that § is countably in-
finite with each component drawn i.i.d.

2.4 Hierarchical Dirichlet Process We described
a simple Dirichlet Process which we will use as a basis
for a more complicated model. DP assumes one model
with infinitely many mixture components for all docu-
ments, and it is a non-parametric equivalent of the prob-
abilistic latent semantic analysis (p-LSA). We would like
a learning algorithm which creates a model for each
document (just like LDA) and therefore we assume a
hierarchical Dirichlet Process (HDP) to provide a non-
parametric generalization of the LDA model [25]. HDP
assumes a separate generative model for each document
j = 1...J, and that each model shares a collection of the
mixture components. Each model provides a probabil-



ity distribution for the mixture components for a doc-
ument ¢ (7;), and these distributions are tied between
the models via the prior .

2.5 Hierarchical Dirichlet Process multi-modal
model (MoM-HDP) We now apply the stick-
breaking construction of the priors for the hierarchical
Dirichlet Process to the multi-modal generative model.
Like in the case of MoM-LDA, we assume that each
observable modality is clustered by the mixture compo-
nents, so that each word w is generated by a cluster t,
each image component b is generated by a cluster s. The
clusters for image-caption pair w;, b; have multinomial
distribution parametrized by m; (p(s;) = p(t;) = m)
drawn from DP(a™,() were § ~ GEM(«a) is con-
structed using a stick-breaking distribution. Further-
more, the parameters for observations given their clus-
ters ¢ = p(wlt) and ¢° = p(b|s) are generated from
some base distribution Gy (such as a Dirichlet distribu-
tion).

We show MoM-LDA and MoM-HDP in graphical
notation in Figure 1. We also note that if the prior
(B is assumed to be drawn from finite Dirichlet instead
of a stick-breaking distribution, this model becomes a
Dirichlet-smoothed version of the MoM-LDA.
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Figure 1: MoM-LDA model (left). Its MoM-HDP

counterpart (right).

We summarize the generative processes modeled by
MoM-HDP and MoM-LDA below.
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MoM-LDA
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To make the parameter estimation feasible, we
assume a truncated DP [14], and truncate § at K, so

that 8, = 0 for all z > K. In this case, m; ~ DP(a™, ()
simply becomes 7; ~ Dirichlet(a™, 51...0k). While the
model has infinite number of states, the density of the
process is determined by the first several states, and as
the cut-off K increases, the approximation improves.

Next we describe the parameter estimation proce-
dure for the hierarchical Dirichlet Process model using
variational inference.

2.6 Parameter Estimation via Variational In-
ference Let 6 be the model parameters and z be all
the hidden variables and x be the observations. The
goal of fully Bayesian inference is to estimate parame-
ters 6 which maximize the probability p(6, z|z). Such
estimation puts hidden variables and the model param-
eters on equal footing. Because the exact inference is
intractable we use variational inference. The probabil-
ity p(6, z|x) can be approximated by some distribution
q* (6, z), such that

q*(97 Z) = a‘rgmianQKL(q(97 Z)Hp(aa Z|I)

where Q is a tractable subset of distributions. In par-
ticular, if Q is a fully factorized distribution, then each
of the factors will have a closed form solution which
depends on other factors, and the solution which min-
imizes the original problem is obtained in the iterative
fashion, similar to the expectation maximization proce-
dure.

Using mean-field approximation we get the follow-
ing property: if ¢(0) = T[], ¢:(0;) is a factorized dis-
tribution for each of the factors 6;, then the solution
for ¢;(0;) has the form ¢;(0;) x exp(E,—_;logp(0;|6_;))
where 0_; is a set of all the factors which are not 6; (see
[3] for details). Thus the model parameters are fitted
using an iterative procedure: fix all factors but 6;, solve
for q;(6;) o< exp(E,—;logp(6;/6_;)), and move on to the
next factor 6;41.

Define

Q :q(ﬁ7 T, Su t7 ¢S7 ¢t)
N

M K
=q(B)q(r) H g(s) [Ta® TT (a(6D)a(¢-))

i=1

where ¢(3) ~ GEM(«) is drawn from the stick-breaking
distribution, ¢(w) ~ DP(a,,B) is drawn from the
Dirichlet Process, ¢(¢.)’s are drawn from the Dirichlet
distributions, and ¢(s), ¢(t) are Multinomial.

The variational mean-field for the hierarchical
Dirichlet Process can be viewed as a three-step pro-
cess: the expectation step involves optimizing hidden
multinomial factors ¢(s) and ¢(¢) (equivalent E-step in



the EM). The maximization step involves parameter es-
timation to optimize ¢(¢) and ¢(w) (equivalent to the
M-step in the EM). The last step is optimizing the top-
level distribution ¢(3) (this step has no counterpart in
the standard EM).

2.6.1 Updating Dirichlet distribution factors
q(m), q(6®), q(¢%) (M-step) Since we have truncated
[ at a finite K, the Dirichlet Process reduces to a
finite Dirichlet distribution. Using mean-field g(7) «
E,log(p(nl|t,s)) «x E,log(p(t,s,m)). The optimal g(m)
parametrized by v is given by standard update for a
Dirichlet distribution. Computing the expectation we
get the following expression:

M N
_Z 1 84,2 Z ]l(ti.z)
q(']'(') :exqu log[H ,ﬂ—gwﬁ H 71_;:1 ( ) H 7_[_‘12:1

z€Z zeZ zeZ

M N
:eXqu(Ozﬂﬂ =+ Zﬂ(si,z) + Z ]l(ti,z)) Z log Ty

i=1 =1 z€Z

EqorB+E, Zfi1 ]l(s,i,z)+Eq Ef\;l ]l(ti,Z)
=exp Z log

z
z€Z

= [ ro-s+c-@ron)
z2€Z
=Dirichlet (a3 + Cs(-) + Cy(+))

Therefore the solution to factor 7 of the form v =
af + Ci(-) + Cs(-) as the update for the Dirichlet
parameters, where Cy(-) = Cy(ty...tx) is a vector of
expected counts of the values that the factor ¢ can take.
Similarly Cs(-) = Cs(s1...s) is the vector of expected
counts that the factor s can take. These expected counts
are computed using ¢(s) and ¢(t) that we describe below
(E-step).

The updates for the ¢(¢) are obtained similarly, and
are q(¢¥|AY) = Dirichlet(a, + C¥(z,-)) where \Y =
Qo + C¥(z,-) and q(¢%|A\%) = Dirichlet(ay + C®(z,-))
where \¥ = a,+C?(z,-). Here C¥(z,-) = C(z, w;...wy)
is the vector of expected counts of words of the image
in cluster z and C%(z,-) = C(z,b1...bg) is the vector
of expected counts for visual words in cluster z that
describe the image.

2.6.2 Updating multinomial distribution fac-
tors q(t), q(s) (E-step) In order to introduce depen-
dency of the data, we first define g(t;|w;) o q(t;, w;)
and ¢(t;) can be recovered by marginalizing over the
words w. Using mean-field approximation,

q(tjlw;) =exp (Eq log(p(t;|w;))
ocexp (Eq log(p(t;, wi))

xexp (B, log m(j)) exp (Eq log o7 (w:))
multinomial

Define weights as  W(t;)

exp (Eglog7(j)) and Wy, (w;) = exp (Eq logqbi‘; (wl))
The weights W can be computed efficiently, namely

— _exp(Y(A¢(wi)) — _ep(¥(y)
W, (wi) = sty and Will) = ooy
where U(z) = a%logf(x) is the Digamma function

(which can be computed using Taylor-series approxi-
mation). The Dirichlet priors A and ~ are used after
updating the Dirichlet distribution factors (which was
described in the previous step).

We now show how to compute the expectation of
the multinomial weight which depends on the Dirichlet
prior. For a variable ¢ drawn from a Dirichlet distribu-
tion parametrized by ~:

p(8]y) = o(Xivilog i =2 log I'(7i)+log T(Z; 7))

where log ¢; is the sufficient statistic and logI'(}_, vi) —
> ;logT'(7;) is the log-normalization factor. Using
the general fact that the expectation of the sufficient
statistic is the first moment of the log-normalization
factor w.r.t to its natural parameter, we get E, log ¢, =

U(y) — (Y, ).

2.6.3 Updating top-level component ¢(3) Fi-
nally we summarize the updates for the stick-breaking
parameters 5. Again, using mean-field it is easy to
show that ¢(8) x E.p(8la) + E¢p(7|B), and so ¢(8) =
E,GEM(8; o) + E,DP(m; a” 3), however since we trun-
cated § at K, it becomes ¢(8) = E,GEM(f;a) +
E,Dirichlet(rm; o™ 3). There are no closed-form solutions
for B, however it is possible to use maximize ¢(3) us-
ing gradient ascent and update the components of §
with n%q—g:) iteratively (where 7 is the learning rate).
The updates are very similar to [17]. In order to satisfy
the constraint Zfil B; = 1 we use Quadratic Penalty

method [19].

2.7 Making predictions Given the model, we can
now use it to make predictions for the region annotation.
To predict the label for the described by b = by...bp,
we can use the word which has the highest probability
given all the visual words in the region: p(w|b). This
probability can be computed using:



T
p(wb) =53 pwlzn) / Dzl ) p(mslbyn) s

m=1 zm,

T
~ 55 p(wlzm)a(zmlbm)
m=1 z;,
Note that the integral can be computed efficiently using
variational inference for the test region.
The label assigned to a region is then the
one which gives the highest probability wpreq =

arg maxy, ew p(w;|b).

3 Experiments and Results

We describe the datasets used in our evaluation, and
the experimental set-up.

3.1 Data In order to evaluate the performance of the
model on image object label correspondence, we need
to assume that the image to be labeled is segmented
into regions or objects and need to have labels for each
region or object in each test image. The images can
be segmented using one of the magnitude of available
segmentation algorithms (such as normalized cuts [23]
or superpixels[20]). Note that we do not use object-
level labels in training the model. A major goal of this
work is to explore the feasibility of using models trained
on a dataset of images and their associated annotations
to perform both image annotation as well as labeling
of individual objects in each images. We proceed with
describing the image data and its representation.

3.1.1 PASCAL Visual Objects Classes We com-
pare both MoM-LDA and MoM-HDP on the image an-
notation and image-label correspondence tasks on Vi-
sual Object Classes 2007 challenge data [10].

The VOC 2007 database contains 2501 training im-
ages in 20 categories and 4952 images in the test set. We
resized the images for the maximum height of 256 pixels.
We use grid sampling to extract patches of 13x13 pixels
from each image. We then use SIFT representation of
each patch [18] to extract 128 features for all images in
the training set. These features are invariant to rota-
tion and occlusion, which is often present in the images.
The 150,000 descriptors (extracted randomly from the
training images) were clustered into 1500 clusters us-
ing k-means clustering to create a codebook of “visual
words”. Each image was then represented as a bag of
visual words, and a bag of caption words (labels). The
codebook created from the training images was used to
represent the test objects.

We assume that the test images are segmented and
extract the SIFT features from the regions, and use

Figure 2: Sample from the VOC 2007 training and test
images.

the codebook created at training to represent the test
objects. If the images were not segmented, we could
have used segmentation algorithms (such as normalized
cuts or superpixels) to segment each image into regions
before processing them further. However, the results
of such segmentation may or may not coincide with
the segmentation that forms the basis of object-level
labels used as reference to evaluate the performance
of the model on the image object-label correspondence
task. Hence we assume here that segmented images are
provided during the test phase. There are 14,976 objects
in the test set.

We show some representative training and test
images in Figure 2 to demonstrate the variety of the
images and complexity of the task.

3.1.2 LabelME To evaluate the performance of the
models on the large scale data set with many possi-
bilities for captions we use LabelMe [21] database. La-
belMe is a web-based image database and an annotation
tool which allows users to annotate images and objects
in the images in the database. The annotators select
the regions which correspond to the objects in the im-
age, and label these regions with the keywords. The
database contains a great variety of image categories
and themes, and it continues to grow over-time as more
and more people contribute the new images and anno-
tate the existing ones.

For our experiments we selected a subset using 9
keywords to query for images and used the union of
these images as the data (“building”, “car”, “tree”,
“cat”, “dog”, “person”, “plant”, “water” and “sky”
were the keywords). We then selected images which
have between 4 and 19 objects. From the resulting
subset we used 80% of the images as the training data
set (resulting in 7373 images), and the rest as the test
set (1513 images). The test set contains ~14000 regions,
and so on average each image has 10 captions. All



images were rescaled for the maximum height and width
of 256 pixels.

The captions were lower cased and stemmed, result-
ing in ~ 1700 distinct caption words in the vocabulary.
As before, we extract SIFT features in order to create
a codebook of 1500 visual words from the training data
from 15,000 image patches randomly sampled from the
training images, train the model on the image and cap-
tion information only, and test the model on the regions.

3.2 Experiments and results

3.2.1 Multiple label learning as one-against-all
classification To establish a baseline, we first consider
reducing the multiple label problem to one-against-all
learning scenario, similar to the set-up in [26]. Given the
dataset D = {b;, w, }J-D:17 vocabulary of caption words
W of size T, we train T binary classifiers. Each classifier
hy,; is trained on a new dataset were all the target
words were kept and considered as one class, and all the
words that are not the target words where considered
the second class: D' = {b;, w;- }12., where bj is that as
in D and w; = 1 if w; of D contains word w; € W
and 0 otherwise. Given a test object by.s; each of the
classifiers h,, (btest) assigns a score ry,, and the word
with the highest score wpeq, = argmaxy, [Tw, s - Twy) 18
used as a prediction. We considered Naive Bayes and
Logistic Regressions as the classifiers.

3.2.2 Initialization for parameter estimation
Variational inference is susceptible to local minima.
Since one of the local minima corresponds to the set-
ting where all factors are equally likely, we initialize
the model by randomly assigning several image/caption
pairs to a factor. We set the hyperparameters a =
{a, ar, ap, aqy } to 1. Given the large size of the training
dataset, we believe that the choice of hyperparameters
for priors is not especially critical.

3.2.3 Image annotation and region labeling In
order to assess the performance of the models on the
image annotation task, we used accuracy of annotation
as the performance measure. Let C be the predicted
set of words in a caption. Let R be the actual caption
(the actual set of words that appear in the caption for a
particular image). To avoid the complication of having
to deal with multiple objects with the same name, we
binarize C' and R. To measure how close C' is to R we
count how many elements are in common in C' and R;
In other words, we are interested in the cardinality of
the intersection |C'N R|. We can now define accuracy as

Ace = P(R|C) = IC‘glRI.

Since we have the ground truth or object-level labels

’ \ per region | per caption
NB OneVsAll 30.56 38.03
LR OneVsAll 20.19 20.79

MoM-LDA 31.67 40.82
MoM-HDP 34.5 41.92
Chance prediction 5 5

Table 1: Comparison of accuracies (in %) of various
algorithms for per-region and per-caption annotation
task for VOC 2007 dataset

for the regions, we can also evaluate the performance
of the model on the object recognition task on the per-
label basis using standard performance measures such as
precision (the fraction of the actual objects with a given
label out of all the objects classified as such), recall (the
fraction of the objects that were assigned a particular
label out of all the existing objects with that label), and
accuracy (the fraction of correctly labeled objects in the
entire set of test images).

VOC2007 In the VOC 2007 dataset, the number
of labels is 20, and so predicting a label at random
results in 5% accuracy.

Table 1 shows the comparison of one-against-all
learning scenario and the combined LDA model.

Notice that Logistic Regression has the worst per-
formance. We believe that this could be due to over-
fitting on the training data. Since one Logistic Regres-
sion is trained to maximize accuracy for each keyword,
since the distribution of the target word and its com-
pliment is very unbalanced, it is possible that Logistic
Regression overfits on the compliment of the keyword,
thus assigning low scores to the words.

Statistical Significance test In order to test
significance of the results on region labeling we use
a simple statistical test for difference in two error
proportions [24]. Let the null hypothesis be that two
algorithms f; and f; have the same error on the same
test dataset T of size N. Let e; = N]\];l be the fraction
of the test examples that f; predicted incorrectly and

let e = % be the fraction of the test examples that f
predicted incorrectly. Then the quantity e; — ea can be
viewed as a random variable with 0 mean and standard
2p(1—p) e1tes
N 2
of two errors. From this, we use the statistic z = -
and if |z| > Zp.g75 = 1.96 then the null hypothesise is
rejected. We compute the z-value between the MoM-
HDP and the other algorithms considered, and the
improvement on the test set is statistically significant.’

deviation s, = where p = is the average

€1—e2

TThe z-values for the difference between errors of various

algorithms are: z(MoM-HDP,NB)=7.1, z(MoM-HDP,LR)=27.6,



Since we use region labeling to construct the full
caption, we believe that the significance tests on the re-
gion labeling are enough for the caption reconstruction.
We also note that to the best of our knowledge there is
no well-defined statistical significance test for a learn-
ing algorithm which predicts multiple labels to a test
instance, and that it is of interest to develop such test.

A reason for using a simple statistical test instead
of a k-fold cross validation test [9] is that the VOC 2007
challenge dataset that we used consists of a prespecified
training set and a test set; with test set being much
larger and more "difficult” that the training set [10].2

We next take a closer look the performance of the
combined mixture models MoM-LDA and MoM-HDP
on the region annotation and overall image annotation
as a function of the number of the mixture components
K, in Figure 3. The best precision of MoM-LDA
in terms labels assigned to objects in the image and
in terms of the caption assigned to the image was
obtained at K = 5. The performance of MoM-HDP
is less sensitive to the choice of K used to truncate
the HDP model. We also observe that the performance
of Mom-LDA degraded when the number of mixture
components exceeded the optimum value (K = 5
whereas the performance of MoM-HDP was more robust
with respect to K.

—MoM-LDA caption

207 -.-MoM-LDA region il

| |[—MoM-HDP caption

---MoM-HDP region

10 | . . .
0

10 15 20
number of mixture components K

Figure 3: Performance of MoM-LDA (represented by
the red line) and performance of MoM-HDP (repre-
sented by the blue line) vs the number of mixture com-
ponents. The accuracy on the region labeling is shown
using solid line, and the overall accuracy on the cap-
tions constructed from the region labels is shown using
dashed line.

While an accuracy of 41% may be viewed as poor
in the standard supervised learning setting, it is worth

z(MoM-HDP, MoM-LDA)=5.02

2Moreover, because the words that appear in a given caption
as well as the objects that appear in an image are unlikely to be
independent which presents challenges in devising reliable tests
for comparing different models - see Section 5
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Figure 4: Region annotation result: per-label preci-
sion recall on all predicted region labels for VOC 2007.
Square: HDP precision/recall, diamond: LDA preci-
sion/recall.

noting that the more general multi-modal learning
setting considered in this paper is far more challenging
(see for example, the results reported in [2] where a
similar performance measure was used to evaluate the
performance of MoM-LDA, however we also note that
they used a probability threshold, thus allowing for
several label to be predicted for a given region or [11]
for performance on image annotation).

We now take a closer look at the performance of the
models on the per-region task, and examine in detail the
performance measured by precision/recall on the per-
label basis. The results are presented in Figure 4 for
MoM-HDP and LDA for a cut-off K = 5.

Only several labels have relatively high preci-
sion/recall measures ([2] reported similar trends, how-
ever the precision/recall was calculated for whether a
word was present or absent in the caption, not for the
labels directly). While both models have similar per-
formance on the precision measure, the recall is much
higher for HDP model. In addition, HDP was able
to assign a relatively high precision/recall for the label
“boat”, while LDA did not predict any boats correctly.

Note that the label “person” has a very high re-
call and low prevision, which indicates that it was often
predicted as a possible label. We discovered that in the
training data about half of the captions included the
word “person”. Consider an image which has many ob-
jects of which only a few have corresponding labels in
the caption. In such a scenario, the visual words as-
sociated with the image (which could be very diverse)
are likely to get assigned to the clusters associated with
the few labels that appear in the image caption, thereby
biasing the predictions towards those labels. We conjec-
ture that the sparsity of captions relative to the number
of objects in the image biases the model towards the la-
bels that are overrepresented in captions. One possible
approach to correcting this bias is to use partially super-
vised training data and to add region/caption pairs as



additional training examples. Another possible source
of improvement is better quality captions, i.e., captions
that are descriptive of all objects in the image.

LabelMe Lastly, we show the performance of the
model on region labeling on the large data set derived
from LabelMe. Here we set K to 20, and train MoM-
LDA and MoM-HDP and we report the accuracy on the
per-region basis and on the entire caption set in Table
2. A random classifier would have 1 in 1700 chance to
predict a caption correctly (0.06% accuracy).

’ LabelME \ image annot. \ region annot. ‘
MoM-LDA 15.56 10.5
MoM-HDP 34.84 28.45

NB OneVsAll 38.2 24.21

Table 2: Performance (accuracy in %) of MoM-LDA and
MoM-HDP on image annotation and region recognition
for LabelME

While Naive Bayes one-against-all training scenario
produces a better result on the caption prediction
than the MoM-HDP model, MoM-HDP model has a
much better result on the region labeling, and the
improvement is statistically significant.> We do not
present result for Logistic Regression due to the training
time demand. It takes about 1 hour to train one Logistic
Regression for one target word. Therefore, to train all
the needed classifiers would take approximately 1700
hr = 70 days (as opposed to several minutes for Naive
Bayes and about an hour for MoM-LDA and MoM-
HDP). The training time is one major drawback of
having one-against-all training scenarios.

4 Related Work

We briefly summarize work on the image annotation
and image object-label correspondence or closely related
problems. Learning from multi-modal data, and in
particular, learning to annotate images, has been cast
as a multiple label multiple instance learning problem
[26]. In this formulation, each image is represented by a
bag of objects (instances), and the corresponding image
caption is represented by a bag of words (set of labels).
Zhou and Zhang [26] proposed to use a multiple-instance
learning for each label using one-against all multiple-
instance learners. However, this work did not address
the problem of labeling each individual object within an
image.

Hardoon et al. [11] have explored a kernelized ver-
sion of canonical correlation analysis for image retrieval

3The z-values for the difference between errors of various

algorithms are: z(MoM-LDA,MoM-HDP)=37.92, z(MoM-HDP,
NB)=8.05

and annotation. Specifically they show how a seman-
tic representation of images and their associated text
can be learned and how the resulting representation in
a common semantic space can be used to compare data
from the text and image modalities. However, the pri-
mary focus of this work was not on solving the image
object-label correspondence problem.

Barnard et al. [2] have examined several solutions
for the image annotation and image-object label cor-
respondence problems. They developed several models
for the joint distribution of image regions and words,
including those that explicitly learn the correspondence
between image regions and words. They studied a multi-
modal and correspondence extensions to hierarchical
mixture models [13], and probabilistic latent seman-
tic indexing (pLSI) [12] for text, a translation model
adapted from statistical machine translation [8], and a
multi-modal extension to mixture of Latent Dirichlet
Allocation (MoM-LDA) [5, 16] which generalizes LDA
[6] to the setting where the data combines multiple
modalities (e.g., image, text).

Selecting the number of mixture components to be
used in a MoM-LDA model is difficult. In practice a
model is trained for several numbers of mixture com-
ponents, evaluated on a held-out set, and the best per-
forming model is chosen. The need to train and evalu-
ate several models makes this approach computationally
expensive, especially in the case of large datasets con-
sisting of large numbers of image and text features. In
contrast, the proposed MoM-HDP model allows us to
circumvent the need for a priori choice of the number
of mixture components. It addressed the computational
expense associated with the model selection for MoM-
LDA since in practice multiple MoM-LDA models need
to be trained before choosing one based on the results
of cross-validation.

In contrast to previous work [2] which relied on rep-
resentation of image segments using global features such
as shape, color, texture, etc. we have chosen to use lo-
cal features [7]. A consequence of reliance on global
properties of image segments is that the images must
be segmented prior to training the model. In contrast,
representation of image segments (blobs) using local im-
age features makes it possible to train the model on
images without segmenting them prior to training. Fur-
thermore, recent work in the image processing commu-
nity has shown that local representation of the image
can substantially improve the performance of the result-
ing models [7]. In [2], the experiments were performed
using the Corel dataset which only provides the cap-
tions for the image, and this dataset is also no longer
publicly available. In the absence of labels for individ-
ual objects or image segments, their study provided a



limited assessment on the image object-label correspon-
dence task on a small number of hand-annotated ob-
jects. In contrast, in this paper, we used two datasets
which provide the ground truth needed evaluating the
performance of alternative solutions image annotation
and image object-label correspondence tasks: Visual
Object Classes (VOC) 2007 challenge data which has
20 possible labels and a subset of LabelMe, which has
over 1700 possible labels.

5 Summary

In this paper we considered an interesting example of
multi-media data mining: Given a dataset of images
and their associated captions, can we build a model
that not only predicts a caption i.e., a collection of
labels for an entire image (the image annotation task),
but specifically labels the individual objects (or regions
of interest) in the image with a collection of labels
(the image object-label correspondence task)? We
have described a solution to this problem based on
a multi-modal hierarchical Dirichlet Process (MoM-
HDP). MoM-HDP generalizes the hierarchical Dirichlet
Process (HDP) model (that can be thought of as the
analog of a mixture model, but with an infinite number
of mixture components assumed in a mixture model)
to deal with multi-modal data (e.g., images, text).
MoM-HDP thus allows us to circumvent the need,
in the case of alternatives such as the multi-modal
latent Dirichlet Allocation (MoM-LDA), for a priori
and hence potentially arbitrary choice of the number
of mixture components or the computational expense
of choosing the best performing model from among
multiple models corresponding to different choices of
the number of mixture components. During training,
the model has access to an un-segmented image and
its caption, but not the labels for each object in the
image. The trained model is used to predict the label
for each region of interest in a segmented image. We
use variational inference to efficiently estimate model
parameters. Our experiments using two large-scale
datasets show that the generalization performance of
MoM-HDP is superior to that of MoM-HDP as well as
the Naive Bayes and Logistic Regression classifiers (in
one-against-all learning scenario).

Although our experiments with the MoM-HDP
model have been limited to data consisting of images
and text, the underlying probabilistic model and the
algorithm for training the model readily generalize to
data that include multiple modalities (e.g., text, image,
speech, etc.). MoM-HDP model can be extended
along several interesting directions: The current model
is based on a simple bag of features (words, visual
features or visual words) representation of the data

from each modality. It would be interesting to consider
more sophisticated models of interaction among features
within and across modalities.

Sparsity of captions in data extracted from online
image collections presents a significant challenge. It
would be interesting to augment the dataset with some
fully labeled data. It also would be interesting to explore
active learning strategies by which the system could
seek labels of specific objects in specific images that
would be most beneficial for reducing the ambiguities
that exist in its current model of the data.

In our experiments, we have used rather simple met-
rics (adapted from the more extensively studied super-
vised learning scenario) for evaluating the performance
of a learned model and for comparing alternative mod-
els (or algorithms for multi-modal data mining). Rig-
orous experimental comparison of the models requires
the development of performance measures that reflect
the inherent complexities of learning predictive models
from multi-modal data. For example, in the case of
image annotation or image object-label correspondence
have to take into account the correlations among labels
within an annotation or collection of labels associated
with an object in an image. Performance measures for
standard classification tasks are defined in terms of the
contingency matrix of true positives, false positives, true
negatives, and false negatives. It is not immediately ap-
parent how to generalize such measures to cope with
the complexities of predictive models for data across
multiple, typically not independent modalities. Statis-
tical tests for comparison of different predictive mod-
els need to take into account the complications arising
from multiple hypotheses testing on the same data. It
would also be interesting to consider generalizations of
the problems considered in this paper that take into ac-
count different costs or risks associated with mislabeling
different image objects or inclusion or exclusion of differ-
ent labels. Our ongoing research is aimed at addressing
some of these problems.

Acknowledgements We thank the reviewers for
providing insightful comments. This research was sup-
ported in part by a grant (IIS 0711356) from the Na-
tional Science Foundation.

References

[1] Charles Antoniak. Mixtures of Dirichlet processes with
applications to Bayesian nonparametric problems. The
Annals of Statistics, 2:1152-1174, 1974.

[2] Kobus Barnard, Pinar Duygulu, David Forsyth, Nando
de Freitas, David M. Blei, and Michael I. Jordan.
Matching words and pictures. Journal of Machine
Learning Research, 3:1107-1135, 2003.



3l

(4]

(5]

(6]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

Christopher M. Bishop. Pattern Recognition and Ma-
chine Learning. Springer, 2006.

David Blei and Michael I. Jordan. Variational inference
for dirichlet process mixtures. Bayesian Analysis,
1:121-144, 2004.

David M. Blei and Michael I. Jordan. Modeling an-
notated data. In SIGIR ’03: Proceedings of the 26th
annual international ACM SIGIR conference on Re-
search and development in informaion retrieval, pages
127-134, New York, NY, USA, 2003. ACM.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
Latent dirichlet allocation. Journal of Machine Learn-
ing Research, 3:993-1022, 2003.

Anna Bosch, Andrew Zisserman, and Xavier Munoz.
Scene classification via pLSA. In Proceedings of the
European Conference on Computer Vision (ECCYV),
2006.

P. F. Brown, S. A. Della Pietra, V. J. Della Pietra,
and R. L. Mercer. The mathematics of machine
translation: Parameter estimation. Computational
Linguistics, 19:263-311, 1993.

Thomas G. Dietterich. Approximate statistical tests
for comparing supervised classification learning algo-
rithms. Neural Computation, 10:1895-1923, 1998.
Mark Everingham, Luc Van-Gool, Chris Williams,
John Winn, and Andrew Zisserman. The PASCAL
Visual Object Classes Challenge 2007 (VOC2007) Re-
sults.

David Hardoon, Craig Saunders, Sandor Szedmak, and
John Shawe-Taylor. A correlation approach for auto-
matic image annotation. In Xue Li, Osmar Zaiane, and
Zahnhuai Li, editors, Second International Conference
on Advanced Data Mining and Applications, ADMA
2006, volume 4093, pages 681-692. Springer, 2006.
Thomas Hofman. Probabilistic latent semantic index-
ing. In SIGIR, 1999.

T. Hofmann and J. Puzicha. Latent class models for
collaborative filtering. In Proc. of IJCAI, 1999.
Hermant Ishwaran and Lancelot James. Gibbs sam-
pling methods for stick-breaking priors. Journal of the
American Statistical Association, 96:161 — 174, 2001.
Hermant Ishwaran and Lancelot James. Generalized
weighted chinese restaurant processes for species sam-
pling mixture models. Statistica Sinica, 13:1211 — 1235,
2003.

Li-Jia Li and Li Fei-Fei. What, where and who?
classifying event by scene and object recognition. In
IEEE International Conference in Computer Vision
(ICCV), 2007.

Percy Liang, Slav Petrov, Michael Jordan, and Dan
Klein. The infinite PCFG using hierarchical Dirichlet
processes. In Proceedings of the 2007 Joint Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 688-697, 2007.

David G. Lowe. Distinctive image features from scale-
invariant keypoints. International Journal of Com-
puter Vision, 60(2):91-110, 2004.

[19]

20]

21]

22]

23]

24]

(25]

[26]

Jorge Nocedal and Stephen Wright. Numerical Opti-
mization. Springer, 2000.

X. Ren and J. Malik. Learning a classification model
for segmentation. In In Proc. 9th Int. Conf. Computer
Vision, 2003.

Bryan C. Russell, Antonio Torralba, Kevin P. Murphy,
and William T. Freeman. LabelMe: a database and
web-based tool for image annotation. Technical report,
MIT AI Lab Memo AIM-2005-025, 2005.

J. Sethuraman. A constructive definition of Dirichlet
priors. Statistica Sinica, 4:639-650, 1994.

Jianbo Shi and J. Malik. Normalized cuts and image
segmentation. Pattern Analysis and Machine Intelli-
gence, 22:888-905, 2000.

G. W. Snedecor and W. G. Cochran.
Methods. Iowa State University Press, 1989.
Yee Whye Teh, Michael 1. Jordan, Matthew J. Beal,
and David Blei. Hierarchical dirichlet processes. Jour-
nal of the American Statistical Association, 101:1566—
1581, 2006.

Zhi-Hua Zhou and Min-Ling Zhang. Multi-instance
multi-label learning with application to scene classifi-
cation. In B. Scholkopf, J. Platt, and T. Hoffman, ed-
itors, Advances in Neural Information Processing Sys-
tems 19, pages 1609-1616. MIT Press, Cambridge, MA,
2007.

Statistical



