
Composing Web Services through Automatic Reformulation of Service
Specifications

Jyotishman Pathak
Div. of Biomedical Informatics

Mayo Clinic College of Medicine
Rochester, MN 55905, USA

pathak.jyotishman@mayo.edu

Samik Basu
Dept. of Computer Science

Iowa State University
Ames, IA 50011, USA

sbasu@cs.iastate.edu

Vasant Honavar
Dept. of Computer Science

Iowa State University
Ames, IA 50011, USA

honavar@cs.iastate.edu

Abstract
Typical approaches to service composition seek to real-

ize a goal service specification, described using a labeled
transition system (LTS) provided by a service developer, by
constructing a structurally equivalent LTS using a set of
available component services (also described using LTSs)
that match the input and output requirements of the tran-
sitions. As such, existing composition approaches fail to
realize the goal LTS whenever available component service
LTSs cannot be used to “mimic” the structure of the goal
LTS. This failure requires that the service developer for-
mulates an alternate goal LTS and re-iterates the compo-
sition step. However, the process of manual reformulation
of goal LTS is both laborious and error prone. In this set-
ting, we describe an efficient data structure and algorithms
for analyzing data and control flow dependencies implicit
in a user-supplied goal LTS specification to automatically
generate alternate LTS specifications that capture the same
overall functionality with respect to the data and control de-
pendencies, and determine whether any of the alternatives
can lead to a feasible composition. The result is a signifi-
cant reduction in the need for the tedious manual interven-
tion in reformulating LTS specifications of the goal.

1 Introduction
Service-oriented computing offers a powerful approach

for the construction of complex applications from au-
tonomously developed, distributed software components in
multiple domains including e-Science, e-Business and e-
Government. Consequently, there is a growing body of
work on specification, verification and composition of Web
services. Of particular interest are techniques for automated
or semi-automated composition of a composite service that
realizes user (e.g., a service developer) specified function-
ality (goal service) using a subset of available component
services. Specifications for services can be modeled using
different techniques including state charts [1], finite-state
automata [2], logic programming [10], and labeled transi-
tion systems (LTS) [8, 9].

The composition algorithm typically attempts to realize
the goal service by “replicating” the structure of the goal
service specification (e.g., LTS, state chart, or similar for-
malism) using component services (also described using
the same formalism) that match the input and output re-
quirements of the goal. If the composition algorithm fails
to realize the goal service specification, the entire process
fails, thereby shifting the responsibility of identifying the
cause(s) for failure of composition as well as modification
of the goal specification to the service developer. In gen-
eral, there can be two broad classes of scenarios in which a
service composition algorithm fails to realize a goal service:
1. The desired functionality of the goal service cannot

be realized by composing the available component ser-
vices. In this case, the user needs to either modify the
overall functionality of the desired goal service (e.g.,
add/delete service functions, change function parame-
ters) and/or broaden the search for component services
beyond those initially considered by the algorithm.

2. The desired functionality of the goal service can be
realized by composing the available component ser-
vices, but the composition algorithms fail to “mimic”
the structure of the goal service using the available
component services. In this case, it is possible to refor-
mulate the structure of the goal service specification,
without altering its overall functionality, into one that
can be realized by using the existing services.

Recently, techniques have been developed for automated
identification of cause(s) of failure of composition for both
the scenarios [8, 9]. However, these methods suffer from the
limitation that the tedious manual reformulation of an alter-
native goal service specification with the same functional-
ity (case 2 above) to be tried is left to the user. We provide
here a framework for composing Web services through au-
tomatic reformulation of service specifications to overcome
this limitation.

Without loss of generality, building on previous work
[8, 9], we use LTS to represent the goal service provided
by a service developer, the set of available component ser-
vices, and the generated composite service that realizes the

1

goal. We show that any alternative goal LTS reformulation
that does not violate the data and control dependencies that
are implicit in the user-supplied goal service LTS specifica-
tion is provably functionally equivalent to the goal service.
We describe an efficient data structure, in the form of a de-
pendency matrix and algorithms to maintain and analyze the
data and control flow dependencies in the goal service LTS
specification. This data structure is used to iteratively gener-
ate (as yet untried) alternatives that are functionally equiva-
lent to the user-supplied goal service LTS specification until
composition succeeds or no alternative reformulations re-
main to be tried. Because generating the complete set of al-
ternatives that are functionally equivalent to a user-supplied
goal service LTS specification is expensive and potentially
wasteful, we generate the alternatives on-the-fly, i.e., alter-
natives are generated as and when needed for the verifying
the existence of a functionally equivalent composition. The
result is a significant reduction in the need for the tedious
manual intervention in reformulating specifications by lim-
iting such interventions to settings where both the original
goal LTS as well as its alternatives cannot be realized us-
ing the available component services. The proposed method
works for both orchestrator and choreographer based tech-
niques to service composition.

2 Illustrative Example
We present a simple example where a service developer

is assigned to model a new composite (or goal) service that
allows clients to purchase items and ship them to a partic-
ular destination. To achieve this, the goal service operates
as follows: (i) First, it accepts from the client as input the
name of the item to be purchased along with the desired
quantity and the address where the consignment has to be
shipped. (ii) Once the input is received, it searches the par-
ticular item for the required quantity in an inventory. (iii)
If the search fails, a failure message is sent to the client.
But if the search succeeds, depending on the quantity of
the item to be purchased, either bulk or normal shipping is
checked for confirming whether the items can be shipped to
the particular address or not. (iv) Also, if the item search
succeeds, the client is asked to provide payment informa-
tion which is eventually used for purchasing the items. (v)
Finally, an appropriate notification is sent to the client indi-
cating whether the entire process was a success or failure.

Figure 1(a) shows the representation of such a goal
service, named e-Buyer, described using a labeled
transition system. Here, ?msgHeader(msgSet) and
!msgHeader(msgSet) refer to the input and output ac-
tions of the service respectively. Communication between
different services occurs via synchronization between ac-
tions with the same msgHeader resulting in the transfer
of msgSet from the entity performing an output action to
the one performing an input action. The service also in-

NormalShip(name,addr;ship)

?inItem(name,quantity,addr)

ItemSearch(name,quantity;result)

!outSearch("failure")

[result="n"]
[quantity<100 /\

result="y"]
[quantity>100 /\

result="y"]

Purchase(name,quantity,ship,payment;done)

!outPurchase(done)

?inPay(payment) BulkShip(name,addr;ship)

?inPay(payment)

10

1
s

2
s

3
s

s

11

4
s

5
s

6
s

7
s

8
s

s

0

9
s

s

(a)
Actions Name

a ?inItem(name,quantity,addr)
b ItemSearch(name,quantity;result)
c ?inPay(payment)
d !outSearch(“failure”)
e BulkShip(name,addr;ship)
f NormalShip(name,addr;ship)
g Purchase(name,quantity,ship,payment;done)
h !outPurchase(done)

Guards Name
G1 [quantity<100 ∧ result=“y”]
G2 [quantity>100 ∧ result=“y”]
G3 [result=“n”]

(b)

Figure 1: (a) LTS representation of e-Buyer goal service (b)
Index of actions and guards in e-Buyer

clude atomic actions denoted by funcName(inputSet;

output). Additionally, a transition is annotated by guards
(denoted by [guards]) which control whether or not it is
enabled; the absence of a guard implies that the guard is
true (always enabled).

A closer analysis of Figure 1(a) reveals various data
and control flow dependencies between the actions present
in the e-Buyer service. For example, the input action
?inItem(name,quantity,addr) has to occur before the
atomic action ItemSearch(name,quantity;result)

since the information required to execute the latter is pro-
vided by the former. Similarly, NormalShip(name,addr;
ship) and BulkShip(name,addr;ship) are executed
mutually exclusively depending on the valuation of the vari-
ables quantity and result.

Assume that Figures 2(a) & 2(b) presents the two
available services to be used to realize e-Buyer. If
Search-N-Ship is selected first, it leads to a com-

2

!confirm(name,quantity,ship)

?inItem(name,quantity,addr)

ItemSearch(name,quantity;result)

!outSearch("failure")

[result="n"]
[quantity<100 /\

result="y"]
[quantity>100 /\

result="y"]

NormalShip(name,
addr;ship)

BulkShip(name,
addr;ship)

t

1
t

2
t

3
t

0

8

4
t

5
t

6
t

7
t

t

!outPurchase(done)

?confirm(name,quantity,ship)

?inPay(payment)

Purchase(name,quantity,ship,payment;done)

13

12
t

11
t

10
t

t

9
t

(a) (b)

Figure 2: LTS representation of (a) Search-N-Ship (b)
Purchaser component services

position failure due to different branching behaviors
since e-Buyer requires the execution of an input ac-
tion ?InPay(payment) when [quantity < 100 ∧
result = y] is true, whereas Search-N-Ship invokes
the atomic action NormalShip when the same condition
is satisfied. Similarly, selecting the Purchaser service
first leads to a failure as well. For both the circum-
stances, typically the service developer will be required to
modify/reformulate the goal service representation (in this
case, re-ordering transitions in the LTS representation of
e-Buyer) and re-initiate the composition process.

Note that the above composition process failed for the
original goal service e-Buyer since the typical composi-
tion algorithms [1, 2, 8, 9] aim to realize the exact struc-
tural representation of the goal service using the compo-
nent services. Instead, we will show in the proceeding sec-
tions that it suffices to realize a composition using alternate
structural representations (such as e-Buyer’, see Figure 3)
of the original goal service, as long as the generated alter-
natives have the same functionality (with respect to control
and data dependencies) as the original goal service.

3 Preliminaries
We represent Web services using Labeled Transition

Systems (LTSs) which comprise of states denoting the con-
figurations of a service and transitions corresponding to its
evolution from one configuration to another.
Definition 1 (Labeled Transition Systems). A labeled tran-
sition system (LTS) is a tuple (S,−→, s0, SF) where S is a
set of states, s0 ∈ S is the start state, SF ⊆ S is the set
of final states and −→ is the set of transition of the form
s

γ,α−→ t where s, t ∈ S, γ is the condition under which the
transition is enabled and α is the action on the transition.

There are three types of actions: input actions denoted

!outPurchase(done)

?inItem(name,quantity,addr)

ItemSearch(name,quantity;result)

!outSearch("failure")

[result="n"]
[quantity<100 /\

result="y"]
[quantity>100 /\

result="y"]

NormalShip(name,
addr;ship)

BulkShip(name,
addr;ship)

?inPay(payment)

Purchase(name,quantity,ship,payment;done)

9

1
s

2
s

3
s

s

10

4
s

s
s

6
s

7
s

8
s

s

0
s

Figure 3: Alternate goal service LTS: e-Buyer’

by ?m(−→x), output actions denoted by !m(−→x) and atomic
actions denoted by f(

−→
i ; o). In the above, m corresponds

to message header, −→x corresponds to set of input/output
messages, f refers to the atomic action name, and fi-
nally

−→
i and o are input and output parameters of the

atomic action, respectively. We use two functions I and
O to identify the input and outputs of each action and
guard such that: I(?m(−→x)) = ∅ and O(?m(−→x)) = −→x
since for the system executing the input action messages
are produced as a result of the input action. Dually,
I(!m(−→x)) = −→x and O(!m(−→x)) = ∅. The input and
output variables of an atomic action are its input and output
parameters, respectively. Finally, for a guard γ, I(γ) is
the set of variables used in the guard while O(γ) = ∅.
Figure 1(a) shows the LTS representation of the e-Buyer

service where O(?inItem(name,quantity,addr))
= {name,quantity,addr}, I([quantity<100 ∧
result=’’y’’]) = {quantity,result}, and so on.

The interaction between the services takes place by ex-
change of messages which happens when two services syn-
chronize over input and output actions with the same mes-
sage header resulting in the transfer of messages from the
output action to the input action. Such an interaction de-
scribed by synchronous composition is defined as follows:

Definition 2 (Composition). Given LTS1 = (S1,−→1

, s01, S
F
1) and LTS2 = (S2,−→2, s02, S

F
2), their com-

3

position, under the restriction set M , is denoted by
(LTS1 || LTS2)\M = (S12,−→12, s012, S

F
12) where

S12 ⊆ S1 × S2, s012 = (s01, s02), SF
12 = {(s1, s2) | s1 ∈

SF
1 ∧ s2 ∈ SF

2 } and −→12 relation is of the form:

1. s
g1,?m(~x)−→ s′∧ t

g2,!m(~x)−→ t′∧ m ∈ M ⇒ (s, t)
g1∧g2,τ−→

(s′, t′),

2. s
g1,α−→ s′ ∧ header(α) 6∈ M ⇒ (s, t)

g1,α−→ (s′, t), and

3. t
g2,α−→ t′ ∧ header(α) 6∈ M ⇒ (s, t)

g2,α−→ (s, t′).

Here, the restriction set M includes the message headers
on which the participating LTSs must synchronize and gen-
erate a τ -action. We use header(α) to return the message
header of input and output actions; for atomic actions and
τ -actions it returns a constant which is never present in M .

Based on the definitions above, we say that if Lg rep-
resents the goal service (modeled by the service devel-
oper) and L1, L2, . . . , Ln is the set of available compo-
nent services, then determining a feasible composition en-
tails selecting a set of suitable component services and
generating a composite service LC such that: ∃LC :
(. . . ((LC ||Li)||Lj)|| . . . ||Lk)\M ≈w Lg, where M con-
tains all the input and output message headers of the compo-
nent services and≈w denotes the equivalence relationship1,
essentially, ensuring that interaction between the composite
service LC and the component services conforms to the de-
sired goal service Lg . For details of the composition algo-
rithm based on ≈w refer to [8, 9].

4 Reformulation-based Service Composition
Realization of a goal service amounts to identifying a

composite service whose LTS representation is structurally
equivalent (≈w) to the goal LTS. However, a goal service
can be safely said to be realized from a composite service
as long as the control and data flow dependencies of the for-
mer are satisfied by the latter. We will say that two services
are functionally equivalent if they have the same control
and data flow dependencies. As satisfying structural equiv-
alence is a stronger requirement than conforming to data
and control flow dependencies (i.e., two LTSs that are struc-
turally non-equivalent can still have same data and control
flow), we will present a novel technique to automatically
adapt the structure of the goal service without altering the
control and data flows, such that different structurally vari-
ant but functionally invariant goal LTSs are synthesized and
verified for realization from existing component services.

4.1 Functionally Equivalent Web Services
We define the notion of functional equivalence of two

services in terms of the corresponding equivalence be-
tween the respective LTSs. Given an LTS L = (S,−→

1The equivalence relation ≈w is referred to as observational equiv-
alence and captures equivalent branching behavior of transition systems
modulo the τ -transitions/actions [6].

, s0, SF), its behavior can be represented as the sequences
of actions and guards from s0 to some state in SF . No-
tationally, we will describe such a sequence as a string
(s0σ0)(s1σ1) . . . (snσn), where WLOG we can assume that
every transition in LTS is labeled either with an action or a
guard and ∀i(0 ≤ i ≤ n) : si

σi−→ si+1 such that s0 = s0
and sn+1 ∈ SF . We refer to all such sequences in L as the
behavior of L and denote it by B(L).

Definition 3 (Functional Equivalence). An LTS L1 is said
to be functionally simulated by an LTS L2, denoted by L1 v
L2, if and only if for all seq = (s0σ0)(s1σ1) . . . (snσn) ∈
B(L1) there exists seq’ ∈ B(L2) such that seq and seq’

are permutation of each other with the following conditions:

1. For i < j, (siσi) appears before (sjσj) in seq’ if
O(σi) ∩ I(σj) 6= ∅.

2. For i < j, (siσi) appears before (sjσj) in seq’ if si

is a branch point in L1 and σj does not appear in all
sequences in B(L1) that contains si.

L1 and L2 are functionally equivalent, denoted by L1 ≡
L2, if and only if L1 v L2 and L2 v L1.

In the above, the first condition asserts that if LTS L1 de-
mands input of an operation (for either an action or guard)
which must be obtained from the output of another opera-
tion, then it must be conformed by the corresponding se-
quence in LTS L2 (data flow dependency). The second con-
dition ensures that if an operation depends on a guard (i.e.,
appears in a specific branch) in L1, it must similarly depend
on the same guard in L2 (control flow dependency). Func-
tional equivalence demands that L1 and L2 functionally
simulate each other. Note that this notion of equivalence
is different from simulation or bisimulation equivalence ap-
plied traditionally in process algebra [6] where equivalences
define structural similarities.

The control and data flow dependencies are succinctly
captured in a novel data structure called dependency matrix
which forms the core of our technique for reformulation-
based composition. During composition, the goal LTS is
explored and verified whether every sequence and branch
behavior present in the LTS is realizable. In the event, there
is a failure, the composition algorithm is backtracked and
alternate functionally equivalent goal LTSs, obtained using
dependency matrix, are explored.

Definition 4 (Dependency Matrix). Given an LTS L =
(S, s0,−→, SF), its dependency matrix DL is a N × N
matrix, where N is the number of actions (atomic, input
and output) and guards in the transition-labels. For a row i
and column j in DL, the cell Ci,j is assigned such that:

• if Ci,j = {X}, then the i-th element is control-
dependent on the j-th element. The assignment X is done

4

between action-guard or guard-guard pairs denoting that
the guard j has to be analyzed before action i can be ex-
ecuted or guard i can be analyzed.

• if Ci,j = I(i) ∩ O(j), then the i-th element is data-
dependent on the j-th element i.e., outputs from the j-th
element are used for the analysis/evaluation of the i-th
element. This assignment is done between guard-action
or action-action pairs.

• if Ci,j = {Y}, then the i-th and j-th elements are
guards which label different transitions from a branch-
point in L. That is, the elements i and j are mutually
exclusive and cannot appear in the same path in L.

Figure 4(a) shows the dependency matrix of e-Buyer (Fig-
ure 1(a)). For example, it states that action a (?inItem) has
to occur before action b (ItemSearch) because the vari-
ables name and quantity required to execute b (input pa-
rameters of ItemSearch) are provided by a. Similarly, the
guards G1, G2 and G3 are mutually exclusive since they ap-
pear in separate execution paths. Here, a, b, G1, G2, and G3

correspond to actions and guards in Figure 1(b).

Theorem 1. For any two LTSs L and L′, L ≡ L′ if and only
if their dependency matrices DL and DL′ are identical. ¤

4.2 Generation of the Dependency Matrix

Identifying Data Flow Dependency. Procedure DATA
FLOWDEP in Algorithm 1 takes as argument the current
state (curr) of the LTS being explored for dependency
analysis, the operation (guard or the action, Op) and the
set of variables (VSet) in Op whose data dependencies are
being analyzed. Backward exploration of the LTS is per-
formed from curr. If a parent-state is reachable via an ac-
tion “a” such that the intersection of its output and VSet

is non-empty (lines 6--9), then the corresponding cell
in the dependency matrix (COp,a) is assigned output(a).
The VSet is updated by removing output(a) from the
set. Finally, the procedure is recursively invoked (line
10). The recursion terminates (lines 2--4) when VSet

is empty (i.e., all the data-dependencies of VSet have been
identified) or curr is the start-state of the transition sys-
tem (i.e., there exists no incoming transition to curr). For
example, invocation of DATAFLOWDEP(s1, ItemSearch,
{name,quantity; result}) in e-Buyer of Figure 1(a),
will create a dependency with the action ?inItem since it
provides the inputs required to execute ItemSearch.

Identifying Control Flow Dependency. Procedure CTRL
FLOWDEP in Algorithm 2 identifies the control dependen-
cies in an LTS and is similar to DATAFLOWDEP with the
exception that instead of checking for data intersection,
CTRLFLOWDEP checks whether the parent is a branch
point (line 6). In particular, the procedure conservatively
classifies operations as control dependent on a branch-point

Algorithm 1 Identifying Data Flow Dependency
1: procedure DATAFLOWDEP(curr, Op, VSet)
2: if (curr is a start-state OR VSet = ∅) then
3: return
4: end if
5: for all parent g,a−→ curr do
6: if (output(a) ∩ VSet 6= ∅) then
7: COp,a := output(a)
8: VSet := VSet− output(a)
9: end if

10: DATAFLOWDEP(parent, Op, VSet)
11: end for
12: end procedure

(more precisely on the guard associated with the branch-
point) in which it appears. However, there are cases where
an operation might appear in all the possible branches. In
such a situation, the said operation is not control dependent
on the branch-point as it is invoked for all possible valua-
tion of the guards at the branch-point. In order to precisely
identify control dependencies by eliminating such cases,
CTRLFLOWDEP is followed by invocation of UPDATEC-
TRLFLOWDEP (Algorithm 2). This procedure identifies (a)
the set of paths originating from each branch-point to a state
which is either a final state and/or a joint point of the branch
(line 13), and (b) the set of guards at a branch-point
(line 14). If there is an operation Op (obtained from pro-
cedure CTRLFLOWDEP) which is dependent on at least one
guard associated with the branch-point (line 15) and also
appears in all paths in T (line 16), then Op is not control-
dependent on any guard appearing in the branch-point under
consideration. Accordingly, all the Xs in COp,g are removed
(line 17). Furthermore, Y is assigned to the cells cor-
responding to the guards associated with the same branch
point as all the guards cannot evaluate to true simultane-
ously, i.e., they are mutually exclusive (lines 20--21).
For example, invocation of UPDATECTRLFLOWDEP(s2) in
e-Buyer of Figure 1(a) will assign Ys to the cells CG1,G2 ,
CG1,G3 , CG2,G3 , CG2,G1 , CG3,G1 and CG3,G2 .

4.3 Algorithm for Reformulation

Our technique allows reformulation during composition,
that is, given a goal LTS L which results into failure of com-
position, the technique automatically reformulates L using
its dependency matrix to identify a functionally equivalent
L′ and checks for feasible compositions. L′ is generated
as and when the composition feasibility is checked, as op-
posed to, generating L′ first and then checking for its fea-
sibility. This is necessary because generating the complete
set of alternatives L′s that are functionally equivalent to L
is expensive and potentially wasteful. Algorithm 3 shows
our approach explained using the example from Section 2.

The procedure REFORMULATESERVICE (Algorithm 3)
takes as argument DL, the dependency matrix of the goal
service (e.g., e-Buyer, Figure 4(a)), and S, the set of states
of the component services (e.g., Search-N-Ship, Figure

5

Algorithm 2 Identifying Control Flow Dependency
1: procedure CTRLFLOWDEP(curr, Op)
2: if (curr is a start-state) then
3: return
4: end if
5: for all parent g,a−→ curr do
6: if (OUTGOINGTRANS(parent) > 1) then
7: COp,g := X
8: end if
9: CTRLFLOWDEP(parent, Op)

10: end for
11: end procedure

12: procedure UPDATECTRLFLOWDEP(branchPoint)
13: T := {paths from branchBegin to branchEnd}
14: GuardSet := {g | branchBegin g,a−→ next}
15: for all Op such that ∃g ∈ GuardSet : COp,g = X do
16: if (∀t ∈ T : Op ∈ t) then
17: ∀g′ ∈ GuardSet : remove X from COp,g′
18: end if
19: end for
20: for all g1, g2 ∈ GuardSet do
21: Cg1,g2 := Y
22: end for
23: end procedure

1(c) and Purchaser, Figure 1(d)). Initially, the procedure
determines the set of operations in DL which are not depen-
dent on any other operation (line 5). These operations are
required to be realized by the component services. For ex-
ample, the operation a in the DL (Figure 4(a)) of e-Buyer
is not dependent on any other operation and can be realized
by the transition from state t0 to t1 of Search-N-Ship

(CREATETRANSITION2 in line 17 holds true). As a re-
sult, DL is updated to D1

L (Figure 4(b)) by removing the
row and column corresponding to a signifying that a is al-
ready realized (removing the row) and all the dependencies
on a are, therefore, eliminated (removing the column). This
is achieved by executing lines 16 in REFORMULATE-
SERVICE and 46--47 in REDUCE (Algorithm 3). Next,
REFORMULATESERVICE is recursively invoked (line 18)
with D1

L and the new state-set S′ of the component services
reached after realizing operation a (e.g., Search-N-Ship
is in state t1). In D1

L, operation b is not dependent on other
operations and can be again realized by Search-N-Ship

(line 17). Thus, D1
L is updated to generate D2

L (Figure
4(c)) following the same steps as described above and RE-
FORMULATESERVICE is recursively invoked.

Proceeding further, in D2
L the only possible operations

that can be considered are G1, G2 and G3 since they are in-
dependent of other operations (line 5). However, all the
three operations are guards and lead to different branches
of a branch-point. Consequently, the component services
must realize each individual branch. Furthermore, since

2The procedure CREATETRANSITION is used to generate the alternate
LTS specification, L′, as part of the reformulation-based composition pro-
cess. It takes as argument the operation r being analyzed and the set of
component states S′ reached after realization of r (by one of the compo-
nent services) and generates a corresponding transition in L′. Details are
present in [9].

Algorithm 3 Reformulation-based Service Composition
1: procedure REFORMULATESERVICE(DL, S)
2: if (DL is null) then
3: return true;
4: end if
5: R := {i | ∀j ∈ DL : Ci,j is empty or only contains Y}
6: select any r ∈ R do
7: if (for any j ∈ DL, Cr,j = Y) then
8: DSet := REDUCE(DL, r, true);
9: for all D′

L ∈ DSet do
10: if ¬REFORMULATESERVICE(D′L, S) then
11: break and backtrack to line 6
12: end if
13: end for
14: return true
15: else
16: {D′L} := REDUCE(DL, r, false);
17: if CREATETRANSITION(r, S) then
18: if ¬REFORMULATESERVICE(D′L, S′) then
19: backtrack to line 6
20: else return true
21: end if
22: else backtrack to line 6
23: end if
24: end if
25: end select return false
26: end procedure

27: procedure REDUCE(D, r, flag)
28: DSet := ∅;
29: if (flag = true) then
30: for all (i ∈ {Op | COp,r = Y} ∪ {r}) do
31: WorkingSet := {j | Ci,j = Y}
32: DNew := D
33: remove Y from all the Ci,r and Cr,i in DNew
34: while (WorkingSet 6= ∅) do
35: for all j ∈ WorkingSet do
36: if ∃k such that (Ck,j 6⊆

⋃{Ck,l | l 6= j}) then
37: add k to WorkingSet
38: end if
39: remove j from WorkingSet
40: remove j-th row and column from DNew
41: end for
42: end while
43: DSet := DSet ∪ DNew
44: end for
45: else
46: remove r-th row and column from D
47: DSet := {D}
48: end if
49: return DSet
50: end procedure

the branches are mutually exclusive (i.e., their rows and
columns are marked Y), if a branch Gi is considered, then
all the branches at the same branch point corresponding to
the guards Gj (j 6= i) must be removed from the dependency
matrix. This is achieved when REFORMULATESERVICE at
line 8 invokes REDUCE. The procedure REDUCE exe-
cutes the statements from lines 29--45 to create a set
of matrices corresponding to each guard. During the ex-
ecution of REDUCE, initially a working set of operations
that must be removed is created (line 31). Referring to
our example, consider the case where we are exploring the
branch corresponding to guard G1 (line 6) in D2

L , and
the working set is {G2, G3}. Firstly, all the Y-marks are re-
moved from the cells CGi,Gj (line 33) in D2

L. Then for
each operation x in the working set, any operation y that
is solely dependent on x is added to the working set (line

6

a b c d e f g h G1 G2 G3

a
b name,quantity
c X X
d X
e name,addr X
f name,addr X
g name,quantity payment ship ship X X
h order X X

G1 quantity result Y Y
G2 quantity result Y Y
G3 result Y Y

b c d e f g h G1 G2 G3

b
c X X
d X
e X
f X
g payment ship ship X X
h order X X

G1 result Y Y
G2 result Y Y
G3 result Y Y

(a) (b)
c d e f g h G1 G2 G3

c X X
d X
e X
f X
g payment ship ship X X
h order X X

G1 Y Y
G2 Y Y
G3 Y Y

c f g h G1

c X
f X
g payment ship X
h order X

G1

c e g h G2

c X
e X
g payment ship X
h order X

G2

d G3

d X
G3

c f g h
c
f
g payment ship
h order

(c) (d) (e) (f) (g)

Figure 4: Dependency Matrices (a) DL (b) D1
L (c) D2

L (d) D3
L (e) D4

L (f) D5
L (g) D6

L

37). For example, for G2 in D2
L, the operation e is solely de-

pendent on G2, whereas operation c is not since Cc,G1 = X.
Thus, e is added to the working set and operations solely
dependent on e are identified iteratively for addition to the
working set. On the other hand, since operation c is not
solely dependent on G2, it is not added to the working set.
Furthermore at each iteration, an element is removed from
the working set and its corresponding rows and columns
are removed from the dependency matrix (line 40) and
the above process continues until the working set becomes
empty. In our example, execution of line 8 with D2

L will
result in the creation of matrices D3

L (corresponding to G1

being selected at line 30), D4
L (corresponding to G2) and

D5
L (corresponding to G3) as shown in Figures 4(d), 4(e)

and 4(f), respectively.
The procedure REFORMULATESERVICE will be invoked

with each of these matrices as inputs (line 9). The proce-
dure terminates successfully when the dependency matrix
is empty denoting all operations are successfully realized
by the component services and there were no failures dur-
ing composition (lines 2--3). Otherwise, if a particular
operation is not realizable then backtracking is performed
to pick an alternate operation (line 11, 19, 22). For
example, assuming that D3

L is selected in line 9, after re-
alizing the guard G1 ([quantity < 100 ∧ result = y])
by Search-N-Ship, it will be updated to create a new de-
pendency matrix D6

L (Figure 4(g)). In D6
L, the operations

that can be considered are c (?inPay(payment)) and f

(NormalShip (name,addr;ship)) since they are inde-
pendent of other operations (line 5). However, if opera-
tion c is selected first in line 6, it will result into a com-
position failure since such a behavior cannot be realized by
any of the existing component services. That is, none of

the component services (Figures 1(c) & 1(d)) has a tran-
sition associated with the guard G1 immediately followed
by another transition associated with the action c. As a re-
sult, REFORMULATESERVICE will backtrack, and select f
and determine if it can be realized. Thus, in essence, where
the existing algorithms for service composition would have
failed at this point, our approach automatically adapts the
goal service based on the analysis of control and data flow
dependencies for identifying feasible compositions. For this
particular example, the composition obtained eventually
will correspond to the (alternate) goal service e-Buyer’

(Figure 3). Note that even though the original goal service
e-Buyer and its alternate model e-Buyer’ are structurally
different, they are functionally equivalent with respect to
data and control dependencies.

Theorem 2 (Soundness & Completeness). Given a target
L and set of component services CS with start state-set S,
there exists a service L′ such that REFORMULATESERVICE
(DL, S) returns true iif L ≡ L′ and CS realizes L′. ¤

Complexity Analysis. The algorithms DATAFLOWDEP
and CTRL FLOWDEP perform backward depth-first traver-
sal from each state in an LTS and their complexity is
O(|S| × | −→ |) where |S| and | −→ | are the num-
ber of LTS states and transitions respectively. The proce-
dure UPDATECTRLFLOWDEP considers all possible paths
of branches. The algorithm can be written by memorizing
(recording in CTRLFLOWDEP) the set of operations that are
possible from every state. In that case, the complexity be-
comes same as that of backward depth-first traversal.

Algorithm 3 can be also made efficient by memorizing
the arguments used for invoking REFORMULATESERVICE
such that calls with the same arguments are not made re-

7

peatedly. The exploration of the state-space is done in a
depth-first fashion (complexity linear to the number of tran-
sitions). At each depth, the complexity is determined by the
procedure CREATETRANSITION ([9]) used for realizing an
operation from the component services.

5 Related Work
There is a recent body of work that has focused on

the notion of “adaption” (or change) in Web services in a
broader sense. Nezhad et al. [7] describe the use of a mis-
match tree to capture mismatches of various types (e.g., sig-
nature, messages) between the specification and available
component services, to solicit information needed to resolve
the mismatches from the service developers, and to gener-
ate the necessary adapters. Brogi and Popescu [3] have pro-
posed a similar approach for generation of BPEL adapters.
On a different note, Harney and Doshi [5] have proposed
a technique that monitor changes in dynamic properties
of a component service (e.g., performance) to determine
whether to replace it with another service that offers the
same functionality within a composite service. Similarly,
Chafle et al. [4] have proposed a framework that speci-
fies several alternate plans to choose from in response to
changes in the environment (e.g., performance, cost, avail-
ability of component services).

Unlike the work summarized above, the emphasis of this
paper is on neither resolving mismatches between compo-
nents by generating adapters nor adapting composite ser-
vices in response to changes in the environment. Instead,
our focus is on generate a composite service from the avail-
able component services in settings where the composition
algorithm fails because the goal service LTS, as specified,
cannot be realized using available components, but a func-
tionally equivalent reformulation can be realized. Thus, in
essence, our work on “adaptation/change” is complemen-
tary to the existing work.

6 Summary and Discussion
We propose a framework for composing Web services

through automatic reformulation of service specifications
(represented as labeled transition systems) based on the
analysis of control and data flow dependencies. We intro-
duce a data structure called dependency matrix to support
this analysis and show that any goal LTS reformulation that
does not violate the data and control dependencies that are
implicit in the specified goal service LTS specification is
provably functionally equivalent to the specified goal ser-
vice. We have developed an efficient algorithm that is linear
in the size of the goal LTS specification, and can generate
an (as yet untried) alternatives that are functionally equiv-
alent to the user-supplied goal LTS. This process proceeds
until a composite service is obtained (i.e., composition suc-
ceeds) or no alternative reformulations remain to be tried.

The resulting framework can help limit in the need for the
tedious manual intervention in reformulating specifications
by limiting such interventions to settings where neither the
specified goal LTS nor any of its its functionally equivalent
reformulations (that conform to the data and control flow
dependencies implicit in the goal specification) can be real-
ized using the available component services.

Some interesting directions along this line of research in-
cludes consideration of more expressive specifications than
those captured by LTSs. Our current framework represents
services using LTSs, which are essentially discrete-event
systems. Some application scenarios require modeling of
actions that extend over temporal intervals (e.g, duration
of action a spans duration of action b). In this context,
interval-based temporal representations (e.g., temporal al-
gebra) would be interesting to explore. We are also cur-
rently working towards developing benchmarks and per-
forming empirical evaluation aimed at assessing the extent
to which the our framework eliminates the need for manual
intervention in real-world service composition scenarios.

References
[1] B. Benatallah, Q. Sheng, and M. Dumas. The Self-Serv Environ-

ment for Web Services Composition. IEEE Internet Computing,
7(1):40–48, 2003.

[2] D. Berardi, D. Calvanese, D. G. Giuseppe, M. Lenzerini, and
M. Mecella. Automatic Service Composition based on Behavioral
Descriptions. International Journal on Cooperative Information
Systems, 14(4):333–376, 2005.

[3] A. Brogi and R. Popescu. Automated Generation of BPEL
Adapters. In 4th International Conference on Service-Oriented
Computing, pages 27–39. LNCS 4294, 2006.

[4] G. Chafle, P. Doshi, J. Harney, S. Mittal, and B. Srivastava. Im-
proved Adaptation of Web Service Compositions using Value of
Changed Information. In 5th IEEE International Conference on
Web Services, pages 784–791. IEEE CS Press, 2007.

[5] J. Harney and P. Doshi. Speeding Up Adaptation of Web Service
Compositions Using Expiration Times. In 16th World Wide Web
Conference, pages 1023–1032. ACM Press, 2007.

[6] R. Milner. A Calculus of Communicating Systems. Springer-Verlag
New York, Inc., 1982.

[7] H. R. M. Nezhad, B. Benatallah, A. Martens, F. Curbera, and
F. Casati. Semi-Automated Adaptation of Service Interactions. In
16th World Wide Web Conference, pages 993–1002. ACM Press,
2007.

[8] J. Pathak, S. Basu, and V. Honavar. Modeling Web Services by
Iterative Reformulation of Functional and Non-Functional Require-
ments. In 4th International Conference on Service Oriented Com-
puting, pages 314–326. LNCS 4294, Springer-Verlag, 2006.

[9] J. Pathak, S. Basu, R. Lutz, and V. Honavar. Parallel Web Service
Composition in MoSCoE: A Choreography-based Approach. In 4th
IEEE European Conference on Web Services, pages 3–12. IEEE CS
Press, 2006.

[10] J. Rao, P. Kungas, and M. Matskin. Logic-based Web Services
Composition: From Service Description to Process Model. In 2nd
IEEE International Conference on Web Services, pages 446–453.
IEEE CS Paper, 2004.

8

Appendix
Theorem 1. For any two LTSs L and L′, L ≡ L′ if and only
if their dependency matrices DL and DL′ are identical.

Proof: Let L ≡ L′ and DL 6= DL′ . DL and D′
L must

have the same set of row or column labels since from Def-
inition 3, L ≡ L′ implies that they have same set of op-
erations. Therefore, DL 6= D′

L implies that there exists
Ci,j 6= C′i,j where Ci,j ∈ DL and C′i,j ∈ D′

L. Note that,
Ci,j 6= C′i,j implies that Ci,j ∩C′i,j = ∅. Therefore, the only
way Ci,j 6= C′i,j is when Ci,j 6= ∅ and C′i,j = ∅ or vice
versa. Let Ci,j = {X} and C′i,j = ∅ (case 1 in Definition 4).
This implies that i is control dependent on j in L and i is not
control dependent on j in L′. Therefore, in all sequences in
B(L) which contains i, j appears before i while there exists
some sequence in B(L′), where i is present and j is absent
or i is present before j. This contradicts our initial assump-
tion that L ≡ L′ by Definition 3. Same type of contradiction
can be realized for other cases where Ci,j 6= C′i,j .

Next assume DL = D′
L and L 6≡ L′. Therefore, there

exists a pair of operations i and j such that j appears before
i in all sequences in B(L) containing i. However, there
exists at least one sequence in B(L′), containing i and j,
where i appears before j. The case implies that i depends
on j in L while it is not dependent on j in L′. In other
words, Ci,j 6= ∅ while C′i,j = ∅. This leads to contradiction
of the initial assumption of DL = D′

L. ¤

Theorem 2. Given a service L and set of component ser-
vices CS with start state-set S, there exists a service L′

such that REFORMULATESERVICE (DL, S) returns true if
and only if L ≡ L′ and CS realizes L′.

Proof: Let REFORMULATESERVICE(DL, S) return true
and for all L′s realized from CS, such that L 6≡ L′. From
Theorem 1, ∀L′ : L′ 6≡ L ⇒ D′

L 6= DL. In other words,
there exists at least one pair of operations in L such that
Ci,j 6= C′i,j (Ci,j ∈ DL and C′i,j ∈ D′

L) that is not realiz-
able from CS. Proceeding further, Ci,j demands a specific
ordering or mutual exclusion of i and j in all sequences
and this is not realizable from CS. This, in turn, implies
that REFORMULATESERVICE fails at line 17 for all pos-
sible choices at line 6, and eventually returns false at
line 25. This leads to contradiction of our initial as-
sumption that REFORMULATESERVICE returns true.

Next, consider that case where REFORMULATESERVICE
returns true but CS does not realize any L′ (≡ L). I.e., for
all possible alternate sequences in B(L), their exists some
operation in each sequence for which CREATETRANSITION
fails. If such a failure occurs (line 17) in REFORMU-
LATESERVICE, the algorithm backtracks and selects alter-
nate functionally equivalent sequences using DL. Finally,
when all alternates are exhausted and CREATETRANSITION
fails in all of them, REFORMULATESERVICE returns false

(line 25). This contradicts our initial assumption that
REFORMULATESERVICE returns true.

Finally, consider that there exists an L ≡ L′ and CS re-
alizes L′ but REFORMULATESERVICE(DL, S) returns false
(line 25). This will happen when CREATETRANSITION
fails for all possible alternates identified by REFORMU-
LATESERVICE. If we assume that REFORMULATESERVICE
correctly computes all possible alternates, then failure of
REFORMULATESERVICE due to failure of CREATETRAN-
SITION directly contradicts the initial assumption that CS
realizes L′(≡ L).3

The other alternate is that REFORMULATESERVICE does
not correctly consider all possible alternates, and hence fails
to identify the B(L′) which is realizable from CS. Line 6
in REFORMULATESERVICE considers all operations which
are not data-dependent on any other operation as candidates
for realizability. If such a candidate operation is a guard,
REFORMULATESERVICE invokes REDUCE to obtain de-
pendency matrices of all paths beyond the branch point of
the guard under consideration. The procedure REDUCE se-
lects all the mutually exclusive guards (line 30) and for
a particular guard i, it firstly removes rows and columns of
the guards that cannot appear in the same sequence as i,
and then iteratively removes the rows and columns of op-
erations that are solely dependent (directly or indirectly) on
these guards (lines 31--42). In short, REDUCE cor-
rectly identifies all the possible dependency matrices be-
yond a branch point and REFORMULATESERVICE, in turn,
considers all the possible ways of realizability using those
matrices. Therefore, if there exists an L′ ≡ L which is
realized from CS, then the REFORMULATESERVICE must
return true. ¤

3We are assuming the correctness of CREATETRANSITION. Details of
its correctness can be obtained in [8, 9].

9

