
Web Service Substitution Based on Preferences Over Non-functional Attributes ∗

Ganesh Ram Santhanam Samik Basu Vasant Honavar
Department of Computer Science, Iowa State University, Ames, IA 50011, USA

{gsanthan, sbasu, honavar}@cs.iastate.edu

Abstract

In many applications involving composite Web services,
one or more component services may become unavailable.
This presents us with the problem of identifying other com-
ponents that can take their place, while maintaining the
overall functionality of the composite service. Given a
choice of candidate substitutions that offer the desired func-
tionality, it is often necessary to select the most preferred
substitution based on non-functional attributes of the ser-
vice, e.g., security, reliability, etc. We propose an approach
to this problem usingpreference networksfor representing
and reasoning about preferences over non-functional prop-
erties. We present algorithms for solving several variants
of this problem: a) when the choice of the preferred substi-
tution is independent of the other constituents of the com-
posite service; b) when the choice of the preferred substi-
tution depends on the other constituents of the composite
service; and c) when multiple constituents of a composite
service need to be replaced simultaneously. The proposed
solutions to the service substitution problem based on pref-
erences over non-functional properties are independent of
the specific formalism used to represent functional require-
ments of a composite service as well as the specific algo-
rithm used to assemble the composite service.

1. Introduction
Service-oriented computing [3, 14, 11] offers a power-

ful approach to the assembly of complex distributed sys-
tems from independently developed software components
in many applications, e.g., e-Science, e-Business and e-
Government. Consequently, there is a growing body of
work on specification, discovery, selection, and composi-
tion of services.

After a composite service assembled from a repository
of component services has been deployed, one or more con-
stituents of the composite service may become unavailable.
Hence there arises a need to replace such components with

∗This work is supported in part by NSF grants CNS0709217,
CCF0702758 and IIS0711356.

other components from the repository while maintaining the
overall functionality of the composite service. Among the
candidate substitutions that offer the desired functionality,
the user might prefer some substitutions over others based
on non-functional attributes of the service, e.g., security, re-
liability, etc.

Service substitution based on the functional proper-
ties of components has been addressed by many authors
[2, 4, 12, 13, 15]. This paper is aimed at addressing the ser-
vice substitution problem taking into account the user pref-
erences over non-functional properties. We associate with
each non-functional property, a corresponding domain and
assume that the non-functional properties as well as their
respective domains are specified by some agreed upon stan-
dards. Service substitution in such a setting requires the
user to be able to express preferences over non-functional
properties of services. For example, a user might prefer a
more secure service to a less secure one; or one with a lower
cost over one with a higher cost. Furthermore, some at-
tributes may be more important than others, in which case,
it is useful to assignrelative importanceto different non-
functional attributes (e.g., security being more important
than performance).

Such preferences may bequalitative or quantitative.
Qualitative preferences are asserted based onrelative good-
nessof two alternatives, whereas quantitative preferences
force the user to quantifyby how muchhe/she prefers one
alternative to another, for example in the form ofutility
functions[9]. While quantitative preferences over multi-
ple attributes can be difficult to elicit from users, qualitative
preferences are often easier to elicit [10, 18].

Service substitution considering user preferences over
non-functional attributes is complicated by the fact that the
value of a particular attribute of the composite service is
a function of all its constituent services. For instance, the
reliability of a composite service is only as high as the re-
liability of its least reliable constituent. Further, there can
be interactions among the user preferences with respect to
different non-functional attributes. For example, due to pro-
hibitive cost, the user may prefer higher security when there
is low reliability and lower security when reliability is high.

Against this background, this paper addresses the prob-
lem of service substitution based on user specified qualita-
tive preferences over non-functional attributes. The contri-
butions of the paper are as follows:

1. We introduce an approach to service substitution based
on user preferences over non-functional properties of
services. Our approach utilizespreference networks
[6] for representing and reasoning about preferences
over non-functional properties in this setting.

2. We consider and solve two variants of the service
substitution problem, namely,context-insensitiveand
context-sensitivesubstitution. The former assumes
that the preferred substitution can be identified inde-
pendent of thecontext, i.e., the other constituents in
the composition, whereas the latter takes into account
the context of the substitution.

3. We consider and solve the service substitution prob-
lem in a more general setting, wherein multiple con-
stituents of a composition need to be replaced.

The proposed solutions to the service substitution prob-
lem based on preferences over non-functional properties
are independent of the specific formalism used to represent
functional requirements of a composite service as well as
the specific algorithm used to assemble the composition.

Organization. Section 2 discusses the preference formal-
ism called TCP-net, a model for representing and reason-
ing with qualitative preferences and trade-offs. Section 3
describes our solutions for identifying the preferred sub-
stitutions for both context-insensitive and context-sensitive
substitution problems using the TCP-net preference model.
Section 4 describes our algorithm for substitution of multi-
ple services in a composition. Section 5 concludes with a
summary, discussion of related work and an outline of fu-
ture directions for research.

2. Preferences and Trade-offs: TCP-nets
The information about preferences and trade-offs over

preference variables (non-functional attributes) can be com-
pactly represented using a graphical model called TCP-net.
A TCP-net [5, 6] is a directed graph such that the nodes of
the TCP-net represent preference attributesV , and there are
three types of edges. The first type of edge is a directed edge
(single headed arrow) fromX (∈ V) to Y (∈ V). Such an
edge asserts the preferential dependence of an attributeY

on the assignment of its parentsPa(Y) (e.g.X ∈ Pa(Y)).
Each node (preference attribute)Y , that has a non empty
set of parentsPa(Y) influencing its preferences, is anno-
tated with the conditional preference relation calledcondi-
tional preference tableCPT (Y). More formally, we as-
sume for each assignment ofPa(Y), CPT (Y) specifies a
total order overD(Y), the domain ofY . The second type
of directed edge (double headed arrow) captures the relative

Figure 1: TCP-net: Representing Preferences and Importance

importance among a pair of attributes, i.e., if there is such
an edge fromX to Y thenX is relatively more important
thanY . The third type of edge is undirected and captures
conditional relative importance betweenX andY givenZ.

Example 1 Suppose that a user specifies preferences over
three non-functional attributes: reliability (R), security
(S) and availability (A). The domains of the attributes
are{LR, HR}, {LS, MS , HS} and{LA, HA} respectively,
whereLi representslow “level” of the attribute i, Mi rep-
resentsmediumand Hi representshigh. The user speci-
fies that reliability is more important than availability, and
availability is more important than security. I.e., the user
prefers high valuations of reliability and availability. Fi-
nally, the user states that his/her preference with respectto
the security isnot independent of the reliability. At lower
levels of reliability, the user prefers higher security, but the
user tends to prefer lower security when the reliability is
high (say, due to prohibitive costs of having higher levels
for both attributes). The TCP-net in Figure. 1 represents the
above user preferences. It shows thatS is preferentially de-
pendent onR (i.e. Pa(S) = {R}). Double-headed arrow
captures the fact thatR is relatively more important thanA
which, in turn, is relatively more important thanS. Finally,
the conditional preference tables annotate each node pre-
senting the total order of the domain of each attribute (w.r.t.
the parents of the node, if any).

2.1 Preferential Semantics

For completeness of discussion, we describe the formal
semantics of TCP-net representation of preferences follow-
ing [6]. We assume a set of preference variablesV = {X1,
. . .Xn} with finite domainsD(X1), . . .D(Xn). An out-
comeo is a complete assignment of all variablesXi in V .
The set of outcomes isO ⊆ D(X1)×D(X2)×. . .×D(Xn).
A preference rankingis a total preorder over the set of out-
comesO. We denote the fact that outcomeo1 ∈ O is at
least as preferred (strictly preferred)to outcomeo2 ∈ O by
o1 � o2(o1 ≻ o2). We denote the fact that the user isin-
differentbetween outcomeso1 ando2 by o1

∼= o2 if neither
o1 � o2 noro2 � o1

1.

1TCP-nets also allow the expression ofconditionalpreferences – pref-
erences over variable valuations conditioned on other variables’ valuations.

Preferential Independence. In order to understand the
need for preferential independence, we note that the set of
possible outcomes is exponential in the number of prefer-
ence variablesn (wheren = |V|). Further, the set of pos-
sible total preorders is doubly exponential inn. A set of
variablesX ⊆ V is preferential independentof Y = V−X

if for all possible values ofY , thepreference orderamong
various assignments toX is the same. Formally, a set of
variablesX is preferentially independent2 of the set of vari-
ablesY = V−X iff for all x1, x2 ∈ D(X); y1, y2 ∈ D(Y),
we have:x1y1 � x2y1 iff x1y2 � x2y2. We say thatx1 is
preferred tox2 ceteris paribus3 (all else being equal). In
Figure 1, reliabilityR is preferentially independent of secu-
rity S while S is preferentially dependent onR.

Relative Importance. In Figure. 1, we observe that the
variables availability and reliability are preferentially inde-
pendent. However, in order to assert if an outcome with
high availability and low reliability is preferred to one with
low availability and high reliability, preferential indepen-
dence information alone is not sufficient. Additional infor-
mation regarding the relative importance of one attribute
over the other will be necessary. In our example, relia-
bility is relatively more important than availability (dou-
ble headed arrow). As a result, given a choice, the user
would settle for lower availability instead of compromising
on reliability. This additional relative importance informa-
tion helps us to infer that an outcome with high reliability
and low availability is preferred to one with low reliability
and high availability. Formally, letX andY be a pair of
preferentially independent variables givenV −{X, Y }. We
say thatX is relatively more importantthanY , denoted by
X ⊲ Y , if

∀w. w ∈ D(W), where W = V − {X, Y }
∀x1, x2 ∈ D(X), ∀ya, yb ∈ D(Y) :

x1 ≻ x2 ⇒ x1yaw ≻ x2ybw.

The above definition states that the preferencex1yaw ≻
x2ybw holds even ifyb ≻ ya, since any change to the worse
in Y is preferred to any change to the worse inX .

In Figure 1, based on the these definitions,R is preferen-
tially independent ofA andS; S is preferentially dependent
onR and is annotated with aCPT . R is relatively more im-
portant thanA andA is relatively more important thanS.

Remark 1 We limit our scope of discussion to a class of
TCP-nets calledconditionally acyclicTCP-nets, as only
this particular class of TCP-nets have been proved to be
satisfiable with a preference relation [6]. We also assume
that the preferences over variable domains are total orders
for the purpose of this paper, although TCP-nets in general
allow specification of partial orders as well. We note that

2Conditional preferential independence can be defined similarly.
3Ceteris paribus is a Latin phrase that means ”all others being equal”.

there is another variant of the TCP-net, known as UCP-
nets [6] that captures quantitative preferences and relative
importance information using utility functions. However,
since we are not dealing with quantitative preferences, we
stick to the basic qualitative TCP-nets.

Non-dominated Set of Outcomes. Given aconditionally
acyclicTCP-net, there exists a total order (that can be ob-
tained using a topological sort) of the set of outcomesO that
is consistent withthe given TCP-net [6]. However, several
orderings ofO can be consistent with a given conditionally
acyclic TCP-net (corresponding to distinct topological sort-
ing of the variables in the preference network). In a total
preorder, there could be an outcomeo such that∄o′ : o′ ≻ o

with respect to the TCP-net, but one cannot defineo as the
unique most preferred outcome.

Consider the example in Figure 1. If the user did not
provide the information thatR is relatively more important
thanA, then we will not be able to assert the preference
between two valuations of attributes:(HR, HS , LA) and
(LR, HS , HA). In other words, the user is indifferent with
respect to the above outcomes and we say that the outcomes
form anon-dominatedset, one where any element in the set
is not preferredover any other element in the set. To han-
dle such situations, it is necessary that the reasoning about
preferences considers non-dominated outcomes instead of
the unique most preferred one.

3. Web Service Substitution
We now proceed to describe the problem of Web service

substitution, and how to use TCP-nets to compute the pre-
ferred substitutions from a set of functionally feasible alter-
natives. For this purpose, we will usedominance queries

[6] of the form o
?
≻ o′ with respect to TCP-net (in other

words whethero is preferred to or dominateso′).

Definition 1 (Web Service Composition [17])A Web ser-
vice compositionC = W1 ⊕W2 . . . ⊕Wk such that∀1 ≤
l ≤ k, Wl ∈ R is an assembly of component services from
a repository of available servicesR = {W1, W2 . . .Wn}
such thatC is functionally equivalent4 to a target or goal
serviceG, denoted byC ≡ G. In the above,⊕ is thecom-
positionoperator for composing two services.

The problem of Web service substitution refers to iden-
tifying a component service from the repository of services
that can suitably replace a particular component in an ex-
isting composite service. The identified component service
must achieve the desired functionality in the context of the
composite service as a whole. Formally, Web service sub-
stitution is defined as follows.

4Functional equivalence can be defined in many ways includingbisim-
ulation of labeled transition systems [16, 15]

Definition 2 (Web Service Substitution) Given an exist-
ing composite serviceC = W1 ⊕W2 . . . ⊕Wi−1 ⊕Wi ⊕
Wi+1 . . . ⊕ Wk that achieves the functionality of the tar-
get or goal serviceG such that C ≡ G, Web service
substitution amounts to identifying a replacement,Ws, of
a componentWi in the composite service, such thatC′ =
W1⊕W2 . . .⊕Wi−1⊕Ws⊕Wi+1 . . .⊕Wk and C′ ≡ C.

We will also use the notationC ⊖W to denote the partial
composition obtained by removing the serviceW from the
composite serviceC i.e.,C⊖Wi = W1⊕W2 . . .⊕Wi−1 ⊕
Wi+1 . . . ⊕Wk. The above definition, however, does not
take into consideration the preferences over non-functional
attributes of the composition and the components.

Given the user-preferences and trade-offs over non-
functional attributes in the form of a TCP-net, we can define
thepreference valuation[17] of a service as follows.

Definition 3 (Preference Valuation) Preference valuation
is a function F : W × X →

⋃
(D(Xi)) W =

{W1, W2 . . . Wk}, X =
⋃
{Xi}. We denote the valuation

of an attributeXi in a Web serviceW asF (W)(Xi) = vi

where vi ∈ D(Xi). We define the valuation of an at-
tribute Xi in a compositionof two servicesWi ⊕ Wj as
F (Wi ⊕Wj)(Xi) = F (Wi)(Xi)⊙ F (Wj)(Xi), where

F (Wi)(Xp)⊙ F (Wj)(Xp) =

F (Wj)(Xp) if F (Wi)(Xp) ≻ F (Wj)(Xp)

F (Wi)(Xp) otherwise

Thepreference valuation of a compositionP = W1 ⊕
W2 ⊕ . . .Wl with respect to attributeXp is defined (induc-
tively) asF (P)(Xp) = F (W1)(Xp) ⊙ F (W2)(Xp) . . . ⊙
F (Wl)(Xp). We also denote thecomplete preference valu-
ation over all attributesX of a compositionP as the tuple
VP = 〈F (P)(Xi), F (P)(X2) . . . F (P)(Xk)〉.

The functionF defines how the valuations ofP ’s com-
ponents are aggregated. Our definition ofF computes the
the least preferred valuation of that attribute among the par-
ticipating component services in the composition. For ex-
ample, in the case of reliability, the valuation of a compo-
sition can be defined as the valuation of itsleast reliable
component. We note that other attributes such as cost may
require other ways of aggregating the attribute valuationsof
the components in a composition, which can be handled by
having appropriate definitions ofF and⊙.

Definition 4 (Sole Dependence)Given a compositionC
and its componentW , we say thatC is solely dependent
on W with respect to an attributeXi iff VC⊖W (Xi) ≻
VC(Xi).

In other words, improving the valuationVW (Xi) im-
provesC ’s valuation ofXi as well, i.e., all other compo-
nents inC have a strictly better valuation forXi thanW .

Services Reliability Security Availability

Composite C LR LS HA

To-replace W LR LS HA

Substitutes

W1 LR LS LA

W2 HR HS LA

W3 LR MS HA

W4 LR HS HA

Table 1: Preference Valuations

3.1. Computing Preferred Substitutions

Now we address the problem of finding the preferred
substitutions from a set of functionally feasible substitu-
tions using a TCP-net model of preferences over non-
functional attributes. Given a composite serviceC and a
componentW to be replaced, we assume that there exists
a mechanism5 that generates the set of functionally feasible
substitutions,W, from the repository of available services.
Our goal is to compute the setW′ ⊆ W of preferentially
non-dominated substitutions with respect to the given TCP-
net.

We further distinguish between two variants of the sub-
stitution problem, namely,context-insensitiveandcontext-
sensitivesubstitution. The first approach assumes that the
preferred substitution can be obtained independent of the
context, i.e., the non-functional properties of the other com-
ponents in the composition, while in the second approach,
the context of the substitution is taken into account.

Example 2 Consider a composite serviceC that and a
componentW in C that needs to be substituted. Sup-
pose that there is a set offunctionally feasible substitu-
tionsW = {W1, W2, W3, W4} such that each component
Wi ∈ W can substituteW in C satisfying all the func-
tional requirements of the substitution. The non-functional
attributes of interest to the user are reliability, availability
and security, and the user-preferences over these attributes
are represented using the TCP-Net in Figure 1. The valua-
tions of the non-functional attributes forC, W and the sub-
stitutes are presented in Table 1. The objective is to identify
the preferred substitution(s) forW in the compositionC.

3.1.1 Context-Insensitive Substitution

This approach simply computes the preferentially non-
dominated substitutions for the component to be replaced,
from the set of functionally feasible substitutions, without
considering how the non-functional properties of the other
components in the composition may affect the valuation of
the overall composition.

In Example 2,W2 is the most preferred substitution inW
asVW2

≻ VW4
≻ VW3

≻ VW1
(see Figure 1 and Table 1).

5We refer the reader to [15, 12, 13, 2, 4] for more details on functional
aspects of service substitution

If C is solely dependenton W with respect to reliability
and security, then the choice ofW2 is the most preferred
one. As the existing composite serviceC has the valua-
tion VC = (LR, LS , HA), following Definition 3, the new
composition withW2 as the substitute will have a valuation
VC

′ = (HR, HS , LA) ≻ VC .
However, consider the scenario when with respect to the

attributes reliability and security,C is not solely dependent
on W, e.g., there is some other service inC in addition to
W that has low reliability and low security. In that case,W2

as the preferred substitution would be a bad choice, as the
overall valuation ofC goes down:VC

′ = (LR, LS , LA),
i.e., VC ≻ VC

′. This is because the computed substitu-
tions do not take into account thecontextof the composite
service as a whole. A better substitution in terms of pref-
erence can be obtained, if we take into account some con-
text information, i.e., the preference valuation of the com-
posite serviceC in the absence ofW , VC⊖W . Thus, the
context-insensitive approach works well only when all the
non-functional attribute valuations of the composition are
solely dependent on the component being replaced.

3.1.2 Context-Sensitive Substitution

In this approach, when identifying a replacement, we take
into account how the valuation of the identified substitution
will affect the overall valuation of the composition. As a
result, here we consider the valuation of the composition
in the absence of the component to be replaced in order to
identify substitutions, i.e.,VC⊖W , in contrast to the context-
insensitive approach where we instead consideredVC . The
following algorithm describes this approach.

1. ComputeVWj

′ = V(C⊖W)⊕Wj
, ∀Wj ∈ W

2. Compute the preferentially non-dominated set of val-
uationsϕ = {VWj

′ | ∄Wk
′ : VWk

′ ≻ VWj

′} w.r.t.
TCP-net

3. Return the set of substitutions corresponding to each
valuation inϕ i.e.,W′ = {Wj | VWj

∈ ϕ}

To see the subtle distinction between the context-
insensitive and sensitive approaches, suppose that in Ex-
ample 2,C is solely dependent onW with respect to se-
curity; and not with respect to reliability and availability.
Let the valuation ofVC⊖W yield (LR, HS , HA) – assum-
ing all other components inC have high security level.
The above algorithm would return the solution asW4 be-
causeV(C⊖W)⊕W4

= (LR, HS , HA) clearly dominates
V(C⊖W)⊕W3

= (LR, MS, HA), as well asV(C⊖W)⊕W1
=

(LR, LS, LA) and V(C⊖W)⊕W2
= (LR, HS , LA). Thus,

this approach yields the best solutionW′ = {W4} taking
into account the context information.

4. Multiple Component Substitution
The solutions we have seen so far are aimed at finding

preferred substitutions for one component at a time. We

now address the problem of finding substitutes for more
than one component at a time.

Consider a composite serviceC that needs to replace
a set of n of its components:W = {W1, W2, . . . Wn}.
We again assume that the user-preferences over the non-
functional attributes are modeled using a TCP-net, and that
there exists a mechanism to find out the set of function-
ally feasible substitutions for any given component in the
composite. Suppose that eachWi has a set of function-
ally feasible substitutions:RWi

= {Wi1 , Wi2 , . . . Wik
}.

The problem is to find one substitutionWij
from RWi

for
each componentWi to be replaced. There are many fea-
sible sets of substitutions functionally possible, given by
the spaceP = RW1

× RW2
. . . × RWn

. We denote the
composition obtained by making the set of substitutions
S = {W s

1 , W s
2 , . . .W s

n} (whereW s
i denotes a substitute

service in the setRWi
) as (C ⊖ R) ⊕ S. We are inter-

ested in finding a set of substitutionsS ∈ P that maxi-
mizes the preference of the resulting composite service, i.e.,
∄S′ ∈ P : V(C⊖R)⊕S′ ≻ V(C⊖R)⊕S .

One way to search for an optimal solution is by brute
force: exploring the entire space of sets of substitutionsP ,
and finding the set of non-dominating set of substitutions
from that set. However, given that the number of compo-
nents to be replaced isn and considering that each compo-
nent hask functionally feasible substitutes, it is computa-
tionally expensive (number of possible sets of substitutions
is exponential:O(kn)) to explore the entire space.

A more efficient but naive approach for finding multiple
component substitutions according to the user preferences
would be to execute the one-component substitution algo-
rithm multiple times, once for each component to be sub-
stituted. However, there is no guarantee that this approach
would give the best possible set of substitutions, as illus-
trated by the following example.

Example 3 Consider a compositionC that requires three
services to be replaced,W = {W1, W2, W3}. Let
there be functionally feasible substitutions,RW1

=
{W11, W12, W13}, RW2

= {W21, W22, W23}, RW3
=

{W31, W32, W33} respectively. Table 2 shows their val-
uations over two non-functional attributesX and Y with
domains{x0, x1, x2, x3} and {y0, y1, y2, y3} respectively.
The preferences over the variables are given in Figure 2.

Let VC⊖W = 〈x2, y3〉; then the naive substitution ap-
proach will execute the single-component substitution for
W1, W2 and W3 independently, yielding replacements
W11, W21 and W31 respectively according to the algo-
rithm presented in Section 3.1.2. The resulting prefer-
ence valueVC⊖W⊕{W11,W21,W31} = 〈x0, y1〉. How-
ever, note that there exists another solution, namely re-
placementsW12, W22 and W31 for W1, W2 and W3 re-
spectively, which yields a better solution with valuation
VC⊖W⊕{W12,W22,W31} = 〈x2, y1〉.

VW11
= 〈x1, y3〉 VW21

= 〈x0, y2〉 VW31
= 〈x3, y1〉

VW12
= 〈x2, y2〉 VW22

= 〈x2, y1〉 VW32
= 〈x2, y1〉

VW13
= 〈x1, y1〉 VW23

= 〈x0, y1〉 VW33
= 〈x1, y1〉

Table 2: Valuations of replacements

Figure 2: Preferences: Multiple Component Substitution

The reason for the sub-optimal solution obtained by the
naive approach in the above example is that it does not con-
sider the effect of the choice of replacement for one compo-
nent on the choice of replacement for others.

The solution obtained by the naive approach can be im-
proved by having a search procedure that chooses the op-
timal replacement for a componentWi, contingenton the
previous replacement choices already made. However, note
that even in such an approach, theorder in which we choose
replacements for components plays an important role in de-
termining the solutions. For example, if we choose the
replacement forW1 first, followed by a replacement for
W2 (given the choice forW1), followed by a choice for
W3 (given the choices forW1 and W2), we obtain the
sub-optimal solutionW11, W21 and W31 with valuation
〈x0, y1〉. Instead, if we choose the replacement forW3 first,
followed byW2 andW1, then the resulting solution is op-
timal: the choice forW3 is W31; the choice forW2 (given
the choice forW3) is W22, and the choice forW1 (given
the choices forW3 andW2) is W12. The resulting valua-
tion of the substituted composite service is〈x2, y1〉 and it is
optimal. Thus, the order in which the replacements for the
components are chosen impacts the optimality.

In the absence of any information regarding the order
in which components have to be replaced, theonly way to
guarantee an optimal solution is to explore all possible or-
ders. In effect, this problem generalizes the known NP-hard
traveling salesman problem [8] that involves finding the op-
timal ordering of points in a plane such that the overall real-
valued cost is minimized. The difference in our case is that
we deal with qualitative valuations instead of real-valued
costs.

We propose an approach to finding the optimal solution
by exploiting that fact that the optimal solution corresponds
to somepreferred orderin which the services are consid-
ered to be replaced. In the above example, such orders are
(W3, W2, W1) and(W3, W1, W2). We present an algorithm
that organizes the possible orderings in the form of a lattice
and obtains the preferred order as the shortest path between
two nodes in the lattice.

Figure 3: Multiple Component Substitution

4.1 Finding Preferred Order

We construct a lattice with the bottom of the lattice as the
partial compositionC ⊖W , and the top of the lattice as the
fully substituted orrepairedcomposition, namelyC⊖W ⊕
S. Each node in levell (i.e., nodes that arel steps away
from the bottom) of the lattice is the partial composition
C ⊖W composed withl different substitutes. There are a
total of n + 1 levels in the lattice and at each levell of the
lattice, there are

(
n
l

)
nodes. In particular, the level0 of the

lattice is the bottom and leveln+1 is the top. The lattice for
Example 3 is illustrated in Figure 3, wheres0 corresponds
to C ⊖ W and s7 corresponds toC ⊖ W ⊕ S, whereS

is the optimal substitution. We note that each path in the
lattice specifies one order of selecting substitutes inW , and
we denote the valuation of the fully substituted composition
obtained through a pathp in the lattice asVp.

We assign the cost of each node in the lattice as fol-
lows. The cost of the bottom of the lattice (s0 in Figure 3)
is VC⊖W . The cost of a path of lengthl from s0 to any
other node is the given byV

C⊖W⊕{Ŵ1,...,Ŵl}
, whereŴi is

locally-preferred substitute for

Wi ∈ {W1, W2, . . . , Wn} −
⋃

j<i

{Wj | Ŵj substitutesWj}

For example, in Figure 3, there are two paths froms0 to
s4. The cost of substitution along the paths0, s1, s4 is
VC⊖W⊕{W11,W31} = 〈x1, y1〉; in this path substitution of
W1 is selected before the substitution forW3. While the
cost of substitution along the paths0, s5, s4 is computed
from the selection of substitution forW3 followed by that
for W1. Cost of any node other than the bottom is the most
preferred cost among the paths from the bottom of the lat-
tice to itself. For example, cost of nodes4 is 〈x2, y1〉 due
to the cost of the paths0, s5, s4. Finally, the most preferred
substitution is given by the path from the bottom to the top
of the lattice which corresponds to the cost of the top. Note
that, this path corresponds to the preferred-order.

Algorithm 1 PreferredSubstitutions(≻, G(N, E))

1: for all n ∈ N do
2: Vn ← ▽

3: ρ(n)← undef
4: end for
5: V⊥∈N ← VC⊖W

6: while |N | > 0 do
7: N1 ← {n ∈ N : ∄m ∈ N : Vm ≻ Vn}
8: N ← N \N1

9: for all n ∈ N1 do
10: for all m ∈ N such that(n, m) ∈ E do
11: if Vn⊕m ≻ Vm then
12: Vm ← Vn⊕m

13: ρ(m)← n

14: else ifVm ∼ Vn⊕m then
15: Create a nodem′ with same edges asm
16: V ′

m ← Vn⊕m

17: N ← N ∪ {m′}
18: end if
19: end for
20: end for
21: end while

Algorithm 1, inspired by Dijkstra’s shortest path al-
gorithm [8], computes the cost of the top of the lattice.
Whereas Dijkstra’s shortest path algorithm works for quan-
titative costs, or cases when the valuations of the paths are
totally ordered, Algorithm 1 works for partial orders as well.
This is needed because a node can be associated with mul-
tiple costs as the cost of the paths from the bottom to that
node may be incomparable. Furthermore, unlike Dijkstra’s
algorithm which works on real value comparison operator,
>, Algorithm 1 uses dominance relation≻ between non-
functional attribute valuations.

Lines 1–4 initializes the cost of a nodeVn and its parent
ρ(n) to ▽ andundef respectively. The symbol▽ denotes
the worst valuations of the non-functional attributes in our
setting (e.g.,〈LR, LS, LA〉). At Line 5, the bottom of the
lattice is assigned the cost ofVC⊖W , i.e., the value of the
non-functional attributes of the compositionC without the
services inW . Line 7 obtains the set of nodes whose as-
sociated cost is not dominated by that of any other node.
Initially, this set will be singleton containing only the bot-
tom element (unlessVC⊖W = ▽, in which case any substi-
tution for the services inW is a preferred one). Line 10–
13 identifies the one-step neighbors of the current node and
updates their cost appropriately if the costs are comparable
(Line 11). If there are two paths tom with incomparable
costs (specifically with non-dominating costs – Line 14),
then the node is split into two (Lines 15–17). In general,
if there arep paths leading to a node in the lattice, andp′

paths form the non-dominating set with respect to their val-

uations, then the node is split intop′ nodes (replicating all
the edges of the original node in the split nodes), one for
each of the paths with non-dominated valuations. However,
such splitting, which will increase the computational com-
plexity, can be effectively avoided by soliciting information
from the user to break the tie due to non-dominance when-
ever the condition at Line 14 is satisfied. In that case, our
algorithm will be able to assign a unique cost to each node,
thereby avoiding node splitting.

The algorithm terminates when the minimum cost of all
nodes are assigned; At this point, the valuations at the top
element in the lattice correspond to the most preferred non-
dominated substitutions.

4.1.1 Complexity

Let there ben components to be replaced, andk feasible
substitutes for each of them. By our construction, for each
edge of the lattice, we make one substitution, i.e., we choose
the best substitute fromk candidates. Assuming that we
obtain unique cost for each node (i.e., costs of all paths
leading to a node are comparable), the number of times
we make such a selection is equal to the total number of
edges in the lattice, which isn.2n−1. Hence, we consider
k.n.2n−1 sets of substitutions in all. It can be shown that
∀k > 2, ∀n > 4 : kn > k.n.2n−1, i.e., our approach will be
more efficient than brute force wheneverk > 2 andn > 4.

Remark 2 If the cost of a node is not unique, as would be
the case if there are at least two paths to that node with non
dominating costs, then an alternative to splitting the node
is to solicit information from the user to break the tie be-
tween these costs. This leads to unique cost at each node.
In the event, the user fails to provide such information, the
algorithm can proceed by splitting the nodes. However,
such splitting will lead to increase in computational cost
of our method. Letm nodes be split at each level of our lat-
tice representation. Then the complexity for computing the
globally-preferred substitutions is6

C(n, m) = k.n.2n−1 + k.m

n−1∑

i=2

(i!− 1)(n− i) (1)

Using this, we can design a method that switches from our
algorithm to brute-force method whenm splits are made
and any further splitting will makekn less thanC(n, m).

5. Summary and Discussion
Web service substitution approaches [15, 12, 13, 2, 4]

have been developed in the past that identify functionally
feasible replacements from a given repository. Regarding
non-functional properties, existing techniques have focused
on analyzing non-functional properties as hard-constraints

6The derivation of Equation 1 is not presented due to space constraint.

(e.g., reliability after substitutionmust be 70%) or mod-
eled them as a minimization/maximization problem (e.g.,
reliability after substitution must be maximized) [1, 7, 19].
These techniques are either based on constraint satisfiabil-
ity or require the user to precisely quantify their preferences
over non-functional attributes (or both), or they do not ad-
dress the problem of substitution in detail. To the best of our
knowledge, there has been little work on identifyingpre-
ferred substitutionsin accordance with user-specifiedqual-
itative intra-variable and relative importance preferences
over non-functional attributes.

We have introduced two different variants of the substi-
tution problem given preferences over non-functional at-
tributes: context-insensitive and context-sensitive. Our
treatment of these two variants parallels the work of Pathak
et al. [15] on service substitution based on functional at-
tributes. However, it departs from the work of Pathak et
al. in an important respect: it offers a solution to the ser-
vice substitution problem taking into consideration the pref-
erences over non-functional attributes. We have also ad-
dressed the problem of substitution of multiple services in
a composition. We showed that, in the context-sensitive
setting, the order in which services are substituted influ-
ences the quality of the solution obtained (relative to user-
specified preferences over non-functional attributes). We
refer to the substitution order(s) corresponding to the most
preferred solution as the preferred order(s). In the absence
of any additional information regarding the preferred or-
der, solving the multiple service substitution problem in
the context-sensitive setting appears to be NP-hard. We
show how to represent all possible substitution orders com-
pactly by arranging the services to be replaced within a lat-
tice structure. Finally, we reduce the problem of obtain-
ing the preferred order(s) to identifying the shortest path(s)
between the bottom and top elements of the lattice. We
identify the conditions under which our method is com-
putationally more efficient than a brute force search. Our
approach to service substitution based on preferences over
non-functional properties is independent of the specific for-
malism used to represent functional requirements of a com-
posite service as well as the specific algorithm used to as-
semble the composite service.

Work in progress includes experimental studies of the
performance and scalability of our algorithms. We next
plan to implement our approach in an existing system like
MoSCoE that does functional substitution. In future, we
would like to extend our framework for service substitu-
tion to preference models that allow specification of partial
orders over variable domains. We also plan to extend our
framework to allow hard constraints over non-functional at-
tribute values in addition to qualitative preferences, so that
constrained preferential optimization supported by TCP-
nets [6] can be leveraged to obtain preferred substitutions.

References
[1] D. Ardagna and B. Pernici. Adaptive service compositionin

flexible processes.IEEE Trans. Softw. Eng., 33(6):369–384,
2007.

[2] B. Benatallah, F. Casati, and F. Toumani. Representing,
analysing and managing web service protocols.Data Knowl.
Eng., 58(3):327–357, 2006.

[3] M. Bichler and K. J. Lin. Service-oriented computing.Com-
puter, 39(3):99–101, 2006.

[4] L. Bordeaux, G. Salaun, D. Berardi, and M. Mecella. When
are two web services compatible?Lecture Notes in Com-
puter Science, 3324:15–28, 2005.

[5] R. I. Brafman, C. Domshlak, and S. E. Shimony. Introduc-
ing variable importance tradeoffs into cp-nets. InProc. of
Uncertainity in Artificial Intelligence, pages 69–76, 2002.

[6] R. I. Brafman, C. Domshlak, and S. E. Shimony. On graph-
ical modeling of preference and importance.Journal of Ar-
tificial Intelligence Research, 25:389424, 2006.

[7] D. B. Claro, P. Albers, and J. K. Hao. Selecting web services
for optimal composition. InProc. of ICWS 2005.

[8] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.Introduc-
tion to Algorithms. The MIT Press, 2001.

[9] P. Fishburn. Utility theory for decision making. 1970.
[10] S. French.Decision theory: an introduction to the mathe-

matics of rationality. Halsted Press, New York, USA, 1986.
[11] M. P. Huhns and M. P. Singh. Service-oriented computing:

Key concepts and principles.Internet Computing, 9(1):75–
81, 2005.

[12] F. Liu, L. Zhang, Y. Shi, L. Lin, and B. Shi. Formal analysis
of compatibility of web services via ccs. InProc. of the
International Conference on Next Generation Web Services
Practices, page 143. IEEE Computer Society, 2005.

[13] A. Martens, S. Moser, A. Gerhardt, and K. Funk. Analyzing
compatibility of bpel processes. InInternational Conference
on Internet and Web Applications and Services, 2006.

[14] M. Papazoglou. Service-oriented computing: concepts,
characteristics and directions. InProc. of the Fourth Interna-
tional Conference on Web Information Systems Engineering,
pages 3–12. IEEE Computer Society, 2003.

[15] J. Pathak, S. Basu, and V. Honavar. On context-specific sub-
stitutability of web services. InProc. of the International
Conference on Web Services, pages 192–199. IEEE Com-
puter Society, 2007.

[16] J. Pathak, S. Basu, R. Lutz, and V. Honavar. Selecting and
composing web services through iterative reformulation of
functional specifications. InProc. of the 18th International
Conference on Tools with Artificial Intelligence, pages 445–
454. IEEE Computer Society, 2006.

[17] G. R. Santhanam, S. Basu, and V. Honavar. Tcp-compose⋆

- a tcp-net based algorithm for efficient composition of web
services using qualitative preferences. InProc. of Interna-
tional Conference on Service-Oriented Computing, volume
5364 ofLNCS, pages 453–467, 2008.

[18] S. L. Schneider and J. Shanteau.Emerging perspectives on
judgment and decision research, page 207. Cambridge Uni-
versity Press, 2003.

[19] S. Sohrabi, N. Prokoshyna, and S. McIlraith. Web service
composition via generic procedures and customizing user
preferences. InProc. of ISWC 2006, pages 597–611.

