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Abstract

We propose a specification-driven approach to Web ser-
vice composition. The proposed framework allows users
to start with a high-level, possibly incomplete specifica-
tion of a desired (goal) service that is to be realized using
a subset of the available component services. These ser-
vices are represented by the system using transition systems
augmented with guards over variables with infinite domains
and are used to determine a strategy for their composition
that would realize the goal service. In the event that the
goal service cannot be realized using the available services,
the system identifies the cause(s) for such failure which can
then be used by the developer to reformulate the goal speci-
fication. Thus, the system supports Web service composition
through iterative refinement of the functional specifications.
We present a prototype implementation in tabled-logic pro-
gramming environment that illustrates the key features of
the proposed approach.

1 Introduction

Recent advances in networks, information and compu-
tation grids, and WWW have resulted in the proliferation
of a multitude of physically distributed and autonomously
developed software components and services in various do-
mains including e-Business and e-Science. Real world ap-
plications in these domains call for effective tools for devel-
oping composite services using available sets of component
services. Consequently, several approaches [6, 8] for do-
ing automatic composition of Web services, including those
based on AI planning techniques, logic programming, and
automata-theory have been proposed. However, the current
approaches have some important limitations:

Reliance on a complete functional specification of the de-
sired service: Existing techniques to service composition
[1, 3, 16, 19, 20] require the developer to provide a spec-
ification of the desired behavior of the composite service
(goal) in its entirety. This forces the developer to work with
a complete composition graph. The complexity of such a

composition graph (and hence the cognitive burden on the
developer) grows rapidly with the increasing complexity of
the goal service. In practice, it is difficult to know in ad-
vance whether a desired goal service can in fact be realized
using the existing components. In many cases, the failure to
realize a goal service using a set of component services may
be due to incompleteness of the goal specification. In such
a setting, it is desirable that the system allows the developer
to start with an abstract, and perhaps incomplete specifica-
tion of the goal service and in the event that the goal service
is not realizable using the existing components, guide the
developer in reformulating the goal specification so as to
reduce the ‘gap’ between the desired functionality and the
capabilities of the existing components.

Inability to handle infinite-state behavior of services: Of-
ten, Web services have to cope with a-priori unknown and
potentially unbounded data domains (e.g., data types de-
fined by users in WSDL documents). Analyzing the behav-
ior of such a service requires consideration of all possible
valuations, which makes the resulting system infinite-state.
However, most of the existing approaches to service com-
position do not take into account the infinite-state behavior
exhibited by Web services.

Against this background, we propose MoSCoE [13]—a
framework for Modeling Service Composition and Execu-
tion, based on an approach to service composition through
an iterative refinement of the functional specification of
the goal service. MoSCoE accepts from the user, an ab-
stract (high-level and possibly incomplete) specification of
a goal service. In our current implementation, the goal
service specification takes the form of an UML state ma-
chine that provides a formal, yet intuitive specification of
the desired goal functionality. This goal service and the
available component services are ‘finitely’ represented us-
ing labeled transition systems augmented with state vari-
ables, guards and functions on transitions, namely, Sym-
bolic Transition Systems (STS). Thus, the task of the sys-
tem is to compose a subset of the available component ser-
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vices (c1, c2 · · · cn) with the corresponding STS representa-
tions (STS1, · · · ,STSn), such that the result is “simulation
equivalent” to the STS-representation (STSg) of the desired
goal service g. As noted above, this process might fail ei-
ther because the desired service cannot be realized using
the available component services, or because the specifi-
cation of the goal service is incomplete. A novel feature
of MoSCoE is its ability to identify, in the event of failure
to realize a goal service arising from an incomplete goal
specification, the specific states and transitions in the state
machine description of the goal service that need to be mod-
ified. This information allows the developer to reformulate
the goal specification, and this process1 can be repeated un-
til a feasible composition is realized, or the user decides to
abort.

The contributions of our work include:

• A new paradigm for modeling Web services based
on abstraction, composition, and reformulation. The
proposed approach allows users to iteratively develop
composite services from their abstract descriptions.

• A formalization of the problem of determining feasible
compositions in a setting where component services
are ordered in a particular fashion and their data (and
process) flow is modeled in an infinite-domain.

• An approach to determining the cause of failure of
composition to assist the user in modifying and refin-
ing the goal specification in an iterative fashion.

The rest of the paper is organized as follows: Section 2
introduces an illustrative example used to explain the salient
aspects our work, Sections 3 and 4 present a logical for-
malism for determining feasible composition strategies and
failure-cause analysis in infinite-state domain, respectively;
Section 5 discusses the implementation of our composition
framework in tabled-logic programming environment [18]
and presents a preliminary evaluation, Section 6 briefly dis-
cusses related work, and finally Section 7 concludes with
future avenues for research.

2 Illustrative Example
We present a simple example where a service devel-

oper is assigned to model a new Web service, KogoBuy2,
which allows potential clients to order and buy a book on-
line. To achieve this, KogoBuy combines two existing and
independently developed services: BookPurchase and
e-Postal. BookPurchase accepts information about
the book (book name, quantity) and credit card (CCNum,

1Note that determination of the cause for failure of composition, and
using that information for reformulation of the goal specification is carried
out at design-time as opposed to run-time.

2A variation of the CongoBuy composite service presented in
http://www.daml.org/services/owl-s.

CCExpiryDate) from the client for successful fulfillment of
an order. The criteria for a successful order fulfillment is
based on two coniderations: (a) the required book and the
quantity should be available, and (b) the credit card to be
charged should be valid. e-Postal, on the other hand,
accepts information about the shipping address and the item
to be shipped, and determines if the item can be delivered
at the particular address. Note that the intention to build
KogoBuy is to allow the client to interact with KogoBuy
directly as opposed to interacting with the individual com-
ponents for buying a book and shipping it to a particular
destination.

To model such a scenario in MoSCoE, the user (ser-
vice developer) needs to provide a goal service specification
(e.g., KogoBuy) using state machines (Figure 1) consist-
ing of various states and transitions between the states (see
Section 3.1). This goal state machine as well as the set of
component services are represented internally in MoSCoE
using Symbolic Transition Systems (STS, see Section 3.2),
which are used to determine a feasible composition strat-
egy that provides the desired functionality. Figure 2 shows
the partial transition system of KogoBuy, and Figures 3(a)
& 3(b) show the transition system of BookPurchase and
e-Postal services, respectively.
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Figure 1: State Machine representation of KogoBuy

In practice, there are multiple ways to realize such a
composition. We focus on a setting where a service, once
invoked, cannot be pre-empted or blocked. This assumption
corresponds to scenarios in which services are autonomous
entities, and hence their execution behavior cannot be fully
controlled by a client. For example, consider a credit card
validation service CCV which verifies the authenticity of
a credit card. Typically, once the client provides the rel-
evant credit card information and initiates the transaction,
the client cannot control the execution behavior of the ser-
vice (other than terminating the execution). Furthermore,
our framework disregards those services for composition
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Figure 2: Partial view of KogoBuy transition system

which can can result in behaviors that are beyond those re-
quired for achieving the specified goal functionality. For
instance, suppose the credit card validation service CCV’
charges a service fee in addition to authenticating the credit
card. For a client whose goal is to only validate the au-
thenticity of a card, the additional action is unwarranted.
Consequently, we ignore services such as CCV’ for deter-
mining a composition strategy from the available pool of
services. Note that this approach is in stark contrast to the
traditional mediator-based techniques where actions and be-
haviors that are uncalled-for (as part of the goal) have to be
blocked/ignored. Instead, our aim is to find a suitable order-
ing of the available services that can satisfy the goal require-
ments, an approach we refer as goal-directed service com-
position. MoSCoE solves this composition problem using
the notion of similarity and simulation equivalence (Defi-
nition 2)—a composition of components is said to realize
a specified goal if the latter simulates the composition, i.e.,
the composition mimics (part-of) the functional behavior of
the goal (see Section 3.3).

3 Service Composition in MoSCoE

3.1 Service Functions as State Machines

We start with a goal specification in the form of a state
machine (Figure 1(a)) that consist of states (s1, s2, · · ·) rep-
resenting abstraction of the system configuration, and inter-
state transitions (s1 −→ s2) denoting the conditions under
which the system evolves from one state to the next. The
states can be either composite (or-/and- states) or atomic.

Each transition, source
ev[g]/e−→ destination, is an-

notated with action labels consisting of event (ev), guard
(g), and effect (e). In the context of Web services, the
events correspond to various functions that a service pro-
vides; the guards refer to pre-conditions of those functions;
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Figure 3: (a) STS representation of BookPurchase. (b) STS represen-
tation of e-Postal.

and effects correspond to post-conditions of the transition-
functions, in essence denoting the possible assignment of
values to variables after the function is executed. A true
guard and ε (empty) effect denote the absence of pre-/post-
conditions, respectively. For example, in Figure 1(a), for
transition s0 → s1, the event corresponds to function
locateBook(Name), the guard is assumed to be true,
and the effect refers to assigning some value to the variable
Avail.

Despite their popularity in modeling software, state ma-
chines have a major limitation in that they fail to reveal the
exact sequence in which the system evolves due to the pres-
ence of hierarchy (“and-states”) and nesting of sub-states
[5]. To address the need to model Web services in such
a setting, we use Symbolic Transition Systems (STS) [2]
to represent Web services (both goal and components) in
MoSCoE. In the current context, a state machine can be
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translated to the corresponding STS as follows: (a) an STS-
state corresponding to an “and-state” is determined by all
the active atomic states, (b) an STS-state for an “or-state”
corresponds to one of the possible active states, (c) states
outside the scope of any “and-/or-composition” are also
states in the STS, and finally, (d) initial and end states along
with their transitive closures over event-free transitions are
start and final states, respectively, of the STS.

3.2 Symbolic Transition System Representation

Preliminaries & Notations. Sets of variables, functions
and predicates/relations will be denoted by V , F and P ,
respectively. The set B denotes {true, false}. Elements of
F and P have pre-defined arities; a function with zero-arity
is called a constant. Expressions are denoted by functions
and variables, and constraints or guards, denoted by γ, are
predicates over other predicates and expressions. Variables
in a term t is represented by a set vars(t). Substitutions,
denoted by σ, maps variables to expressions. A substitution
of variable v to expression e will be represented by [e/v]. A
term t under the substitution σ is denoted by tσ.

Definition 1 (Symbolic Transition System) A symbolic
transition system is a tuple (S,−→, s0, SF ) where S is
a set of states represented by terms, s0 ∈ S is the start
state, SF ⊆ S is the set of final states and −→ is the set of
transition relations where s

γ,α,ρ−→ t is such that

1. γ is the guard where, vars(γ) ⊆ vars(s)

2. α is a term representing service-functions of the form
a(�x)(y) where �x represents the input parameters and
y denotes the return valuations

3. ρ relates vars(s) to vars(t)

Similar to state machines, each state in an STS is rep-
resented by a term, while transitions represent relations
between states, and are annotated by guards, actions and
effects. Guards are constraints over term-variables ap-
pearing in the source state, actions are terms of the
form fname(args)(ret); where fname is the name
of service-function being invoked, args is the list of actual
arguments and ret is the return valuation of the function, if
any. Finally, effect is a relation representing the mapping of
source state variables to destination state variables.
These states and transitions in STS are annotated by infinite-
domain variables and guards over such variables. As such
composition using STS (see Section 3.3) requires analysis
of all possible (infinite) valuations of STS variables. Figure
4 shows example STSs.

Semantics of STS. The semantics of STS is given with re-
spect to substitutions of variables present in the system. A
state represented by the term s is interpreted under substitu-
tion σ (sσ). A transition s

γ,α,ρ−→ t, under late semantics, is
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Figure 4: Example Symbolic Transition Systems. (a) STSg (b) STS1 (c)
STS2.

said to be enabled from sσ if γσ = true and γ ⇒ ρ. The
transition under substitution σ is denoted by sσ

ασ−→ tσ.

3.3 Composition of Symbolic Transition Systems

A composition of STSi and STSj , denoted by STSi ◦
STSj , is obtained by merging the final states of STSi with
the start state of STSj , i.e., every out-going transition of
start state of STSj is also the out-going transition of each
final state of STSi. Recall that our composition does not
assume a mediator that can block or ignore unwarranted
actions of the component services. As such, composition
only considers those components that can provide the ac-
tions that are called for by the goal specification. The pri-
mary problem, in this case, is to identify the sequence in
which the selected components should appear to realize the
goal.

We say that given a goal service representation STSg and
a set of component representations STS1...n, the former is
said to be (partially) realizable from the latter if there ex-
ists a composition of components such that STSg simulates
STSi ◦STSj ◦ . . .STSk. In essence, the simulation relation
ensures that the composition can ‘mimic’ the goal service
functionality. We proceed with the definition of simulation
in the context of STSs required to identify a feasible com-
position as described above.

Definition 2 (Late Simulation) Given an STS S =
(S,−→, s0, SF ), late simulation relation with respect to
substitution θ, denoted by R θ, is a subset of S × S such
that

s1 R θs2 ⇒ (∀s1θ
α1−→ t1θ.∃s2θ

α2−→ t2θ.
∀σ.α1θσ = α2θσ ∧ t1 R θσt2)

Two states, under the substitution θ over state variables, are
equivalent with respect to simulation if they are related by
the largest similarity relation R θ. We say that an STSi

is simulated by STSj , denoted by (STSi R θSTSj) iff
(s0i R θs0j).

For example, consider the STSs in Figure 4(a) and 4(b).
If state t1 is simulated by s1, then t2(x) is simulated by
s2(x) for all possible valuations of x. It can be seen that
there are two partitions, x 	= 0 and x = 0, for the infi-
nite domain of variable x. Therefore, t2(x) is simulated by
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s2(x) for valuations of x in both these partitions. For x 	= 0,
there is no enabled transition from t2(x) and as such, it is
simulated by s2(x)3. On the other hand, when x = 0, t3 is
simulated by s3(x, y) for all possible valuations of y. The
above can be represented using logical expressions as fol-
lows:

t1 Rtrue s1

⇒ ∀x.(t2(x) Rx s2(x))
⇒ (t2(x) Rx=0 s2(x)) ∧ (t2(x) Rx!=0 s2(x))
⇒ (∀y.(t3 Rx=0,ys3(x, y))) ∧ true

(1)

Here, WLOG we assumed that the variable names (x, y)
in the two STSs are identical for simplicity. Note that the
simulation of the STS1 by STSg leads the latter to state
s3(x, y) with the constraint x = 0. In terms of composition,
it can be stated that a selected component (simulated by the
goal) drives the goal to some specific states. As a result, the
start state of the next component in the composition must
be simulated by these goal states. To identify the states in
the goal that simulates the final states of the component, we
define the termination relation:

Definition 3 (Termination Relation) Given an STS S =
(S,−→, s0, SF ), termination relation, denoted by T θ,δ is a
subset of S × S × S such that

s1T θ,δ
t s2 ⇐ s1 R θs2 ∧ ((∃s1θ

α1−→ t1θ. ∃s2θ
α2−→ t2θ.

∃σ.α1θσ = α2θσ ∧ t1T θσ,δ
t t2)

∨ (s1 ∈ SF ∧ t = s2 ∧ δ = θ))
In the above, t represents the states reached after the simu-
lation, and δ and θ are constraints over variables. The states
s1 and s2 are terminally equivalent with respect to t, if they
are related by the least solution of terminal relation T θ,δ .
In other words, s1 is simulated by s2 and the final state
reached from s1 is simulated by state t reachable from s2

under the constraint δ. We say that (STSi T θ,δ
t STSj) iff

(s0i T θ,δ
t s0j).

Returning to the example in Figure 4(a) & 4(b), state t1 is
simulated by s1 and the simulation drives t1 to t2(x) and s1

to s2(x) where t2(x) is simulated by s2(x) for all possible
valuations of x (x 	= 0 and x = 0). For x 	= 0, there is
no transition from t2(x) and also, t2(x) is not a final state
in STS1. On the other hand, for x = 0, t2(x) reaches t3
and this transition is simulated by transition from s2(x) to
s3(x, y). As t3 is final state of STS1, the state s3(x, y) is
identified as the state simulating the final state t3 under the
constraint x = 0. Thus,

t1 T true,δ
t s1

⇐ t1 Rtrue s1 ∧ ∃x.(t2(x) T x,δ
t s2(x))

⇐ true ∧ ( (t2(x) T x=0,δ
t s2(x)) ∨ (t2(x) T x!=0,δ

t s2(x)) )
⇐ (t2(x) Rx=0 s2(x) ∧ ∃y.t3 T {x=0,y},δ

t s3(x, y)) ∨ false
⇐ true ∧ t = s3(x, y) ∧ δ = {x = 0, y}

(2)
3A state with no outgoing transition is simulated by all states.

From the preceding discussion,, it follows that
∀θ.(STSi◦. . .◦STSj)Rθ STSg can be realized by identify-
ing the termination relation T θ,θ1

t1 between STSi and STSg

(t1 is the state in STSg which simulates a final state in STSi

under the constraint θ1) and ensuring that the rest of the
components STSk ◦ STSl ◦ . . . ◦ STSj is simulated by all
t1 with the corresponding θ1s. Thus,

∀θ.(STSi ◦ . . . ◦ STSj) Rθ STSg ≡
T1 = {t1θ1 | ∀θ.∃t1θ1.(STSi T θ,θ1

t1 STSg)}
∧ ∀t1θ1 ∈ T1.(STSk ◦ STSl ◦ . . . ◦ STSj) Rθ1 t1

(3)

That is, the composition is realizable via iterative compu-
tation of termination relation of the goal transition system
against a component. The iterative process terminates when
all the states in the goal that simulate the final state of the
component under consideration are final states.

Tn = {tnθn | ∀tn−1θn−1 ∈ Tn−1.∃tnθn.

(STSn T θn−1,θn

tn
tn−1)}

∧ T = {tn | tnθn ∈ Tn} ⊆ SF
g

(4)

In the above, Tn represents the set of state-constraint pairs
that simulates the final states of the n-th component. If the
states in Tn are subset of the final state-set of the goal, then
a feasible composition sequence is realized.

For example, in Figure 4, t1 T true,{x=0,y}
s3(x,y) s1 (from

Equation 2). Proceeding further, we select STS2. The start
state of STS2 is simulated by the state s3(x, y) under the
constraint x = 0 and the states in STSg that simulate the fi-
nal states of STS2 are s5 and s6. Using termination relation,
the result is obtained as follows:

∀x = 0.∀y.∃tδ. t4(x, y) T {x=0,y},δ
t s3(x, y)

⇐ t4(x, y) T {x=0,x=y},δ
t s3(x, y) or

t4(x, y) T {x=0,x!=y},δ
t s3(x, y)

⇐ t4(x, y) T {x=0,x=y},{x=0,x=y}
s5 s3(x, y) or

t4(x, y) T {x=0,x!=y},{x=0,x!=y}
s6 s3(x, y)

In the above, {s5, s6} obtained from T relation is a subset
of SF

g . Therefore, the composition of STS1 followed by
STS2 will (partially) realize goal STSg .

3.4 Modeling KogoBuy Composite Service

In this section, we show how to model the KogoBuy
composite service introduced in Section 2 using the for-
malisms described above. Figure 2 shows the (partial) tran-
sition system of KogoBuy corresponding to its state ma-
chine representation (Figure 1(a)). Here, the dotted lines
represent sequence of transitions (not shown) originating
due to the transitions from the and-partitions (s8 in this
case). Figures 3(a) & 3(b) show the transition system repre-
sentation for the component services BookPurchase and
e-Postal, respectively. To determine whether KogoBuy
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can be realized from BookPurchase and e-Postal
services, we need to find out if STSKB simulates the
composition of STSBP and STSeP. If the component
BookPurchase is selected first, it can be seen that
STSBP is late-simulated by STSKB. This is because
the transition paths starting from state s0,8 in KogoBuy
simulate the paths in BookPurchase such that s6,8 is
the terminal state corresponding to state t6, and similarly
s7,8 is the terminal state corresponding to state t5. In
other words, we have t0 T true,(Filled!=0&Charged!=0)

s6,8 s0,8

and t0 T true,(Filled=0‖Charged=0)
s7,8 s0,8. Now, STSeP is

simulated by s6,8 under the substitution (Filled!=0 &
Charged!=0) and by s7,8 under the substitution (Filled=0 ‖
Charged=0). Note that for this simple example there is an-
other solution to build a composition where the e-Postal
service is selected first followed by BookPurchase.

4 Failure-Cause Analysis and Goal Reformu-
lation

The composition of a goal service from available com-
ponent services using the process outlined above will fail
when some aspect of the goal specification cannot be re-
alized using the available component services. When this
happens, our approach seeks to provide information to the
user concerning the cause of the failure in a form that can
be used to reformulate the goal specification. In our frame-
work, the reason for failure to simulate a component by one
or more states of the goal STS STSg is obtained by iden-
tifying the dual of greatest fixed point simulation relation
R:

s1 R
θ

s2 ⇐ ∃s1θ
α1−→ t1θ.∀s2θ

α2−→ t2θ.∃σ.

(α1θσ = α2θσ) ⇒ t1 R
θσ

t2
(5)

Two states are said to be not simulation equivalent if
they are related by the least solution of R. We say that

STSi R
θ
STSj iff s0

i Rθ
s0

j . From Equation 5, the cause
of the state s1 not simulated by s2 can be due to:

1. ∃σ.α1θσ 	= α2θσ (i.e., that actions do not match), or

2. ∃σ.α1θσ = α2θσ and the subsequent states are related

by Rθσ
, or

3. ∃s1θ
α1−→ t1θ, but there is no transition enabled from

s2 under the substitution θ.

The relation R is, therefore, extended to Rf , where f
records the exact state-pairs which are not simulation equiv-
alent.

s1 R
θ

f s2 ⇐ ∃s1θ
α1−→ t1θ.(∀s2θ

α2−→ t2θ.
∃σ.(α2θσ 	= α1θσ ∧ f = (s1, s2, σ))
∨ (α2θσ = α1θσ ∧ t1R

θσ

f t2) )
∨ (	 ∃s2θ −→ ∧ f = (s1, s2, θ))

(6)
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Figure 5: (a) Component STS (b) Goal STSs STSg & STSg′ (c) STS for
NewPostal

For example, consider the STSs in Figure 5(a) & 5(b).
The component STS is not simulated by the first STSg

(rooted at s1) as there exists a transition from t2(x) to t4
when the x is not equal to zero, which is absent from the
corresponding state s2(x) in the goal. That is,

t1R
true
f s1 ⇐ ∃x.t2(x) Rx

f s2(x)
⇐ (t2(x) Rx!=0

f s2(x)) or(t2(x) Rx=0

f s2(x))
⇐ (t3 Rx!=0

f s3) or (t2(x) Rx=0

(t2(x),s2(x),x!=0) s2(x))
⇐ false or (t2(x) Rx=0

(t2(x),s2(x),x!=0) s2(x))

The state t1 is also not simulated by state s4 of STSg′ as the
state t2(x) is not simulated by s5(y). This is because x and
y may not be unified as the former is generated from the out-
put of a transition while the latter is generated at the state.
In fact, a state which generates a variable is not simulated
by any state if there is a guard on the generated variable.
Such generated variables at the states are local to that tran-
sition system and hence, cannot be ‘mimicked’ by another
transition system. In our example, t2(x) is not simulated by
s5(y).

Failure-cause analysis for KogoBuy. Returning to our
example from Section 2, assume that we replace the
e-Postal component service (Figure 3(b)) with another
shipment service NewPostal (Figure 5(c)), which func-
tions exactly like e-Postal, but additionally asks the
client to provide information about the shipment type (e.g.,
overnight, 2nd day air, ground). However, since this ‘ad-
ditional’ shipment type transition is not present in STSKB,
the component start state t7 is not simulated by states s0,8,
s6,8 or s7,8. This information about the transition and sub-
stitution causing the failure of simulation can be obtained

using the Rθ

f relation (see Equation 6). For example, t7
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is related to s7,8 via RDeliverable
{t8(Deliverable),s7,9(Deliverable)}. Note

that this kind of failure-cause information can be provided
to the user which can be used for refining the goal specifi-
cation in an iterative manner. In this case the user can add
the shipment transition (with appropriate parameters) to the
goal specification and try to determine a feasible composi-
tion strategy. These steps can be iterated until a composition
strategy is found or the user decides to abort.

5 Prototype Implementation
We have implemented a prototype of MoSCoE in the

XSB [18] tabled-logic programming environment. The
core of the implementation consists of encoding the simu-
lation relation and the termination relation, and developing
a meta-interpreter4 to evaluate the relations in the context
of constraints over infinite-domain variables. Our logical
encoding is direct and can yield a local, on-the-fly simula-
tion checker, where states and transitions are explored only
if they are needed to prove or disprove simulation equiv-
alence. In what follows, we proceed with a brief intro-
duction to XSB (Section 5.1) followed by discussion of
encoding of identification of composition of services and
generation of failure-cause information if such a composi-
tion does not exist. Additional information about the proto-
type is available at http://www.cs.iastate.edu/
˜jpathak/moscoe.html.

5.1 Preliminaries: XSB Tabled-Logic Programming

XSB logic programming system [18], developed at
SUNY Stony Brook, is an extension of Prolog-style SLD
resolution with tabling5. Tabling enables XSB (a) to termi-
nate with correct results on programs having finite models,
(b) to the compute the least model of normal logic programs
and (c) to avoid repeated subcomputations. Predicates or re-
lation are defined as rules of the form:

G :- G1, G2, ..., Gn.

where the relation G evaluates to true if the subgoals G1
through Gn evaluates to true, i.e., G1 ∧ G2 ∧ . . . ∧ Gn ⇒
G. Variables in the subgoals are existentially quantified and
rules with no right-hand side of :- are referred to as facts.

Consider a simple example for computing reachability
relation between states of a graph, i.e., transitive closure of
edges in the graph. The graph can be defined using logical
facts describing the edge relations as follows:

edge(s0, s1).
edge(s1, s0).
edge(s2, s1).

4A meta-interpreter for a language is an interpreter for the language
written in the language itself.

5Tabling is a technique that can get rid of infinite loops for bounded
term-size programs and possible redundant computations in the execution
of logic programs. The main idea of tabling is to memorize the answers to
some calls and use them to resolve subsequent variant calls.

There are three states in the graph s0, s1 and s2, and
there are transitions from (a) s0 to s1, (b) s1 to s0 and (c)
s2 to s1. The reachability relation can be encoded in XSB
as follows:

reach(S, T) :- edge(S, T).
reach(S, T) :- edge(S, S1), reach(S1, T).

There are two rules that define reach predicate or re-
lation. First rule states that reach(S, T) is satisfied if
there exists an edge between S and T. The second rule com-
putes the transitive closure stating that T can be reached
from S if S1 can reach T and there exists an edge from
S to S1.

Let us consider the evaluation of the query reach(s0,
Ans) used to find all the states that can be reached
from s0. According to the first rule, reach(s0,s0)
and reach(s0,s1) evaluate to true. But, applica-
tion of the second rule, results in an infinite recursion
path: reach(s0, Ans) depends on the valuation of
reach(s0, Ans) as there exists an edge from s0 to s0.
In other words, the normal evaluation of the logical rela-
tion fails to compute the least model solution of the above
program. The directive :- table reach/2, when in-
cluded in the above program, ensures that the queries
and the results of reach predicate are memorized and as
such self-dependency in a recursive path can be avoided.
Thus, if the truth-valuation of reach(s0, Ans) depends
on the truth-valuation of reach(s0, Ans), the relation
reach(s0, Ans) evaluates to false along this recur-
sive path.

5.2 Logical Encoding of Service Composition

5.2.1 Transition Relations

As outlined, an important element of our implementation
is encoding the simulation relation and termination rela-
tion, and using a meta-interpreter to evaluate the relations in
the context of the constraints over infinite domain variables.
The relation trans describes the symbolic transition sys-
tems as follows:

trans(S, G, A, T)

where S, G, A, T are source state, guard, action and
destination states respectively. For example, a transition

from s(x, y)
x=y,f(x,y)(z)−→ t(x, z) can be encoded as:

trans(s(X, Y), X=Y, f([X,Y], Z), t(X, Z)).

In the above, the action f([X,Y],Z) represents a func-
tion f with input arguments X and Y, and output Z. Note
that we do not include the transfer relation—the mapping
of source-state and destination-state variables. This map-
ping is implicitly understood using unification of logical
variables. For example, the transfer relation maps X in the
source state to that in the destination state.
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The semantics of transition relations leads to generation
of late transition systems as described in Section 3.2.

late_trans(S, A, T) :-
trans(S, Gamma, Alpha, T), Gamma.

The semantics require handling of constraints over
source-state variables. We use a meta-interpreter to eval-
uate each transition relation in the context of a set of con-
straints. The meta-interpreter predicate, interp(Goal,
Cin, Cout), takes as argument a Goal predicate
and evaluates its truth-value in the context of a set
of constraints Cin. If Goal is interpreted to be
true in the context of Cin, the resultant constraint is
Cout. For example, interp(late trans(S, A,
T), Cin, Cout), checks whether Cin evaluates the
guard Gamma to true and interprets A from Cin and
Alpha.

5.2.2 Dual of Simulation

The relation described in Equation 5 can be encoded as a
logic program and interpretation of the least model of the
program provides the solution to the corresponding relation.

:- table nsim/2.

nsim(S1, S2) :-
late_trans(S1, A1, T1),
no_matching_trans(S2, A1, T1).

no_matching_trans(S2, A1, T1) :-
forall( (A2,T2),

late_trans(S2, A2, T2),
nsimulate(A1, T1, A2, T2) ).

nsimulate(A1, T1, A2, T2) :-
copy_term( (A1, T1, A2, T2),

(A11, T11, A22, T22) ),
(

A11 = A22, nsim(T11, T22)
; A11 \= A22
).

In the above, meta-interpretation of nsim, i.e.,
interp(nsim(S1, S2), Cin, Cout) represents

the Rθ
relation where Cin represents θ. The above

program states that, if there exists a transition from S1
which is not matched by any transition from S2 (predicate
no matching trans), then S1 is not simulated by S2.
The predicate no matching trans aggregates all the
transitions from S2 and invokes nsimulate on each ele-
ment of the aggregation (using predicate forall). Hence,
in nsimulate, we use copy term to produce different
copies of action and state variables in A1,A2 and T1, T2.
Transitions with actions that produce outputs of functions
and variables appearing in the destination states for the first
time are free variables. Consequently, such variables must
be interpreted in different set of constraints for each pair of

A1, A2 and T1, T2 as they are existentially quantified

in Equation 5 (note ∃σ.(α1θ1σ = α2θ2σ) ⇒ t1 R
θσ

t2).
The predicate nsimulate, therefore, evaluates to true (a)
when A11=A22 and the subsequent states are not similar;
and (b) A11\=A22.

The predicate nsim can be directly extended to encod-
ing of Equation 6 required to identify the cause of failure of
simulation.

5.2.3 Termination Relation

The Definition 3 is encoded using the above encoding of
nsim. The predicate terminal(S1, S2, T) when
meta-interpreted in the context of the constraints Cin and
Cout evaluates the solution for T θ,δ

t where Cin represents
θ, Cout represents δ and T represents the state t.

terminal(S1, S2, S2) :- finalcomp(S1).
terminal(S1, S2, T) :-

negate nsim(S1, S2),
late_trans(S1, A1, T1),
matching_trans(S1, A1, T1, T).

matching_trans(S1, A1, T1, T) :-
late_trans(S2, A2, T2),
copy_term( (A1, T1, A2, T2),

(A11, T11, A22, T22)),
A11 = A22,
terminal(T1, T2, T).

The first rule terminal predicate states that T is equal
to S2 if S1 is the final state of component (base case). Oth-
erwise, check whether the two states are similar (negation
of nsim), if so identify two matching transitions and re-
cursively invoke terminal predicate on the subsequent
states. The meta-interpreter interp evaluates the negation
of nsim as follows: if interpretation of nsim evaluates to
true, the interpretation of its negation evaluates to false, and
vice-versa.

5.2.4 Iterative Computation of Composition

Finally, given a set of component-transition relations and a
goal transition relation, the composition of the components
that can be simulated by the goal is obtained using the pred-
icate strategy. In essence, definition of strategy is
the encoding of Equation 3.

strategy(GoalStates, StratIn, StratOut) :-
startcomponent(S1),
allterminal(S1, GoalState, Terminals),
( subsetoffinalgoal(Terminals)
-> Stratout = [S1|StratIn]
; strategy(Terminals, [S1|StratIn],

StratOut)
).

allterminal(S1, [], []).
allterminal(S1, [S2|S2s], List) :-

findall(T, terminal(S1, S2, T),
List1),

allterminal(S1, S2s, List2),
append(List1, List2, List).
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In the above encoding, a component is selected using
startcomponent fact. The predicate allterminal
identifies all the terminal states of the goal STS once the
component reaches its final states from its start state S1.
If the terminal states Terminals is a subset of the final
states of the goal, a composition strategy is obtained which
is recorded in StratOut by adding S1 to StratIn.
Note that the actual composition is the reverse of the list
StratOut.

5.3 Preliminary Evaluation

We have conducted some preliminary experiments to de-
termine the time taken for identifying: (i) a feasible com-
position strategy, and (ii) the failure-cause information, if
such a strategy cannot be realized. These experiments
were based on the KogoBuy example illustrated in Sec-
tion 2. Thus, the goal was to model KogoBuy compos-
ite service using a set of available services (in this case
BookPurchase and e-Postal). Recall that there are
two possible solutions by which such a composition can
be realized (see Section 3.4): composing BookPurchase
followed by e-Postal, and composing e-Postal fol-
lowed by BookPurchase. We also ran experiments by
modifying the available services (obtained by deleting tran-
sitions). In all the above scenarios, composition strategy
is identified in less than 0.02 seconds. Furthermore, we
tried to find a composition between BookPurchase and
NewPostal (see Section 4) and their variations, which re-
sulted in the failure of composition. The failure cause was
correctly identified in about 0.01 seconds. As expected, the
experiments revealed that time and memory requirements
for identifying feasible composition or failure-causes de-
pend on the ordering of the selection of components. We
are currently investigating heuristics to obtain component
ordering that will lead to efficient time and memory us-
age. Furthermore, systematic evaluation of the proposed
approach on standard benchmarks [12] as well as a real-
world application is in progress.

6 Related Work
A number of approaches that adopt a transition-system

based framework to service composition have been pro-
posed in the literature. Bultan et al. [4, 7] model Web ser-
vices as automata extended with a queue, and communi-
cate by exchanging sequence of asynchronous messages,
which are used to synthesize a composition for a given
specification. Their approach is extended in Colombo [3]
which deals with infinite data values and atomic processes.
Colombo models services as labeled transition systems and
define composition semantics via message passing, where
the problem of determining a feasible composition is re-
duced to satisfiability of a deterministic propositional dy-
namic logic formula. Pistore et al. [16, 20] represent Web
services using non-deterministic state transition systems,

which also communicate through messaging. Their ap-
proach however, relies on symbolic model checking tech-
niques to determine a composition strategy. In contrast,
services in our framework are represented using Symbolic
Transition Systems which are transition systems augmented
with guards over infinite-domain variables. STSs allow
us to represent infinite-state behavior, which is normally
exhibited by Web services. Furthermore, we apply late-
operational semantics of STS to identify feasible compo-
sition strategies.

Rao et al. [17] translated semantic Web service descrip-
tions in DAML-S to extralogical axioms and proofs in linear
logic, and used π-calculus for representing and determin-
ing composite services by theorem proving. Waldinger [21]
illustrated an approach for service composition using the
SNARK theorem prover. The technique is based on auto-
mated deduction and program synthesis where constructive
proofs are generated for extracting service composition de-
scriptions. McIlraith and Son [10] adapt and extend Golog
logic programming language for automatic construction of
composite Web services. The approach allows requesters to
specify goal using high-level generic procedures and cus-
tomizable constraints, and adopts Golog as a reasoning for-
malism to satisfy the goal. Our approach, on the other hand,
uses XSB tabled-logic programming environment [18] for
encoding of the composition framework. Tabling in XSB
ensures that our composition algorithm will terminate in fi-
nite steps as well as avoid repeated sub-computations, re-
sulting in more efficiency.

Some authors have also focused on using abstract spec-
ification for describing goal services by applying model-
driven techniques [15]. However, most of this work is
geared towards dynamic selection and binding of compo-
nents, as opposed to generation of composition strategies.
In contrast, our emphasis is on the use of abstract specifica-
tions (that can be reformulated iteratively) for generating a
feasible service composition in an automatic fashion. Addi-
tionally, our technique circumvents the necessity of learning
Web service specification languages on the part of software
engineers who are familiar with UML state machines.

7 Summary and Discussion

We have introduced a novel approach to developing com-
posite services through an iterative reformulation of the
goal service specifications. The use of the symbolic tran-
sition systems formalism allows us to ‘finitely’ represent
the potentially infinite-state behavior of Web services. Fur-
thermore, in contrast to the traditional approaches for ser-
vice composition, which require the developer to provide a
complete specification of the goal service at the outset, our
framework reduces the cognitive burden on the developer
by allowing them to begin with an abstract, possibly incom-
plete specification of the desired goal that can be modified
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and refined iteratively so as to ‘reduce the gap’ between
the desired functionality and the capabilities of the avail-
able components.

The framework described in this paper is restricted to
services which can be specified using a limited class of
constraints as guards in the STS. This restriction ensures
that the fixed point computation of similarity relation ter-
minates. We plan to investigate a larger class of con-
straints (e.g., range constraints and arithmetic operations)
based on the techniques described in [9]. Work in progress
is aimed at developing heuristics for hierarchically arrang-
ing failure-causes to reduce the number of refinement steps
typically performed by the user to realize a feasible com-
position and to do a comprehensive evaluation. We also
plan to explore ontology-based matchmaking approaches
[14] to select component services from semantically het-
erogeneous component libraries based on their functional
and non-functional specifications, and apply techniques for
composability checking [11] to avoid failures during execu-
tion. Other work in progress is aimed at automatic trans-
lation of the composition strategy into BPEL process flow
code that can be executed to realize the composite service.
Of particular interest to us is a systematic evaluation of scal-
ability and efficiency of the proposed approach on a broad
class of benchmark service composition problems [12].
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