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Abstract. We propose an approach for incremental modeling of composite Web
services. The technique takes into consideration both the functional and non-
functional requirements of the composition. While the functional requirements
are described using symbolic transition systems—transition systems augmented
with state variables, function invocations, and guards; non-functional require-
ments are quantified using thresholds. The approach allows users to specify an
abstract and possibly incomplete specification of the desired service (goal) that
can be realized by selecting and composing a set of pre-existing services. In the
event that such a composition is unrealizable, i.e. the composition is not func-
tionally equivalent to the goal or the non-functional requirements are violated,
our system provides the user with the causes for the failure, that can be used to
appropriately reformulate the functional and/or non-functional requirements of
the goal specification.

1 Introduction
With the recent advances in networking, computation grids and WWW, automatic Web
service composition has emerged as an active area of research in both academia and
industry (see [1, 2] for a survey). The main objective of these approaches is to build and
deploy new, value-added applications from existing ones in various domains such as
e-Science, e-Business and e-Government.

Typically, automation in service composition relies on developers to formally de-
scribe a complete specification of the desired service (goal). In most situations, how-
ever, the task of developing such a complete functional description of a complex Web
service is difficult and error prone as the developer is faced with the cognitive burden
to deal with a large set of available components and their possible compositions. Fur-
thermore, the existing techniques adopt a “single-step request-response” paradigm to
service composition—that is, if the goal specification provided to a composition an-
alyzer cannot be realized using the available component services, the entire process
fails. Thus, it becomes the responsibility of the developer to identify the cause(s) for
the failure of composition, which becomes a non-trivial task when modeling complex
Web services. Additionally, baring a few approaches, most of the techniques for service
composition focus only on the functional aspects of the composition. In practice, since
there might be multiple component services that can provide the same functionality, it



is of interest to explore the non-functional properties of the components to reduce the
search space for determining compositions efficiently.

Towards this end, we introduce a framework for Modeling Service Composition
and Execution (MoSCoE). Our approach allows the developer to start with an abstract,
and perhaps incomplete specification of the goal (composite) service. In the event that
the goal service is not realizable using the existing component services, the technique
identifies the cause(s) for the failure of composition to help guide the developer in
reformulating the goal specification and iterating the above process. In previous work,
we modeled such a formalism for the iterative development of services in the context of
sequential [3] and parallel [4] compositions of service functionalities. In this paper, we
focus our attention on incorporating specification of non-functional requirements (e.g.,
Quality of Service) to the modeling of composite Web services in MoSCoE.

Specifically, given the component services STS1,STS2, . . . ,STSn and a goal ser-
vice STSg as Symbolic Transition Systems (STSs), the objective is to generate a compo-
sition strategy [STSi1 ,STSi2 , . . . ,STSim

] (where STSij
is deployed before STSij+1

),
that satisfies both the functional and non-functional requirements. The non-functional
requirements are quantified using thresholds, where a composition is said to conform
to a non-functional requirement if it is below or above the corresponding threshold, as
the case may be. For example, for a non-functional requirement involving the cost
of a service composition, the threshold may provide an upper-bound (maximum allow-
able cost) while for requirements involving reliability, the threshold usually
describes a lower-bound (minimum tolerable reliability). If more than one com-
position strategy meets the goal specifications, our algorithm generates all such strate-
gies and ranks them. Strategies with higher rank are better than those with the lower
rank in terms of meeting the non-functional requirements. For example, given two valid
composition strategies A and B, if the cost of A is more than B, then A is ranked
lower than B. It is left to the user’s discretion to select the best strategy according to
the requirements. Note that it is desirable to identify all the strategies, not just the best
one, since the strategies are likely to be used multiple times in future to realize the goal
service, and the component services that are part of the best strategy may become un-
available at the time of execution. In such situations, the user can select an alternate
strategy from the generated set of alternative composition strategies.

The contributions of our work are:

1. A framework for incrementally composing complex Web services taking into con-
sideration both the functional and non-functional requirements.

2. An algorithm for validating the conformance of composition to non-functional re-
quirements. At its core, the algorithm relies on recursive forward-backward ex-
ploration of the search-space (various possible service compositions) to identify
all possible compositions that meet the specified functional and non-functional re-
quirements.

3. An approach to determine the causes of failures (due to violation of functional
and/or non-functional requirements) of composition to assist the user in reformula-
tion of functional and non-functional requirements of the goal specification.

The rest of the paper is organized as follows: Section 2 introduces an illustrative
example used to explain the salient aspects our work, Sections 3 and 4 present a logical



formalism and our algorithm for determining feasible composition strategies that meet
the functional and non-functional requirements, Section 5 illustrates our approach for
identifying the cause(s) for failure of composition, Section 6 briefly discusses related
work, and finally Section 7 concludes with future avenues for research.

2 Illustrative Example

We present a simple example where a service developer is assigned to model a new Web
service, LoanApproval, that allows potential clients to determine whether an amount
of loan requested will be approved or not. The service takes as input the requested loan
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Fig. 1. (a) State machine representation of LoanApproval (b) STS representation of
Approver, cost=$100 (c) STS representation of Checker, cost=$50 (d) STS represen-
tation of Checker’, cost=$200

amount and social security number (SSN) of the client along with the annual percent-
age rate (APR) and payment duration (in months) for approval of the loan. Additionally,
to assist in the decision-making process, the service also checks payment overdues of
the client for his/her existing loans (if any). Figure 1(a) shows the state-machine repre-
sentation of such a service. Each transition labeled by functions along with their input
and output parameters (separated by “;”). Guards on transitions are enclosed in “[...]”
and denote the conditions under which the transition is enabled. State machine repre-
sentation is desirable because it allows the developer to present the functionality in a
modularized and hierarchical fashion. For example, in Figure 1(a) the user modular-
izes the design of the desired service using composite states in the state machines; e.g.
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Fig. 2. Partial view of LoanApproval transition system

CC & Pay is present inside LoanApproval, and there are “and-” states where each
partition is separated by dotted lines1.

In MoSCoE, this goal state machine is internally translated into Symbolic Transition
Systems (see Definition 1); the corresponding transition system of LoanApproval is
presented in Figure 2. Transitions with no function invocation makes a call to a dummy
function null and the dotted lines represent sequence of transitions (not shown) orig-
inating due to various interleaving choices of transitions in the and-partition (s12 in
this case). Furthermore, the component services published by the service providers are
also represented using STSs2. Figures 1(b) and 1(c) show the corresponding STS for
component services Approver and Checker, respectively.

Our aim is to compose these component services to realize the goal service, thereby
providing the desired capability. However, in reality, there might be multiple compo-
nent services which provide the same functionality, but have different non-functional
characteristics (e.g., cost). For example, consider services Checker (Figure 1(c))
and Checker’ (Figure 1(d)), which provide the same functionality, but have differ-
ent cost associated to their usage. Accordingly, depending on the user need, a valid
composition is one which satisfies both functional and non-functional requirements. We
formally describe present our approach to model such compositions in the remainder of
this paper.

3 Composition based on Functional Requirements

3.1 Modeling Services using Transition Systems

State machines have emerged as a promising approach for modeling Web services [5–
8] specifically because they possess formal semantics, have well-established modeling

1 An and-state represents the behavior where the transitions in its partition can interleave in any
order.

2 These specifications can be obtained from service descriptions provided in high-level lan-
guages such as BPEL or OWL-S by applying translators similar to those proposed in [5, 6].



notations, and are intuitive and widely used in industrial software development. As
mentioned earlier, our approach also relies on providing the goal specification in the
form of a state machine (Figure 1(a)). In our framework, the state-machine represen-
tation is automatically translated to corresponding Symbolic Transition Systems (STS)
[3, 4]. The STS-model is used to apply the existing formalisms on transition-system
“equivalence” which will be the basis for automatically identifying a valid composition
strategy. Formally, an STS can be defined as:

Definition 1 (Symbolic Transition System [9]). A symbolic transition system is a tu-
ple (S,−→, s0, SF , A) where S is a set of states represented by terms, s0 ∈ S is the
start state, SF ⊆ S is the set of final states and −→ is the set of transition relations
where s

γ,α,ρ
−→ t is such that

1. γ is the guard where, vars(γ) ⊆ vars(s)
2. α is a term representing service-functions of the form a(x)(y) where x represents

the input parameters and y denotes the return valuations
3. ρ relates vars(s) to vars(t)

Finally, A is a set of non-functional attributes and the respective values corresponding
to the service whose behavior is represented by the STS.

Here, we assume that the values for non-functional attributes can be obtained from the
“profiles” of the services [10] and can be mapped to a scale between 0 & 1 by ap-
plying standard mathematical maximization and minimization formulas depending on
whether the attribute is positive or negative. For example, the values for attributes such
as latency and fault rate need to be minimized, whereas availability
need to be maximized. Figure 3 shows example STSs.

Semantics of STS. The semantics of STS is given with respect to substitutions of vari-
ables present in the system. A state represented by the term s is interpreted under sub-
stitution σ over the state variables (sσ). A transition s

γ,α,ρ
−→ t is said to be enabled

from sσ if and only if γσ = true and γ ⇒ ρ. The semantics of the transition under
substitution σ is sσ

ασ
−→ tσ.

3.2 Composition of Symbolic Transition Systems

A sequential composition of STSi and STSj , denoted by STSi ◦ STSj , is obtained
by merging the final states of STSi with the start state of STSj , i.e., every out-going
transition of start state of STSj is also the out-going transition of each final state of
STSi. We say that given a goal service representation STSg and a set of component
representations STS1...n, the former is said to be (partially) realizable from the latter
if there exists a composition of components such that STSg simulates STSi ◦ STSj ◦

. . .STSk. In essence, simulation relation ensures that the composition can ‘mimic’ the
goal service functionality. We present the definition of simulation in the context of
STSs.

Definition 2 (Late Simulation). Given an STS S = (S,−→, s0, SF ), late simulation
relation with respect to substitution θ, denoted by R θ, is a subset of S × S such that

s1 R
θs2 ⇒ (∀s1θ

α1
−→ t1θ.∃s2θ

α2
−→ t2θ.∀σ.α1θσ = α2θσ ∧ t1 R

θσt2)
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Fig. 3. Example Symbolic Transition Systems. (a) STSg (b) STS1.

Two states, under the substitution θ over state variables, are equivalent with respect to
simulation if they are related by the largest similarity relation R θ. We say that an STSi

is simulated by STSj , denoted by (STSi R
θSTSj) iff (s0i R

θs0j).
For example, consider the STSs in Figure 3(a) and 3(b). If state t1 is simulated by

s1, then t2(x) is simulated by s2(x) for all possible valuations of x. The above can be
represented using logical expressions as follows:

t1 Rtrue s1 ⇒ ∀x.(t2(x) R[x] s2(x))

⇒ (t2(x) R[x>0] s2(x)) (t2(x) R[x<0] s2(x)) ∧ (t2(x) R[x!=0] s2(x))
⇒ (∀y.(t3 R[x>0,y]s4)) ∧ t4 R[x=0,y]s3(x, y))) ∧ t3 R[x<0,y]s4))

(1)
Note that the simulation of the STS1 by STSg leads the latter to the states s3(x, y)
and s4 with the constraints x = 0 and x > 0 ∨ x < 0, respectively. In terms of
sequential composition, it can be stated that a selected component (simulated by the
goal) drives the goal to some specific states and the start state of the next component
in the composition must be simulated by these goal states. These goal states and the
corresponding constraints can be identified easily by expanding the simulation relation
to also record the constraints and the goal-states that simulates the final state of the
component under consideration (see [3] for details). We will use STSi R

θ
[Sg∆] STSg

to denote STSi being simulated by STSg under the constraint θ, which leads to the
simulation of the final states of STSi by the goal states sg under the constraint δ such
sgδ ∈ Sg∆.

Therefore, the composition [STS1◦STS2◦ . . .◦STSn] is said to (partially) replicate
the goal STSg if and only if:

[STS1 ◦ STS2 ◦ . . . ◦ STSn] Rtrue
Sg∆ STSg such that Sg ⊆ SF

g

Proceeding further, we can state that:

∀s1θ1 ∈ S1Θ1 : STS1 Rtrue
S1Θ1

STSg ∧ [STS2 ◦ STS3 ◦ . . . ◦ STSn] Rθ
Sg∆ s1

⇔ ∀s1θ ∈ S1Θ1 : STS1 Rtrue
S1Θ1

STSg ∧ ∀s2θ ∈ S2Θ2 : STS2 Rθ1

S2Θ2
s1 ∧

[STS3 ◦ . . . ◦ STSn] Rθ2

Sg∆ s2

such that Sg ⊆ SF
g

4 Composition based on Non-functional Requirements
In order to determine a suitable ordering of the available components, it is necessary
to select the appropriate components from the pool of candidates. This becomes chal-



/*
v0 is the user-defined threshold value, prefixStrat is the valid strategy obtained so far
v is non-functional attribute-value prefixStrat, g is the current goal state,
F is optimization function, OP is the composition operation for a specific optimization,
CompSet is the set of components

*/
1: proc forwardSearch(prefixStrat, v, g, F, OP) {
2: if (g is not final goal-state) {
3: select ci ∈ CompSet s.t. ∀ cj ∈ CompSet, j 6= i : F(vci, vcj) = 1 and
4: ci is simulated by g to reach g’;
5: /* update the attribute-value */
6: v = v OP vci;
7: if (F(v,v0)6= 1) { backwardSearch(prefixStrat, F, OP); return; }
8: /* add the component with the goal-state */
9: prefixStrat = prefixStrat + (ci,g);

10: forwardSearch(prefixStrat, v, g’, F, OP);
11: }
12: else /* if the goal state is final, strategy is achieved */ {
13: assertPath(prefixStrat projection on components, v);
14: backwardSearch(prefixStrat, F, OP);
15: }
16: }

17: proc backwardSearch(prefixStrat, F, OP) {
18: if (prefixStrat = ∅) return;
19: prefixStrat = [(c1, g1), (c2, g2), ..., (cn, gn)];
20: select ci ∈ CompSet s.t. ∀ cj ∈ CompSet, j 6= i, F(vcj , vcn) 6= 1 : F(vci, vcj) = 1 and
21: ci is simulated by gn to reach g’;
22: /* update the value and begin the forward search */
23: v = v0 OP vc1

OP vc2
OP . . . OP vci

;
24: if (F(vci,v) = 1)
25: forwardSearch([(c1 , g1), (c2, g2), ..., (ck, gi)], v, g’, F, OP);
26: backwardSearch([(c1, g1), (c2, g2), ..., (cn−1, gn−1)], F, OP)
27: }

Fig. 4. Algorithm for Identifying Compositions Satisfying Functional & Non-
Functional User Requirements

lenge with the increasing size of the search space of available component services.
Hence, we consider non-functional aspects (e.g., QoS) to winnow components (thereby
reducing the search space) and composition strategies which violate the requirements
desired by the user. We assume the existence of a shared controlled vocabulary [10]
which is needed to specify the non-functional attributes of the component services.
These attributes can be either domain-dependent or domain-independent, and are used
to compose a quality matrix comprising of a set of quality attribute-values, such that
each row of the matrix corresponds to the value of a particular QoS attribute and each
column corresponds to a particular component service. Next, we describe an algorithm
that considers both the functional and non-functional user requirements to determine
feasible composition strategies as illustrated in Section 3.

4.1 Algorithm for Service Composition

The algorithm for determining feasible composition strategies (Figure 4) that are “equiv-
alent” to the goal service works as follows: the procedureforwardSearch([], v,
g, F, OP) is invoked by providing the threshold value v of a desired non-functional



attribute3 (e.g., cost of using the composite service should be less than $150), the
start state g of the goal STS, an optimization function F that corresponds to max-
imization/minimization4 of the non-functional attribute under consideration, and the
composition operator OP for the specific optimization function. The initial composition
strategy prefixStrat is incrementally built as the algorithm proceeds recursively
by performing forward-backward traversals: The forward traversal tries to identify a
feasible composition (by applying the simulation relation, Definition 2) that comply to
the user-specified non-functional requirements; the backward traversal tries to explore
alternate compositions (if any). If multiple compositions are identified, then it is left at
user’s discretion to select one amongst them.

More specifically, given a state g of the goal STS as input, the procedure forward
Search selects a component from the available set of components CompSet, such
that its value for the non-functional attribute under consideration (e.g., cost) is max-
imum/minimum (depending on F) and verifies whether the component state is “sim-
ulation equivalent” to the goal state g (line 3). If no such component exists, then
an exception causing a failure of composition is raised and the user is notified (Sec-
tion 5). On the other hand, if such a component is available, the value of the desired
non-functional property is appropriately updated (line 6) and the component that
simulates the goal state is added to the composition strategy (line 9). The procedure
is recursively invoked with the updated non-functional attribute-value and a new goal
state g′, until the final state of the goal STS is reached; after which the corresponding
composition strategy is stored with the associated non-functional attribute-value of the
composition (line 13). This value will be either below or above the threshold v0

(line 7), depending on composition optimization function F. Once this step is exe-
cuted, the algorithm backtracks to determine alternate composition strategies that are
feasible. Note that, the forwardSearch procedure is a local greedy approach for
finding out a feasible composition and essentially identifies at least one path (beginning
at the start and ending at the final state of the goal STS) in the composition graph that
can be realized using the available component services.

When there are multiple components that provide the same functionality, it is pos-
sible to generate more than one composition strategy to realize the composite service.
backwardSearch achieves this by replacing one component at a time (beginning
with the last component in the composition strategy, line 20) with an “equivalent”
component and then invokes forwardSearch to determine if the replacement vio-
lates the non-functional requirement under consideration (line 24--25). If there is
no such violation, then the derived strategy is stored with its associated value of the
corresponding non-functional attribute. The procedure proceeds further by recursively
backtracking (line 26) until all feasible composition strategies are determined. How-
ever, if the replacement violates the non-functional requirements, then the replaced
component as well as the corresponding composition strategy are disregarded. Thus,
eliminating composition strategies (and components) that violate non-functional re-
quirements yield significant reduction in the size of the search space.

3 In this paper, we consider only one non-functional attribute at a time for determining feasible
compositions; considering multiple attributes simultaneously is part of our on-going work.

4 Assuming that F is a minimization function, F(x,y) = 1, if x < y.



4.2 Modeling LoanApproval Composite Service

We now show how to model the LoanApproval composite service introduced in Sec-
tion 2 using the algorithm and the formalisms described above. Figures 2, 1(b) & 1(c)
show the transition system of the goal (LoanApproval) and the component services
(Approver and Checker, respectively). To determine whether LoanApproval
can be realized from Approver and Checker services, we need to find out if STSLA
simulates the composition of STSApp and STSChck as well as whether the non-
functional requirements are met or not. Assume that the non-functional attribute we
are interested is cost, and we want that the cost of the composite service is less than
or equal to $150 (i.e., minimization of cost).

From Figure 4, if the algorithm selects component Approver first, it can be seen
that STSApp is late-simulated by STSLA. The path starting from s0,12 in LoanApproval
simulates the paths in Approver such that s10,12 and s11,12 are the states in STSLA
that are simulation equivalent to final states t9 and t10 of STSApp under a true con-
straint. Also, the cost of STSApp is less than the threshold value of $150. Thus, this
component is added to the composition strategy being constructed. Proceeding further,
STSChck is also simulated by states s10,12 and s11,12 of STSLA, and the correspond-
ing cost of STSChck is $50, which makes the total cost of the composition strategy
equal to the threshold value. Thus, the composition of STSApp◦STSChck realizes the
goal service STSLA. Note that, there is another solution to the above problem where
Checker service is followed by Approver service.

Once this strategy is identified, the backward traversal procedure is invoked. Here,
we try to replace STSChck with STSChck’ (Figure 1(d)) since it can also be sim-
ulated by STSLA. However, replacing STSChck by STSChck’ violates the cost
requirement.

5 Reformulation of Goal Specification
The composition of a goal service from available component services using the process
outlined above will fail when some aspect of the goal specification cannot be realized
using the available component services. When this happens, our approach seeks to pro-
vide to the user, information concerning the cause of the failure in a form that can be
used to further refine the goal specification. In our framework, the reason for failure of
an attempted composition to simulate a component by single or multiple states in the
goal is obtained by examining the simulation relation R:

s1 R
θ

s2 ⇐ ∃s1θ
α1
−→ t1θ.∀s2θ

α2
−→ t2θ.∃σ.(α1θσ = α2θσ) ⇒ t1 R
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Two states are said to be not simulation equivalent if they are related by the least solu-

tion of R. We say that STSi R
θ
STSj iff s0

i R
θ

s0
j . From Equation 2, the cause of

the state s1 not simulated by s2 can be due to:

1. ∃σ.α1θσ 6= α2θσ (i.e., that actions do not match), or

2. ∃σ.α1θσ = α2θσ and the subsequent states are related by R
θσ

, or
3. ∃s1θ

α1
−→ t1θ, but there is no transition enabled from s2 under the substitution θ.

For example, consider the STSs in Figure 5(a) & 5(b). The component STS is not
simulated by the first STSg (rooted at s1) as there exists a transition from t2(x) to t4
when the x is not equal to zero, which is absent from the corresponding state s2(x)
in the goal. The state t1 is also not simulated by state s4 of STSg′ as the state t2(x)
is not simulated by s5(y). This is because x and y may not be unified as the former is
generated from the output of a transition while the latter is generated at the state. In fact,
a state which generates a variable is not simulated by any state if there is a guard on
the generated variable. Such generated variables at the states are local to that transition
system and hence, cannot be ‘mimicked’ by another transition system. In our example,
t2(x) is not simulated by s5(y).

Note that in some cases, the failure to realize a feasible composition can also be due
to non-compliance of non-functional requirements specified by the user. In essence, this
refers to argument prefixStrat of procedure forwardSearch (Figure 4) being
null after exploring all possible composition strategies. When such a situation arises,
the framework identifies the particular non-functional requirement (v0) that cannot be
met using the available components, and provides this information to the service devel-
oper such that it can be used for appropriate refinement of the requirement.

Failure-Cause Analysis for LoanApproval. Returning to our example from Section
2, assume that we replace the Checker component service (Figure 1(c)) with another
service for determining client payment overdues (NewChecker Figure 5(c)), which
functions exactly like Checker, but additionally checks the criminal record of the
client. The service first checks whether the client has payment overdues for the existing
loans (if any) and then determines if the client has been previously charged for a crimi-
nal act. Since, the ‘additional’ criminal verification transition is not present in STSLA,,
the component start state t11 is not simulated by states s10,12, s11,12 or s0,12. On the
other hand, assuming that we replace Checker with Checker’ (Figure 1(d)), even
though the functional requirements are satisfied (due to equivalence), the non-functional
requirements are violated. Note that such failure-cause information can be provided to
the user which can be used for refining the goal specification in an iterative manner.
In this case the user can add the criminal verification transition (with appropriate pa-
rameters) to the goal specification or change the threshold value of the non-functional
attribute cost and try to determine a feasible composition strategy. These steps can be
iterated until such a strategy is found or the user decides to abort.

6 Related Work

A number of approaches have been proposed in the literature which adopt a transition-
system based framework to service composition. Fu et al. [11] model Web services as



automata extended with a queue, and communicate by exchanging sequence of asyn-
chronous messages, which are used to synthesize a composition for a given specifica-
tion. Their approach is extended in Colombo [8] which deals with infinite data values
and atomic processes. Colombo models services as labeled transition systems and de-
fine composition semantics via message passing, where the problem of determining a
feasible composition is reduced to satisfiability of a deterministic propositional dynamic
logic formula. Pistore et al. [5, 6] represent Web services using non-deterministic state
transition systems, which also communicate through messaging. Their approach relies
on symbolic model checking techniques to determine a parallel composition of all the
available component services and then generates a plan that controls the services, based
on user-specified functional requirements.

Several techniques have also been developed which consider non-functional re-
quirements for service composition. Cardoso et al. [12] describe a model that allows
prediction of quality of service for workflows based on individual QoS attributes for the
component services. Their technique allows compensation of composition deficiency if
many services with compatible functions exist. Benatallah et al. [7, 13] consider ser-
vice selection task as a global optimization problem and apply linear programming to
find solution that represents service composition optimizing a target function, where
the function is defined as a combination of multiple non-functional parameters. Yu and
Lin [14] modeled the service selection as a complex multi-choice multi-dimension 0-1
knapsack problem, which takes into consideration difference in QoS parameters offered
by multiple services by assigning weights.

The proposed framework, MoSCoE, is inspired by and builds on the above men-
tioned approaches. One of the unique features of MoSCoE is its ability to work with
abstract (and possibly incomplete) goal service specifications for realizing composite
services, and in the event of failure of composition, determining the cause(s) for the fail-
ure. In addition, provides an approach to consider both functional and non-functional
characteristics of services simultaneously to determine feasible composition strategies.
We believe that such a technique holds the promise of efficiently modeling complex
composite Web services; empirically verifying this claim is part of our current work.

7 Summary and Discussion
We introduce a novel approach for automatically developing composite services by the
applying the techniques of abstraction, composition and reformulation in an incremental
fashion. The framework provides a goal-directed approach to service composition and
adopts a symbolic transition system-based approach for computing feasible composi-
tion strategies. Our formalism allows us to identify and validate all possible composi-
tion strategies that meet the user-specified functional and non-functional requirements.
However, in the event that a composition cannot be realized using the existing set of can-
didate services, the technique determines the cause(s) for the failure (due to violation
of functional and/or non-functional requirements), and assists the user in reformulation
of those requirements in the goal specification.

Our on-going work is aimed at developing heuristics for hierarchically arranging
failure-causes to reduce the number of refinement steps typically performed by the user
to realize a feasible composition. We also plan to explore approaches to reducing the
number of candidate compositions that need to be examined e.g., by exploiting domain



specific information to impose a partial order over the available services. Other work
in progress is aimed at automatic translation of the composition strategy into BPEL
process flow code that can be executed to realize the composite service. Of particular
interest to us is a systematic evaluation of scalability and efficiency of the proposed ap-
proach on a broad class of benchmark service composition problems [15]. More details
about our framework can be obtained from http://www.moscoe.org.
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