Parallel Web Service Composition in MoSCoE: A Choreography-based
Approach

Jyotishman Pathak'? Samik Basut Robyn Lutz!® Vasant Honavar'?
'Department of Computer Science, lowa State University, ArAés0011
2Center for Computational Intelligence, LearnifgDiscovery, lowa State University, Ames IA 50011
3Jet Propulsion Lab/California Institute of Technology, &#na CA 91109
{jpathak, sbasu, rlutz, honavar }@cs.iastate.edu

Abstract “single-step request-response” paradigm to service cempo
sition. That is, if a specified goal service is unrealizable
We present a goal-driven approach to model a choreog- (which would be the case if the goal service specification is
rapher for realizing composite Web services. In this frame- incomplete), the process simply fails. It is typically difit
work, the users start with an abstract, and possibly incom- for a developer to provide the complete goal service spec-
plete functional specification of a desired goal servicasTh ification that is needed in the absence of a detailed knowl-
specification is used to compose a choreographer that al-edge of the specifications of the component services avail-
lows communication between the client and the set of avail-able. This argues for an iterative approach to service com-
able component services, and is functionally equivalent to position wherein an abstract (and perhaps incomplete) goal
the goal service. However, if such a composition cannot beservice specification can be iteratively reformulated twit
realized, the proposed approach identifies the cause(s) forguidance from the system) until a composition that realizes
the failure of composition. This information can be used the desired goal functionality is found, or the user decides
by the user to minimally reformulate the goal to reduce the to abort.
‘gap’ between the desired functionality. The process canbe To address this need, we have introduced a frame-
iterated until a feasible composition is realized or theruse work for Modeling Service Composition and Execution
decides to abort. The approach ensures that (i) a chore- (MoSCoE) [9, 10]. MoSCoE models services using Sym-
ographer, if one is produced by our composition algorithm, bolic Transition System (STS) which are labeled transi-
in fact realizes the user-specified goal functionality; #ind tion systems augmented with guards on transitions and state
the algorithm is guaranteed to find a composition that meets variables over an infinite-domain. MoSCoE, givenain
the user needs as captured in the goal specifications (whenstract (high-level and possibly incomplete) STS specifica-

ever such a composition exists). tions of a goal servicé},, and of available component ser-
vices T ...T,, identifies a subset of the component ser-
1 Introduction vices that wherwomposeavith a choreographef,.. realize

o] the goal servicé,. A unique feature of MoSCoE is its abil-
Many real-world applications of Web services, €.9., € jiy in the event of failure to realize a goal service, to iden

Business, e-Scie_nce, call for effective approacheS_= to alify the specific states and transitions of the goal STS that
tomated or semi-automated assembly of composite Webnee(to be modifidd This information enables the user to

services by integrating independently developed compo-ieformulatethe goal specification (iteratively) until a com-
nent services. Consequently, a variety of approaches basefysition that realizes the goal specification is found or the
on planning techniques of artificial intelligence, logi®pr |;ser decides to abort.

gramming, automata-theory have been developed (see [5,7] | gyr previous work, we have described an algorithm
for a survey). However, these techniques suffer from a very .. selecting and composing Web Services through itera-

significant limitation in that they require the user (Or Ser- e reformulation of functional specifications in the case
vice developer) to provide a specification of the desired be- ¢ sequential compositiofL0]. In this paper, we turn our

havior of the composite service (goal) in its entirety usin_g attention to modeling a choreographer farallel compo-
languages such as OWL-S [1, 15, 17] or BPEL [13]. This gjion of available component services to realize a goal ser-
becomes a problem when modeling complex Web Services,jce | this setting, the component services interactiva t

because the complexity of the composition graph grows ¢,oreqgrapher. The role of the choreographer is to repli-
rapidly with the increasing complexity of the desired goal

service. More importantly, the current approaches adopt a !This analysis is performed at tidesigntime, and not atun time.

cate the input and output actions of the goal transition sys-
tem and sending (receiving) messages to (from) the compo-
nents. Thus, the component services provide the required So
functionality needed to realize the goal service.
The specific contributions of this paper include: S1
SearchPhy(date,time,
ailment;avail)
[avail=0}/ Sz<£

1. A sound and complete algorithm for selecting a sub-

i i lapp("Fail") [avail=1]
set of the available component services that can be as- o PIeScSeENumSSH)

sembled into a parallel composition that realizes the ¢

goal service with the user-specified functionality, and msifossnelie) Previec(ssNipre)
for determining a choreographer to interact with the S

component services. The proposed approach uses a &Appphy(eng,pre;phw
variant of STS with guards on transitions to deal with [phy=0y Se

the case when data and process flow are modeled in an
infinite-domain.

i ?makeApp(date,time,ailment)

?outRec(recNO /

lapp(“Fail") [phy=1}/
?getRidelnfo(date,time,addr)
7@

o @
i?makeApp(date,time,ailment)
a0
linSearch(date, time, ailment)
C2
?outSearch(avail)
[avail=0)/ C3
lapp("Fail”) [avail=1]
G ® 2getSocSecNum(SSN)
Cs O

linRec(SSN) linins(SSN)
- O)AO ©

?outins(elig)
Cs
linPhy(avail,elig,pre)
Cg
(g?outPhy(phy)
[phy=0/ ¢y
lapp(“Fail” [phy=1)/
Ci1(9) ?getRidelnfo(date time,addr)
€120
linRide(date,time,addr)
C13

) ?getCClInfo(CClnfo)
i BookRide(date,time,addr)

2. An approach to determining the cause of failure of Se 0
modeling a choreographer for parallel composition to
assist the user in modifying and reformulating the goal $100
specification in an iterative fashion.

C14
CL!inCCInfo(CCInfo}

C1s

i ?9etCClInfo(CClnfo) (L?oulCCValld(valld)

Ci6

i .)
l Reserve(confirm) CL.lnCCVahd(va\Ild)
C17

?0utReserve(confirm)
e

])) . 0S11
The rest of the paper is organized as follows: Section !apéi?F”SﬂT?;WzﬁL??&’ccess--)

[confirm=0)/ feonfirm=1y/

. I T ‘app("Fail’) lapp("Success")
2 introduces an example used to illustrate the main ideas S12@ ®s13 Cw@‘A*@J 20
in this paper. Section 3 formulates the service composi- () (b)

tion problem in terms of STS as well as provides an al-

gorithm for modeling a choreographer and identifying the Figure 1: (a) STS representation éfealth4U (b) The Choreographer
cause for failure of composition. This section also inckide . : - . .
correctness and complexity analysis of the proposed ap_appomtment \.N'th a phyS'C'an who is among those desig-
proach. Section 4 briefly discusses related work, and ﬁnallynated by the insurance provider. Furthermatealth4au

. . ; arranges transportation for the patient to the medical cen-
Section 5 concludes a summary and a brief outline of some .) . . .
N ter via thee-Ride service. This service needs tateand
directions for further research.

time for pick-up, as well as the patientsldress In addi-
tion, e-Ride communicates witlvalidate to determine
whether the patient has provided a valid payment informa-

2 lllustrative Example

We present a simple example where a service devel-t. dit card) bef leting th i
oper is assigned to model a new Web servigealth4u ion (e.g., credit card) before completing the reservation
which allows senior citizens to make a doctor's appoint- ~ We proceed now to outline how the composition of a
ment to receive medical attention for a particular ailment. Service likeHealth4U can be accomplished by MoSCoE.
To achieve thisHealth4U relies on five existing (possibly ~MOSCOE receives from the service developer an STS spec-
independent) servicesAppointment, Medinsurance, ification (see Section 3.1) of the desired goal service
MedRecord, e-Ride andValidate . Appointment ac- Health4U as shown in Figure 1(a) . MoSCoE uses the goal
cepts patient dataname ailments/he is suffering from) service specification to construct a choreographer that en-
and scheduling information (preferrethte and time) as ables the interaction between (a subset of) the component
input to make an appointmentppointment takes into services to provide the desired goal service functionality
account: (a) information about patient’s insurance cover- Figure 1(b) shows a choreographer that realktesith4U
age plan to identify the designated physicians from whom Using component services shown in Figure 2.
the patient can receive treatment, gad the medical his- We use?msgHeader(msgSet) to refer to input actions
tory (if any) that provides information about patient’s pre and !msgHeader(msgSet) to refer to output actions
vious appointments for the particular ailment. To obtain of services. Communication between different services
the needed informatiomppointment communicates with occurs via synchronization between actions with the same
MedInsurance (case(a)) andMedRecord (case(b)), both msgHeader resulting in the transfer ofsgSet from the
of which require the patient'SSN(Social Security Num- entity performing an output action to the one performing
ber). Appointment attempts to schedule an appointment an input action. Example of such an action that results
for the patient with a physician who has treated the patientin a change ofstatefrom sy to s; is ?makeApp(date,
in the past. If no such physician is available, it makes an time, ailment) is shown in Figure 1(a). This is

to
l ?inSearch(date,time,ailment)
t

1

SearchPhy(date time, tg t12
& allment;avail 2inRec(SSN) l?inlns(SSN)
l!outSearch(avail) to t13
tg PrevRec(SSN;pre) | InsInfo(SSN;elig)
l?inPhy(avaiI,eIig,pre) t10 t14
ts loutRec(pre) loutins(elig)
lAppPhy(avaiI,elig,pre;phy)
te
loutPhy(phy)
(a) (b) (©)
t16
l?inRide(dale,time,addr)
t17 top
l BookRide(date,time,addr) 2inCClInfo(CClnfo)
tig t23
l?incc"a”d("a”d) ValidateCC(CClnfo;valid)
t1g thy
l Reserve(confirm) loutCCValid(valid)
t20
loutRide(confirm)
(d) (e)
Figure 2: STS representation of (ppointment (b) MedRecord

(c)MedInsurance (d)e-Ride (e)Validate

an input action wherenakeApp is the message header
and input messages requested afsa , time and
ailment The services also include atomic transition
actions denoted by funcName(inputSet;output)
SearchPhy(date,time,ailment; avail) corre-
sponding to the transition from statg to s, in Figure

3 Service Composition in MoSCoE

3.1 Symbolic Transition System

Preliminaries & Notations. We use the traditional defini-
tions of variables, functions and predicates. Expressaoas
denoted by functions and variables. Guards, denoted, by
are predicates over other predicates and expressions. Vari
ables in a term are represented by a setrs(t). Substitu-
tions, denoted by, map variables to expressions. A substi-
tution of variablev to expressiore is denoted bye/v]. A
termt under the substitution is denoted byo. An action

is a term that takes one of the following forms:

1. ?msgHeader(msgSet) input action. Vari-
ables of the input action are imsgSet, i.e.
vars(?msgHeader(msgSet)) = msgSet.

2. ImsgHeader(msgSet) output action. Vari-

ables of the output action are also imsgSet,
vars('msgHeader(msgSet)) = msgSet.

3. 7: an internal or unobservable action of a composi-
tion. Two entities synchronize on input and output ac-
tion with the same message header to generate such an
action.

function invocation with
and return valuation
O We say that ivars(funcName(l;0))
= 1, ovars(funcName(;0)) = {0} and
vars(funcName(;,0)) =1 U{0}.

Definition 1 (Symbolic Transition System) A symbolic
transition system is a tupléS, —, s0, S¥) where S is

4. funcName(l; O)
input parameters |

1(a) is an example of such an atomic transition action a set of states represented by term@, € S is the start
(the first three arguments are input arguments and the lasktate,S¥ C S is the set of final states and— is the set of
argument is the return value of the function). A transition tyansition relations of the forms 2% ¢ where:

is annotated by guards which control whether or not the
transition is enabled. Guards in MoSCoE (denoted by
[guards]) correspond to constraints between variables,
and are essentially pre-conditions for the atomic funation
Absence of a guard on a transition implies that the guard is
true (always enabled).

In the above example, the choreographer replicates
the input actionmakeApp(date, time, ailment (see
transition frome¢y to ¢; in Figure 1(b)) as required by
the goal service (Figure 1(a)) and sends message via 3. vars(t) C vars(s)Uwvars(o).
linSearch(date,time,ailment) (transition from ¢,
to ¢3) to the component servicéppointment (Fig- For example, Figure 1(a) shows an STS representation
ure 2(a)). The servic@ppointment synchronizes with of the Health4U service described in Section 2. Here,
output action from the choreographer via the input ac- a transition from states, to s; is annotated with an
tion ?inSearch(date,time,ailment) and the mes- input transition function?gotSocSecNum(SSN) (which
sagesdate , time andailment are transfered from the corresponds to item 1(b) in Definition 1) and a guard
choreographer to the servig@pointment [avail=1] (which corresponds to item 2 in Definition

We describe the composition framework outlined above 1). It can be also observed thairs(ss) C vars(sz) U
in more precise terms in the sections that follow. vars(?gotSocSecNum(SSN)).

1. an actiona such that
(@) vars(a) Cvars(s) if «is an output action
(b) vars(a) Nwars(s) = 0 if ais an input action

(€) wars(a) Cvars(s) A ovars(a) Nwvars(s) =0
if v is a function invocation

2. aguardy such thawars(vy) C vars(s), and

Semantics of STS. The semantics of an STS is given with
respect to substitutions of variables present in the syséem
state represented by the tesnis interpreted under substi-
tution o (so). A transitions =% ¢, underlate semanticsis
said to beenabledfrom so if yo = true . The transition
under substitution is denoted by ~% to.

Suchlate semanticform a natural interpretation of STSs
by capturing the substitutions of input-variables at the-de
tination state of a transition. For instance, consider aatin

transition of the forns ?&5) t. From the definition of STS,

Z Nwars(s) = 0. A consequence of late semantics is that
if ¢t contains elements i, their valuations are left to be
interpreted by guards in subsequent transitions.

Equivalence betweerSTSs. To identify equivalenSTSs

in the presence of guarded transitions with input/output ac
tions, function invocations and unobservable actionge
will use weak and late bisimulation equivalence relation.
Given anSTS = (S, —, 50, ST'), the weak, late bisimula-
tion relation with respect to substitutiéh denoted by’ ,

is a subset of x S such that

S1 Ry, S2 :>
V519 —> t19 3820 t29 Yo : (05190' = 04290')
Aty Nﬁff tg)
NS
)

In the above,s,f —> t,60 denotes transitive closure of
transitions overr transitions, i.e., a transition may contain
zero or morer transitions preceding and following action
. Furthermoreq can be are or empty transition. Two

states are said to be equivalent with respect to weak, late®
bisimulation, under the substitutiéh if they are related by
the largestbisimilarity relation~! . Two STSs are said to
be bisimulation equivalent if and only if their start states
bisimilar.

For example, consider checking the bisimilarity of states
p1 andg; in the the STSs given in Figure 3. The state(x)
is bisimilar tog;1 (z) whenz = 0, and is bisimilar tay;2(x)
whenz # 0. Similarly, p12(x) is bisimilar tog;1 (z) when
x # 0, and is bisimilar tog;2(x) whenz = 0. However,
p1; andg; are not bisimilar as the input actidia(x) from
p1 1o p11(2), if matched with input actiofic(x) from ¢; to
¢11(x), demands thati; (z) andg1 (z) are bisimilar for all
possible valuations aof (i.e., for botha = 0 andx # 0).

Definition 2 (Parallel Composition of STSs) Given two
symbolic transition systen8TS; = (S;, —1,501,57)
STS, (S2, —2,509, 5%, their parallel com-
position, under the restriction setl, is denoted
by (STS1 H STSQ)\L (512,—>12,5012,51FQ)
where Sio - S1 X Sy, 012 (8017502),
Sle = {(81,82) ‘ s1 € SlF N 8o € Sg} and — o
relation is of the form:

/ Nc(x) 26(x)

R 12(><) (x)
112 11

@

\c(x)

Rzt
(b)

Figure 3: Example Symbolic Transition Systems. @JS; (b) STS;

1y IOy elne

(5,1) 25T (s, 1),

Y Ame L =

2. s 25 ¢/ Aheader(a) ¢ L = (s,t) 225 (s',t) and

3. t 25 ¢/ A header(a) & L = (s,t) 5 (s,1).

In the above, restriction sétincludes the message headers
on which the participatin®TSs must synchronize and gen-
erate ar action. We uséieader(a) to return the message
header of input and output actions; for function invocation
andr it returns a constant which is never presentin

3.2 The Service Composition Problem

Given a goal servicdy and a set of available compo-
nent serviced, 7>, ..., T,, solving the service composi-
tion problem entails identifying a composition of the nec-
essary component services that realizes the functioradlity
T,. In the setting ofarallel compositiorthat is the focus

f this paper, this entails generating a choreografher
which realizes the functionality df, by orchestrating the
necessary interactions among the selected component ser-
vices. As noted earlier, the choreographigr replicates
the behavior of the input/output actions of the goal and is
responsible for communications between component ser-
vices; it relies on the component services for function in-
vocations needed to realize the goal service. In MoSCoE,
the operation of the goal service as well as the component
services are represented by the corresponding STSs.

Based on the definition of parallel composition and
equivalence relation described in Section 3.1, and the pre-
viously introduced notion of a choreographer, the service
composition problem can be described as:

er: (- (T [TNTH] - I TN RS T,
where,L contains all the input and output message headers
of the component services. Thus, solving a parallel service
composition problem entails to constructing a choreogra-
pher which can enable interaction between the component
services so as to yield a behavior thaeguivalent(weak,
late bisimilar) to that of the desired goal service.

/*
r

is the goal statey; is the component statejs the generated choreographer state.

G is the conjunction of guard conditions that will be accumedigalong each DFS path. All variablesGhare universally quantified.
R is a store that contains all the inputoutput message headers of the component services.

*
1: proc generatef, [s1, s2, ..., sn], t, G, R)
2:{
3: if visited(r, [s1, s2, ..., snl, t, G, R);/l This path has already been traversed
4: else mark as visited{, [s1,s2,...,sn], t, G, R);
5: forall (r 223 r')&& (G A g) do
6: case 1: /* input action from the client */
7 a = ?m@E) = create atransiton =% t'; R:= R U Z; call generatef’, [s1,s2,...,sn], ¥/, G A g, RUD);
8: case 2: /* output action to the client */
9 a=Im@@) = if (¥ € R){ create atransition % ¢'; call generate(’, [s1, s2,...,sn], t', G A g, R); }
10: elsﬁ Requested output cannot be created for client. Returnaiaﬂﬁoreographev‘
11: case 3:/* function-invocation to be provided by the components */
12: a =funcName(l; O) &&no s; has a transition on the action-a
13: select the componefit that is capable of generating the function;
.Mz
14: if (s; 70 ¢y 8& (7 & R){
15: if (Me FL;;) { msgH=m k := j;} else’ Return partial choreographer. Failure at action b
16: while ((s, "% s)) && header(ay) # msgH {
17: if (ax = ?M (7)) && (7 & R){
18: if (M, € FLg){msgH:=m,; k:=1}
19: tend of if-17
20: elseif((ay, = ?M,(9)) && (7 € R)) || (ax = My (7)) {
21 it (G = gx){
22: create transitioncﬂC t’ to communicate with,;
23: call generatet, [s1, s2,..., si, ..., sa], t', G, RUY); if (' is the root of a partial choreographer), select next tramsit
from si; else break

24: }
25: }/end of elseif-20
26: else{’ Return partial choreographer. Failure at action b.break; }
27: }/lend of while-16
28: if (s E2F 5}.) && (header(ay) = msgH {
29: if (G = gr){
30: , create transition ZF ¢/ to communicate withsy,; call generatet, [s1,s2,..., s}, ..., sn], ', G, RU vars(ay));
31:
32: else{’ Return partial choreographer. Failure at action P}
33: }
34: elseif(sy, ¢ SE) || (funcName(l;,0) ¢ done)’ Return partial choreographer. Failure at action P
35: elsereturn;
36: }/end of if-14

. 9:,?Mz) o
37: elseif(s; ™"'—"" s)&& (¥ € R)&& (G = gi){

Imz . .
38: create transition { >t’ to communicate witts;; call generatet, [s1,s2,..., s}, ..., sa], t', G, R);
39: }
40: }
Im
41: elseif(s; “N7) && (G = g;) {
mz

42: create transitionc’ﬂ >t’ to communicate withs;; call generatet, [s1,s2,..., s, ..., sa], t/, G, RU &);
43: }
44: }
45: else{ ’ Return partial choreographer. Failure at action P.}
46: case 4a = funcName(l; O) && s; has a transition on action-a-
47: if (ss 28) &&(GA g = gi)
48: done = done U funcName(l;0) ; call generatef’, [s1, s2, ..., s, ..., sn], t, GA g, RU ovars(a));
49: else’ Return thepartial choreographer with failure at guardedian (g,a).‘
50:}

Figure 4: Algorithm for Modeling the Choreographér Failure-Cause Detection
5

3.3 Synthesis of a Choreographer Case 2:1f the transition from the current staten the goal

f - o
We now proceed to describe an algorithm for construct- STS to state’ has an output action, i.e., transmitting a mes-

ing a choreographer for a desired service from a set ofSage to the client, then a corresponding transition with the

component services. Since the goal service specification®UtPut action is created in the choreographer iftisgSet

includes the descriptions of the desirkahctions we se- ©f the action is already present f (line 9). Note that

lect the subset of component services whe3&s provide ~ Nere themsgSet required to produce the output message
the necessarfunctioninvocations to yield a set of candi- Can be only retrieved fron (assuming it was placed there

date component services which the choreographer can worlS @ result of preceding interactions between the component
with. services).

Because the task of a choreographer is to orchestrate theC@s€ 3: This case corresponds to a situation in which the
interactions among component services, the algorithm fortransition action in the goal isa function |.nvocat|ora.n.d
constructing the choreographer requires informationniga "oneé of the component services can provide a transition on
ing dependencies between components, i.e., the dependend‘?at action from their current states In such a scenario,
of an input message of a component on the output of an-tN€ algonthm ﬂrs_t selectsgcomponent servicevhich can
other. For example, a componéhtrequires an input of the provide the required functiom (line 13)2. Now there are
form ?m(z) and a componerif; provides an output of the three scenarioss; has an input action for which the chore-
form Im(%) , we say thall} is dependent off; via the mes- ~ ©grapher cannot provide input messades (14); s; has
sage headen In such a setting, the choreographer needs to@" input actlon for which the choreographer can pr_OVIde in-
synchronize with the output message frdinand pass on ~ Putmessagesife 37); ands; has an output actiorirge

the output off; as an input messageo. To make this no- ~ 41): . .

tion of dependency more precise, we defioa linkswhich ~ The last two of the preceding three scenarios are eas-
capture the dependencies between multiple component serly dealt with: the choreographer transitions are generate
vices. to provide appropriate output or input message as the case

may be and the procedugenerate is invoked recursively.
Definition 3 (Flow Links) For services T; and Tj, if Thus, in the last case, i.dine 41 , the storeR is updated
?m(Z) and!n(Z) are present in the specifications of the to include the output messages from the stateThe first
respective componenTS; and STS;, thenmis said to scenario ljne 14) is more involved. As thensgSet re-
be a member of the flow link (frophto i component) set quired at the input action from state is not present irR
denoted by'L;;. (line 14), the flow links (Definition 3) are explored to de-
termine a component; which can provide the message as
output. However, it is possible that, in turn, is at a state
s; which needs a different input or output message. If the
message is on input action provided by the choreographer or
if the message in on output action, then appropriate chore-
ographer transition is created ageherate is invoked re-
cursively (ines 20--24). Atline 22 , a; denotes the
complement ofay, i.e. a; :=!m,(y) if ar. =?m,(y); oth-
erwiseay :=?m.(y). In this case, after the recursive call
to generate , a new transition froms, is selected at the
while-condition (ine 16). If the input message at can-
not be provided by the choreographer another component
via flow link is selected and the process is iteratieeb$

For example, consider the component servieeRide
(Figure 2(d)) andvalidate (Figure 2(e)). In order for
e-Ride to reserve aride, it needs valid payment informa-
tion. This information is provided byalidate after it
validates the credit card information provided by the pa-
tient. Hence, therenust bea flow link from validate to
e-Ride .

The algorithm for modeling a choreographer (Figure 4)
that is “equivalent” to the goal service works as followse th
proceduregenerate(r,[s1, S2, ..., sa],t, G, R) is invoked
by providing the start states of the goal ST, the com-
ponent STSs it (s1, s2,--.,S,), and the choreographer
STS ¢) that is being modeled. The initial guard condition
G is set totrue andR corresponds to a store that contains 17-19)) . .
all the input and output message headers of the component Qut3|de thewhile Ioop, i there exists a co.mpqnent
services, which is initially empty. A global sébne is used which .has the outqu action at |_ts curren_t stalg i Fig-
to keep track of whether a particular function invocation re ure atline 28) required by the input action at statgof

qguested by the goal service is realized in the composition.Ti responsible for providing the function |r_1_/0cat|dimés .
There are four cases to consider: 13,14,15), then the choreographer transition communicat-

Case 1:If the transition from the current statein the goal ing with this componenﬂihe _30)is generated. Finally, at
STS to state’ has an input action, i.e., receiving a message line 34, 35 ,ifthe states, is not a final state or the global
from the client, then a corresponding transition with the in 2In practice, there might be more than one component serviceanat

PUt action is Freated in the Chor(?Ograph?E(7)andR provide the required atomic actian in which case, each choice is ex-
is updated with thensgSet of the input action. plored to find a feasible choreographer.

store done does not includduncName(l;0) , i.e., there choreographer to send a messag@gpointment . Once
exists a transition with function-invocation from, (fall- Appointment executes the functioSearchPhy(...), it
through case fronines 16,28) or funcName(l;0) re- transmits an output message (in this case, indicating the
quirement is not provided along any of the paths by recur- availability of physician(s) for treatment of the ailment o
sion, then failure is reported; otherwise the procedure re-the requested date and time). This behavior is modeled

turns with no error. by the choreographer in the transition — c3 (Case 1)
Case 4: Finally, this case considers a situation when the which receives the message frgmppointment . Depend-
transition action in the goal is a function invocatierand ing on whether a physician is available or not, MoSCoE

there exists a componef} which has a transition from its ~ creates transitiongg — ¢4 andes — ¢ to send/receive
current states; on actiona (line 46--50). The message output/input message to/from the client (Cases 2), re-
storeR is updated with the return values of the function and spectively. MoSCoE proceeds in a similar fashion to model
global storelone is updated to reflect thatncName(l;0) transitions for function invocationsnsinfo(...) and
invocation requirement is realized. PrevRec(...), and reach goal statg and choreographer
We use a constraint solver to check the (un)satisfiability Statecs. Now, to model a corresponding transition for func-
of guards on STS transitions. All the variables in the guard tion invocation AppPhy(...), the choreographer refers to
are universally quantified. At present, MoSCoE works with the message storg for previous message exchanges be-
only equality and disequality constraints on infinite domai tween the client and component services, and generates an
variables for which satisfiability checking of guards is de- output messagelinPhy(avail,elig,pre) . Note that
cidable [2]3. The preceding algorithm may fail to construct the values for the variables vail, elig, & pre)in
a choreographer because of either due to the absence of afileé message were placedfihas a result of previous mes-
action that is necessary to achieve the goal service functio Sage exchanges between the choreographer and component
ality or the unsatisfiability of guards. Analysis of the caus Sservices. Sincet contains every message that the chore-
of such failure is discussed Section 3.4. ographer receives from the client and the component ser-
vices, to select the relevant components (and their mes-
sages), the choreographer exploits the flow links (Definitio
In what follows, we show how to model a choreographer for 3) between the components, as illustrated in Case 3 of the
the Health4U composite service introduced in Section 2 algorithm. This process for constructing the choreographe
using the formal framework and algorithm described above. terminate with success when for each transition leading to
Figure 1(a) shows an STS representation ofHbalth4u a final state in the goal, a corresponding transition in the
goal service and Figure 2 shows the corresponding STSs ofhoreographer is established.
a set of available services (as noted earlier, we assume that Now we proceed to discuss the scenario in which the
the STS specifications of component services are suppliecalgorithm for constructing a choreographer fails.
to MoSC(_)E by the_ _respective service provi_ders). Giventhe g 4 Analyzing the Failure of Composition& Reformu-
goal_serwce specification qnd a set of available component lation of the Goal
services, MoSCoE'’s task is to construct a choreographer _ . o)
(Figure 1(b)), which enables the interaction between the The algorithm described in Figure 4 for constructing a
client and component services, and is “bisimulation equiv- choreographer that realizes a specified goal service using
alent” to the goal service. the available component services fa|.Is wher_1 some aspect of
MoSCoE begins with the start statg of the goal STS the goal SpECIfIC?.tIOI’] cannot be realized using the availabl
and considers its transition to state. Here, the tran- component services. In the gvent of ;uch failure, MoSCoE
sition takes place due to an input actiomakeApp(...) seeks_to pr_owde to the user information about the cause of
from the client (Case 1), so MoSCOE creates an appro_the fallure_ ina form that can be used to reformulate t_he
priate transition ¢, — ¢1) in the choreographer to re- gqal specification. _ Recall that choreographer constroctio
ceive the input message. For the transitign— s, in fa|ls Whgn there exists no ghoreographerthat can enable the
the goal STS, the associated action is a function invoca-Nteraction among the available components to realize a be-
tion (SearchPhy(...)). However, since none of the current 1avior that is “bisimulation equivalent” to that of the goal
component stateg, ts, t12, 16, t22) can make a transition service. In particular, bisimulation equivalence is ndissa
on this action (Case 3), MoSCoE first selects the compo-flecj when:
nent Appointment because it can provide the requested
function, and then creates an appropriate transition in the

3.3.1 Modeling a choreographer forHeal t h4U

1. The choreographer composed with components fails to
create weak transition relation (see weak bisimilarity
SInvestigation of larger classes of infinite state systemswfoich the relation I_n. Section 3'1)' Weak. t_ransmon; are g_enerated

construction of choreographer can be made decidable [8]dpia 6f on- by transmve closure of-transitions obtained via syn-

going research. chronization between choreographer and components.

t26 131 present in the goal STS does not match with the component

?inRide(date,time,addr,phi ?inRide(date,time,addr) R . ..) "
tiz'" vie(date e addrphnum) }32 action for the particular transition. In the casesdtide " a
57 (Ride(date e adc phna) [time < 4pm}/ failure arises due to an exception being raised eithigreat
0OKRIde(date,time,addr,pnnum, i il
tl : t:;"kR'de(da‘e‘“me’add” 32 or 49, indicating a mismatch in guards for the corre-
finCCVa" d(valid) 2inCCValid(valid) sponding transition relation in the goal STS. MoSCoE pro-
t 3 5 vides such information about the cause of a failed attempt
lR _ l . at service composition to the service developer. The de-
eserve(confirm) Reserve(confirm) .. e .
s veloper can then reformulate the original goal specificatio

loutRide(confirm) . h .
to realize a suitable choreographer. These steps can be iter
ated until such a choreographer is eventually realizedeor th
() (b) user decides to abort.

t30 . X :
_ _ (e.g., changing the function parameters or pre-conditions
loutRide(confirm)

Figure 5: STS representation of (}Ride ' (b) e-Ride ” 3.5 Analysis of the Composition Algorithm

) ~Theorem 1 (Sound& Complete) Given a goal service

2. '!'he actions between the goal and component tranS|—Tg with start state s0, and n component services

tions do not match. T, ... T, with the corresponding start state8; . .. s0,, the
procedure gener at e(s0g, [s01, 502, . .., s0,], 10, true, 0)
(Figure 4) is guaranteed to terminate with a chore-
Returning to the choreographer construction algorithm ographer T., with start state t0 if and only if
(Figure 4), we note that failures might be encountered dur-(. . . (Ter||T0)[|T2)]] ... [|[TW)\L =LY T, whenever
ing different stages of execution of the algorithm. For in- such a choreographer exists, and with failure otherwise.
stanceline 10 mightresultin a failure cause correspond-

3. The guard conditions are unsatisfiable.

ing to Case 1 because the messages required for generatirfgroof Sketch:. We prove the theorem
the output message to the client are not preseft iBimi- by contradiction. Suppose the procedure
larly, inlines 15 and26 the failures might arise because generate (s0g, [s01, 502, . .., 0,], 10, true,) (Fig-

either the input message required by a component servicedi'e 4) yields a choreographéy,. with start statet0 which
cannot be provided by some other component service or bywhen used to orchestrate the component services under the
the client itself. Inline 32, 49 , failure might occur be- ~ restrictions imposed by the guards fails to realize the
cause the guard conditions do not hold (the guards on thegoal serviceT,, i.e., the composition is not bisimulation
component transition are stronger than those on the goal)€duivalent toZ,;,. There are four cases to consider) for
Finally, a failure could occur when there is a mismatch be- @n input action iriy, there is no corresponding input action
tween an action that is required by the goal and actions thatn Zer; (ié) for an output action iy, there is no corre-

are provided by the available components (ses 34, sponding output action iff;.,; (iii) a function-invocation
45). present inT, is not modeled by the composition; and

_ . finally (iv) some sequence of actions in the goal is not
3.4.1 Failure Cause Analysis foHeal t h4U provided by the composition due to the unsatisfiability of
In our example from Section 2, suppose we replace theone or more guards.
e-Ride component service (Figure 2(d)) with component However, cas€i) is ruled out by the algorithm because
servicese-Ride * and e-Ride ” yielding two separate in- for each message sent from the clienf/{g a correspond-
stances of theHealth4U composition problem (Figure ing input action is created iff.,. to receive the message
5)(a) & 5(b)). Suppose the behavior efRide ' is exactly (Case 1 ofgenerate). Case(i?) is ruled out because for
the same as that @fRide , but it additionally requires a each output message that is to be sent to the client (as mod-
phone number to reserve a ride. Suppose on the other handled inT,), a corresponding output action is created’in
thate-Ride " can only reserve a ride if the time for pick- if that message can be retrieved from the message &ore
up is before 4pm. Note that in both these instances, the(otherwise an exception is raised resulting in terminatibn
algorithm for constructing the choreographer fails when it the algorithm with failure (Case 2 afenerate)). Case
encounters the transitiosy — s9 in the goal STS (see (i) is ruled out because the function invocationgjnare
Figure 1(a)). Specifically, in the case of the component ser-modeled by first determining the component(s) that can pro-
vice e-Ride ’, the actions for Health4U ande-Ride 'do vide the relevant functions and then creating the relevant
not match, whereas in the caseseRide ”, the correspond- transitions inT,,. to communicate with the respective com-
ing guard condition is not satisfied. Thus, in the case of ponent(s) (otherwise the algorithm terminates with fajur
e-Ride ’ a failure results from an exception being raised ei- Note that the communications betweEn and anyl; leads
ther atline 34 or 45, indicating that a particular action to transitions labeled by (Definition 2). The desired goal-

function will be matched by the composition after zero steps services as automata extended with a queue, and commu-
if there is a component at a state with outgoing transitien la nicate by exchanging sequence of asynchronous messages,
beled by the function; otherwise the composition will lead which are used to synthesize a composition for a given spec-
to a state with an outgoing transition labeled by the desiredification. Their approach is extended in Colombo [4] which
function, after multipler-steps representing component- models services as labeled transition systems with compo-
choreographer synchronous communications. Finallylin al sition semantics defined via message passing, where the
the above cases, if the guards do not match or the guards iproblem of determining a feasible composition is reduced to

the component(s) are stronger than thoséjrnandTz,), satisfiability of a deterministic propositional dynamigio
the algorithm terminates with an appropriate failure cause formula. Our framework has been inspired by, and builds
thereby ruling out casgv). on insights from Colombo.

Next, consider the case where there exists a choreog- Pistore et al. [12, 13, 17] represent Web services using
rapherT,, that can orchestrate the component servicesnon-deterministic state transition systems, which commu-
T, ... T, under the constraints imposed byto realize the nicate through message passing. This approach constructs
behavior specified b¥, but the procedurgenerate ter- a parallel composition cdll the available component ser-
minates with a partidl’,, or fails to terminate. We can rule vices and then generates a plan that controls the services,
out this possibility of generation of partidl.. through an based on the functional requirements specified using a tem-
argument similar to the one used above. Finally, the com-poral logic-based language. In contrast, services (gal an
ponent service$;s and the goal servicE, are defined over components) in our framework are represented using Sym-
guarded transitions with no variable operations. As sueh th bolic Transition Systems augmented with guards over vari-
variable domain can be finitely partitioned making the state ables with infinite domains. We avoid the expensive step
space of the component and the goal services finite. Thereof generating a parallel composition afl the available
fore, the procedurgenerate , which exhaustively explores services before developing a controller, by constructing
the state-space of the services, terminates for all p@ssibl a choreographer on-the-fly, i.e., transitions in the compo-
valuations of the variables. nents and goals are explored by our algorithm as and when

Complexity. The worst-case complexity of the composi- needed.))) N
tion algorithm is determined by the number of recursive Model-driven techniques for service composition where
invocations ofgenerate . Assume that7,| is the num- standard UML tools are used to provide a higher level of

ber of states in the goal service ST|$,| is the number abstraction pf the desi.red composite service have received
of states in each component service STS, arigl the to- some attention in the literature. For example, SELF-SERV
tal number of component services. In the worst case, eacH3] Uses state-charts for modeling composite services: Sko
state in the goal STS can be associated with any poten9an et al. [14] use UML for capturing composite Web ser-
tial combination of states in the component STSs, yielding Vice patterns. Timm and Gannod [16] rely on translation
IT.|" combinations. Additionally, each pairing of a goal into OWL-S of semantic web services specified in UML.
state with a combination of component states is interpreted ~ The proposed framework, MoSCoE, works with abstract
in the context of a guard? and the messages stored in Specification of a goal service either directly using STS or
R. Guards and message stores are updated whenever thgdirectly using UML state machines [10] which can be
procedur@enerate exp|0res a transition from a goa| or translated into STS. As noted earlier, MOSCOE is inspired

a component state. The number of distiGi andRs is by Colombo, and several of the other approaches to service
O(2!Ts1xITeI") The worst-case complexity gknerate is composition cited above. MoSCoE is unique in its abil-

therefore O(T},| x |T.|" x 2Tl X|Te|" Y4, ity to identify of reasons for failure of an attempt to com-
pose a goal service using available components, which to-
4 Related Work gether with its ability to work with abstract (and possibly

A variety of approaches to automated service composi-incomplete) goal service specifications, provides a basis f
tion, based on the planning techniques of artificial intelli failure-guided iterative reformulation of the goal servic
gence, logic programming, and automata-theory have bee
developed (see [5, 7] for a survey).

Of particular interest in the context of the work described ~ We have addressed the problem of realizing a desired
in this paper are approaches to service composition within acomposite service through a parallel composition of a sub-
transition system based framework. Fu et al. [6] model Web set of available component services. Specifically, we have

; . o _ ~ presented a theoretically sound and complete algorithm for

However, domain-specific information about component sesvice ,nstpycting a choreographer that enables the interaction
(e.g., a partial-order among services), if available, cangdel to reduce . . .
the complexity of composition by a priori ruling out some of thesgible among component services to rea“Z? the be_hawor of the
combinations that would otherwise have to be tried. desired goal service. We use Symbolic Transition Systems

5 Summary and Discussion

(STSs) augmented with state variables over an infinite do-Acknowledgment. This research has been supported in
main and guards over transitions to model the services. Apart by the lowa State University Center for Computa-
unique feature of the proposed approach is its ability to tional Intelligence, Learning Discovery pttp://www.

work with an abstract (possibly incomplete) specification cild.iastate.edu

), NSF-ITR grant 0219699 to Vas-

of a desired goal service. In the event the goal service can-ant Honavar, NSF grant 0509340 to Samik Basu, and NSF
not be realized (either due to incompleteness of the speci-grant 0541163 to Robyn Lutz.

fication provided by the developer or the limited function-
ality of the available component services), the proposed al
gorithm identifies the causes for failure and communicates [1]
them to the service developer. The resulting information
guides further iterative reformulation of the goal seruice

til a composition that realizes the desired behavior is-real
ized or the user chooses to abort. These results complement
our previous results on the sequential composition of ser-
vices [10].

(2]

(31

So far, our framework for modeling service composition
and execution has focused on services which demonstrate |
a deterministic behavior without loops. Handling non-
deterministic behavior that often characterizes realtdvor
services is an important area of ongoing research. We also [°]
plan to investigate the complexity of incorporating seegic

with loops in our composition algorithm. [6]

In this paper, we have assumed that the component ser-
vices are all specified using variable, function, relation (7]
names and constants based on common semantics, an asqgj
sumption that is unlikely to hold in the case of services
offered by autonomous service providers. In this context,
approaches based on inter-ontology mappings to bridge the
semantic gap between semantically heterogeneous services
[11] deserve further investigation. We also assumed that
the component services are published using STSs. In prac-[lo]
tice, these specifications can be obtained from service de-
scriptions provided in high-level languages such as BPEL or
OWL-S by applying translators proposed in [13, 17]. How-
ever, in our case, the translators in [13, 17] will have to
be enhanced to handle pre-conditions of atomic functions
which correspond to guards in transitions of STSs.

El

(11]

(12]

The practical feasibility of approaches to any approach
to automated service composition is ultimately limited by
the computational complexity of the service composition
algorithms. Hence, approaches to reducing the number of
candidate compositions that need to be examined e.g., by[14]
exploiting domain specific information to impose a partial-
order over the available services, or reducing the number of
goal reformulation steps needed by exploiting relatiopshi
among failure causes or between failure causes and services
or between services needs further investigation. [16]

(13]

(15]

Other work in progress is aimed at translating the chore-
ographer into executable code for realizing the composite
service. More details are availabletdtp://www.cs.
iastate.edu/ ~ jpathak/moscoe.html

10

References

V. Agarwal, K. Dasgupta, and et al. A Service Creation iww-
ment Based on End to End Composition of Web Servicesl4th
Intl. Conference on World Wide Webpages 128-137. ACM Press,
2005.

S. Basu, M. Mukund, C. R. Ramakrishnan, I. V. Ramakrishiaad,
R. M. Verma. Local and Symbolic Bisimulation Using Tabled Con-
straint Logic Programming. Imtl. Conference on Logic Program-
ming, volume 2237, pages 166-180. Springer-Verlag, 2001.

B. Benatallah, Q. Sheng, and M. Dumas. The Self-Serv Bnvir
ment for Web Services CompositionEEE Internet Computing
7(1):40-48, 2003.

4] D. Berardi, D. Calvanese, D. G. Giuseppe, R. Hull, and Me-M

cella. Automatic Composition of Transition-based Semantid We
Services with Messaging. 181st Intl. Conference on Very Large
Databasespages 613-624, 2005.

S. Dustdar and W. Schreiner. A Survey on Web Services Cempo
sition. International Journal on Web and Grid Servi¢d$1):1-30,
2005.

X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPELebV
Services. Inl3th Intl. conference on World Wide Weiages 621—
630. ACM Press, 2004.

R. Hull and J. Su. Tools for Composite Web Services: A Short
Overview. SIGMOD Record34(2):86-95, 2005.

R. Kumar, C. Zhou, and S. Basu. Finite Bisimulation of React
Untimed Infinite State Systems Modeled as Automata with Vari-
ables. InAmerican Control Conferenc@006.

J. Pathak, S. Basu, R. Lutz, and V. Honavar. MoSCoE: A Frame
work for Modeling Web Service Composition and Execution. In
IEEE 22nd Intl. Conference on Data Engineering Ph.D. Woolsh
page x143. |IEEE CS Press, 2006.

J. Pathak, S. Basu, R. Lutz, and V. Honavar. Selecting@om-
posing Web Services through Iterative Reformulation of Fionel
Specifications. I18th IEEE International Conference on Tools with
Artificial Intelligence 2006.

J. Pathak, N. Koul, D. Caragea, and V. Honavar. A Framkvar
Semantic Web Services Discovery. 1th ACM Intl. Workshop on
Web Information and Data Managemepages 45-50. ACM press,
2005.

M. Pistore, A. Marconi, P. Bertoli, and P. Traverso. Amated
Composition of Web Services by Planning at the Knowledge Leve
In 19th Intl. Joint Conferences on Atrtificial Intelligenceages
1252-1259, 2005.

M. Pistore, P. Traverso, and P. Bertoli. Automated Coritjmosof
Web Services by Planning in Asynchronous Domains13th Intl.
Conference on Automated Planning and Schedulpages 2-11,
2005.

D. Skogan, R. Grgnmo, and |. Solheim. Web Service Comjpositi
in UML. In 8th IEEE Intl. Enterprise Distributed Object Computing
Conferencepages 47-57. IEEE Press, 2004.

K. Sycara, M. Paolucci, A. Ankolekar, and N. SrinivasafAuto-
mated Discovery, Interaction and Composition of Semantic Web
Services.Journal of Web Semantic$(1):27-46, 2003.

J. Timm and G. Gannod. A Model-Driven Approach for Spgicif
Semantic Web Services. Brd Intl. Conference on Web Services
pages 313-320. IEEE press, 2005.

1 P. Traverso and M. Pistore. Automated Composition of Seiman

Web Services into Executable Processes3rthintl. Semantic Web
Conferencepages 380-394. Springer-Verlag, 2004.

