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Abstract

We present a goal-driven approach to model a choreog-
rapher for realizing composite Web services. In this frame-
work, the users start with an abstract, and possibly incom-
plete functional specification of a desired goal service. This
specification is used to compose a choreographer that al-
lows communication between the client and the set of avail-
able component services, and is functionally equivalent to
the goal service. However, if such a composition cannot be
realized, the proposed approach identifies the cause(s) for
the failure of composition. This information can be used
by the user to minimally reformulate the goal to reduce the
‘gap’ between the desired functionality. The process can be
iterated until a feasible composition is realized or the user
decides to abort. The approach ensures that (i) a chore-
ographer, if one is produced by our composition algorithm,
in fact realizes the user-specified goal functionality; and(ii)
the algorithm is guaranteed to find a composition that meets
the user needs as captured in the goal specifications (when-
ever such a composition exists).

1 Introduction

Many real-world applications of Web services, e.g., e-
Business, e-Science, call for effective approaches to au-
tomated or semi-automated assembly of composite Web
services by integrating independently developed compo-
nent services. Consequently, a variety of approaches based
on planning techniques of artificial intelligence, logic pro-
gramming, automata-theory have been developed (see [5,7]
for a survey). However, these techniques suffer from a very
significant limitation in that they require the user (or ser-
vice developer) to provide a specification of the desired be-
havior of the composite service (goal) in its entirety using
languages such as OWL-S [1, 15, 17] or BPEL [13]. This
becomes a problem when modeling complex Web services
because the complexity of the composition graph grows
rapidly with the increasing complexity of the desired goal
service. More importantly, the current approaches adopt a

“single-step request-response” paradigm to service compo-
sition. That is, if a specified goal service is unrealizable
(which would be the case if the goal service specification is
incomplete), the process simply fails. It is typically difficult
for a developer to provide the complete goal service spec-
ification that is needed in the absence of a detailed knowl-
edge of the specifications of the component services avail-
able. This argues for an iterative approach to service com-
position wherein an abstract (and perhaps incomplete) goal
service specification can be iteratively reformulated (with
guidance from the system) until a composition that realizes
the desired goal functionality is found, or the user decides
to abort.

To address this need, we have introduced a frame-
work for Modeling Service Composition and Execution
(MoSCoE) [9, 10]. MoSCoE models services using Sym-
bolic Transition System (STS) which are labeled transi-
tion systems augmented with guards on transitions and state
variables over an infinite-domain. MoSCoE, given anab-
stract (high-level and possibly incomplete) STS specifica-
tions of a goal serviceTg, and of available component ser-
vices T1 . . . Tn, identifies a subset of the component ser-
vices that whencomposedwith a choreographerTcr realize
the goal serviceTg. A unique feature of MoSCoE is its abil-
ity, in the event of failure to realize a goal service, to iden-
tify the specific states and transitions of the goal STS that
need to be modified1. This information enables the user to
reformulatethe goal specification (iteratively) until a com-
position that realizes the goal specification is found or the
user decides to abort.

In our previous work, we have described an algorithm
for selecting and composing Web Services through itera-
tive reformulation of functional specifications in the case
of sequential composition[10]. In this paper, we turn our
attention to modeling a choreographer forparallel compo-
sition of available component services to realize a goal ser-
vice. In this setting, the component services interact via the
choreographer. The role of the choreographer is to repli-

1This analysis is performed at thedesigntime, and not atrun time.
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cate the input and output actions of the goal transition sys-
tem and sending (receiving) messages to (from) the compo-
nents. Thus, the component services provide the required
functionality needed to realize the goal service.

The specific contributions of this paper include:

1. A sound and complete algorithm for selecting a sub-
set of the available component services that can be as-
sembled into a parallel composition that realizes the
goal service with the user-specified functionality, and
for determining a choreographer to interact with the
component services. The proposed approach uses a
variant of STS with guards on transitions to deal with
the case when data and process flow are modeled in an
infinite-domain.

2. An approach to determining the cause of failure of
modeling a choreographer for parallel composition to
assist the user in modifying and reformulating the goal
specification in an iterative fashion.

The rest of the paper is organized as follows: Section
2 introduces an example used to illustrate the main ideas
in this paper. Section 3 formulates the service composi-
tion problem in terms of STS as well as provides an al-
gorithm for modeling a choreographer and identifying the
cause for failure of composition. This section also includes
correctness and complexity analysis of the proposed ap-
proach. Section 4 briefly discusses related work, and finally
Section 5 concludes a summary and a brief outline of some
directions for further research.

2 Illustrative Example
We present a simple example where a service devel-

oper is assigned to model a new Web service,Health4U ,
which allows senior citizens to make a doctor’s appoint-
ment to receive medical attention for a particular ailment.
To achieve this,Health4U relies on five existing (possibly
independent) services:Appointment, MedInsurance,

MedRecord, e-Ride andValidate . Appointment ac-
cepts patient data (name, ailment s/he is suffering from)
and scheduling information (preferreddate and time) as
input to make an appointment.Appointment takes into
account: (a) information about patient’s insurance cover-
age plan to identify the designated physicians from whom
the patient can receive treatment, and(b) the medical his-
tory (if any) that provides information about patient’s pre-
vious appointments for the particular ailment. To obtain
the needed information,Appointment communicates with
MedInsurance (case(a)) andMedRecord (case(b)), both
of which require the patient’sSSN(Social Security Num-
ber). Appointment attempts to schedule an appointment
for the patient with a physician who has treated the patient
in the past. If no such physician is available, it makes an

S0

S2

S3 S4

S5

S6

S7
S8

S1

S9

S10

S11

S13S12

?makeApp(date,time,ailment)

ailment;avail)

?getSocSecNum(SSN)

[avail=1]

InsInfo(SSN;elig) PrevRec(SSN;pre)

AppPhy(elig,pre;phy)

!app("Fail")
[phy=0]/

!app("Fail")

[avail=0]/

[phy=1]/
?getRideInfo(date,time,addr)

SearchPhy(date,time,

BookRide(date,time,addr)

?getCCInfo(CCInfo)

Reserve(confirm)

[confirm=0]/
!app("Success")!app("Fail")

[confirm=1]/

C1

C2

C3

C4
C5

C6 C7

C9

C8

C10

C11
C12

C13

C14

C16

C15

C17

C19 C20

C18

C0
?makeApp(date,time,ailment)

!inSearch(date,time,ailment)

?outSearch(avail)

[avail=0]/
!app("Fail") [avail=1]

?getSocSecNum(SSN)

!inRec(SSN) !inIns(SSN)

?outRec(rec) ?outIns(elig)

!inPhy(avail,elig,pre)

?outPhy(phy)

[phy=0]/
!app("Fail") [phy=1]/

?getRideInfo(date,time,addr)

!inRide(date,time,addr)

?getCCInfo(CCInfo)

!inCCInfo(CCInfo)

?outCCValid(valid)

!inCCValid(valid)

?outReserve(confirm)

[confirm=0]/
!app("Fail")

[confirm=1]/
!app("Success")

(a) (b)

Figure 1: (a) STS representation ofHealth4U (b) The Choreographer

appointment with a physician who is among those desig-
nated by the insurance provider. Furthermore,Health4U

arranges transportation for the patient to the medical cen-
ter via thee-Ride service. This service needs thedateand
time for pick-up, as well as the patient’saddress. In addi-
tion, e-Ride communicates withValidate to determine
whether the patient has provided a valid payment informa-
tion (e.g., credit card) before completing the reservation.

We proceed now to outline how the composition of a
service likeHealth4U can be accomplished by MoSCoE.
MoSCoE receives from the service developer an STS spec-
ification (see Section 3.1) of the desired goal service
Health4U as shown in Figure 1(a) . MoSCoE uses the goal
service specification to construct a choreographer that en-
ables the interaction between (a subset of) the component
services to provide the desired goal service functionality.
Figure 1(b) shows a choreographer that realizesHealth4U

using component services shown in Figure 2.

We use?msgHeader(msgSet) to refer to input actions
and !msgHeader(msgSet) to refer to output actions
of services. Communication between different services
occurs via synchronization between actions with the same
msgHeader resulting in the transfer ofmsgSet from the
entity performing an output action to the one performing
an input action. Example of such an action that results
in a change ofstate from s0 to s1 is ?makeApp(date,

time, ailment) is shown in Figure 1(a). This is
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an input action wheremakeApp is the message header
and input messages requested aredata , time and
ailment . The services also include atomic transition
actions denoted by funcName(inputSet;output) .
SearchPhy(date,time,ailment; avail) corre-
sponding to the transition from states1 to s2 in Figure
1(a) is an example of such an atomic transition action
(the first three arguments are input arguments and the last
argument is the return value of the function). A transition
is annotated by guards which control whether or not the
transition is enabled. Guards in MoSCoE (denoted by
[guards] ) correspond to constraints between variables,
and are essentially pre-conditions for the atomic functions.
Absence of a guard on a transition implies that the guard is
true (always enabled).

In the above example, the choreographer replicates
the input actionmakeApp(date, time, ailment (see
transition from c0 to c1 in Figure 1(b)) as required by
the goal service (Figure 1(a)) and sends message via
!inSearch(date,time,ailment) (transition from c1

to c2) to the component serviceAppointment (Fig-
ure 2(a)). The serviceAppointment synchronizes with
output action from the choreographer via the input ac-
tion ?inSearch(date,time,ailment) and the mes-
sagesdate , time and ailment are transfered from the
choreographer to the serviceAppointment .

We describe the composition framework outlined above
in more precise terms in the sections that follow.

3 Service Composition in MoSCoE

3.1 Symbolic Transition System

Preliminaries & Notations. We use the traditional defini-
tions of variables, functions and predicates. Expressionsare
denoted by functions and variables. Guards, denoted byγ,
are predicates over other predicates and expressions. Vari-
ables in a termt are represented by a setvars(t). Substitu-
tions, denoted byσ, map variables to expressions. A substi-
tution of variablev to expressione is denoted by[e/v]. A
termt under the substitutionσ is denoted bytσ. An action
is a term that takes one of the following forms:

1. ?msgHeader(msgSet) : input action. Vari-
ables of the input action are inmsgSet , i.e.
vars(?msgHeader(msgSet) ) = msgSet .

2. !msgHeader(msgSet) : output action. Vari-
ables of the output action are also inmsgSet ,
vars(!msgHeader(msgSet) ) = msgSet .

3. τ : an internal or unobservable action of a composi-
tion. Two entities synchronize on input and output ac-
tion with the same message header to generate such an
action.

4. funcName(I; O) : function invocation with
input parameters I and return valuation
O. We say that ivars(funcName(I;O) )
= I , ovars(funcName(I;O) ) = {0} and
vars(funcName(I;O) ) = I ∪{0}.

Definition 1 (Symbolic Transition System) A symbolic
transition system is a tuple(S,−→, s0, SF ) where S is
a set of states represented by terms,s0 ∈ S is the start
state,SF ⊆ S is the set of final states and−→ is the set of
transition relations of the forms

γ,α
−→ t where:

1. an actionα such that

(a) vars(α) ⊆ vars(s) if α is an output action

(b) vars(α) ∩ vars(s) = ∅ if α is an input action

(c) ivars(α) ⊆ vars(s) ∧ ovars(α) ∩ vars(s) = ∅
if α is a function invocation

2. a guardγ such thatvars(γ) ⊆ vars(s), and

3. vars(t) ⊆ vars(s) ∪ vars(α).

For example, Figure 1(a) shows an STS representation
of the Health4U service described in Section 2. Here,
a transition from states2 to s4 is annotated with an
input transition function?gotSocSecNum(SSN) (which
corresponds to item 1(b) in Definition 1) and a guard
[avail=1] (which corresponds to item 2 in Definition
1). It can be also observed thatvars(s4) ⊆ vars(s2) ∪
vars(?gotSocSecNum(SSN) ).
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Semantics of STS. The semantics of an STS is given with
respect to substitutions of variables present in the system. A
state represented by the terms is interpreted under substi-
tutionσ (sσ). A transitions

γ,α
−→ t, underlate semantics, is

said to beenabledfrom sσ if γσ = true . The transition
under substitutionσ is denoted bysσ

ασ
−→ tσ.

Suchlate semanticsform a natural interpretation of STSs
by capturing the substitutions of input-variables at the des-
tination state of a transition. For instance, consider an input

transition of the forms
?m(~x)
−→ t. From the definition of STS,

~x ∩ vars(s) = ∅. A consequence of late semantics is that
if t contains elements in~x, their valuations are left to be
interpreted by guards in subsequent transitions.

Equivalence betweenSTSs. To identify equivalentSTSs
in the presence of guarded transitions with input/output ac-
tions, function invocations and unobservable actionsτ , we
will use weakand late bisimulation equivalence relation.
Given anSTS = (S,−→, s0, SF ), the weak, late bisimula-
tion relation with respect to substitutionθ, denoted by≈θ

w,
is a subset ofS × S such that

s1 ≈θ
w s2 ⇒

{

(∀s1θ
α1θ
−→ t1θ :∃s2θ

α2θ
−→w t2θ :∀σ : (α1θσ = α2θσ)

∧t1 ≈θσ
w t2)

}

∧ s2 ≈θ
w s1

(1)

In the above,s2θ
α2θ
−→w t2θ denotes transitive closure of

transitions overτ transitions, i.e., a transition may contain
zero or moreτ transitions preceding and following action
α2. Furthermore,α can be anǫ or empty transition. Two
states are said to be equivalent with respect to weak, late
bisimulation, under the substitutionθ, if they are related by
the largestbisimilarity relation≈θ

w. Two STSs are said to
be bisimulation equivalent if and only if their start statesare
bisimilar.

For example, consider checking the bisimilarity of states
p1 andq1 in the the STSs given in Figure 3. The statep11(x)
is bisimilar toq11(x) whenx = 0, and is bisimilar toq12(x)
whenx 6= 0. Similarly, p12(x) is bisimilar toq11(x) when
x 6= 0, and is bisimilar toq12(x) whenx = 0. However,
p1 andq1 are not bisimilar as the input action?c(x) from
p1 to p11(x), if matched with input action?c(x) from q1 to
q11(x), demands thatp11(x) andq11(x) are bisimilar for all
possible valuations ofx (i.e., for bothx = 0 andx 6= 0).

Definition 2 (Parallel Composition ofSTSs) Given two
symbolic transition systemsSTS1 = (S1,−→1, s01, S

F
1 )

STS2 = (S2,−→2, s02, S
F
2 ), their parallel com-

position, under the restriction setL, is denoted
by (STS1 || STS2)\L = (S12,−→12, s012, S

F
12)

where S12 ⊆ S1 × S2, s012 = (s01, s02),
SF

12 = {(s1, s2) | s1 ∈ SF
1 ∧ s2 ∈ SF

2 } and −→12

relation is of the form:

?c(x)

111
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p p
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11 12
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Figure 3: Example Symbolic Transition Systems. (a)STS1 (b) STS2

1. s
g1,?m(~x)
−→ s′ ∧ t

g2,!m(~x)
−→ t′ ∧ m ∈ L ⇒

(s, t)
g1∧g2,τ
−→ (s′, t′),

2. s
g1,α
−→ s′ ∧ header(α) 6∈ L ⇒ (s, t)

g1,α
−→ (s′, t) and

3. t
g2,α
−→ t′ ∧ header(α) 6∈ L ⇒ (s, t)

g2,α
−→ (s, t′).

In the above, restriction setL includes the message headers
on which the participatingSTSs must synchronize and gen-
erate aτ action. We useheader(α) to return the message
header of input and output actions; for function invocation
andτ it returns a constant which is never present inL.

3.2 The Service Composition Problem

Given a goal serviceTg and a set of available compo-
nent servicesT1, T2, . . . , Tn, solving the service composi-
tion problem entails identifying a composition of the nec-
essary component services that realizes the functionalityof
Tg. In the setting ofparallel compositionthat is the focus
of this paper, this entails generating a choreographerTcr

which realizes the functionality ofTg by orchestrating the
necessary interactions among the selected component ser-
vices. As noted earlier, the choreographerTcr replicates
the behavior of the input/output actions of the goal and is
responsible for communications between component ser-
vices; it relies on the component services for function in-
vocations needed to realize the goal service. In MoSCoE,
the operation of the goal service as well as the component
services are represented by the corresponding STSs.

Based on the definition of parallel composition and
equivalence relation described in Section 3.1, and the pre-
viously introduced notion of a choreographer, the service
composition problem can be described as:

∃Tcr : (. . . ((Tcr||Ti)||Tj)|| . . . ||Tk)\L ≈true
w Tg

where,L contains all the input and output message headers
of the component services. Thus, solving a parallel service
composition problem entails to constructing a choreogra-
pher which can enable interaction between the component
services so as to yield a behavior that isequivalent(weak,
late bisimilar) to that of the desired goal service.
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/*
r is the goal state;si is the component state;t is the generated choreographer state.
G is the conjunction of guard conditions that will be accumulated along each DFS path. All variables inG are universally quantified.
R is a store that contains all the input& output message headers of the component services.

*/
1: proc generate(r, [s1, s2, . . . , sn], t, G, R)
2: {
3: if visited(r, [s1, s2, . . . , sn], t, G, R); // This path has already been traversed
4: else mark as visited(r, [s1, s2, . . . , sn], t, G, R);

5: forall (r
g, a
−→ r′) && ( G ∧ g) do

6: case 1: /* input action from the client */
7: a = ?m(~x) ⇒ create a transitiont

g,a
−→ t′; R := R ∪ ~x; call generate(r′, [s1, s2, . . . , sn], t′, G ∧ g, R ∪ ~x);

8: case 2: /* output action to the client */
9: a = !m(~x) ⇒ if (~x ∈ R) { create a transitiont

g,a
−→ t′; call generate(r′, [s1, s2, . . . , sn], t′, G ∧ g, R); }

10: else Requested output cannot be created for client. Return partial choreographer

11: case 3: /* function-invocation to be provided by the components */
12: a = funcName(I; O) && no si has a transition on the action a⇒
13: select the componentTi that is capable of generating the function;

14: if (si
gi,?m(~x)

−→ s′i) && ( ~x 6∈ R) {

15: if (m∈ FLij ) { msgH:=m; k := j;} else Return partial choreographer. Failure at action a.

16: while ((sk
gk,ak−→ s′

k
) && header(ak) 6= msgH) {

17: if (ak = ?mk(~y)) && ( ~y 6∈ R) {
18: if (mk ∈ FLkl) { msgH:= mk; k := l;}
19: } end of if-17
20: elseif((ak = ?mk(~y)) && ( ~y ∈ R)) || (ak = !mk(~y)) {
21: if (G ⇒ gk) {

22: create transitiont
G,ak−→ t′ to communicate withsk;

23: call generate(r, [s1, s2, . . . , s′
k
, . . . , sn], t′, G, R ∪ ~y); if (t′ is the root of a partial choreographer), select next transition

from sk; else break;
24: }
25: } // end of elseif-20

26: else{ Return partial choreographer. Failure at action a.; break; }

27: } // end of while-16

28: if (sk
gk,ak−→ s′

k
) && ( header(ak) = msgH) {

29: if (G ⇒ gk) {

30: create transitiont
G,ak−→ t′ to communicate withsk; call generate(r, [s1, s2, . . . , s′

k
, . . . , sn], t′, G, R ∪ vars(ak));

31: }

32: else{ Return partial choreographer. Failure at action a.;}

33: }

34: elseif(sk 6∈ SF
k

) || (funcName(I;O) 6∈ done) Return partial choreographer. Failure at action a.;

35: elsereturn;
36: } // end of if-14

37: elseif(si
gi,?m(~x)

−→ s′i) && ( ~x ∈ R) && ( G ⇒ gi) {

38: create transitiont
G,!m(~x)
−→ t′ to communicate withsi; call generate(r, [s1, s2, . . . , s′i, . . . , sn], t′, G, R);

39: }
40: }

41: elseif(si
gi,!m(~x)

−→ s′i) && ( G ⇒ gi) {

42: create transitiont
G,?m(~x)
−→ t′ to communicate withsi; call generate(r, [s1, s2, . . . , s′i, . . . , sn], t′, G, R ∪ ~x);

43: }
44: }

45: else{ Return partial choreographer. Failure at action a.; }

46: case 4:a = funcName(I; O) && si has a transition on action a⇒
47: if (si

gi, a
−→ s′i) && ( G ∧ g ⇒ gi)

48: done = done ∪ funcName(I;O) ; call generate(r′, [s1, s2, . . . , s′i, . . . , sn], t, G ∧ g, R ∪ ovars(a));

49: else Return thepartial choreographer with failure at guarded action (g,a).

50:}
Figure 4: Algorithm for Modeling the Choreographer& Failure-Cause Detection
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3.3 Synthesis of a Choreographer

We now proceed to describe an algorithm for construct-
ing a choreographer for a desired service from a set of
component services. Since the goal service specification
includes the descriptions of the desiredfunctions, we se-
lect the subset of component services whoseSTSs provide
the necessaryfunction invocations to yield a set of candi-
date component services which the choreographer can work
with.

Because the task of a choreographer is to orchestrate the
interactions among component services, the algorithm for
constructing the choreographer requires information regard-
ing dependencies between components, i.e., the dependency
of an input message of a component on the output of an-
other. For example, a componentTi requires an input of the
form ?m(~x) and a componentTj provides an output of the
form !m( ~x) , we say thatTi is dependent onTj via the mes-
sage headerm. In such a setting, the choreographer needs to
synchronize with the output message fromTj and pass on
the output ofTj as an input message toTi. To make this no-
tion of dependency more precise, we defineflow linkswhich
capture the dependencies between multiple component ser-
vices.

Definition 3 (Flow Links) For services Ti and Tj , if
?m(~x) and !m(~x) are present in the specifications of the
respective componentsSTSi and STSj , thenm is said to
be a member of the flow link (fromj to i component) set
denoted byFLij .

For example, consider the component servicese-Ride

(Figure 2(d)) andValidate (Figure 2(e)). In order for
e-Ride to reserve a ride, it needs valid payment informa-
tion. This information is provided byValidate after it
validates the credit card information provided by the pa-
tient. Hence, theremust bea flow link from Validate to
e-Ride .

The algorithm for modeling a choreographer (Figure 4)
that is “equivalent” to the goal service works as follows: the
proceduregenerate( r, [s1, s2, . . . , sn], t, G, R) is invoked
by providing the start states of the goal STS (r), the com-
ponent STSs inS (s1, s2, . . . , sn), and the choreographer
STS (t) that is being modeled. The initial guard condition
G is set totrue andR corresponds to a store that contains
all the input and output message headers of the component
services, which is initially empty. A global setdone is used
to keep track of whether a particular function invocation re-
quested by the goal service is realized in the composition.
There are four cases to consider:
Case 1:If the transition from the current stater in the goal
STS to stater′ has an input action, i.e., receiving a message
from the client, then a corresponding transition with the in-
put action is created in the choreographer (line 7 ) andR
is updated with themsgSet of the input action.

Case 2:If the transition from the current stater in the goal
STS to stater′ has an output action, i.e., transmitting a mes-
sage to the client, then a corresponding transition with the
output action is created in the choreographer if themsgSet

of the action is already present inR (line 9 ). Note that
here themsgSet required to produce the output message
can be only retrieved fromR (assuming it was placed there
as a result of preceding interactions between the component
services).
Case 3:This case corresponds to a situation in which the

transition action in the goal is a function invocationa and
none of the component services can provide a transition on
that action from their current statessi. In such a scenario,
the algorithm first selects a component serviceTi which can
provide the required functiona (line 13 )2. Now there are
three scenarios:si has an input action for which the chore-
ographer cannot provide input messages (line 14 ); si has
an input action for which the choreographer can provide in-
put messages (line 37 ); andsi has an output action (line

41).
The last two of the preceding three scenarios are eas-

ily dealt with: the choreographer transitions are generated
to provide appropriate output or input message as the case
may be and the proceduregenerate is invoked recursively.
Thus, in the last case, i.e.,line 41 , the storeR is updated
to include the output messages from the statesi. The first
scenario (line 14 ) is more involved. As themsgSet re-
quired at the input action from statesi is not present inR
(line 14 ), the flow links (Definition 3) are explored to de-
termine a componentTj which can provide the message as
output. However, it is possible thatTj , in turn, is at a state
sj which needs a different input or output message. If the
message is on input action provided by the choreographer or
if the message in on output action, then appropriate chore-
ographer transition is created andgenerate is invoked re-
cursively (lines 20--24 ). At line 22 , ak denotes the
complement ofak, i.e. ak :=!mk(~y) if ak =?mk(~y); oth-
erwiseak :=?mk(~y). In this case, after the recursive call
to generate , a new transition fromsk is selected at the
while-condition (line 16 ). If the input message atsj can-
not be provided by the choreographer another component
via flow link is selected and the process is iterated (lines

17--19 ).
Outside thewhile loop, if there exists a component

which has the output action at its current state (sk in Fig-
ure atline 28 ) required by the input action at statesi of
Ti responsible for providing the function invocation (lines

13,14,15 ), then the choreographer transition communicat-
ing with this component (line 30 ) is generated. Finally, at
line 34, 35 , if the statesk is not a final state or the global

2In practice, there might be more than one component service thatcan
provide the required atomic actiona, in which case, each choice is ex-
plored to find a feasible choreographer.
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storedone does not includefuncName(I;O) , i.e., there
exists a transition with function-invocation fromsk (fall-
through case fromlines 16,28 ) or funcName(I;O) re-
quirement is not provided along any of the paths by recur-
sion, then failure is reported; otherwise the procedure re-
turns with no error.
Case 4: Finally, this case considers a situation when the
transition action in the goal is a function invocationa and
there exists a componentTi which has a transition from its
current statesi on actiona (line 46--50 ). The message
storeR is updated with the return values of the function and
global storedone is updated to reflect thatfuncName(I;O)

invocation requirement is realized.
We use a constraint solver to check the (un)satisfiability

of guards on STS transitions. All the variables in the guard
are universally quantified. At present, MoSCoE works with
only equality and disequality constraints on infinite domain
variables for which satisfiability checking of guards is de-
cidable [2]3. The preceding algorithm may fail to construct
a choreographer because of either due to the absence of an
action that is necessary to achieve the goal service function-
ality or the unsatisfiability of guards. Analysis of the cause
of such failure is discussed Section 3.4.

3.3.1 Modeling a choreographer forHealth4U

In what follows, we show how to model a choreographer for
the Health4U composite service introduced in Section 2
using the formal framework and algorithm described above.
Figure 1(a) shows an STS representation of theHealth4U

goal service and Figure 2 shows the corresponding STSs of
a set of available services (as noted earlier, we assume that
the STS specifications of component services are supplied
to MoSCoE by the respective service providers). Given the
goal service specification and a set of available component
services, MoSCoE’s task is to construct a choreographer
(Figure 1(b)), which enables the interaction between the
client and component services, and is “bisimulation equiv-
alent” to the goal service.

MoSCoE begins with the start states0 of the goal STS
and considers its transition to states1. Here, the tran-
sition takes place due to an input action?makeApp( . . .)

from the client (Case 1), so MoSCoE creates an appro-
priate transition (c0 −→ c1) in the choreographer to re-
ceive the input message. For the transitions1 −→ s2 in
the goal STS, the associated action is a function invoca-
tion (SearchPhy( . . .) ). However, since none of the current
component states (t0, t8, t12, t16, t22) can make a transition
on this action (Case 3), MoSCoE first selects the compo-
nent Appointment because it can provide the requested
function, and then creates an appropriate transition in the

3Investigation of larger classes of infinite state systems forwhich the
construction of choreographer can be made decidable [8] is a topic of on-
going research.

choreographer to send a message toAppointment . Once
Appointment executes the functionSearchPhy( . . .) , it
transmits an output message (in this case, indicating the
availability of physician(s) for treatment of the ailment on
the requested date and time). This behavior is modeled
by the choreographer in the transitionc2 −→ c3 (Case 1)
which receives the message fromAppointment . Depend-
ing on whether a physician is available or not, MoSCoE
creates transitionsc3 −→ c4 andc3 −→ c5 to send/receive
output/input message to/from the client (Cases 2& 1), re-
spectively. MoSCoE proceeds in a similar fashion to model
transitions for function invocationsInsInfo( . . .) and
PrevRec( . . .) , and reach goal states5 and choreographer
statec8. Now, to model a corresponding transition for func-
tion invocation AppPhy( . . .) , the choreographer refers to
the message storeR for previous message exchanges be-
tween the client and component services, and generates an
output message!inPhy(avail,elig,pre) . Note that
the values for the variables (avail, elig, & pre ) in
the message were placed inR as a result of previous mes-
sage exchanges between the choreographer and component
services. SinceR contains every message that the chore-
ographer receives from the client and the component ser-
vices, to select the relevant components (and their mes-
sages), the choreographer exploits the flow links (Definition
3) between the components, as illustrated in Case 3 of the
algorithm. This process for constructing the choreographer
terminate with success when for each transition leading to
a final state in the goal, a corresponding transition in the
choreographer is established.

Now we proceed to discuss the scenario in which the
algorithm for constructing a choreographer fails.

3.4 Analyzing the Failure of Composition& Reformu-
lation of the Goal

The algorithm described in Figure 4 for constructing a
choreographer that realizes a specified goal service using
the available component services fails when some aspect of
the goal specification cannot be realized using the available
component services. In the event of such failure, MoSCoE
seeks to provide to the user information about the cause of
the failure in a form that can be used to reformulate the
goal specification. Recall that choreographer construction
fails when there exists no choreographer that can enable the
interaction among the available components to realize a be-
havior that is “bisimulation equivalent” to that of the goal
service. In particular, bisimulation equivalence is not satis-
fied when:

1. The choreographer composed with components fails to
create weak transition relation (see weak bisimilarity
relation in Section 3.1). Weak transitions are generated
by transitive closure ofτ -transitions obtained via syn-
chronization between choreographer and components.
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Figure 5: STS representation of (a)e-Ride ’ (b) e-Ride ”

2. The actions between the goal and component transi-
tions do not match.

3. The guard conditions are unsatisfiable.

Returning to the choreographer construction algorithm
(Figure 4), we note that failures might be encountered dur-
ing different stages of execution of the algorithm. For in-
stance,line 10 might result in a failure cause correspond-
ing to Case 1 because the messages required for generating
the output message to the client are not present inR. Simi-
larly, in lines 15 and26 the failures might arise because
either the input message required by a component services
cannot be provided by some other component service or by
the client itself. Inline 32, 49 , failure might occur be-
cause the guard conditions do not hold (the guards on the
component transition are stronger than those on the goal).
Finally, a failure could occur when there is a mismatch be-
tween an action that is required by the goal and actions that
are provided by the available components (seelines 34,

45).

3.4.1 Failure Cause Analysis forHealth4U

In our example from Section 2, suppose we replace the
e-Ride component service (Figure 2(d)) with component
servicese-Ride ’ and e-Ride ” yielding two separate in-
stances of theHealth4U composition problem (Figure
5)(a)& 5(b)). Suppose the behavior ofe-Ride ’ is exactly
the same as that ofe-Ride , but it additionally requires a
phone number to reserve a ride. Suppose on the other hand
that e-Ride ” can only reserve a ride if the time for pick-
up is before 4pm. Note that in both these instances, the
algorithm for constructing the choreographer fails when it
encounters the transitions8 −→ s9 in the goal STS (see
Figure 1(a)). Specifically, in the case of the component ser-
vice e-Ride ’, the actions for Health4U ande-Ride ’ do
not match, whereas in the case ofe-Ride ”, the correspond-
ing guard condition is not satisfied. Thus, in the case of
e-Ride ’ a failure results from an exception being raised ei-
ther at line 34 or 45, indicating that a particular action

present in the goal STS does not match with the component
action for the particular transition. In the case ofe-Ride ” a
failure arises due to an exception being raised either atline

32 or 49, indicating a mismatch in guards for the corre-
sponding transition relation in the goal STS. MoSCoE pro-
vides such information about the cause of a failed attempt
at service composition to the service developer. The de-
veloper can then reformulate the original goal specification
(e.g., changing the function parameters or pre-conditions)
to realize a suitable choreographer. These steps can be iter-
ated until such a choreographer is eventually realized or the
user decides to abort.

3.5 Analysis of the Composition Algorithm

Theorem 1 (Sound& Complete) Given a goal service
Tg with start state s0g and n component services
T1 . . . Tn with the corresponding start statess01 . . . s0n the
procedure generate(s0g, [s01, s02, . . . , s0n], t0, true, ∅)
(Figure 4) is guaranteed to terminate with a chore-
ographer Tcr with start state t0 if and only if
(. . . ((Tcr||T1)||T2)|| . . . ||Tn)\L ≈truew Tg whenever
such a choreographer exists, and with failure otherwise.

Proof Sketch:. We prove the theorem
by contradiction. Suppose the procedure
generate (s0g, [s01, s02, . . . , s0n], t0, true, ∅) (Fig-
ure 4) yields a choreographerTcr with start statet0 which
when used to orchestrate the component services under the
restrictions imposed by the guardsL, fails to realize the
goal serviceTg, i.e., the composition is not bisimulation
equivalent toTg. There are four cases to consider:(i) for
an input action inTg, there is no corresponding input action
in Tcr; (ii) for an output action inTg, there is no corre-
sponding output action inTcr; (iii) a function-invocation
present inTg is not modeled by the composition; and
finally (iv) some sequence of actions in the goal is not
provided by the composition due to the unsatisfiability of
one or more guards.

However, case(i) is ruled out by the algorithm because
for each message sent from the client toTg, a correspond-
ing input action is created inTcr to receive the message
(Case 1 ofgenerate ). Case(ii) is ruled out because for
each output message that is to be sent to the client (as mod-
eled inTg), a corresponding output action is created inTcr

if that message can be retrieved from the message storeR
(otherwise an exception is raised resulting in terminationof
the algorithm with failure (Case 2 ofgenerate )). Case
(iii) is ruled out because the function invocations inTg are
modeled by first determining the component(s) that can pro-
vide the relevant functions and then creating the relevant
transitions inTcr to communicate with the respective com-
ponent(s) (otherwise the algorithm terminates with failure).
Note that the communications betweenTcr and anyTi leads
to transitions labeled byτ (Definition 2). The desired goal-

8



function will be matched by the composition after zero steps
if there is a component at a state with outgoing transition la-
beled by the function; otherwise the composition will lead
to a state with an outgoing transition labeled by the desired
function, after multipleτ -steps representing component-
choreographer synchronous communications. Finally, in all
the above cases, if the guards do not match or the guards in
the component(s) are stronger than those inTg (andTcr),
the algorithm terminates with an appropriate failure cause,
thereby ruling out case(iv).

Next, consider the case where there exists a choreog-
rapher Tcr that can orchestrate the component services
T1 . . . Tn under the constraints imposed byL to realize the
behavior specified byTg but the proceduregenerate ter-
minates with a partialTcr or fails to terminate. We can rule
out this possibility of generation of partialTcr through an
argument similar to the one used above. Finally, the com-
ponent servicesTis and the goal serviceTg are defined over
guarded transitions with no variable operations. As such the
variable domain can be finitely partitioned making the state-
space of the component and the goal services finite. There-
fore, the proceduregenerate , which exhaustively explores
the state-space of the services, terminates for all possible
valuations of the variables.

Complexity. The worst-case complexity of the composi-
tion algorithm is determined by the number of recursive
invocations ofgenerate . Assume that|Tg| is the num-
ber of states in the goal service STS,|Tc| is the number
of states in each component service STS, andn is the to-
tal number of component services. In the worst case, each
state in the goal STS can be associated with any poten-
tial combination of states in the component STSs, yielding
|Tc|

n combinations. Additionally, each pairing of a goal
state with a combination of component states is interpreted
in the context of a guardG and the messages stored in
R. Guards and message stores are updated whenever the
proceduregenerate explores a transition from a goal or
a component state. The number of distinctGs andRs is
O(2|Tg|×|Tc|

n

). The worst-case complexity ofgenerate is
therefore O(|Tg| × |Tc|

n × 2|Tg|×|Tc|
n

)4.

4 Related Work
A variety of approaches to automated service composi-

tion, based on the planning techniques of artificial intelli-
gence, logic programming, and automata-theory have been
developed (see [5,7] for a survey).

Of particular interest in the context of the work described
in this paper are approaches to service composition within a
transition system based framework. Fu et al. [6] model Web

4However, domain-specific information about component services
(e.g., a partial-order among services), if available, can beused to reduce
the complexity of composition by a priori ruling out some of the possible
combinations that would otherwise have to be tried.

services as automata extended with a queue, and commu-
nicate by exchanging sequence of asynchronous messages,
which are used to synthesize a composition for a given spec-
ification. Their approach is extended in Colombo [4] which
models services as labeled transition systems with compo-
sition semantics defined via message passing, where the
problem of determining a feasible composition is reduced to
satisfiability of a deterministic propositional dynamic logic
formula. Our framework has been inspired by, and builds
on insights from Colombo.

Pistore et al. [12, 13, 17] represent Web services using
non-deterministic state transition systems, which commu-
nicate through message passing. This approach constructs
a parallel composition ofall the available component ser-
vices and then generates a plan that controls the services,
based on the functional requirements specified using a tem-
poral logic-based language. In contrast, services (goal and
components) in our framework are represented using Sym-
bolic Transition Systems augmented with guards over vari-
ables with infinite domains. We avoid the expensive step
of generating a parallel composition ofall the available
services before developing a controller, by constructing
a choreographer on-the-fly, i.e., transitions in the compo-
nents and goals are explored by our algorithm as and when
needed.

Model-driven techniques for service composition where
standard UML tools are used to provide a higher level of
abstraction of the desired composite service have received
some attention in the literature. For example, SELF-SERV
[3] uses state-charts for modeling composite services. Sko-
gan et al. [14] use UML for capturing composite Web ser-
vice patterns. Timm and Gannod [16] rely on translation
into OWL-S of semantic web services specified in UML.

The proposed framework, MoSCoE, works with abstract
specification of a goal service either directly using STS or
indirectly using UML state machines [10] which can be
translated into STS. As noted earlier, MoSCoE is inspired
by Colombo, and several of the other approaches to service
composition cited above. MoSCoE is unique in its abil-
ity to identify of reasons for failure of an attempt to com-
pose a goal service using available components, which to-
gether with its ability to work with abstract (and possibly
incomplete) goal service specifications, provides a basis for
failure-guided iterative reformulation of the goal service.

5 Summary and Discussion

We have addressed the problem of realizing a desired
composite service through a parallel composition of a sub-
set of available component services. Specifically, we have
presented a theoretically sound and complete algorithm for
constructing a choreographer that enables the interactions
among component services to realize the behavior of the
desired goal service. We use Symbolic Transition Systems
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(STSs) augmented with state variables over an infinite do-
main and guards over transitions to model the services. A
unique feature of the proposed approach is its ability to
work with an abstract (possibly incomplete) specification
of a desired goal service. In the event the goal service can-
not be realized (either due to incompleteness of the speci-
fication provided by the developer or the limited function-
ality of the available component services), the proposed al-
gorithm identifies the causes for failure and communicates
them to the service developer. The resulting information
guides further iterative reformulation of the goal serviceun-
til a composition that realizes the desired behavior is real-
ized or the user chooses to abort. These results complement
our previous results on the sequential composition of ser-
vices [10].

So far, our framework for modeling service composition
and execution has focused on services which demonstrate
a deterministic behavior without loops. Handling non-
deterministic behavior that often characterizes real-world
services is an important area of ongoing research. We also
plan to investigate the complexity of incorporating services
with loops in our composition algorithm.

In this paper, we have assumed that the component ser-
vices are all specified using variable, function, relation
names and constants based on common semantics, an as-
sumption that is unlikely to hold in the case of services
offered by autonomous service providers. In this context,
approaches based on inter-ontology mappings to bridge the
semantic gap between semantically heterogeneous services
[11] deserve further investigation. We also assumed that
the component services are published using STSs. In prac-
tice, these specifications can be obtained from service de-
scriptions provided in high-level languages such as BPEL or
OWL-S by applying translators proposed in [13,17]. How-
ever, in our case, the translators in [13, 17] will have to
be enhanced to handle pre-conditions of atomic functions
which correspond to guards in transitions of STSs.

The practical feasibility of approaches to any approach
to automated service composition is ultimately limited by
the computational complexity of the service composition
algorithms. Hence, approaches to reducing the number of
candidate compositions that need to be examined e.g., by
exploiting domain specific information to impose a partial-
order over the available services, or reducing the number of
goal reformulation steps needed by exploiting relationships
among failure causes or between failure causes and services
or between services needs further investigation.

Other work in progress is aimed at translating the chore-
ographer into executable code for realizing the composite
service. More details are available athttp://www.cs.
iastate.edu/ ˜ jpathak/moscoe.html .
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