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Abstract. In many application domains, there is a need for learning algorithms 
that generate accurate as well as comprehensible classifiers. In this paper, we 
present TRIPPER - a rule induction algorithm that extends RIPPER, a widely 
used rule-learning algorithm. TRIPPER exploits knowledge in the form of tax-
onomies over the values of features used to describe data. We compare the per-
formance of TRIPPER with that of RIPPER on benchmark datasets from the 
Reuters 21578 corpus using WordNet (a human-generated taxonomy) to guide 
rule induction by TRIPPER. Our experiments show that the rules generated by 
TRIPPER are generally more comprehensible and compact and in the large ma-
jority of cases at least as accurate as those generated by RIPPER.      

1. Introduction 

Knowledge discovery aims at constructing predictive models from data that are both 
accurate and comprehensible. Use of prior knowledge in the form of taxonomies over 
attribute values offers an attractive approach to this problem.  

Several authors have explored the use of taxonomies defined over attribute values 
to guide learning. Zhang and Honavar developed a Decision Tree [8] and a Naive 
Bayes [9] learning algorithm that exploit user-supplied feature value taxonomies. 
Kang et al [2] introduced WTL, Word Taxonomy Learner for automatically deriving 
taxonomies from data and a Word Taxonomy-guided Naive Bayes (WTNBL-MN) 
algorithm for document classification. Michalski [7] has proposed a general frame-
work of attributional calculus that can be seen as an alternative way of representing 
rules containing abstractions.  Additional references to related work can be found in 
[9,11].  Against this background, we present a rule induction method that exploits 
user-supplied knowledge in the form of attribute value taxonomies to generate rules at 
higher levels of abstraction, named TRIPPER (Taxonomical RIPPER). We report 
results of experiments that demonstrate the promise of the proposed approach on a 
widely used benchmark data set (the Reuters text classification data set [10]). 

 
 
 
 



2. Method 

RIPPER (Repeated Incremental Pruning to Produce Error Reduction), was proposed 
by Cohen [1]. It consists of two main stages: the first stage constructs an initial ruleset 
using a rule induction algorithm called IREP* [4]; the second stage further optimizes 
the ruleset initially obtained. These stages are repeated for k times. IREP*[1] is called 
inside RIPPER-k for k times, and at each iteration, the current dataset is randomly 
partitioned in two subsets: a growing set, that usually consists of 2/3 of the examples 
and a pruning set, consisting in the remaining 1/3. These subsets are used for two 
different purposes: the growing set is used for the initial rule construction (the rule 
growth phase) and the pruning set is used for the pruning (the rule pruning phase). 
IREP* uses MDL[5] as a criterion for stopping the process.  

The rule growth phase: The initial form of a rule is just a head (the class value) 
and an empty antecedent. At each step, the best condition based on its information 
gain is added to the antecedent. The stopping criterion for adding conditions is either 
obtaining an empty set of positive instances that are not covered or not being able to 
improve the information gain score. 

The rule pruning phase: Pruning is an attempt to prevent the rules from being too 
specific. Pruning is done accordingly to a scoring metric denoted by v*. 

IREP* chooses the candidate literals for pruning based on a score which is applied 
to all the prefixes of the antecedent of the rule on the pruning data. The score is de-
fined as: 
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where p / n denote the total number of positive / negative instances covered by the 
rule. The prefix with the highest v* score becomes the antecedent of the final rule. 
 Before introducing TRIPPER, it is helpful to formally define a taxonomy: 
 Taxonomy: Let S = {v1, v2, ... vn} be a set of feature values. Let T be a directed 
tree where children(i) denotes the set of nodes that have incoming arrows to the node 
i. A node i is called leaf if it has no children. A taxonomy Tax(T,S) is a mapping 
which assigns to a node i of the tree T a subset S’ of S with the following properties: 
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    1. TRIPPER(G) - improvement at rule growth phase: Introducing the taxonomi-
cal knowledge at the rule-growth phase is a straightforward process we call feature 
space augmentation.  The augmentation process takes all the interior nodes of the 
attribute value taxonomy and adds them to the set of candidate literals used for the 
growth phase. 

2. TRIPPER(G+P) - improvement at rule pruning phase: A more general ver-
sion of feature selection than pruning is abstraction: in the case of abstraction, instead 
of casting the problem as a matter of preserving or discarding a feature, we are able to 
choose from a whole range of levels of specificity for the feature under consideration. 



 
 
 
 
 

 
 
 

 
 
 

Fig. 1. Taxonomy over a set of nouns. Pruning and abstraction on a taxonomy. 
  
 The effect on the resulting rule can be observed in the following example: 
[original rule]  - (rate = t) and (bank = t) and  (dollar = t) => is_interest 
[pruned rule]  - (rate = t) and (bank =t) and (any_concept = t) => is_interest  
[abstracted rule]  - (rate = t) and (bank = t) and (monetary_unit= t) => is_interest  

Example 1:  Variants of a classification rule for the class “interest” 

 The algorithm Prune_by_abstraction (fig.2.) uses exactly this idea to incremen-
tally search for useful abstractions for the literals in the suffix to be pruned according 
to the v* score of the rule prefixes. 
 

Prune-by-abstraction(Rule,PruneData) 

PrunedRule=PruneRule(Rule,PruneData)  
Score=v*(PrunedRule,PruneData) 
PrunePos=GePrunePos(PrunedRule), Level=0 
While(improvement) 
 Improvement=false, Increase(Level) 
 For j:=PrunePos to size(Rule) 
  AbstrRule=PrunedRule 
  For i:=j to size(Rule) 
    Literal=Rule(i) 
    AbstrRule:=AbstrRule^Abstract(Literal, 
    Level) 
  If(v*(AbstrRule, PruneData)>Score) 
    Update(Score) 
    WinRule=AbstrRule, Improvement=true 
Return WinRule  

Fig. 2. Prune by Abstraction pseudocode 

 
 
 
 
 



3. Experiments 

Experimental setup: Experiments were performed on the benchmark dataset Reuters 
21578 using the ModApte split [10] of training and testing data. Following the ex-
perimental setup used in [6], only the ten biggest classes in the dataset were used. As 
in [6], only the 300 best features were used as inputs to the classifier. The experiments 
compare RIPPER with TRIPPER (G+P) . The text-specific taxonomies used for our 
experiments on the Reuters dataset comes from WordNet[3], using only the hy-
pernimy relation that stands for “isa” relation between concepts.  
Results: Our experiments show that: (a) TRIPPER (G+P) outperforms, or matches 
RIPPER in terms of break-even point on the Reuters dataset  (Table 3-1) in a majority 
(8 out of 10) of classes; (b)  TRIPPER generates more abstract (and often more com-
prehensible) rules than RIPPER: Table 3-2 shows some of the abstract literals discov-
ered to be important for 3 of the 10 classes. Furthermore, the rules generated by 
TRIPPER(G+P) are often more concise than those generated by RIPPER (results not 
shown) [11]. 

Table 3-1. Comparison of performance (break even point) of TRIPPER and RIPPER using WN 

Class Acq Corn Crud Earn Grn. Inter Mon Ship Trd. Wht. 

Trip. 86.3 85.7 82.5 95.1 87.9 71.5 70.4 80.9 58.9 84.5 

Ripp. 85.3 83.9 79.3 94 90.6 58.7 65.3 73 68.3 83 

 Table 3-2. Abstract literals from WordNet 

Class subject Abstract literals 
Crude Oil assets, chemical_phenomenon, chemical_element, finan-

cial_gain, macromolecule, magnitude_relation, process, 
worker 

Money, 
Foreign  
Exchange 

artifact, assets, businessperson, document, institution, loca-
tion, medium_of_exchange, measure, organization, signal, 
social_ event, solid 

Trade assembly, assets, calendar_month, change_of_magnitude, 
mass_unit, outgo, signal 

 
 The usefulness of abstraction is confirmed by the prevalence of abstract literals in 
almost all the rules of every ruleset. Both of the phases (growth and pruning) gener-
ated improvements (results not shown) [11], lending empirical support for the idea 
that both of the extensions are useful. 

4. Conclusions 

TRIPPER is a taxonomy-based extension of the popular rule-induction algorithm 
RIPPER [1]. The key ingredients of TRIPPER are: the use of an augmented set of 



features based on taxonomies defined over values of the original features (WordNet in 
the case of text classification) in the growth phase and the replacement of pruning, as 
an overfitting avoidance method, with the more general method of abstraction guided 
by a taxonomy over the features. The experiments briefly summarized in this paper 
show that TRIPPER generally outperforms RIPPER on the Reuters text classification 
task in terms of break-even points, while generating potentially more comprehensible 
rule sets than RIPPER. It is worth noting that on the Reuters dataset, TRIPPER 
slightly outperforms WTNBL [2] in terms of break-even points on 7 out of 10 classes. 
 The additional computation cost of TRIPPER is small when compared with 
RIPPER, consisting in an additional multiplicative factor that represents the height of 
the largest taxonomy, which in the average case scales logarithmically with the num-
ber of feature values.  
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