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ABSTRACT 

Many real-world data sets are organized in relational databases consisting of multiple 

tables and associations. Other types of data such as in bioinformatics, computational biology, 

HTML and XML documents require reasoning about the structure of the objects. However, 

most of the existing approaches to machine learning typically assume that the data are stored 

in a single table, and use a propositional (as opposed to relational) language for discovering 

predictive models. Hence, there is a need for data mining algorithms for discovery of a-priori 

unknown relationships from multi-relational data. 

This thesis explores a new framework for multi-relational data mining. It describes 

experiments with an implementation of a Multi-Relational Decision Tree Learning (MRDTL) 

algorithm for induction of decision trees from relational databases based on an approach 

suggested by Knobbe et al., 1999. Our experiments with widely used benchmark data sets 

(e.g., the carcinogenesis data) show that the performance of MRDTL is competitive with that 

of other algorithms for learning classifiers from multiple relations including Progol 

(Muggleton, 1995)  FOIL (Quinlan, 1993), Tilde (Blockeel, 1998). Preliminary results 

indicate that MRDTL, when augmented with principled methods for handling missing 

attribute values, is likely to be competitive with the state-of-the-art algorithms for learning 

classifiers from multiple relations on real-world data sets drawn from bioinformatics 

applications (prediction of gene localization and gene function) used in the KDD Cup  2001 

data mining competition (Cheng et al., 2002). 
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11..  IINNTTRROODDUUCCTTIIOONN  

Brief introduction to Knowledge Discovery in Databases (KDD) and data mining is 

given together with the main motivations for (multi)-relational learning. 

1.1. Knowledge Discovery in Databases and Data Mining 

Advances in information technologies are making possible for the scientific and industry 

communities to acquire, and store increased volumes of data in digital form, even more data 

than they can really process. This fact gave arise to a hybrid research field called Knowledge 

Discovery in Databases (KDD). Since its beginning, the research made in this field has been 

vast and is continuously growing. 

Through the literature in the subject, the terms KDD and Data Mining sometimes are 

used indistinctly. A more recent convention mentioned in (Blockeel, 1998) establishes that 

the process of knowledge discovery actually consists of three subtasks. The first task is to 

adapt the original format of the data to fit the input format of the data mining algorithm (Pre-

processing of the data). Once formatted the data, one or more algorithms must be applied to 

extract patterns, regularities or general laws from the data, this is the phase properly called 

Data Mining. Once the results of the data mining process are obtained they may require to be 

translated to a more intelligible format. This last stage is known as post-processing of the 

results. 

Essentially, KDD is concerned with the nontrivial identification and extraction of valid, 

novel, potentially useful, and ultimately understandable knowledge from (large) databases, 

and data mining is the central step in this process (Dzeroski and Lavrac, 2001). 



2 

 

Data mining is situated at the intersection of several scientific domains. It combines 

techniques from statistics, databases, computer graphics, artificial intelligence and machine 

learning. 

Data Mining algorithms can be classified into two broad categories: predictive or 

descriptive approaches. In predictive data mining, the aim is to induce a hypothesis that 

correctly classify all the given examples and can be used for classification of future, yet 

unseen, instances. The most popular example of predictive technique is decision tree 

induction (e.g., Quinlan’s C5 (Quinlan, Rulequest)). On the other hand, the goal in 

descriptive data mining is to characterize as much as possible, by finding patterns 

regularities, the given examples. Discovering of association rules is one example of this class 

of data mining techniques (De Raedt et al., 2001). 

There exist other analytical tools that explore data interrelationships, for instance OLAP 

(On-Line Analytical Processing). But the difference between KDD and these tools is in the 

approach they use. Many of the analytical tools available support a verification-based 

approach, in which the user hypothesizes about specific data interrelationships and then uses 

the tools to verify or refute those hypotheses. The effectiveness of this approach relies mainly 

in the knowledge of the domain in question. On the other side, the goal of data mining is to 

find patterns of influence. For instance, how does certain attributes affect the sales of a 

certain business. Efforts have been made to combine existing analytical tools such as OLAP 

and Data Mining techniques (e.g. (Information Discovery)). 

1.2. Relational Learning 

Traditionally, research in KDD has focused mainly on attribute-value learning where each 

example or instance can be characterized by a fixed set (tuple) of attributes for which values 

are given. The data set in this case can be viewed as a table (relation) where each row 

corresponds to an instance and each column to an attribute. The hypothesis language is 

propositional logic, where propositions are of the form “Attribute ⊕ value” where ⊕ is an 

element of a predefined fixed set of operators such as {<, ≥, =} (Blockeel, 1998).  

Most existing databases in different domains are not stored as a single relation, but as 

several relations for reasons of nonredundancy and storage and access efficiency. An 
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instance in a relational database can consist of several records fragmented across several 

tables. Furthermore, we can see the structure of a relational database as a way of representing 

some knowledge about the domain in question that adds to the information represented by the 

tuples themselves. Initially, attribute-value learning can not represent this kind of background 

knowledge or find relationships between different records from one or more tables. Although 

in principle, it is possible to reconstruct a single relation from multiple tables; such an 

approach is fraught with many difficulties in practice. Consequently, the task of learning 

from relational data or multi-relational learning has begun to receive significant attention in 

the literature (Blockeel, 1998, De Raedt, 1998, Knobbe et al., 1999a, Knobbe et al., 1999b, 

Friedman et al., 1999, Koller, 1999, Krogel and Wrobel, 2001, Getoor, 2001, Kersting and 

De Raedt, 2000, Kersting et al., 2000, Pfef01, Dzeroski and Lavrac, 2001, Dehaspe and De 

Raedt, 1997, Dzeroski et al., 2001, Jaeger, 1997, Karalic and Bratko, 1997). 

When using relational databases containing multiple relations, it is not always necessary 

to use a relational data mining algorithm. Luc De Raedt in (De Raedt, 1998) outlines how a 

special case of relational learning can be transformed into attribute-value learning. But in the 

general case, if we want to use traditional (propositional) learning algorithms then the 

multiple tables that a relational database consist of have to be collapsed into a single table. 

There are two general ways of transforming a multi relational database into a single relation. 

1. Create a universal relation which involves the join of all the tables to form a single 

one. There are some potential problems to this approach:  

• The resulting universal relation can be extremely large and impractical to handle. 

• Increased data redundancy resulting in a considerable increase in the size of the 

data set.  

• The data duplication resulting from flattening the data may introduce statistical 

skew (Getoor, 2001). 

• Attribute value learning becomes much more inefficient than first order 

(relational) learning on some kinds of problem (De Raedt, 1998). 

2. Transform a multiple relation database into a single relation by creating new attributes 

in a central relation that summarizes or aggregate information from other tables. This 

approach shares similar drawbacks with the first method plus an additional one. 
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Although the new attributes do not add more information about the examples in the 

database, it may not be easy to find appropriate ones. This stage may require a great 

amount of domain understanding and it is part of the knowledge discovery process. 

One way to deal with this is to let the attribute value learner itself to come up with 

good attributes (feature construction) or to enlarge the hypothesis space by allowing 

tests involving multiple attributes (e.g. attribute1 = attribute2)  (Blockeel, 1998).  

Finally, there are domains where reasoning about the structure of the objects and relations 

between them is inherently required (De Raedt et al., 2001). For example, Blockeel identifies 

a chemical database that describes molecules (molecules table) by listing the atoms (atoms 

table) and bonds (bonds table) that occur in them and using Mendelev’s periodic table of 

elements as background knowledge (mendelev table), where learning from multiple relations 

is desirable, and where joining the relations into a single one is not feasible unless a multiple-

instance learner is used (Blockeel, 1998). A multiple-instance learning task is one where each 

training example is represented by multiple instances (or feature vectors) (Dietterich et al., 

1997). If we do not use a multiple-instance learner, then all the atoms with their 

characteristics a molecule consists of have to be stored in one tuple with indefinite number of 

attributes. This is also applicable to the Mutagenesis database (Srinivasan et al., 1996) 

described in more detail in Chapter 4.  

Thus, there is a clear need for data mining techniques that take into consideration the 

relational representation of the domain of the task to be learnt.  

Most of the research done in this topic has been made in the field of Inductive Logic 

Programming (ILP), described in more details in the next chapter, with an extensive literature 

available. Most recently, other different techniques not based on logic formalisms (Getoor, 

2001, Knobbe et al., 1999a, Knobbe et al., 1999b) and others based on logic but not strictly 

ILP such as (Kersting and De Raedt, 2000) have been proposed with relevant success.  

A number of techniques proposed so far for relational data mining, in any of the 

previously mentioned fields, rely on their propositional counterparts. For example, the ILP 

systems Claudien, ICL, and Tilde are first order upgrades of propositional data mining 

algorithms that induce association rules, classification rules and decision trees respectively 

(De Raedt et al., 2001); the approach to relational reinforcement learning proposed in 
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(Dzeroski et al., 2001) is a combination of reinforcement learning and ILP; bayesian logic 

programs and probabilistic relational models are extensions of Bayesian networks to 

relational domains; finally the decision tree induction proposed in (Knobbe et al., 1999b) is a 

clear extension of logical decision trees used in Tilde, which in turn is based on propositional 

decision tree induction algorithm. Basically all of them follow a similar methodology to that 

mentioned in (De Raedt, 1998) to upgrade attribute-value learning algorithms to cope with 

relational learning. 

Figure 1.1 shows the relationships between propositional and relational learning 

algorithms previously mentioned. Next chapter expands on this taxonomy.  

 

Relational Learning Algorithms

Single table Multiple tables 

Propositional learning (Multi)-Relational learning 

DT NB BN AR CR ILP FOBN MRDM 

Progol

FOIL 

TILDE

ICL 

PRM

PLP

BLP

SLP 

MRDT 

Warmr

** 

Fig. 1.1:  Relationships between propositional and relational learning algorithms. Only the most 
representative algorithms of each class are shown. 
References: 
**: Proposionalization – join of tables FOIL: First Order Inductive Logic 
DT: Decision Tree 
NB: Naïve Bayes 

TILDE: Top-down Induction of First-order 
Logical Decision Trees 

BN: Bayesian Networks ICL: Inductive Classification Logic 
AR: Association Rules PRM: Probabilistic Relational Model 
CR: Classification Rules PLP: Probabilistic Logic Program 
ILP: Inductive Logic Programming BLP: Bayesian Logic Program 
FOBN: First Order Bayesian Networks SLP: Stochastic Logic Program 
MRDM: Multi-Relational Data Mining MRDT: Multi-Relational Decision Tree 
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1.3. Motivation 

Barring a few notable exceptions (Getoor, 2001, Kerst00), most of the research in the subject 

has been based on ILP techniques. But the use of ILP engines in real world applications has 

been limited due to input specification, lack of efficiency while not taking into account 

relational databases issues and it inability to deal with noise and missing values in the data. 

Therefore another approach that benefits from the vast research done in databases (mainly 

about efficiency), knowledge discovery and inductive logic programming where the database 

end user does not have to deal with a new formalism such as logic but instead use the direct 

relational representation of the database in question is attractive (Chapter 2 explains how ILP 

can be adapted to cope with relational databases not in prolog format). 

The multi-relational data mining framework proposed in (Knobbe et al., 1999a) is a novel 

approach that exploits the semantic information in the database making use of the known 

Structured Query Language (SQL) to learn directly from data in a relational database. The 

same authors, in (Knobbe et al., 1999b), introduce a general description of a decision tree 

induction algorithm, based on the multi-relational data mining framework and logical 

decision tree (Blockeel, 1998). To the best of our knowledge, there are no experimental 

results available concerning the performance of the algorithm for induction of decision trees 

from a relational database proposed in (Knobbe et al., 1999b). Therefore, this work 

concentrates in a possible implementation of a multi-relational decision tree learner 

(MRDTL) based on this framework using Java as the programming language and Oracle as 

the backend relational database; and compares the performance of MRDTL with several 

other approaches on some representative multi relational data sets including those used in 

KDD Cup 2001. 

The idea of shifting from ILP techniques to a search space consisting of database queries 

using SQL instead of logical clauses as the language bias and results from database theory as 

the next step in the relational data mining field had been already proposed in (Blockeel and 

De Raedt, 1997a). There, Blockeel et al. borrow techniques from ILP to tackle the problem 

of finding relationships between relations using relational algebra as the language bias. An 

equivalent algorithm using SQL is straightforward. That algorithm has not been implemented 

yet. 
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1.4. Organization of the Thesis 

Chapter 2 discusses some of the most relevant approaches to relational learning that have 

been studied on different Computer Science’s areas. 

Chapter 3 describes in more detail the multi-relational framework to which the relational 

learning algorithm implemented belongs together with an explanation of the own 

characteristics of the system. 

Chapter 4 details the relational databases used to test the performance of MRDTL, 

exposes results obtained with it and contrasts them with those results already in the literature 

for the same set of relational databases obtained with other techniques for relational data 

mining.  

Finally, Chapter 5 concludes the paper and enumerates possible future extensions. 
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2. RELATIONAL DATA MINING APPROACHES 

Three main directions can be distinguished in the area of relational data mining: 1) 

Inductive Logic Programming (ILP), where an extensive research has been made; 2) 

First order extensions of probabilistic models; and 3) Approaches that borrow ILP 

techniques but where the search space consist of database queries exclusively. 

This chapter discusses these three main approaches, characterizing them from a 

relational database point of view and concludes enumerating a series of recent 

techniques as well as extensions to some relational algorithms previously proposed. 

2.1. Inductive Logic Programming 

As its name indicates, ILP is situated at the intersection of two important areasof Computer 

Science: Induction that is one of the main techniques used in several Machine Learning 

algorithms to produce models that generalize beyond specific instances and Logic 

Programming which is the programming paradigm that uses first order logic to represent 

relations between objects and implements deductive reasoning. The main representative of 

this paradigm is Prolog.  

The initial focus of ILP was to develop algorithms for the synthesis of logic programs 

from examples and background knowledge (i.e. knowledge acquisition for some domain). 

More recent developments in ILP have considered classification, regression, clustering, and 

association analysis (Dzeroski and Lavrac, 2001). Thanks to its flexible and expressive way 

of representing background knowledge and examples, the field has also been expanded from 

the single-table case to the multiple-table one.  

For clarification purposes, a small ILP example (taken from (Lavrac, 2002)) is given 

below. 



9 

 

Let  

E+= {daughter(Mary, Ann), daughter(Eve, Tom)} be the positive examples of the 

relation daughter; 

E-= {daughter(Tom, Ann), daughter(Eve, Ann)} be the negative examples of the 

same relation; and 

B= {mother(Ann, Mary), mother(Ann, Tom), father(Tom, Eve), father(Tom, Ian),  

female(Ann), female(Mary), female(Eve), male(Pat), male(Tom), parent(X,Y) 

← mother(X,Y), parent(X,Y) ← father(X,Y)} be the background knowledge, 

where the relations daughter, mother, father, female, male, and parent have the common 

meaning. Then, the goal of this ILP problem is to learn the concept daughter. For predictive 

ILP, a solution could be the following synthesized clause: 

daughter(X,Y) ← female(X), parent(Y,X).  

or a set of definite  clauses: 

daughter(X,Y) ← female(X), mother(Y,X). 

daughter(X,Y) ← female(X), father(Y,X). 

Although induction is the inverse operation of deduction, the inductive process is more 

difficult than deduction. For deduction, we can use sound rules of inference but inductive 

inference involves unsound conjectures based on statistical support from data (Muggleton, 

1995). Due to this, there is not a well established ILP engine yet as there exists in deductive 

logic programming with Prolog. 

ILP has been one of the first approaches taken in relational learning and one of the most 

expanded. However its use in relational data mining solutions in KDD has been limited due 

to the existence of different ILP engines in terms of input specification (Knobbe et al., 2001), 

the language bias they use and the limited attention they pay to relational database theory. 

For example, if we try to run the exercise presented in (De Raedt et al., 2001) for the three 

ILP systems there described (Claudien, ICL and TILDE), or another example that is stored in 

a relational database, we will need to create a knowledge database if it is needed, code the 

examples using logical formalisms and adapt the input for each of the three systems (two of 
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them share the same input format specification). They do not exploit the capabilities of 

relational databases. 

A number of different techniques have been proposed to cope with the drawbacks of ILP: 

• In order to deal with the logic formalism and to unify the different input 

specifications of different ILP engines, (Knobbe et al., 2001) propose the use of 

Unified Modeling Language (UML) as the common specification language for a large 

range of ILP engines. The idea is to replace the logic-based formalism to specify the 

language bias with a language that is easy to use, can be used by a range of ILP 

systems, and can represent the complexity of the problem in a clear and simple way. 

In that way, even the non-expert users will be able to model their problems and use a 

wide range of ILP engines, choosing that one that best fits their current needs. 

• In (Blockeel and De Raedt, 1997a), three ways of bridging ILP and relational 

databases are presented. These are possible solutions to the problem of efficiency 

issues mentioned before. They are briefly described in order of adaptation of the ILP 

system to the database system.  

- The simplest one is pre-processing of the relational data to be transformed to 

Prolog syntax (an algorithm for this purpose is given in (Blockeel, 1998)).  

- The second possible bridge relies on the fact that some Prolog systems can be 

linked to relational databases. A relational database is available together with the 

Prolog knowledge base. Each time a literal p(a, b) has to be evaluated and the 

predicate p corresponds to a relation P in the relational database, Prolog has to 

open a connection and query the database to determine if the tuple (a, b) is in P.  

- The last bridge exploits the close relationships existent between first order logic 

and relational databases (a predicate is a relation between its arguments which 

are, in turn, attributes in relational databases) and between logical clauses and 

relational database queries. Therefore, entire logical clauses (not only a literal at a 

time as in the second approach) can be translated to SQL statements and 

submitted to the database to obtain statistics. Systems implementing this 

characteristic already exist. For example RDT/DB (Lindner and Morik, 1995) (cf. 
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(Blockeel and De Raedt, 1997a)) couples the ILP system RDT (Kietz and Wrobel, 

1992) with the Oracle database system. 

There exist several and different ILP engines and most of them can be placed within one 

of the two main logical approaches: learning from entailment and learning from 

interpretations. The first one is considered the classical setting, also called explanatory ILP 

(Blockeel, 1998) and most of ILP systems use this setting (e.g. RDT (Kietz and Wrobel, 

1992), Progol (Muggleton, 1995), FOIL (Quinlan, 1993a), SRT (Kramer, 1996), Fors 

(Karalic and Bratko, 1997)). Learning from interpretations is also called descriptive ILP and 

more recently, ILP engines based on this setting have begun to appear (e.g. Claudien, ICL, 

and Tilde (De Raedt et al., 2001)). An explanatory history of how learning from 

interpretations evolved from a descriptive technique to a predictive one is given in (Blockeel, 

1998). Additional approaches to ILP can be found in (De Raedt, 1997). 

The two main ILP approaches differ from each other in the way they represent the 

examples, the background knowledge and the way the final hypothesis is induced. In learning 

from interpretations each example e is represented by a separate Prolog program encoding its 

specific properties as sets of interpretations and the background knowledge B is given in the 

form of another Prolog program. The learning from entailment paradigm represents all the 

data together with the background knowledge as a simple Prolog program, there are no 

separations between examples. 

A hypothesis in the learning from interpretations setting is a set of clauses such that only 

each positive example together with the background knowledge makes each clause in the set 

true. In notation, being E+ and E- the sets of all positive and negative examples respectively, 

a hypothesis H has to be found such that 

)∧(in  false is :∈∀
)∧(in   trueis :∈∀ +

BeMHEe
BeMHEe

 

where )∧( BeM is the minimal Herbrand1 model of Be∧ . 

Whereas in the learning from entailment framework the induction problem is to find H 

such that the following entailment constraint holds 

                                                           
1 A brief but useful review about some basic concepts in first order logic can be found in (De Raedt, 1997). 
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eBHEe
eBHEe

 entailnot  ∧:∈∀
 entail ∧:∈∀ +

 

These definitions are given in (Blockeel, 1998), a slightly different definition for learning 

from interpretations is given in (Blockeel and De Raedt, 1997a) where they do not 

distinguish between positive and negative examples. 

In turn, within learning from entailment we can distinguish two principal approaches to 

the induction process: inverse deduction and a generalization of top-down induction 

techniques to the first-order case (Russel and Norvig, 1995). An example of the first case is 

Progol (Muggleton, 1995) that uses inverse entailment as a generalization and enhancement 

of previous techniques for inverse deduction and for the second approach FOIL (Quinlan, 

1993a), one of the first ILP systems using top-down induction. But, in learning from 

interpretations top-down induction of hypothesis is the most commonly used technique. 

Although it has been shown  that learning from interpretations reduces to learning from 

entailment (De Raedt, 1997), which in turn reduces to learning from satisfiability (learning 

from partial interpretations, where missing values are considered), an increased interest has 

been focused toward learning from interpretations in several recent ILP systems (e.g. 

(Blockeel, 1998, De Raedt et al., 2001). The latter is due to the fact that attribute value 

representations are a special case of this setting. But also, because many attribute value 

techniques exploit the independence of examples and the setting in question assumes also 

this independence through the separation of information between examples, then attribute 

value learning algorithms can be upgraded in a more trivial way to this setting than to 

learning from entailment as it has been shown by the systems Claudien, ICL and Tilde (De 

Raedt et al., 2001). This setting has also inspired the shifting from a pure logical search space 

to one consisting exclusively of database queries in relational algebra or SQL-like language 

in (Blockeel and De Raedt, 1997a, Knobbe et al., 1999a, Knobbe et al., 1999b). 

2.2. First Order Extensions of Bayesian Networks (BNs). 

Traditional approaches in attribute-value learning and learning from interpretations settings 

mentioned before assume data independence in order to come up with a hypothesis 

explaining the examples. Probabilistic models, most specifically Bayesian networks (Pearl, 



13 

 

1991), differ from those approaches by specifying a probability distribution over a fixed set 

of typically discrete random variables that could be the attributes in an attribute-value setting. 

Thus, Bayesian nets are a probabilistic extension of propositional logic (Kersting and De 

Raedt, 2000). One of their most important features is their capacity of reasoning under 

uncertainty. But, probabilistic models inherit the same limitations as propositional logic 

when they are applied to relational data. 

In order to address these limitations, several approaches for combining first order logic 

and Bayesian nets have been proposed. They have risen in different fields and under different 

circumstances. The most representatives are Probabilistic Logic Programs (PLPs) (Ngo and 

Haddawy, 1997) from logic programming; Relational Bayesian Networks (RBNs) (Jaeger, 

1997) from model theory and Probabilistic Relational Models (PRMs) (Koller, 1999) that 

have their foundations in the database field. In spite of their different background, they seem 

to share a common kernel represented by Bayesian Logic Programs (BLPs) as shown in 

(Kersting and De Raedt, 2000). This last approach is a simplification and reformulation of 

PLPs, so we will concentrate on this last one instead of the former one. 

2.2.1. Brief Introduction to Bayesian Networks 

Bayesian networks consist of two components: a qualitative one and another quantitative. 

The qualitative part is represented by a directed acyclic graph (DAG) where each node 

represents a domain variable (generally called random variables), and each arc represents a 

probabilistic dependency between two variables. The probabilistic dependency is the 

quantitative part represented through a conditional probability distribution for each node. An 

example of a Bayesian network taken from (Friedman and Koller, 2001) is shown in Fig. 1.1. 

The format in that figure is somehow different to the usual one, but this is to agree with the 

format of BLPs given below.  

A BN is a compact representation of probability distributions via conditional 

independence. A BN can compute the conditional probability for each value of a node given 

that values have been assigned to the other nodes. In this sense, BN classifiers can compute 

the conditional probability of a class value given the values of the other attributes. From the 

example in Fig. 1.1, where the conditional probability table for alarm node is given, we can 
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see that the alarm starting depends on the values of burglary and earthquake. For a more 

detailed description of BNs refer to (Jensen, 2001). 

 
There are several motivations to the use of BNs for relational data mining. The main one 

was mentioned in the first paragraph of this section and refers to the fact that BNs can 

naturally represent relationship among attributes and this is clearly needed in relational 

domains, but also they can represent dependencies between data. At the same time, they can 

make decisions under uncertainty. 

Another motivation to the use of Bayesian nets-based techniques for relational 

classification tasks is their intrinsic feature selection capacity based on the concept of 

Markov blanket of a node in the network. Basically, the Markov blanket of node n is the 

union of n’s parents, n’s children, and the parents of n’s children. For complete data, the 

random variables outside Markov blanket of node n can be deleted from the BN producing a 

smaller network. Making node n the attribute to be predicted in the classification process, all 

others nodes that do not belong to its Markov blanket can be deleted without affecting the 

classification accuracy of the network. This, together with information gain based feature 

filtering is a novel approach for attribute-value learning of high-dimensional data that has 

shown to be successful in several domains outperforming classical classification algorithms 

such as decision trees (Cheng et al., 2002).  

E B P(A|E,B) 

e b 0.9 0.1 
e -b 0.2 0.8 
-e b 0.9 0.1 
-e -b 0.01 0.99 

earthquake 

radio alarm

call

burglary

Fig. 2.1: Example of a quantitative component (dialog box) and the qualitative component (right) of a 
simple Bayesian network. 



15 

 

Finally, their structural representation makes the relationships between attributes easy to 

understand and can be modified by domain experts in order to obtain better predictive models 

or models with certain characteristics. 

One of the drawbacks of BNs is that generally the domain of each of the random 

variables has to be finite. Thus, some discretisation algorithm must be used before learning 

the network and its parameters, sometimes loosing some important information. 

2.2.2. Relational Bayesian Networks (Jaeger, 1997) 

In RBNs the nodes are predicate symbols corresponding to every relation r of some 

vocabulary S, the values of these random variables are the possible interpretations of the 

predicates over some finite domain. The semantic of a RBN is a probability distribution over 

the relations of S. 

The qualitative component of RBNs is represented by Probability Formulae (PFs) that 

employ combination functions as well as equality constraints. These PFs allow nested 

combination functions too and not only specify the CPT but also the dependency structure. 

2.2.3. Probabilistic Relational Models (Getoor, 2001) 

PRMs are an extension of BN to relational domain where the nodes of the network are the 

attributes of a relational database. The edges represent probabilistic dependences between 

attributes. These dependences between attributes are either true or false; they do not have 

certain probability of occurrence as in RBN. The semantic of a PRM is a probability 

distribution over the attributes and the relations that hold between them (Getoor, 2001). 

Like traditional BNs, PRMs consist of two components: the structure of the network and 

the parameters (conditional probability distribution) associated with it. For learning PRMs, 

(Friedman et al., 1999, Friedman et al., 2001) extend the techniques for learning BNs to learn 

from structured data. The two components mentioned before are the ones that have to be 

learned. As it happens in BNs, the parameter estimation is the easiest task of both and the key 

here is the likelihood function (i.e. the probability of the data given the model). The higher 

this probability, the better the model to predict the data. For structure learning three 

components need to be defined: the hypothesis space (which structures the algorithm can 

consider); a scoring function to evaluate each hypothesis relative to the data; and the search 
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algorithm. This last one is a heuristic and the most used one is the greedy hill-climbing 

search. 

2.2.4. Bayesian Logic Programs  

This kind of first order extension of Bayesian networks is introduced in (Kersting and De 

Raedt, 2000, Kersting et al., 2000) as a simplification and reformulation of PLPs, but also as 

a common framework for the previous mentioned approaches. 

In BLPs, the qualitative part of the Bayesian net is represented by a set of Bayesian 

definite clauses. The difference between this kind of clauses and classical clauses is that each 

ground atom in a BLP represents a random variable (Kersting and De Raedt, 2000). The set 

of random variables corresponds to the least Herbrand model of this logical program, i.e. the 

set of all ground atoms that are logically entailed by it. The parents of a certain random 

variable n are all facts directly influencing n. An example is given in Fig. 1.2.  

For a determined query, it is not necessary to compute the least Herbrand model of the 

complete logic program; we need to consider only those variables that influence the query 

result. A certain query (as in Fig. 1.2) asks for the probabilities of the clause of taking any of 

the values in its domain. The query ?- alarm(james) asks for the probabilities of 

alarm(james) = true and alarm(james) = false, for instance. 

 

 

lives_in(james, yorkshire). 
lives_in(stefan, freiburg). 
neighborhood(james). 
tornado(Yorkshire). 
burglary(X) | neighborhood(X). 
alarm(X)     | burglary(X). 
alarm(X)     | lives_in(X,Y), tornado(Y). 

neighborhood(james) 

lives_in(james, yorkshire) 

tornado( yorkshire) 

alarm(james) 

burglary(james)

Fig. 1.2: example of a Bayesian logic program (left) and the corresponding Bayesian structure 
for the query ?- alarm(james). (right) 
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The quantitative part is as in BN represented by conditional probability tables and 

combining rules stored for each node or literal. A query can be answered by using any 

Bayesian net inference engine. 

Figure 1.2 shows how a Bayesian net can be obtained from a logical program. An 

example of a Bayesian logic program obtained from a Bayesian network can be observed in 

Fig. 1.3. That program corresponds to the Bayesian net described in figure 1.1 of section 

2.2.1 of this chapter. 

 
Algorithms for learning BLPs (the qualitative and the quantitative parts) have been 

proposed in (Kersting et al., 2000) but have not been implemented yet. The authors of PRMs 

suggest that algorithms for learning their models can be adapted for BLPs too (Getoor, 2001). 

2.2.5. Combining First-Order Logic and Probability Theory 

Other approaches for combining first-order logic and probability theory (not only Bayesian 

networks) have been proposed, one of the most interesting is Stochastic Logic Programs 

(SLPs) (Muggleton, 1996). , Cussens, 1999, Muggleton 2000). 

Stochastic Logic Programs (SLPs) are a generalization of stochastic context-free 

grammars (Lari and Young, 1990) and Markov nets (or undirected Bayes net) (Cussen, 

1999). An SLP consists of a set of labeled clauses p:C where ]1,0[∈p , C is a first-order 

range-restricted definite clause (every variable in the head of C is the body too) and for each 

predicate symbol q the probability labels for all clauses with q in the head sum to 1. An SLP 

induces a probability distribution over the possible ground facts for a given predicate.  

burglary. 
earthquake. 
alarm         :- burglary, earthquake. 
radio        :- earthquake. 
call        :- alarm. 

Fig. 1.3: Bayesian logic program corresponding to the Bayesian net given in the introduction to 
this section. 
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An algorithm for learning SLPs is described in (Muggleton, 2000). Consists of two steps 

(as in Bayesian networks):  

1) Construction of the logic program (LP) with uniform probability labels for each 

clause and near maximal posterior probability with respect to the examples, and 

2) Parameter estimation to increase the posterior probability with respect to the 

examples.  

For the first part Muggleton used Progol4.5, i.e. the task of learning the structure of an 

SLP is based on ILP approaches. But step two uses a maximum likelihood approach, as most 

Bayesian approaches use, which is based on maximizing the posterior probability of the 

program. 

2.3. Multi-Relational Data Mining  

The term multi-relational data mining was first used by (Knobbe et al., 1999a) to describe a 

new approach for relational learning. Later this term was accepted to describe the multi-

disciplinary field that deals with knowledge discovery from relational databases and data 

which consists of complex/structured objects. In this section and next chapter, the term in 

question is used as proposed in (Knobbe et al., 1999a). 

The idea of shifting from a pure logical search space as in ILP to a search space 

consisting of database queries but borrowing techniques from ILP was firstly proposed in 

(Blockeel and De Raedt, 1997a), although for the best of our knowledge, that algorithm has 

not been implemented so far. That algorithm tries to find relationships between relations and 

it is given for relational algebra but a translation to a database query language such as SQL 

should not be difficult and would be more useful. 

That first attempt was motivated by the fact that most of the ILP systems were not 

integrated with a relational database but rather with a deductive database such as a Prolog 

database, connections to relational databases had to be done by using the techniques 

mentioned in section 2.1. Therefore, systems that exploit relational databases’ characteristics 

directly were needed. 

The same group then proposed a multi-relational data mining (MRDM) framework in 

(Knobbe et al., 1999a) that also borrows techniques from ILP but the search space consists of 



19 

 

SQL queries. This approach is detailed more precisely in the next chapter. Here, a brief 

introduction is given. 

MRDM framework can support a range of relational data mining algorithms 

generalizations of common attribute-value learning algorithms. Knobbe et al. showed this by 

adapting the Warmr algorithm (Dehaspe and De Raedt, 1997) which is an ILP generalization 

of the Apriori algorithm (Agrawal et al., 1996) to find association rules in multiple relations 

in (Knobbe et al., 1999a), and also by adapting the first order logical decision tree induction 

proposed in (Blockeel, 1998) that is a first order upgrade of the common top-down induction 

of decision tree in (Knobbe et al., 1999b). 

One of the first drawbacks to appear when the search space of a relational learning 

algorithm consists of structures considering relational databases queries only is that SQL has 

lower expressive power than first order logical clauses. For instance, if a concept consists of 

a recursive definition in terms of one or several relations, it can not be represented in 

relational algebra or SQL. This should not be a problem for most of the existing relational 

databases in different domains because the expressive power of non-recursive languages such 

as SQL is enough to query those databases (Blockeel and De Raedt, 1997a). 

Finally, SQL provides more possibilities than relational algebra and some different 

features than logic programming such as grouping, counting, etc. Then, it is expected that the 

search space be organized in a different way than the clausal logic space and the relational 

algebra space. 

2.4. Other Recent Approaches and Extensions 

When relational learning was introduced in the first chapter, the second way of transforming 

a multiple relations database into a single relation to which propositional learning algorithms 

can be applied to was the creation of new attributes in a central relation that summarizes or 

aggregate information from other tables in the relational database. Variants of this method 

have been used in systems such as LINUS (Lavrac et al., 1991) and DINUS (Lavrac and 

Dzeroski, 1994) (successor of the previous one). These two systems are examples of a class 

of ILP methods that transform restricted ILP problems into attribute-value form through the 

technique called proposionalization and solve the transformed problem with a propositional 
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learning algorithm. These two systems have some limitations that do not allow them to tackle 

some problems that can be present in relational databases such as non-determinate 

relationships (a record in one table can have more than one corresponding record in another 

table).  

More recently, (Krogel and Wrobel, 2001) introduce a new transformation-based ILP 

learner similar to the previous mentioned systems that can deal with non-determinate 

relationships, non-constrained literals and it is oriented to the business domain where the 

relational databases are often structurally simple, but large in size. This approach is called 

Rely on Aggregation, Sometimes (RELAGGS) and has been applied with significant success 

to learning problems from the business domain (Krogel and Wrobel, 2001) but also from the 

biology domain (Cheng et al., 2002). This feature construction method shows that if good 

attributes are constructed by the proposionalization algorithm, a feature-based learner can 

outperform relational learning techniques. 

Continuing in the same trend, (Neville and Jensen, 2000) propose the use of a simple 

propositional Bayesian classifier in an iterative way for relational domains. The approach 

keeps the relational structure and the objects are “flattened” when is required by the 

algorithm. Inferences made about an object can assist inferences about related objects; 

therefore, inferences made with high confidence about some objects are fed back into the 

database and used for posterior inferences about possible related objects. Although simple 

Bayesian classifier is an attribute-value learner, by keeping the relational structure of the data 

helps to perform the feedback procedure into related objects. 

In the framework of Probabilistic Relational Models, (Pfeffer, 2000) proposes an 

extension to this language in order to make PRMs capable of cumulative learning. A 

cumulative learning agent learns and reasons as it interacts with the world. Bayesian 

networks provide a natural framework for this kind of learning. This is different to those 

static relational approaches that take a snapshot of the relational database at some time, build 

the classifier and use it for unseen instances. The dynamic technique proposed in (Pfeffer, 

2000) modifies the learned model to represent the reality in a more fair way along the time. 

Approaches for mining structural data in form of graph have been proposed too (Holder 

and Cook, 2000, Gonzalez et al., 2000). In this framework, objects in the data correspond to 
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vertices in the graph, and relationships between objects correspond to directed or undirected 

edges in the graph. The Subdue system looks for patterns embedded in graphs. Once a 

pattern (substructure) is found, is added to the graph in order to simplify it by replacing 

instances of the substructure with the substructure itself. 
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33..  MMUULLTTII--RREELLAATTIIOONNAALL  DDAATTAA  MMIINNIINNGG  

This chapter introduces a framework recently proposed to mine relational databases 

searching through a space consisting of SQL queries only and it is based on the work 

by Knobbe et al. (Knobbe et al., 1999a, Knobbe et al., 1999b). This is preceded by a 

brief description of relational notation. 

It also describes an implementation of Multi-relational decision tree learning 

(MRDTL) algorithm for induction of decision trees from relational databases using 

the previously mentioned approach. 

3.1. Relational Vocabulary 

A relational database consists of a set of tables, },...,,{= 21 nXXXχ and a set of associations 

between pairs of tables. These associations can be seen as constraints on how the records 

from one table relate to records in the other table. Both tables and associations are also 

known as relations. We will use the distinction between these two terms here.  

The columns in a table denote the attributes of that table and the rows correspond to 

records. Each table can have at least one key attribute that uniquely identifies the records in 

it; we will denote this attribute as KX . . The remaining attributes are either descriptive 

attributes or foreign key attributes. A foreign key attribute is a key attribute of another table. 

Foreign keys allow associations between tables to be defined. The nature of this relationship 

denotes the multiplicity of the association (many-to-one, one-to-many). 

Following with the notational convention in (Getoor, 2001), a descriptive attribute A  of 

table X  will be denoted AX . , and its domain is ).( AXD . For a foreign key, the same 

notation is used. However, for foreign key attributes we need to define their domain type 
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(Dom[F]) and range type (Range[F]). If FX .  is a foreign key attribute in table X  and 

happens to be primary key in table Y , then Dom[F] is X  and Range[F] is Y . 

Most of associations in a relational database correspond to foreign key relations. These 

relations can be seen as having two directions. One goes from the table where the attribute is 

primary key to the table where the attribute is foreign and the other one in the reverse way. 

Let us call them F and F-1, respectively. 

An object in a relational database can consist of several records fragmented across 

several tables and connected by associations. 

As an example, the subset of the data model of the mutagenesis database used in this and 

the following chapter is described in Fig. 3.1 by mean of an entity-relation diagram. 

 
The figure shows that the database consists of three tables and four relations. A molecule 

has at least one atom, and at least one bond (this makes a total of at least two atoms per 

molecule). Table bond describes the type of relation between two atoms; therefore both 

Figure 4.1: Entity-relation diagram for Mutagenesis database. 
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atoms must be already in their respective table. The two associations between atom and bond 

tables represent the latter. 

3.2. Multi-Relational Data Mining Framework 

In the multi-relational data mining framework (Knobbe et al., 1999a), although the data 

model can consist of several tables, each describing particular objects’ features, only one 

view of the objects is central to the analysis. The user can choose the kind of objects to 

analyze by selecting one of the tables as target table (this table will be called 

},...,1{∈ somefor  =0 niXT i ). The important point here is that each record in the target table 

will correspond to a single object in the database1. Once the target table has been selected, a 

particular descriptive attribute of that table can be chosen for classification or regression 

purposes, this is known as the target attribute within the target table. 

Given a schema of a relational database and the physical implementation of it, the goal of 

this approach is to find interesting patterns, that can explain or predict the target attribute 

within the target table, that not only involve attribute-value descriptions but also structural 

information denoted by the associations. 

Multi-relational patterns can be expressed by using a graphical language consisting of 

selection graphs. These graphs can be translated to SQL or first order logic expressions. 

The definition of selection graphs in this work is the one given in (Knobbe et al., 1999b) 

because it is more adequate to the approach taken here than the other definition in (Knobbe et 

al., 1999a). 

Definition 3.1: 

“A selection graph G is a directed graph (N,E), where N is a set of triples (T, C, s) 

called selection nodes, T  is a table in the data model and C is a, possibly empty, set of 

conditions on attributes in T of type T.A ⊕ c; ⊕ is one of the usual selection operators 

=, <=, >, etc. s is a flag with possible values open and closed. 

E is a set of tuples (p, q, a, e) called selection edges, where p and q are selection nodes 

and a is an association between p.T and q.T in the data model. e is a flag with possible 

                                                           
1 This point is very important in the discussion of the experimental results in Chapter 4. 
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values present and absent. The selection graph contains at least one node n0 that 

corresponds to the target table T0.” 
Selection graphs can be represented as directed labeled graphs. An example is shown in 

Fig. 3.2 based on the data model for Mutagenesis database shown in Figure 4.1. The current 

graph selects those molecules that have at least one atom whose partial charge is less than or 

equal to -0.392, but for which none of them have charge less than or equal to -0.392 and 

element equal to ‘b’ at the same time. 

Note, from that figure, that the value of s is represented by the presence or absence of a 

cross in the node, representing the value open and closed respectively. The value for e, in 

turn, is indicated by the presence (present value) or absence (absent value) of a cross on the 

corresponding arrow representing the edge. 

 
From the current instance and schema for this relational database, the target table is 

Molecule, and within molecule the target attribute trying to be predicted is Label although is 

not shown in the figure. 

A present edge between tables p and q represents a join between these two tables using as 

the join attribute that one that is primary key in p and foreign key in q with two exceptions to 

be described later (see adding a negated condition and adding absent edge and closed 

node).This edge combined with a list of conditions selects those records that match the list of 

conditions and belong to the join. 

Fig. 3.2: Example of a selection graph for Mutagenesis database. 

Charge <= -.392

Atom 

Molecule 

Charge <= -.392 and 
Element = ‘b’ 

Atom 
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On the other hand, an absent edge between table p and q combined with a list of 

conditions q.C selects those records in p that do not match the list of condition. Any subgraph 

that is pointed by an absent edge thus corresponds to a set of negative conditions. 

Algorithms to translate selection graphs to SQL are given in (Knobbe et al., 1999b). They 

point out that the resulting SQL statements should not be used in actual implementations. 

They propose a dedicated architecture (Knobbe et al., 1999a), where these SQL statements 

are implemented as primitive calls in order to be processed more efficiently. Because the 

purpose of this work is to test the “goodness” of this approach highlighting strengths and 

weaknesses, we actually did not implement the dedicated server part. The gathering of 

statistic is handled by an Oracle DBMS server and the search algorithm run in a different 

machine, and as we will see later, having a dedicated architecture is the best option for this 

framework. As a consequence, we directly apply SQL statements to collect statistics in order 

to find possible refinements for a graph. 

Using the algorithms given in (Knobbe et al., 1999b), the graph in Fig. 3.2 translates to 

the following SQL statement: 

select distinct T0.mol_id 
from Molecule T0, Atom T1 
where T0.mol_id = T1.mol_id 
and T1.charge <= -0.392 
and T0.mol_id not in 

(select T2.mol_id 
 from Atom T2 
 where T2.charge <= -0.392 
 and T2.element = ‘b’) 

Basically, the algorithm can be seen as returning, after have traversed a selection graph, a 

list of the tables (table_list) that correspond to the open nodes in the graph, a list of joins 

(join_list) between tables (i.e. conditions such as Ti.K=Tj.F, where K is primary key in Ti and 

foreign key represented by F in Tj), and finally a list of conditions (condition_list) on 

attributes in the appropriate tables. Also, the last list includes the translation of those 

subgraphs representing negative conditions. Thus, the format of a generic query resulting 

from a selection graph is the following: 
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select distinct T0.primary_key 
from table_list 
where join_list 
and condition_list 

Notice that table_list can never be empty but join_list or/and condition_list might be. In these 

cases, the preceding query should be modified accordingly. 

3.2.1. Multi-Relational Decision Tree Learning (MRDTL) Algorithm 

Multi-relational decision tree learning algorithm constructs decision tree whose nodes are 

multirelational patterns i.e., selection graphs. 

The algorithm described in (Knobbe et al., 1999b) which we have called MRDTL is an 

extension of the logical decision tree induction algorithm called TILDE proposed by 

Blockeel (Blockeel, 1998). TILDE uses first order logic clauses to represent decisions 

(nodes) in the tree. The data are represented in first order logic rather than a collection of 

records in a relational database. MRDTL extends TILDE’s approach to deal with records in 

relational databases. They use similar refinements operators, and the way the tree is inducted 

follows the same logic2. 

Essentially, MRDTL, like the propositional version of the decision tree algorithm 

(Quinlan, 1987), adds decision nodes to the tree through a process of successive refinement 

until some termination criterion is met (e.g., correct classification of instances in the training 

set). Whenever some termination criterion is met, a leaf node with its corresponding class is 

introduced instead. The choice of decision node to be added at each step is guided by a 

suitable impurity measure (e.g., information gain) Thus, MRDTL starts with a single node at 

the root of the tree, which represents the set of all objects of interest in the relational 

database. This node corresponds to the target table T0 together with the specified target 

attribute. The pseudocode for the algorithm is shown in Figure 3.4.  

The function optimal_refinement considers every possible refinement that can be made to 

the current pattern G with respect to the database D and selects, in a greedy fashion, the 

optimal refinement (i.e., one that maximizes information gain). The possible set of 

refinements to be made at certain point during the process is governed by the current 

                                                           
2 For short introduction to TILDE refer to (Blockeel and De Raedt, 1997b); for a more detailed one (Blockeel, 
1998). 
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selection graph, the structure of the database D, and the multiplicity of the associations 

involved. G  denotes the complement of the selection graph (i.e., it selects objects from the 

database that are not selected by G . 

 
The induction algorithm outlined before generates binary splits decision trees. A possible 

modification can be made to consider multiple splits when a condition on some attribute is 

chosen as the optimal refinement for the graph in question. In this case, we can have one 

branch for each one of the possible values of the attribute. But, if the optimal refinement to 

be made is to add an edge and a node then this has only one possible complement. 

Another point to highlight about this way of constructing decision trees is the way in 

which unseen instances will be classified in the future. This is discussed in a later subsection. 

3.2.2. Refinements 

As noted above, once the target table and the target attribute have been selected (i.e. the kind 

of objects central to the analysis have been completely defined) a number of possible 

refinements can be made to the initial node that represents T0  in order to find a hypothesis to 

be consistent with the data in the training database. 

Knobbe et al. (1999a) describe six possible ways of refining selection graphs. Three of 

them are straightforward refinements for these kinds of graphs. A graph can be specialized 

by adding a condition, an edge and a node, or by adding an edge between two already 

existing nodes. But refinements that are designed to deal with multiplicity of the associations 

in a relational database and the usefulness of look ahead in search are also discussed. 

Tree_induction(T: tree, D: database, G: selection graph) 

   R := optimal_refinement(G, D) 
   if stopping_criteria(G) 
 T := leaf(G) 
   else 
 Tleft   := R(G) 
 Tright := Rcomplement(G) 
 tree_induction(Tleft, D, G) 
 tree_induction(Tright, D, G ) 
 T       := node(Tleft, Tright, R) 

Fig. 3.4: general outline of a decision tree learning algorithm 
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Given the characteristics of the MRDTL algorithm implemented, we are interested on 

five out of the six refinements previously mentioned. They are: add condition, add edge and 

node, look ahead, multiple instantiations of associations and mutual exclusion. The 

refinement that has been left out takes part of an enclosing refinement as it is explained later. 

All of them are described below using examples from the Mutagenesis database: 

• Mutual exclusion: algorithms inducing decision trees require that the subsets 

belonging to patterns derived from the same parent, by applying some kind of 

refinement, to be mutually exclusive. Because of this, the two main refinements (add a 

condition and add an edge plus a node) are introduced with their complementary 

operations. So, the requirement for mutual exclusion introduces two more refinements. 

• Add condition (positive): this refinement simply adds a condition to a selection node 

in G without changing its structure. Suppose the graph given below; the refinement to 

be made was atom.element = ‘b’. Previous to this operation the set of conditions for 

atom node contained only the condition atom.charge <= -0.392, and the set of 

conditions for molecule node was empty. After have added the first condition 

mentioned, the graph becomes the following: 

• Add condition (negative): it is the complementary operation of the previous one. In 

(Knobbe et al., 1999b) this refinement is explained as follows. If the node that is being 

refined does not represent the target table, this refinement introduces a new absent edge 

from the parent of that selection node to a new closed node that is a copy of the 

selection node being refined. Its condition list and join list (denoted by the edges 

coming out from this node) must be copied to the new closed node, and the first list 

must be extended by adding the new condition not negated.  

Charge <= -.392 and 
Element = ‘b’ 

Molecule Atom 
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In order to copy the join list (if there is any) of the node being refined to the new closed 

node, it is not necessary to create new nodes similar to those that are related to the first 

node, it is enough to add copies of its edges from the new node to already existent 

nodes. Although one of the nodes is the recently added one and the addition of edges to 

existent nodes is one of the steps within the enclosing refinement discussed here, this 

point makes necessary the existence of one of the refinements mentioned before: the 

addition of an edge between two existent nodes. 

On the other hand, if the node that is refined represents the target table, the condition is 

negated and added to the current list of conditions for that node.  

Graphically and using the same condition as for the previous example but negated, the 

resulting selection graph is the following: 

In the case that the node that is refined does not correspond to the target table, the 

simple negated condition can not just be added to the set of conditions of that node for 

the following reason explained with an example. Let a hypothetical subset of an 

instance of the Mutagenesis database be that one shown in section a) of Fig. 3.3 for 

Molecule and Atom tables and the condition to be added is the negation of the 

aforementioned condition, that is atom.element != ‘b’. 

Then, if just the negated condition is added to the current graph it will correspond to the 

selection graph and SQL query shown in section b) of the same figure. And the result 

of that selection is shown in section c). However the correct result should be the empty 

set. The complementary set of adding the corresponding positive condition is the set of 

molecules for which none of their atoms have b elements.  

Charge <= -.392

Atom 

Molecule 

Charge <= -.392 and 
Element = ‘b’ 

Atom 
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Therefore the addition of a negative condition to a selection node requires to be handled 

in the way explained at the beginning. In that case the corresponding SQL query is: 

select distinct(T0.mol_id) 
from Molecule T0, Atom T1 
where T0.mol_id=T1.mol_id 
and T1.type <= -.392 
and T0.mol_id not in 
 (select distinct(T1.mol_id) 
  from Atom T1 
  where T1.charge <= -.392 

Molecule 
mol_id  … 
d1  
d2  
d3  

 

Atom 
atom_id mol_id  charge element … 
d1_1 d1 -0.241 C  
d1_2 d1 -0.4 B  
d1_3 d1 -0.721 O  
d2_1 d2 0.231 C  
d2_2 d2 -0.45 S  
d3_1 d3 -0.412 F  
d3_2 d3 -0.392 F  
d3_3 d3 -0.63 B  
d3_4 d3 -0.392 C  

select distinct(T0.mol_id) 
  from Molecule T0, Atom T1 
  where T0.mol_id=T1.mol_id 
  and T1.charge <= -.392 
  and T1.element != ‘b’ 

Charge <= -.392 and 
Element != ‘b’ 

Molecule Atom 

Result 
mol_id  … 
d1  
d2  
d3  

a) 

b) 

c) 

Fig. 3.3: Explanation about adding negative condition. 
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  and T1.element = ‘b’) 

Basically, the inner subquery corresponds to the original graph after have added the 

positive condition. From the example, the molecules returned by the inner query are d1, 

d2, and d3. This resulting set must be subtracted from the result of the original graph 

that is also d1, d2, and d3. Then the final result is the empty set as required. 

The first part of the previous implementation of this refinement, when the node to be 

refined does not correspond to the target table, is only valid for the case where that 

node is directly connected to the node representing the target table, as it is in the picture 

drawn before. Otherwise, the whole graph (or a subgraph of it) should be negated. 

The following example shows the mentioned in the previous paragraph in a more 

detailed manner. Suppose the following selection graph at a certain point during the 

search process: 

 

 

Let part a) of Fig. 3.4 be a description of the subset of Mutagenesis database that 

corresponds to the set of records selected by the above graph, and let the condition to 

be negated and added to the previous graph be atom.element=‘n’.  

By using the mechanism for adding negated conditions described in (Knobbe et al., 

1999b), the selection graph, after have been refined, will look like that one shown in 

part b) of Fig. 3.4. Its corresponding translation to SQL is to the right of the same part. 

 

Molecule Bond Atom 
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Molecule 
mol_id  … 
e2 … 
e19 … 
  

 

Atom 
atom_id mol_id element … 
e2_1 e2 C  
e2_2 e2 C  
e2_3 e2 N  
e2_4 e2 N  
e2_5 e2 N  
e2_6 e2 C  
e19_1 e19 C  
e19_2 e19 C  
e19_3 e19 C  
e19_4 e19 C  

a) 

Fig. 3.4: Explanation about adding negative condition when the node object of the 
refinement is not directly connected to n0. 

Bond 
mol_id atom_id1 atom_id2
e2 e2_1 e2_2 
e2 e2_2 e2_3 
e2 e2_3 e2_4 
e2 e2_4 e2_5 
e2 e2_5 e2_6 
e2 e2_6 e2_1 
e19 e19_1 e19_2 
e19 e19_2 e19_3 
e19 e19_3 e19_4 

 

b) select distinct(T0.mol_id) 
  from Molecule T0, Bond T1, Atom T2 
  where T0.mol_id = T1.mol_id 
  and T1.atom_id1 = T2.atom_id 
  and T1.atom_id1 not in 
 (select distinct(T3.atom_id) 
    from Atom T3 

  where T3.element = ‘n’) 

Molecule Bond 

Atom 

Element = ‘n’ 

Atom 

 

Molecule 

Element = ‘n’ 

Bond Atom 

Bond Atom Molecule 

select distinct(T0.mol_id) 
  from Molecule T0, Bond T1, Atom T2 
  where T0.mol_id = T1.mol_id 
  and T1.mol_id1 = T2.mol_id 
  and T0.mol_id not in 
 (select distinct(T3.mol_id) 
    from Molecule T3, Bond T4, 
            Atom T5 
    where T3.mol_id = T4.mol_id 
    and T4.atom_id1 = T5.atom_id 
    and T5.element = ‘n’) 
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Although the original graph shown prior to Fig. 3.4 selects both molecules, the 

derivative graphs resulting from the addition of the previous condition and its negation 

should selects only one molecule each. The graph that includes the positive condition 

should select e2 (and it does that). And the graph that includes the negation of that 

condition should select e19 (i.e. those molecules for which none of their atoms has 

element ‘n’). But the graph shown in part b) of Fig. 3.4 corresponding to the first way 

of adding a negative (complementary) condition selects both molecules: e2, and e19. 

Therefore, the correct complementary graph is that one shown in section c).  

Thus, for the case where a negated condition has to be added to a node that is not 

directly connected to the node representing the target table (this does not mean that can 

not exist a relation in the database between these two tables), it is necessary to 

complement the whole graph by adding an absent edge from n0 node to a subgraph 

representing the original graph plus the condition not negated added to the 

corresponding node’s condition list. The only difference between this new subgraph 

and the original one is that it has its root node (copy of n0) closed (see section c of Fig. 

3.4 for a graphical example).  

The aforementioned process can be made more efficient (in terms of space and time) if 

instead of copying the complete graph we only copy the subgraph to which the node 

being refined belongs. That is, we just need to add an absent edge from n0 to a copy of 

the first node of the subgraph to which the node where the condition has to be added 

belongs (Bond node in the example). This copy of the node should be closed. Also the 

nodes and edges that form the subgraph (Atom and the edge between Bond and Atom 

in the example) should be copied as they are after the root of the subgraph.  

Note that if we follow the first approach (shown in section c) of Fig. 3.4), and not the 

described in the preceding paragraph, an edge that do not instantiate any association in 

the data model will connect the target node to a copy of itself but closed. Because of 

this, that edge should be handled in a different way than those edges that indeed 

correspond to associations in the relational database. 
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• Add present edge and open node: this refinement instantiates an association in the 

data model as a present edge together with its corresponding table represented as an 

open node and adds these to G.  

 

We find it useful to distinguish between two cases of this refinement. Generally, the 

associations in relational databases are one (from table p) to many (in table q). In this 

case, the key attribute in table p is a foreign attribute in table q. These associations, as 

said earlier, can be seen as having two directions: forward and backward. Thus, we can 

add a present edge from the node representing the table where attribute F is primary 

key to the new open node that represents the table where F is foreign key (as proposed 

in (Knobbe et al., 1999b)). This corresponds to adding an edge and a node in the 

forward direction. However, sometimes it is necessary to add an edge and a node in the 

backward direction. That is, given the current node where F is a foreign key, add a 

present edge to the node representing the node where F is primary key. This is 

especially necessary in learning tasks where the objects to be classified can have 

multiple class labels for a given assignment of values to their attributes. This would be 

the case when class labels are not mutually exclusive (Caragea et al., 2002). This point 

is further elaborated in the following chapter when KDD Cup 2001 (Cheng et al., 2002) 

datasets are treated. 

The modification precedingly outlined also extends MRDTL’s classification 

possibilities by allowing us to consider any attribute within any table in the relational 

database to be the target attribute. 

• Add absent edge and closed node: this refinement is complementary to the previous 

one and instantiates an association in the data model as an absent edge together with its 

corresponding table represented as a closed node and adds these to G. 
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Actually, there are two cases for this kind of refinement too and they follow the same 

argumentation as described for the previous refinement. 

At this point it is worth noting that a closed node means that the node in question can 

not be further refined by adding more conditions on its attributes or edges coming out 

from it. 

For this refinement we need to make the same considerations as when a negated 

condition is going to be added. Because this refinement should be the complement of 

the previous one, when the closed node to be added is not directly associated to the 

target node in the selection graph a procedure similar to that described when a negated 

condition is added must be followed. 

• Add edge (present or absent) between two existent nodes: as explained before, this is 

not a refinement by its own but it is an important component when adding a negative 

condition to a node. Graphically, this “refinement” is as follows: 

 

• Look-ahead refinement: Sometimes while refining a selection graph, the addition of 

the optimal refinement may result in no information gain. In general, if a modification 

to a selection graph does not produce any improvement, then the search through that 

path is discontinued and a leaf node is introduced instead, even if it may introduce 

future possible conditions or edges that are relevant to the search process. 

An example of this scenario occurs when adding an edge from an existing node to a 

new one it happens that the multiplicity of the association (represented by the edge) 

between the respective two tables is one to many and each record in the first table has 
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Molecule 

T0.inda=0 
T0.lumo > -2.142 

at least one corresponding record in the other one. The entropy of the new selection 

graph will be the same as its parent. 

For instance, in the Mutagenesis database each molecule has at least one corresponding 

atom and one corresponding bond associated to it in the respective tables. So, the 

algorithm previously described will reach a point where no more conditions can be 

added to the first node because either there are no more conditions to be added or no 

information gain is obtained with them. Then, one of the possible refinements to be 

made is to add an edge from Molecule to either Atom or Bond. But, by database 

definition this will no achieve any improvement because the entropy of the new 

selection graph does not change respect to its parent due to the number of records to be 

analyzed is the same as before. 

One approach to dealing with this scenario is to provide some sort of look ahead 

capability to the learner. In the TILDE system (Blockeel, 1998) such a look ahead 

capability allows several successive refinement steps at once.  

Our implementation of MRDTL includes such look ahead capability which is employed 

in special circumstances when none of the refinements result in a positive information 

gain although the termination criterion of the algorithm is not met. For instance, 

suppose one branch of the induced decision tree for the Mutagenesis example has 

reached the following point: 

 

 

 

 

Furthermore, any other condition that can be added to this node does not improve the 

classification capability of this graph. We cannot add any edge from this node to a node 

representing atom or bond table neither since no improvement is achieved. Then, the 

basic idea is to evaluate the impact of adding a new edge with its corresponding open 

node plus some condition on an attribute of the new node for one branch and its 
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negation for the other one. In general, we can consider adding several edges and nodes 

as part of the look ahead process. 

Following the previous example, the refinement with highest information gain is the 

look ahead shown in Fig. 3.5. The successive refinements performed in this case for the 

left branch are to add an edge from Molecule to Atom with the corresponding node for 

Atom table and a condition (charge <= -.392) on table Atom; and for the right branch 

its negation. 

The case shown in Fig. 3.5 (and in general for all look ahead refinements considered 

here) is different to that of adding a negative condition described before. The node 

corresponding to the Atom table named T1 can be removed from the subgraph in the 

right branch and the remaining graph will still have the same classification power. But, 

since we are performing several refinements at once it might be the case that later 

during the search that node can be expanded too. 

Look-ahead techniques are computationally expensive but may lead to significant 

improvements. Because of its computational cost, only two-step look ahead refinements 

on the possible edges whose respective associations hold the previous constraint are 

Fig. 3.5: Example of look ahead refinement. 

Molecule 

T0.inda=0 
T0.lumo > -2.142 

T1.Charge <= -.392 

Molecule Atom 

T0.inda=0 
T0.lumo > -2.142 

T2.Charge <= -.392  

Atom 

Molecule 

Atom 

T0.inda=0 
T0.lumo > -2.142 

T1  
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allowed. But the learner could consider more than one level ahead and the results can 

be better; it also can consider look-ahead on the conditions to be added to a node. 

The TILDE system relies on the user to provide some information in order to determine 

when look ahead is needed (Blockeel, 1998). Our implementation of MRDTL 

automatically determines from the relational schema and the current database instance 

when look ahead might be needed. 

• Multiple instantiation of associations: actually, this is not a refinement operator. This 

is the case when multiple instantiations of a particular association exist in a selection 

graph. This can be possible thanks to the addition of edges in both “directions” of an 

association or when adding the negation of a condition for a node different to n0. 

3.2.3. Computing Information Gain Associated with a Refinement 

Each candidate refinement is evaluated in terms of the possible improvement that can make 

to the classification accuracy of a selection graph by means of information gain (Mitchell, 

1997), which involves the characterization of a set of example with respect to the target 

attribute using entropy measure as in the case of the propositional version of the decision tree 

learning algorithm (Quinlan, 1987). In order to measure information gain for each possible 

refinement, some kind of statistics’ gathering from the database is necessary. For that 

purpose, a series of queries has been proposed in (Knobbe et al., 1999b), and they are 

outlined below. 

The actual implementation of these queries should be made in a dedicated architecture as 

primitive calls for efficiency purposes. This is not the case in the current implementation of 

MRDTL because as said earlier one of the main purposes was to test this new approach to 

relational data mining in terms of accuracy mainly at this point. 

Support of a selection graph 

The support of a selection graph (i.e., the number of examples covered by a graph) is 

computed using the following query: 

select count(distinct T0.primary_key) 
from table_list 
where join_list 
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and condition_list 

The preceding query is known as CountSelection primitive in (Knobbe et al., 1999a). 

Note that only join_list and condition_list can be empty, but at least one table will be in 

table_list. If any of the first two lists is empty, then the query should be modified 

accordingly. This holds for all the following queries. 

Evaluating the addition of an edge plus node 

For the possible addition of an edge plus a node, we need to calculate the resulting 

information gain of the new selection graph. The following query produces a histogram that 

shows the distribution of the number of examples per values of the target attribute. The 

histogram is used to calculate the entropy for the new multirelational pattern. 

select T0.target_attribute, count( distinct T0.primary_key) 
from table_list 
where join_list 
and condition_list 
group by T0.target_attribute 

The sum of the resulting counts must be equal to the result of the prior query that 

measures the support of a pattern. 

The lists table_list and join_list correspond to the selection graph being refined plus the 

addition of the new table (represented by the new node) to the first list and the join condition 

between a table already in the list and the new “to be added” node to the join_list. 

Condition_list remains unchanged. 

Evaluating nominal attributes 

Each possible pattern resulting from the addition of a condition on some nominal attribute 

(one pattern for each possible value) of a table is evaluated by means of the following query: 

select T0.target_attribute, Ti.Aj, count( distinct T0.primary_key) 
from table_list 
where join_list  
and condition_list 
group by Ti.Aj , T0.target_attr; 

The MultiRelationalCrossTable primitive, that is the name given in (Knobbe et al., 

1999a), produces a table with the distribution of pairs of values for the target attribute and an 

arbitrary nominal attribute Ti.Aj in any table Ti. The sum of these counts can exceed the 



41 

 

support of the given pattern if the nominal attribute is not in the target table and multiple 

records with different values for the selected attribute may correspond to a single record in 

the target table. 

Evaluating numerical attributes 

Splits based on numerical attributes are handled using a technique similar to that of C4.5 

algorithm (Quinlan, 1993b) with modifications proposed in (Fayyad, 1992, Quinlan, 1996). 

The tests considered by C4.5 for continuous attributes are of the kind A ≤ y, with 

outcomes true and false. To find the value y of A that maximizes the splitting criterion 

(information gain), first the cases in the database are sorted on their values of attribute A. Let 

nvvv ,...,, 21  be the list of ordered distinct values for such attribute. Every pair of distinct 

adjacent values is considered for a potential threshold ( ) 2+= 1+ii vvy . The threshold that 

gives the highest information gain is selected. 

Fayyad and Irani in (Fayyad an Irani, 1992) propose and prove that for convex splitting 

criteria such as information gain it is only necessary to consider pair of distinct values that 

are adjacent but for which the corresponding instances belong to different classes. This 

diminishes the number of threshold to be considered. 

The other modification proposed by Quinlan in (Quinlan, 1996) is to adjust the 

information gain of numerical attributes by multiplying it by ( ) DN 1 - log2 , where 1 - N  is 

the number of possible thresholds and D  the number of instances covered by the selection 

graph. This modification changes the relative bias toward the use of continuous attributes that 

was outlined as a drawback of C4.5. (Quinlan, 1996). 

To obtain the statistics necessary to calculate the information gain resulting from splitting 

on a continuous attribute the algorithm uses the following query: 

select target, m, count(*) 
from 
     (select T0.target_attribute target, T0.primary_key, min(Ti.Aj) m 
       from table_list 
       where join_list 

      and condition_list 
      group by T0.target_attribute, T0.primary_key) 

group by m, target; 
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Assuming that each record in the target table has multiple associated records in table Ti, 

for each of these sets the minimum value of the current continuous attribute can be 

calculated. The occurring minimums will be used as possible splitting thresholds. The fact 

used here is that testing whether each member of a set has a value for the attribute less than 

some threshold is equal to test whether the minimum value of that set is less than the 

threshold. If the assumption at the beginning of this paragraph does not hold (for instance, 

when the refinement to be made is to add an edge and a node in the “backward” direction or 

when the numerical attribute to be considered is in the target table), the minimum condition 

is not necessary and we need to a add one more group by clause on Ti.Aj. 

3.2.4. Classifying Instances 

The hypothesis resulting from the relational induction of decision trees described can be 

viewed as a set of SQL queries associated with the selection graphs that correspond to the 

leaves of the decision tree. Each selection graph (query) has a class label associated with it. If 

the corresponding node is not a pure node, (i.e., it does not unambiguously classify the 

training instances that match the query), the label associated with the node can be based on 

the classification of the majority of training instances that match the corresponding selection 

graph. Alternatively, we can use probabilistic assignment of labels based on the distribution 

of class labels among the training instances that match the corresponding selection graph. 

Given a new set of previously unseen instances to be classified, these queries are applied 

to the database. The set of instances that a query returns will be assigned the class label that 

the corresponding selection graph has. The complementary nature of the different branches 

of a decision tree ensures that a given instance will not be assigned conflicting labels.  

It is also worth noting that it is not necessary to traverse the whole tree in order to classify 

a new instance; all the constraints on a certain path are stored in the selection graph 

associated with the corresponding leaf node. Instances that do not match the selection graphs 

associated with any of the leaf nodes in the tree are assigned unknown label and are counted 

as incorrectly classified when evaluating the accuracy of the tree on the test data. 
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3.2.5. Handling Missing Values 

The current implementation of MRDTL uses an extra value for each attribute to denote 

values that may be missing. This extra value is treated in the same way as other possible 

attribute values. However, this kind of treatment only makes sense when missing values for 

certain attribute are representative of some characteristic. For example, given a database of 

personnel, for those employees with height greater than certain value that attribute is not 

measured but left without filling it out (missing value). In this case, those missing values 

denote those people having height grater than certain threshold. 

If we know beforehand the purpose (or possible future purposes) of collecting data, it is 

possible to minimize or avoid the occurrences of missing values if data mining is one of the 

possible uses for example. But, most of the data to be mined are results of by-product of 

some other activity that has the knowledge discovery process as a mean to explain something 

but not as a goal in itself. In these cases, missing values are likely to be present (Liu et al., 

1997) and most of the time they are not representative of any subgroup of instances. 

There has been substantial research done on handling missing values in machine learning 

(Grzymala-Busse and Hu, 2001, Liu et al., 1997, Ortega and Numao, 1999, Quinlan, 1989, 

Zheng and Low, 1999). Several of them provide a comparison between different methods of 

dealing with missing or unknown values (e.g., (Quinlan, 1989)) but others like (Ortega and 

Numao, 1999) propose new or improved methods. One of the first approaches to tackle this 

problem was to ignore those instances with missing data (Quinlan, 1987), but soon it was 

noted that those deleted instances could add useful information to the search process and 

should be kept and be considered using methods to handle missing values. 

As noted before, our implementation of MRDTL supports treatment of missing values as 

a new attribute value, therefore the straightforward way to cope with missing values that are 

not representative of any set of instances is to fill them out following some of the techniques 

proposed for such a purpose. However, we can easily incorporate a variety of more 

sophisticated approaches for handling missing values that have been proposed in the machine 

learning literature such as the probabilistic method suggested in (Cestnik et al., 1987) and 

used for C4.5 (Quinlan, 1993b).  
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By considering missing values as a new attribute value we assume attributes’ 

independence. That method does not consider dependences between attributes. It is expected 

that predicting missing values based on the values of other attributes can lead to better 

accuracy. 

In our experiments, we tried with methods based on the most frequent attribute value and 

the most frequent value for the class of the instance that has the missing value (concept most 

common attribute value (Grzymala-Busse and Hu, 2001)) as possible candidates for filling in 

the missing values. 

We also could consider the induction of decision trees for each attribute that contains 

missing values based on the information of other attributes, the original class attribute can be 

used too (Ortega and Numao, 1999). The attribute values (class labels) are those present in 

the database, thus those instances having missing data for the class attribute should be 

deleted. Although this method could be more exact in filling in missing information, it 

significantly increases the computational cost. This approach is thought to be suitable in 

domains where a lowering in classification error is worth the increase in computational cost. 

Other techniques such as Naïve Bayes or Bayesian Networks could be use instead. These 

approaches seem appropriate for the second data set presented in the next chapter; but their 

possible application is left for future extensions. 

Concept most common attribute value and attribute trees methods mentioned before 

suffer of a major drawback. As they are described, they can not be used for filling missing 

values in the test data. Although attribute trees that do not consider the original target 

attribute to fill in missing information could be an option, the first method mentioned in this 

paragraph can not be used at all because in real world problems the classes to which the 

instances to be classified belong are not known. However, in controlled experiments (as it is 

the case in this work) they can be used, but a comparison with other techniques for handling 

missing values should be carried out. 

The preprocessing of the input data to eliminate missing information is not part of the 

system yet although all the necessary programs for such a purpose have been done. Their 

addition should not be a difficult task. Due to this, preprocessing of the data should be done 
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prior to run the MRDTL algorithm. That is, the instance of relational database to be input 

should be ready to be mined. 

3.3. Description of MRDTL Software 

The system implemented can be seen as consisting of three parts. The front-end part, the 

induction algorithm part which performs the search of relational patterns, and the back-end 

part. 

The front-end of the system is a rudimentary GUI shown in Fig. 3.6 which allows the 

user to connect to the database to be mined and define in an easy way the numerical and 

nominal attributes as well as delete those attributes that are not central or of interest to the 

classification task in question. It also enables the user to specify the target table and target 

attribute. Finally, an error percentage can be provided by the user. This error percentage can 

be used to terminate refinement of a path in the decision tree if the error criterion is satisfied 

by the current node (this serves as a crude pruning method).. The user does not need to type 

any input (except the error expected), just need to select those attributes that are nominal, 

numerical, and the target table and target attribute from the corresponding lists shown by the 

interface. That and the rest of the information used by the algorithm is extracted from the 

relational schema of the database. 

The input to the system can be any Oracle database for which the user wants to find 

interesting patterns for classification purposes. One of the main constraints that the input 

database has to hold is that the attributes involved in any of the associations or as primary 

keys should be single attributes. The software developed does not support composite primary 

or composite foreign keys yet.  

One of the first objectives of this work was to provide to the user with a system where 

he/she can select any table as the target and within that table any attribute as the classification 

attribute without worrying to much about the relational representation. This introduces one 

more constraint on the format of the relational database. That table that is going to be the 

target must have a primary key and the classification attribute must be nominal (this latter 

requirement is necessary because the system does not support regression yet). 
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The result of learning is the set of SQL queries associated with the selection graphs that 

correspond to the leaves of the decision tree. That set is enough to classify new instances 

previously unseen as explained in subsection 3.2.4 and it is shown in the white portion of the 

GUI in Fig. 3.6. Nevertheless, the complete decision tree is stored into the relational database 

for future use. 

 

Fig. 3.6: System’s Graphic User Interface 
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44..  EEXXPPEERRIIMMEENNTTAALL  RREESSUULLTTSS  

This chapter describes experiments carriede out using MRDTL algorithm on three 

databases – mutagenesis, gene localization from KDD Cup 2001 and adult database. 

Results from these experiments are shown, discussed, and compared against other 

methods. 

4.1. Mutagenesis Database 

4.1.1. Task Description 

This database, available from the Machine Learning Network (MLNet), is one of the most 

widely used databases in ILP research. For such a reason the original format of this database 

was Prolog syntax. Therefore, the first step in order to use this database with MRDTL 

algorithm was to translate it to relational format. 

There are several results in the relational data mining literature applying different ILP 

systems in order to learn from this database. One of our first goals was to compare the 

performance of our implementation of MRDTL against already existent systems. This is a 

database that can be used for such a purpose; however, a more thorough comparison is 

needed. 

The entity-relation diagram for the part of the Mutagenesis database used in this study 

was shown in Chapter 3, figure 3.1 (reproduced below in Fig. 4.1) and briefly described in 

Section 3.1.  

The data set consists of 230 molecules divided into two subsets: 188 molecules for which 

linear regression yields good results and 42 molecules that are regression-unfriendly. For the 

regression-friendly molecules, this database instance consists of 4893 atoms and 5243 bonds. 

For the other set, there are 1001 atoms and 1066 bonds. 
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This database contains descriptions of molecules and the characteristic to be predicted is 

their mutagenic activity (ability to cause DNA to mutate) represented by attribute label in 

molecule table. This problem comes from the field of organic chemistry and the compounds 

analyzed are nitroaromatics. These compounds occur in automobile exhaust fumes and 

sometimes are intermediates in the synthesis of thousands of industrial compounds. High 

mutagenic level has been found to be carcinogenic. 

Originally, mutagenicity has been measured by a real value represented by the attribute 

log_mut in molecule table. But, in most experiments with ILP systems this numerical 

attribute has been discretized into two values: active for those molecules with positive levels 

of mutagenicity (log_mut > 0), and inactive for those with zero or negative levels of 

mutagenicity (log_mut <= 0), respectively. Table 4.1 shows the class distribution for the 230 

compounds (Srinivasan et al., 1996). 

The data model in Fig. 4.1 shows both attributes log_mut and label. Since MRDTL is 

limited to learning classifiers, we chose label as the target attribute without taking into 

account log_mut during the learning and classification processes. 

 

Figure 4.1: Entity-relation diagram for Mutagenesis database. 
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Table 4.1: Class distribution for Mutagenesis database. 

Compounds Active Inactive Total 

Regression friendly 125 63 188 

Regression unfriendly 13 29 42 

Total 138 92 230 

A recent study using this database (Srinivasan et al., 1999) recognizes five levels of 

background knowledge for mutagenesis which can provide richer descriptions of the 

examples. Table 4.2 shows the five sets of background knowledge1 where 1+⊆ ii BB  for 

3,...,0=i . In this study we used only the first three levels of background knowledge in order 

to compare the performance of MRDTL with other methods for which experimental results 

are available in the literature. 

Table 4.2: Background knowledge for Mutagenesis database extracted from (Srinivasan et al., 1999). 

Background Description 

B0 Consists of those data obtained with the molecular modeling 
package QUANTA. For each compound it obtains the atoms, bonds, 
bonds types, atom types, and partial charges on atoms.  

B1 Consists of Definitions in B0 plus indicators ind1, and inda in 
molecule table. 

B2 Variables (attributes) logp, and lumo are added to definitions in B1. 

B3 Generic 2-D structures, such as methyl groups, nitro groups, etc., are 
added to B2 using atom and bond description. 

B4 Using 3-dimensional position of each atom in a molecule, generic 3-
D calculations are added to descriptions in B3. 

4.1.2. Method 

We have followed the same methodology that has been used in most of the other studies that 

have considered this database as a test case. As mentioned earlier, the data can be split into 

                                                           
1 For a more detailed description of each set of background knowledge the reader should refer to (Srinivasan et 
al., 1996) and (Srinivasan et al., 1999). 
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two disjoint subsets. To avoid bias against linear regression (Srinivasan et al., 1996) and to 

make our results comparable to those in the literature we treat them as two separate subsets. 

The classification results obtained from the theory inferred by the learner implemented 

here are averages over k-fold cross-validation; with 10=k  for the regression friendly set and 

41=k  (i.e., leave-one-out cross-validation, because of the relatively small number of 

samples) for the regression unfriendly data. 

4.1.3. Experimental Results 

Table 4.2 shows a comparison of the performance of the current implementation of MRDTL 

with that of Progol (based on results reported in (Blockeel, 1998) and in (Srinivasan et al., 

1999)), FOIL (based on results reported in (Blockeel, 1998)), and Tilde (based on results 

reported in (Blockeel, 1998)).  

Due to different hardware has been used for the experiments, the times should be 

considered to be indicative rather than absolute. Although some ILP systems such as Tilde 

and FOIL are available from the internet, they are Solaris OS versions only. Therefore, we 

could not replicate the results in the literature in our systems. The goal of this replication had 

to be the update of running times only. 

The complexity of the theories (as in (Blockeel, 1998)) can not be compared because of 

the different search spaces the systems have. We can talk about number of literals for ILP 

systems but that is not applicable for the MRDTL algorithm. But, in the Table 4.4 a 

comparison of size of decision trees obtained with different levels of background knowledge 

for MRDTL is shown. 



51 

 

Table 4.3: Accuracy and running time comparisons of Progol, FOIL, Tilde and MRDTL on the set of 
188 regression friendly compounds of Mutagenesis database. The numbers represent averages based 
on ten-fold cross-validation. Entries marked with “--” indicate that the corresponding results are not 
available at present. Note that the running times are shown mainly to give a general feel for the speed 
of the algorithms in question. The exact values of the running times are not comparable because of 
the differences in hardware and software platforms used in the different studies. 

Systems Accuracy (%) Time (secs.) 

 B0 B1 B2 B3 B4 B0 B1 B2 B3 B4 

Progol2 79 86 86 88 89 8695 4627 4974 6530 9587 

Progol3 76 81 83 88 -- 117k 64k 42k 41k -- 

Foil4 61 61 83 82 -- 4950 9138 0.5 0.5 -- 

Tilde5 75 79 85 86 -- 41 170 142 352 -- 

MRDTL 67 87 88 -- -- 0.85 332 221 -- -- 

Results shown in Table 4.3 and Table 4.4 show that the richer description of examples 

obtained using background knowledge does in fact improve the accuracy of the resulting 

classifiers. In the case of MRDTL, the improvement obtained by using B1 as opposed to B0 

is quite pronounced but the improvement resulting from the use of B2 as opposed to B1 is 

marginal. It is also clear that different algorithms benefit to varying degrees from the use of 

different levels of background knowledge. For instance, use of B1 as opposed to B0 results in 

no improvement in FOIL’s performance on the regression friendly mutagenesis data (see 

Table 4.3). This can be explained by the differences in the representational and inductive 

biases of the algorithms in question.  

Table 4.4: Comparison of size of decision trees obtained with the different levels of background 
knowledge for MRDTL. 

Systems Number of nodes 

 B0 B1 B2 

MRDTL 1 53 51 

                                                           
2 Results for this row were extracted from (Srinivasan et al., 1999). 
3 Results for this row were extracted from (Blockeel, 1998). 
4 Results for FOIL were taken from (Blockeel, 1998). 
5 Results for Tilde were taken from (Blockeel, 1998). 
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It is interesting to note from Tables 4.3 and 4.4 that MRDTL yields a decision tree with 

one node when B0 is used as background knowledge. In this case, in the current 

implementation of MRDTL, the instances are assigned the class label of the majority class 

(alternatively, a probabilistic assignment of class labels based on the class distribution at that 

node could be used). Thus, the classification accuracy (67%) obtained with a single node 

decision tree can be considered a lower bound on accuracy against which we can compare 

the different algorithms. Ideally, none of the algorithms should have accuracy lower than 

67% on the regression friendly subset of the mutagenesis data. We find that this is in fact true 

for all of the algorithms studied with the exception of FOIL which has an accuracy of 61% 

when B0 and B1 are used as background knowledge. 

Another point worth noting is that MRDTL results in smaller trees when B2 is used as 

background knowledge as compared to B1 and the execution time in the case of B2 is lower 

than for B1. We can not make a direct comparison of running time but with exception of 

Progol, the minimum execution time is obtained with B0, followed by B2 and B3. 

On other hand, MRDTL obtains better results than the other systems in except for B0. It 

is a pending task to try MRDTL with the remaining two sets of background knowledge. 

The results from leave one out method for the second set of compounds are shown in 

Table 4.5 for MRDTL. 

Table 4.5: Accuracy, running time, and decision tree size obtained with the MRDTL on the set of 42 
regression unfriendly compounds of Mutagenesis database. The numbers represent averages based on 
41-fold (i.e., leave-one out) cross-validation. 

Background Accuracy  Time #Nodes 

B0 70 % 0.6 secs. 1 

B1 81 % 86 secs. 24 

B2 81 % 60 secs 22 

Essentially, MRDTL’s behavior on the regression unfriendly subset of the Mutagenesis 

data shows the same general pattern as that in the case of regression-friendly subset. Use of 

background knowledge B0 yields a single node decision tree which classified instances 

according to the label of the majority class. This can be corroborated on the basis of the 
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distribution of instances shown in Table 4.1: a majority of 70% of the regression-unfriendly 

instances are inactive compounds. 

There is not improvement in accuracy resulting from the use of B2 over B1 but the 

running time using B2 is lower than that for B1. Although an accuracy of 81 % was achieved, 

the experiments carried out using Progol in (Srinivasan et al., 1996) show an average 

accuracy of 83 %. 

Two recent approaches, (Sebag and Rouveirol, 1997) and (Kramer and De Raedt, 2001) 

have reported a maximum accuracy of 93.6% and 94.7%, respectively for mutagenesis 

database. The approach taken by Sebag and Rouveirol (1997) comes from the field of ILP 

and is concerned with polynomial induction and use of first order logic hypotheses with no 

size restriction. Instead of exhaustively exploring the set of matchings between any example 

and any candidate hypothesis, the user determines the number of matchings samples to 

consider; thus, controlling the cost of induction and classification. The experiments do not 

specify if the whole data set was used or two disjoint sets were considered; they did not use 

10-fold cross validation, but the data set was randomly divided into a training set including 

90% of the data and a test set with the remainder. The result was averaged on 25 independent 

selections of these sets. Kramer and De Raedt (2001) propose a novel feature construction 

method where the user can specify the features of interest using a conjunctive query. The 

solutions to the query are organized in a version space and the resulting features can be used 

by traditional attribute-value machine learning algorithms. Particularly, they used the 

propositional learners C4.5, PART (Frank and Witten, 19980), logistic regression and linear 

support vector machines available in the Weka workbench (Witten and Frank, 1999). In their 

experiments, they only used 2-D information (subset B3 of background knowledge). They 

did not use partial charges, atom types, functional groups or the like, but LUMO and logP 

values were considered. The experiments description do not specify if they considered the 

two disjoint sets of compounds as described above or just the complete data set. 
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4.2. Gene Localization Database 

This database was used in the last competition on data mining hold in conjunction with the 

Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 

(KDD 2001) and it is available online (Cheng et al., 2002). 

KDD Cup 2001 was focused on data from genomic and drug design applications and 

involved three tasks based on two data sets. Here, we focus on only one data set and one task. 

The election of the data set was based on its relational nature. 

4.2.1. Database and Task Description 

The three tasks that KDD Cup 2001 involved were: prediction of molecular bioactivity for 

drug design, prediction of gene/protein function and localization. Although both last tasks 

may involve a relational approach, in the case of gene/protein function prediction, an 

instance may have several class labels. MRDTL, much like its propositional counterpart 

C4.5, assumes that each instance can be assigned to only one of several non-overlapping 

classes. Thus we, in MRDTL’s current form, decided to focus the experiments on the 

gene/protein localization task where each instance has a single class label. We will use the 

name Gene Localization database to refer to the data for the gene/protein localization task. 

Two variants of the data set for the mentioned task were provided. The first version 

consists of a single table with 2960 attributes and it is appropriate for propositional learning. 

The second consists of two tables with 13 attributes in total. We used the second variant due 

to its relational nature but not as it was given because those two tables were not in normal 

form as it is required by the relational algorithm. 

The names of the two original tables are genes_relation and interactions_relation. The 

genes_relation table contains 862 different genes but there could be more than one row in the 

table for each gene. The attribute gene_id identifies a gene uniquely. Since our current 

implementation of MRDTL requires that the target table must have a primary key, it was 

necessary to normalize gene_relation table before we can use it as the target table. This 

normalization was achieved by creating the tables named gene, interaction, and composition 

as follows: attributes in the genes_relation table that did not have unique values for each 

gene were placed in the composition table and the rest of the attributes were placed in the 
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gene table. The gene_id attribute is primary key in the gene table and foreign key in the 

composition table. The interaction table is identical to the original interactions_relation 

table. This represents one of several ways of normalizing the original tables. This 

renormalization of the relational database given is different from the one described in (Cheng 

et al., 2002). It is possible that the particular renormalization used might have an impact on 

the performance of different algorithms. It is left for future experiments to compare the 

performance of the algorithm using both renormalizations. 

The entity-relation diagram for the normalized version of the Gene Localization database 

is shown in Figure 4.2. For this task, the target table is gene and the target attribute is 

localization. From this point of view, the training set consists of 862 genes and the test set 

381. If we want to predict function, the number of instances in the training set will be 4346, 

that is, the number of distinct records in composition table. In this latter case, it might be 

necessary to follow an association in the backward direction as explained in Chapter 3 if the 

algorithm has to consider the remaining tables and attributes.  

The experiments described here focused on building a classifier for predicting the 

localization of proteins by assigning the corresponding instance to one of 15 possible 

localizations. 
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4.2.2. Method 

For this task, we followed the general procedure used in the KDD Cup competition namely, 

construct a classifier using all of the training data and test the resulting classifier on the test 

set provided (Cheng et al., 2002). 

4.2.3. Discussion of Results 

Gene localization task presents significant challenges because many attribute values in the 

training instances corresponding to the 862 training genes are missing. Initial experiments 

using a special value (missing) to encode a missing value for an attribute resulted in 

classifiers whose accuracy is around 50 % on the test data that also have many missing 

attribute values. 

This prompted us to investigate incorporation of more sophisticated approaches to 

handling missing values that have been proposed in the literature. As noted in the previous 

chapter we use techniques for filling in the missing values. The methods used were concept 

most common attribute value, majority value and eventually we will use decision trees for all 

Figure 4.2: entity-relation diagram for Genes Localization data set 
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the attributes with missing values or other probabilistic methods that consider information 

available from other attributes such as Naïve Bayes. 

Replacing missing values by the most common value of the attribute for the class during 

training resulted in an accuracy of around 85% with a decision tree of 367 nodes. This result 

was achieved by allowing the traversing of associations in the forward and backward 

direction and not placing any limit in the number of times an association can be instantiated. 

If we heuristically limit the number of times an association can be instantiated but still using 

the same method to fill in missing values, the accuracy lowered to 80%. Finally, if we allow 

the algorithm to follow associations only in the forward direction, then an accuracy of around 

75% is obtained. This shows that providing reasonable guesses for missing values can 

significantly enhance the performance of MRDTL on real world data sets. However, in 

practice, since the class labels for test data are unknown, it is not possible to replace a 

missing attribute value by the most frequent value for the class during testing, so the use of 

alternative methods of handling missing values are mandatory. 

Based on these preliminary results, we conclude that there is a need for incorporating 

more sophisticated techniques for handling missing values (e.g., predicting missing values 

based on the values of other attributes). Work in progress is aimed at extending the current 

implementation of MRDTL to include principled approaches for dealing with missing values 

that can be applied in a realistic setting. 

4.3. Adult Database 

4.3.1. Database and Task Description 

This is the simplest of the three databases used. It consists of only one table and it is suitable 

for propositional learning with 6 numerical attributes and 8 nominal attributes. It is available 

online at (UCI, Machine Learning Repository).  

The information in this database was extracted from the 1994 census database and the 

prediction task is to determine whether a person makes over $50,000 a year (i.e., attribute 

being predicted is salary greater or less than 50,000). For this purpose, the class attribute 

values have been discretized into two values: >50k and <=50k. 
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The purpose of using this database was to test the implemented MRDTL algorithm in a 

purely propositional setting. There are some results in the literature using this database (e.g. 

(Kohavi, 1996)) against which we can compare our results. 

Table 4.6: Class distribution for Adult database. 

 Training Test Total 

 >50k <=50k >50k <=50k  

w/ missing values 7841 24720 3846 12435 48842 

w/o missing values 7508 22654 3700 11360 45222 

4.3.2. Method and Results 

Most of the results in the literature that used this database were obtained by following the 

same methodology: removal of unknowns and use of the original train/test split. 

Adult database domain is hard with a considerable number of records. Removal of 

instances with missing values resulted in an accuracy of 82.2% on the original test set. This 

can be compared to the accuracy reported in (Kohavi, 1996) of 84.46+-0.30 for C4.5, 

83.88+-30 for Naïve-Bayes and 85.90+-0.28 for NBTree (a decision tree Naïve-Bayes hybrid 

approach). The current MRDTL version should be augmented with pruning and other 

characteristics in order to make these results really comparable to those of C4.5 in a purely 

propositional setting. But the preliminary results reported are promising and deeper research 

has to be done in order to make the current version more efficient and more competitive. 
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55..  SSUUMMMMAARRYY  aanndd  DDIISSCCUUSSSSIIOONN  

Learning from relational databases and from data describing complex/structured objects is an 

important problem in machine learning nowadays. Most of real-world data are organized in 

relational format, with databases consisting of multiple relations and not just one as typical 

data mining approaches assume. Also, structured types of data such as in bioinformatics, 

computational biology, HTML and XML documents require the use of a more expressive 

pattern language than propositional. 

In this context, (multi)-relational data mining deals with knowledge discovery from 

database consisting of multiple tables directly, without the need to squeeze data fragmented 

across several tables into a single one.  

(Multi)-relational data mining approaches do not only focus on relational database but 

also deductive databases (e.g., ILP systems). They consider all of the main data mining tasks 

(i.e. association analysis, classification, clustering, learning probabilistic models and 

regression) and several of them are extensions of their single-table counterparts to the 

multiple-table case. 

In this paper, we have described an implementation of multi-relational decision tree 

learning (MRDTL) algorithm based on the techniques proposed by Knobbe et al. (Knobbe et 

al., 1999a, Knobbe et al., 1999b). 

The main contribution of this paper is the empirical evaluation of the MRDTL system, 

for which there are no results on the literature, on widely used data sets for relational learning 

such as mutagenesis database, databases from the last KDD competition, and one 

propositional database. We also gained insights about the algorithm and they resulted in the 

proposal of two important modifications described in Chapter 3 and future extensions in term 

of storage and speed efficiency that are currently being explored. 

Results of our experiments on the widely used Mutagenesis database indicate that 

MRDTL offers a promising alternative to existing algorithms such as Progol (Muggleton, 
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1995), FOIL (Quinlan, 1993a), and Tilde (Blockeel, 1998). Preliminary results of our 

experiments with the protein/gene localization task (based on the data from the KDD Cup 

2001 competition) indicate that MRDTL, if equipped with principled approaches to handling 

missing attribute values, can be an effective algorithm for learning from relational databases 

in real-world applications. Finally, results of experiments on a pure propositional database 

show that this algorithm is also an alternative for this kind of learning. 

Work in progress and for the future is aimed at: 

• Incorporation of sophisticated methods for handling missing attribute values into 

MRDTL 

• Incorporation of sophisticated pruning methods or complexity regularization 

techniques into MRDTL to minimize overfitting and improve generalization 

• More extensive experimental evaluation of MRDTL on real-world data sets 

• Development of ontology-guided multi-relational decision tree learning algorithms to 

generate classifiers at multiple levels of abstraction, based on the recently developed 

propositional decision tree counterparts of such algorithms (Zhang et al., 2002) 

• Development of variants of MRDTL for classification tasks where the classes are not 

disjoint, based on the recently developed propositional decision tree counterparts of 

such algorithms (Caragea et al., 2002) 

• Development of variants of MRDTL that can learn from heterogeneous, distributed, 

autonomous data sources based on recently developed techniques for distributed 

learning (Caragea et al., 2001a; Caragea et al., 2001b) and ontology-based data 

integration (Honavar et al., 2001; Honavar et al., 2002; Reinoso-Castillo, 2002). 

• Application of multi-relational data mining algorithms to data-driven knowledge 

discovery problems in bioinformatics and computational biology. 

• One of the most important drawbacks we identified using this framework for 

relational induction of decision trees is that sometimes extremely complex or long 

queries that correspond to the leaves of the tree result. Alternative techniques to deal 

with this problem and to make the algorithm more efficient are being explored. 
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• In a more specific context, it is of interest to try MRDTL algorithm with the two 

remaining sets of background knowledge for mutagenesis database. 

• In the context of first-order extensions of probabilistic models (Bayesian Networks), 

the method proposed in (Cheng et al., 2002) based on the use of Markov blanket  

concept together with information gain based feature filtering can be combined with 

first order extensions of BNs to obtain more compact models but with the same 

predictive power. 
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