
MRDTL: A multi-relational decision tree learning algorithm

by

Héctor Ariel Leiva

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:

Vasant Honavar (Major Professor)

Shashi Gadia

Drena Dobbs

Iowa State University

Ames, Iowa

2002

Copyright © Héctor Ariel Leiva, 2002. All rights reserved.

 ii

Graduate College

Iowa State University

This is to certify that the master’s thesis of

Héctor Ariel Leiva

has met the thesis requirements of Iowa State University

Major Professor

For the Major Program

 iii

To my wife

 iv

Table of Contents

ACKNOWLEDGEMENTS VI

ABSTRACT VII

1. INTRODUCTION 1

 1.1. Knowledge Discovery in Databases and Data Mining 1
 1.2. Relational Learning 2
 1.3. Motivation 6
 1.4. Organization of the Thesis 7

2. RELATIONAL DATA MINING APPROACHES 8

 2.1. Inductive Logic Programming 8
 2.2. First Order Extensions of Bayesian Networks 12
 2.2.1. Brief Introduction to Bayesian Networks 13
 2.2.2. Relational Bayesian Networks 15
 2.2.3. Probabilistic Relational Models 15
 2.2.4. Bayesian Logic Programs 16
 2.2.5. Combining First-Order Logic and Probability Theory 17
 2.3. Multi-Relational Data Mining 18
 2.4. Other Recent Approaches and Extensions 19

3. MULTI-RELATIONAL DATA MINING 22

 3.1. Relational Vocabulary 22

 3.2. Multi-relational data mining framework 24
 3.2.1. Multi-Relational Decision Tree Learning Algorithm 27
 3.2.2. Refinements 28
 3.2.3. Computing Information Gain Associated with a Refinement 39
 3.2.4. Classifying Instances 42
 3.2.5. Handling Missing Values 43
 3.3. Description of MRDTL System 45

4. EXPERIMENTAL RESULTS 47

 4.1. Mutagenesis Database 47
 4.1.1. Task Description 47
 4.1.2. Method 49

 v

 4.1.3. Experimental Results 50
 4.2. Gene Localization Database 54
 4.2.1. Database and Task Description 54
 4.2.2. Method 56
 4.2.3. Discussion of Results 56
 4.3. Adult Database 57
 4.3.1. Database and Task Description 57
 4.3.2. Method and Results 58

5. SUMMARY and DISCUSSION 59

References 62

 vi

ACKNOWLEDGEMENT

I would like to express special thanks to Dr. Vasant Honavar for his help, guidance and

mentoring; also to the members of the Artificial Intelligence Research Laboratory at Iowa

State University, for the discussions and friendship; and to my committee members, Dr.

Shashi Gadia and Dr. Drena Dobbs, for their help.

I am also grateful to my family that always believes in me.

Finally, all my thanks to my beloved wife Marivé for her unconditional love, help,

support, and patience in this endeavor and always.

Much of this work was supported in part by grants from the National Science Foundation

(0087152, 9972653), the Carver Foundation, Pioneer Hi-Bred, Inc. and the Fulbright

Commission scholarship program.

 vii

ABSTRACT

Many real-world data sets are organized in relational databases consisting of multiple

tables and associations. Other types of data such as in bioinformatics, computational biology,

HTML and XML documents require reasoning about the structure of the objects. However,

most of the existing approaches to machine learning typically assume that the data are stored

in a single table, and use a propositional (as opposed to relational) language for discovering

predictive models. Hence, there is a need for data mining algorithms for discovery of a-priori

unknown relationships from multi-relational data.

This thesis explores a new framework for multi-relational data mining. It describes

experiments with an implementation of a Multi-Relational Decision Tree Learning (MRDTL)

algorithm for induction of decision trees from relational databases based on an approach

suggested by Knobbe et al., 1999. Our experiments with widely used benchmark data sets

(e.g., the carcinogenesis data) show that the performance of MRDTL is competitive with that

of other algorithms for learning classifiers from multiple relations including Progol

(Muggleton, 1995) FOIL (Quinlan, 1993), Tilde (Blockeel, 1998). Preliminary results

indicate that MRDTL, when augmented with principled methods for handling missing

attribute values, is likely to be competitive with the state-of-the-art algorithms for learning

classifiers from multiple relations on real-world data sets drawn from bioinformatics

applications (prediction of gene localization and gene function) used in the KDD Cup 2001

data mining competition (Cheng et al., 2002).

1

11.. IINNTTRROODDUUCCTTIIOONN

Brief introduction to Knowledge Discovery in Databases (KDD) and data mining is

given together with the main motivations for (multi)-relational learning.

1.1. Knowledge Discovery in Databases and Data Mining

Advances in information technologies are making possible for the scientific and industry

communities to acquire, and store increased volumes of data in digital form, even more data

than they can really process. This fact gave arise to a hybrid research field called Knowledge

Discovery in Databases (KDD). Since its beginning, the research made in this field has been

vast and is continuously growing.

Through the literature in the subject, the terms KDD and Data Mining sometimes are

used indistinctly. A more recent convention mentioned in (Blockeel, 1998) establishes that

the process of knowledge discovery actually consists of three subtasks. The first task is to

adapt the original format of the data to fit the input format of the data mining algorithm (Pre-

processing of the data). Once formatted the data, one or more algorithms must be applied to

extract patterns, regularities or general laws from the data, this is the phase properly called

Data Mining. Once the results of the data mining process are obtained they may require to be

translated to a more intelligible format. This last stage is known as post-processing of the

results.

Essentially, KDD is concerned with the nontrivial identification and extraction of valid,

novel, potentially useful, and ultimately understandable knowledge from (large) databases,

and data mining is the central step in this process (Dzeroski and Lavrac, 2001).

2

Data mining is situated at the intersection of several scientific domains. It combines

techniques from statistics, databases, computer graphics, artificial intelligence and machine

learning.

Data Mining algorithms can be classified into two broad categories: predictive or

descriptive approaches. In predictive data mining, the aim is to induce a hypothesis that

correctly classify all the given examples and can be used for classification of future, yet

unseen, instances. The most popular example of predictive technique is decision tree

induction (e.g., Quinlan’s C5 (Quinlan, Rulequest)). On the other hand, the goal in

descriptive data mining is to characterize as much as possible, by finding patterns

regularities, the given examples. Discovering of association rules is one example of this class

of data mining techniques (De Raedt et al., 2001).

There exist other analytical tools that explore data interrelationships, for instance OLAP

(On-Line Analytical Processing). But the difference between KDD and these tools is in the

approach they use. Many of the analytical tools available support a verification-based

approach, in which the user hypothesizes about specific data interrelationships and then uses

the tools to verify or refute those hypotheses. The effectiveness of this approach relies mainly

in the knowledge of the domain in question. On the other side, the goal of data mining is to

find patterns of influence. For instance, how does certain attributes affect the sales of a

certain business. Efforts have been made to combine existing analytical tools such as OLAP

and Data Mining techniques (e.g. (Information Discovery)).

1.2. Relational Learning

Traditionally, research in KDD has focused mainly on attribute-value learning where each

example or instance can be characterized by a fixed set (tuple) of attributes for which values

are given. The data set in this case can be viewed as a table (relation) where each row

corresponds to an instance and each column to an attribute. The hypothesis language is

propositional logic, where propositions are of the form “Attribute ⊕ value” where ⊕ is an

element of a predefined fixed set of operators such as {<, ≥, =} (Blockeel, 1998).

Most existing databases in different domains are not stored as a single relation, but as

several relations for reasons of nonredundancy and storage and access efficiency. An

3

instance in a relational database can consist of several records fragmented across several

tables. Furthermore, we can see the structure of a relational database as a way of representing

some knowledge about the domain in question that adds to the information represented by the

tuples themselves. Initially, attribute-value learning can not represent this kind of background

knowledge or find relationships between different records from one or more tables. Although

in principle, it is possible to reconstruct a single relation from multiple tables; such an

approach is fraught with many difficulties in practice. Consequently, the task of learning

from relational data or multi-relational learning has begun to receive significant attention in

the literature (Blockeel, 1998, De Raedt, 1998, Knobbe et al., 1999a, Knobbe et al., 1999b,

Friedman et al., 1999, Koller, 1999, Krogel and Wrobel, 2001, Getoor, 2001, Kersting and

De Raedt, 2000, Kersting et al., 2000, Pfef01, Dzeroski and Lavrac, 2001, Dehaspe and De

Raedt, 1997, Dzeroski et al., 2001, Jaeger, 1997, Karalic and Bratko, 1997).

When using relational databases containing multiple relations, it is not always necessary

to use a relational data mining algorithm. Luc De Raedt in (De Raedt, 1998) outlines how a

special case of relational learning can be transformed into attribute-value learning. But in the

general case, if we want to use traditional (propositional) learning algorithms then the

multiple tables that a relational database consist of have to be collapsed into a single table.

There are two general ways of transforming a multi relational database into a single relation.

1. Create a universal relation which involves the join of all the tables to form a single

one. There are some potential problems to this approach:

• The resulting universal relation can be extremely large and impractical to handle.

• Increased data redundancy resulting in a considerable increase in the size of the

data set.

• The data duplication resulting from flattening the data may introduce statistical

skew (Getoor, 2001).

• Attribute value learning becomes much more inefficient than first order

(relational) learning on some kinds of problem (De Raedt, 1998).

2. Transform a multiple relation database into a single relation by creating new attributes

in a central relation that summarizes or aggregate information from other tables. This

approach shares similar drawbacks with the first method plus an additional one.

4

Although the new attributes do not add more information about the examples in the

database, it may not be easy to find appropriate ones. This stage may require a great

amount of domain understanding and it is part of the knowledge discovery process.

One way to deal with this is to let the attribute value learner itself to come up with

good attributes (feature construction) or to enlarge the hypothesis space by allowing

tests involving multiple attributes (e.g. attribute1 = attribute2) (Blockeel, 1998).

Finally, there are domains where reasoning about the structure of the objects and relations

between them is inherently required (De Raedt et al., 2001). For example, Blockeel identifies

a chemical database that describes molecules (molecules table) by listing the atoms (atoms

table) and bonds (bonds table) that occur in them and using Mendelev’s periodic table of

elements as background knowledge (mendelev table), where learning from multiple relations

is desirable, and where joining the relations into a single one is not feasible unless a multiple-

instance learner is used (Blockeel, 1998). A multiple-instance learning task is one where each

training example is represented by multiple instances (or feature vectors) (Dietterich et al.,

1997). If we do not use a multiple-instance learner, then all the atoms with their

characteristics a molecule consists of have to be stored in one tuple with indefinite number of

attributes. This is also applicable to the Mutagenesis database (Srinivasan et al., 1996)

described in more detail in Chapter 4.

Thus, there is a clear need for data mining techniques that take into consideration the

relational representation of the domain of the task to be learnt.

Most of the research done in this topic has been made in the field of Inductive Logic

Programming (ILP), described in more details in the next chapter, with an extensive literature

available. Most recently, other different techniques not based on logic formalisms (Getoor,

2001, Knobbe et al., 1999a, Knobbe et al., 1999b) and others based on logic but not strictly

ILP such as (Kersting and De Raedt, 2000) have been proposed with relevant success.

A number of techniques proposed so far for relational data mining, in any of the

previously mentioned fields, rely on their propositional counterparts. For example, the ILP

systems Claudien, ICL, and Tilde are first order upgrades of propositional data mining

algorithms that induce association rules, classification rules and decision trees respectively

(De Raedt et al., 2001); the approach to relational reinforcement learning proposed in

5

(Dzeroski et al., 2001) is a combination of reinforcement learning and ILP; bayesian logic

programs and probabilistic relational models are extensions of Bayesian networks to

relational domains; finally the decision tree induction proposed in (Knobbe et al., 1999b) is a

clear extension of logical decision trees used in Tilde, which in turn is based on propositional

decision tree induction algorithm. Basically all of them follow a similar methodology to that

mentioned in (De Raedt, 1998) to upgrade attribute-value learning algorithms to cope with

relational learning.

Figure 1.1 shows the relationships between propositional and relational learning

algorithms previously mentioned. Next chapter expands on this taxonomy.

Relational Learning Algorithms

Single table Multiple tables

Propositional learning (Multi)-Relational learning

DT NB BN AR CR ILP FOBN MRDM

Progol

FOIL

TILDE

ICL

PRM

PLP

BLP

SLP

MRDT

Warmr

**

Fig. 1.1: Relationships between propositional and relational learning algorithms. Only the most
representative algorithms of each class are shown.
References:
**: Proposionalization – join of tables FOIL: First Order Inductive Logic
DT: Decision Tree
NB: Naïve Bayes

TILDE: Top-down Induction of First-order
Logical Decision Trees

BN: Bayesian Networks ICL: Inductive Classification Logic
AR: Association Rules PRM: Probabilistic Relational Model
CR: Classification Rules PLP: Probabilistic Logic Program
ILP: Inductive Logic Programming BLP: Bayesian Logic Program
FOBN: First Order Bayesian Networks SLP: Stochastic Logic Program
MRDM: Multi-Relational Data Mining MRDT: Multi-Relational Decision Tree

6

1.3. Motivation

Barring a few notable exceptions (Getoor, 2001, Kerst00), most of the research in the subject

has been based on ILP techniques. But the use of ILP engines in real world applications has

been limited due to input specification, lack of efficiency while not taking into account

relational databases issues and it inability to deal with noise and missing values in the data.

Therefore another approach that benefits from the vast research done in databases (mainly

about efficiency), knowledge discovery and inductive logic programming where the database

end user does not have to deal with a new formalism such as logic but instead use the direct

relational representation of the database in question is attractive (Chapter 2 explains how ILP

can be adapted to cope with relational databases not in prolog format).

The multi-relational data mining framework proposed in (Knobbe et al., 1999a) is a novel

approach that exploits the semantic information in the database making use of the known

Structured Query Language (SQL) to learn directly from data in a relational database. The

same authors, in (Knobbe et al., 1999b), introduce a general description of a decision tree

induction algorithm, based on the multi-relational data mining framework and logical

decision tree (Blockeel, 1998). To the best of our knowledge, there are no experimental

results available concerning the performance of the algorithm for induction of decision trees

from a relational database proposed in (Knobbe et al., 1999b). Therefore, this work

concentrates in a possible implementation of a multi-relational decision tree learner

(MRDTL) based on this framework using Java as the programming language and Oracle as

the backend relational database; and compares the performance of MRDTL with several

other approaches on some representative multi relational data sets including those used in

KDD Cup 2001.

The idea of shifting from ILP techniques to a search space consisting of database queries

using SQL instead of logical clauses as the language bias and results from database theory as

the next step in the relational data mining field had been already proposed in (Blockeel and

De Raedt, 1997a). There, Blockeel et al. borrow techniques from ILP to tackle the problem

of finding relationships between relations using relational algebra as the language bias. An

equivalent algorithm using SQL is straightforward. That algorithm has not been implemented

yet.

7

1.4. Organization of the Thesis

Chapter 2 discusses some of the most relevant approaches to relational learning that have

been studied on different Computer Science’s areas.

Chapter 3 describes in more detail the multi-relational framework to which the relational

learning algorithm implemented belongs together with an explanation of the own

characteristics of the system.

Chapter 4 details the relational databases used to test the performance of MRDTL,

exposes results obtained with it and contrasts them with those results already in the literature

for the same set of relational databases obtained with other techniques for relational data

mining.

Finally, Chapter 5 concludes the paper and enumerates possible future extensions.

8

2. RELATIONAL DATA MINING APPROACHES

Three main directions can be distinguished in the area of relational data mining: 1)

Inductive Logic Programming (ILP), where an extensive research has been made; 2)

First order extensions of probabilistic models; and 3) Approaches that borrow ILP

techniques but where the search space consist of database queries exclusively.

This chapter discusses these three main approaches, characterizing them from a

relational database point of view and concludes enumerating a series of recent

techniques as well as extensions to some relational algorithms previously proposed.

2.1. Inductive Logic Programming

As its name indicates, ILP is situated at the intersection of two important areasof Computer

Science: Induction that is one of the main techniques used in several Machine Learning

algorithms to produce models that generalize beyond specific instances and Logic

Programming which is the programming paradigm that uses first order logic to represent

relations between objects and implements deductive reasoning. The main representative of

this paradigm is Prolog.

The initial focus of ILP was to develop algorithms for the synthesis of logic programs

from examples and background knowledge (i.e. knowledge acquisition for some domain).

More recent developments in ILP have considered classification, regression, clustering, and

association analysis (Dzeroski and Lavrac, 2001). Thanks to its flexible and expressive way

of representing background knowledge and examples, the field has also been expanded from

the single-table case to the multiple-table one.

For clarification purposes, a small ILP example (taken from (Lavrac, 2002)) is given

below.

9

Let

E+= {daughter(Mary, Ann), daughter(Eve, Tom)} be the positive examples of the

relation daughter;

E-= {daughter(Tom, Ann), daughter(Eve, Ann)} be the negative examples of the

same relation; and

B= {mother(Ann, Mary), mother(Ann, Tom), father(Tom, Eve), father(Tom, Ian),

female(Ann), female(Mary), female(Eve), male(Pat), male(Tom), parent(X,Y)

← mother(X,Y), parent(X,Y) ← father(X,Y)} be the background knowledge,

where the relations daughter, mother, father, female, male, and parent have the common

meaning. Then, the goal of this ILP problem is to learn the concept daughter. For predictive

ILP, a solution could be the following synthesized clause:

daughter(X,Y) ← female(X), parent(Y,X).

or a set of definite clauses:

daughter(X,Y) ← female(X), mother(Y,X).

daughter(X,Y) ← female(X), father(Y,X).

Although induction is the inverse operation of deduction, the inductive process is more

difficult than deduction. For deduction, we can use sound rules of inference but inductive

inference involves unsound conjectures based on statistical support from data (Muggleton,

1995). Due to this, there is not a well established ILP engine yet as there exists in deductive

logic programming with Prolog.

ILP has been one of the first approaches taken in relational learning and one of the most

expanded. However its use in relational data mining solutions in KDD has been limited due

to the existence of different ILP engines in terms of input specification (Knobbe et al., 2001),

the language bias they use and the limited attention they pay to relational database theory.

For example, if we try to run the exercise presented in (De Raedt et al., 2001) for the three

ILP systems there described (Claudien, ICL and TILDE), or another example that is stored in

a relational database, we will need to create a knowledge database if it is needed, code the

examples using logical formalisms and adapt the input for each of the three systems (two of

10

them share the same input format specification). They do not exploit the capabilities of

relational databases.

A number of different techniques have been proposed to cope with the drawbacks of ILP:

• In order to deal with the logic formalism and to unify the different input

specifications of different ILP engines, (Knobbe et al., 2001) propose the use of

Unified Modeling Language (UML) as the common specification language for a large

range of ILP engines. The idea is to replace the logic-based formalism to specify the

language bias with a language that is easy to use, can be used by a range of ILP

systems, and can represent the complexity of the problem in a clear and simple way.

In that way, even the non-expert users will be able to model their problems and use a

wide range of ILP engines, choosing that one that best fits their current needs.

• In (Blockeel and De Raedt, 1997a), three ways of bridging ILP and relational

databases are presented. These are possible solutions to the problem of efficiency

issues mentioned before. They are briefly described in order of adaptation of the ILP

system to the database system.

- The simplest one is pre-processing of the relational data to be transformed to

Prolog syntax (an algorithm for this purpose is given in (Blockeel, 1998)).

- The second possible bridge relies on the fact that some Prolog systems can be

linked to relational databases. A relational database is available together with the

Prolog knowledge base. Each time a literal p(a, b) has to be evaluated and the

predicate p corresponds to a relation P in the relational database, Prolog has to

open a connection and query the database to determine if the tuple (a, b) is in P.

- The last bridge exploits the close relationships existent between first order logic

and relational databases (a predicate is a relation between its arguments which

are, in turn, attributes in relational databases) and between logical clauses and

relational database queries. Therefore, entire logical clauses (not only a literal at a

time as in the second approach) can be translated to SQL statements and

submitted to the database to obtain statistics. Systems implementing this

characteristic already exist. For example RDT/DB (Lindner and Morik, 1995) (cf.

11

(Blockeel and De Raedt, 1997a)) couples the ILP system RDT (Kietz and Wrobel,

1992) with the Oracle database system.

There exist several and different ILP engines and most of them can be placed within one

of the two main logical approaches: learning from entailment and learning from

interpretations. The first one is considered the classical setting, also called explanatory ILP

(Blockeel, 1998) and most of ILP systems use this setting (e.g. RDT (Kietz and Wrobel,

1992), Progol (Muggleton, 1995), FOIL (Quinlan, 1993a), SRT (Kramer, 1996), Fors

(Karalic and Bratko, 1997)). Learning from interpretations is also called descriptive ILP and

more recently, ILP engines based on this setting have begun to appear (e.g. Claudien, ICL,

and Tilde (De Raedt et al., 2001)). An explanatory history of how learning from

interpretations evolved from a descriptive technique to a predictive one is given in (Blockeel,

1998). Additional approaches to ILP can be found in (De Raedt, 1997).

The two main ILP approaches differ from each other in the way they represent the

examples, the background knowledge and the way the final hypothesis is induced. In learning

from interpretations each example e is represented by a separate Prolog program encoding its

specific properties as sets of interpretations and the background knowledge B is given in the

form of another Prolog program. The learning from entailment paradigm represents all the

data together with the background knowledge as a simple Prolog program, there are no

separations between examples.

A hypothesis in the learning from interpretations setting is a set of clauses such that only

each positive example together with the background knowledge makes each clause in the set

true. In notation, being E+ and E- the sets of all positive and negative examples respectively,

a hypothesis H has to be found such that

)∧(in false is :∈∀
)∧(in trueis :∈∀ +

BeMHEe
BeMHEe

where)∧(BeM is the minimal Herbrand1 model of Be∧ .

Whereas in the learning from entailment framework the induction problem is to find H

such that the following entailment constraint holds

1 A brief but useful review about some basic concepts in first order logic can be found in (De Raedt, 1997).

12

eBHEe
eBHEe

 entailnot ∧:∈∀
 entail ∧:∈∀ +

These definitions are given in (Blockeel, 1998), a slightly different definition for learning

from interpretations is given in (Blockeel and De Raedt, 1997a) where they do not

distinguish between positive and negative examples.

In turn, within learning from entailment we can distinguish two principal approaches to

the induction process: inverse deduction and a generalization of top-down induction

techniques to the first-order case (Russel and Norvig, 1995). An example of the first case is

Progol (Muggleton, 1995) that uses inverse entailment as a generalization and enhancement

of previous techniques for inverse deduction and for the second approach FOIL (Quinlan,

1993a), one of the first ILP systems using top-down induction. But, in learning from

interpretations top-down induction of hypothesis is the most commonly used technique.

Although it has been shown that learning from interpretations reduces to learning from

entailment (De Raedt, 1997), which in turn reduces to learning from satisfiability (learning

from partial interpretations, where missing values are considered), an increased interest has

been focused toward learning from interpretations in several recent ILP systems (e.g.

(Blockeel, 1998, De Raedt et al., 2001). The latter is due to the fact that attribute value

representations are a special case of this setting. But also, because many attribute value

techniques exploit the independence of examples and the setting in question assumes also

this independence through the separation of information between examples, then attribute

value learning algorithms can be upgraded in a more trivial way to this setting than to

learning from entailment as it has been shown by the systems Claudien, ICL and Tilde (De

Raedt et al., 2001). This setting has also inspired the shifting from a pure logical search space

to one consisting exclusively of database queries in relational algebra or SQL-like language

in (Blockeel and De Raedt, 1997a, Knobbe et al., 1999a, Knobbe et al., 1999b).

2.2. First Order Extensions of Bayesian Networks (BNs).

Traditional approaches in attribute-value learning and learning from interpretations settings

mentioned before assume data independence in order to come up with a hypothesis

explaining the examples. Probabilistic models, most specifically Bayesian networks (Pearl,

13

1991), differ from those approaches by specifying a probability distribution over a fixed set

of typically discrete random variables that could be the attributes in an attribute-value setting.

Thus, Bayesian nets are a probabilistic extension of propositional logic (Kersting and De

Raedt, 2000). One of their most important features is their capacity of reasoning under

uncertainty. But, probabilistic models inherit the same limitations as propositional logic

when they are applied to relational data.

In order to address these limitations, several approaches for combining first order logic

and Bayesian nets have been proposed. They have risen in different fields and under different

circumstances. The most representatives are Probabilistic Logic Programs (PLPs) (Ngo and

Haddawy, 1997) from logic programming; Relational Bayesian Networks (RBNs) (Jaeger,

1997) from model theory and Probabilistic Relational Models (PRMs) (Koller, 1999) that

have their foundations in the database field. In spite of their different background, they seem

to share a common kernel represented by Bayesian Logic Programs (BLPs) as shown in

(Kersting and De Raedt, 2000). This last approach is a simplification and reformulation of

PLPs, so we will concentrate on this last one instead of the former one.

2.2.1. Brief Introduction to Bayesian Networks

Bayesian networks consist of two components: a qualitative one and another quantitative.

The qualitative part is represented by a directed acyclic graph (DAG) where each node

represents a domain variable (generally called random variables), and each arc represents a

probabilistic dependency between two variables. The probabilistic dependency is the

quantitative part represented through a conditional probability distribution for each node. An

example of a Bayesian network taken from (Friedman and Koller, 2001) is shown in Fig. 1.1.

The format in that figure is somehow different to the usual one, but this is to agree with the

format of BLPs given below.

A BN is a compact representation of probability distributions via conditional

independence. A BN can compute the conditional probability for each value of a node given

that values have been assigned to the other nodes. In this sense, BN classifiers can compute

the conditional probability of a class value given the values of the other attributes. From the

example in Fig. 1.1, where the conditional probability table for alarm node is given, we can

14

see that the alarm starting depends on the values of burglary and earthquake. For a more

detailed description of BNs refer to (Jensen, 2001).

There are several motivations to the use of BNs for relational data mining. The main one

was mentioned in the first paragraph of this section and refers to the fact that BNs can

naturally represent relationship among attributes and this is clearly needed in relational

domains, but also they can represent dependencies between data. At the same time, they can

make decisions under uncertainty.

Another motivation to the use of Bayesian nets-based techniques for relational

classification tasks is their intrinsic feature selection capacity based on the concept of

Markov blanket of a node in the network. Basically, the Markov blanket of node n is the

union of n’s parents, n’s children, and the parents of n’s children. For complete data, the

random variables outside Markov blanket of node n can be deleted from the BN producing a

smaller network. Making node n the attribute to be predicted in the classification process, all

others nodes that do not belong to its Markov blanket can be deleted without affecting the

classification accuracy of the network. This, together with information gain based feature

filtering is a novel approach for attribute-value learning of high-dimensional data that has

shown to be successful in several domains outperforming classical classification algorithms

such as decision trees (Cheng et al., 2002).

E B P(A|E,B)

e b 0.9 0.1
e -b 0.2 0.8
-e b 0.9 0.1
-e -b 0.01 0.99

earthquake

radio alarm

call

burglary

Fig. 2.1: Example of a quantitative component (dialog box) and the qualitative component (right) of a
simple Bayesian network.

15

Finally, their structural representation makes the relationships between attributes easy to

understand and can be modified by domain experts in order to obtain better predictive models

or models with certain characteristics.

One of the drawbacks of BNs is that generally the domain of each of the random

variables has to be finite. Thus, some discretisation algorithm must be used before learning

the network and its parameters, sometimes loosing some important information.

2.2.2. Relational Bayesian Networks (Jaeger, 1997)

In RBNs the nodes are predicate symbols corresponding to every relation r of some

vocabulary S, the values of these random variables are the possible interpretations of the

predicates over some finite domain. The semantic of a RBN is a probability distribution over

the relations of S.

The qualitative component of RBNs is represented by Probability Formulae (PFs) that

employ combination functions as well as equality constraints. These PFs allow nested

combination functions too and not only specify the CPT but also the dependency structure.

2.2.3. Probabilistic Relational Models (Getoor, 2001)

PRMs are an extension of BN to relational domain where the nodes of the network are the

attributes of a relational database. The edges represent probabilistic dependences between

attributes. These dependences between attributes are either true or false; they do not have

certain probability of occurrence as in RBN. The semantic of a PRM is a probability

distribution over the attributes and the relations that hold between them (Getoor, 2001).

Like traditional BNs, PRMs consist of two components: the structure of the network and

the parameters (conditional probability distribution) associated with it. For learning PRMs,

(Friedman et al., 1999, Friedman et al., 2001) extend the techniques for learning BNs to learn

from structured data. The two components mentioned before are the ones that have to be

learned. As it happens in BNs, the parameter estimation is the easiest task of both and the key

here is the likelihood function (i.e. the probability of the data given the model). The higher

this probability, the better the model to predict the data. For structure learning three

components need to be defined: the hypothesis space (which structures the algorithm can

consider); a scoring function to evaluate each hypothesis relative to the data; and the search

16

algorithm. This last one is a heuristic and the most used one is the greedy hill-climbing

search.

2.2.4. Bayesian Logic Programs

This kind of first order extension of Bayesian networks is introduced in (Kersting and De

Raedt, 2000, Kersting et al., 2000) as a simplification and reformulation of PLPs, but also as

a common framework for the previous mentioned approaches.

In BLPs, the qualitative part of the Bayesian net is represented by a set of Bayesian

definite clauses. The difference between this kind of clauses and classical clauses is that each

ground atom in a BLP represents a random variable (Kersting and De Raedt, 2000). The set

of random variables corresponds to the least Herbrand model of this logical program, i.e. the

set of all ground atoms that are logically entailed by it. The parents of a certain random

variable n are all facts directly influencing n. An example is given in Fig. 1.2.

For a determined query, it is not necessary to compute the least Herbrand model of the

complete logic program; we need to consider only those variables that influence the query

result. A certain query (as in Fig. 1.2) asks for the probabilities of the clause of taking any of

the values in its domain. The query ?- alarm(james) asks for the probabilities of

alarm(james) = true and alarm(james) = false, for instance.

lives_in(james, yorkshire).
lives_in(stefan, freiburg).
neighborhood(james).
tornado(Yorkshire).
burglary(X) | neighborhood(X).
alarm(X) | burglary(X).
alarm(X) | lives_in(X,Y), tornado(Y).

neighborhood(james)

lives_in(james, yorkshire)

tornado(yorkshire)

alarm(james)

burglary(james)

Fig. 1.2: example of a Bayesian logic program (left) and the corresponding Bayesian structure
for the query ?- alarm(james). (right)

17

The quantitative part is as in BN represented by conditional probability tables and

combining rules stored for each node or literal. A query can be answered by using any

Bayesian net inference engine.

Figure 1.2 shows how a Bayesian net can be obtained from a logical program. An

example of a Bayesian logic program obtained from a Bayesian network can be observed in

Fig. 1.3. That program corresponds to the Bayesian net described in figure 1.1 of section

2.2.1 of this chapter.

Algorithms for learning BLPs (the qualitative and the quantitative parts) have been

proposed in (Kersting et al., 2000) but have not been implemented yet. The authors of PRMs

suggest that algorithms for learning their models can be adapted for BLPs too (Getoor, 2001).

2.2.5. Combining First-Order Logic and Probability Theory

Other approaches for combining first-order logic and probability theory (not only Bayesian

networks) have been proposed, one of the most interesting is Stochastic Logic Programs

(SLPs) (Muggleton, 1996). , Cussens, 1999, Muggleton 2000).

Stochastic Logic Programs (SLPs) are a generalization of stochastic context-free

grammars (Lari and Young, 1990) and Markov nets (or undirected Bayes net) (Cussen,

1999). An SLP consists of a set of labeled clauses p:C where]1,0[∈p , C is a first-order

range-restricted definite clause (every variable in the head of C is the body too) and for each

predicate symbol q the probability labels for all clauses with q in the head sum to 1. An SLP

induces a probability distribution over the possible ground facts for a given predicate.

burglary.
earthquake.
alarm :- burglary, earthquake.
radio :- earthquake.
call :- alarm.

Fig. 1.3: Bayesian logic program corresponding to the Bayesian net given in the introduction to
this section.

18

An algorithm for learning SLPs is described in (Muggleton, 2000). Consists of two steps

(as in Bayesian networks):

1) Construction of the logic program (LP) with uniform probability labels for each

clause and near maximal posterior probability with respect to the examples, and

2) Parameter estimation to increase the posterior probability with respect to the

examples.

For the first part Muggleton used Progol4.5, i.e. the task of learning the structure of an

SLP is based on ILP approaches. But step two uses a maximum likelihood approach, as most

Bayesian approaches use, which is based on maximizing the posterior probability of the

program.

2.3. Multi-Relational Data Mining

The term multi-relational data mining was first used by (Knobbe et al., 1999a) to describe a

new approach for relational learning. Later this term was accepted to describe the multi-

disciplinary field that deals with knowledge discovery from relational databases and data

which consists of complex/structured objects. In this section and next chapter, the term in

question is used as proposed in (Knobbe et al., 1999a).

The idea of shifting from a pure logical search space as in ILP to a search space

consisting of database queries but borrowing techniques from ILP was firstly proposed in

(Blockeel and De Raedt, 1997a), although for the best of our knowledge, that algorithm has

not been implemented so far. That algorithm tries to find relationships between relations and

it is given for relational algebra but a translation to a database query language such as SQL

should not be difficult and would be more useful.

That first attempt was motivated by the fact that most of the ILP systems were not

integrated with a relational database but rather with a deductive database such as a Prolog

database, connections to relational databases had to be done by using the techniques

mentioned in section 2.1. Therefore, systems that exploit relational databases’ characteristics

directly were needed.

The same group then proposed a multi-relational data mining (MRDM) framework in

(Knobbe et al., 1999a) that also borrows techniques from ILP but the search space consists of

19

SQL queries. This approach is detailed more precisely in the next chapter. Here, a brief

introduction is given.

MRDM framework can support a range of relational data mining algorithms

generalizations of common attribute-value learning algorithms. Knobbe et al. showed this by

adapting the Warmr algorithm (Dehaspe and De Raedt, 1997) which is an ILP generalization

of the Apriori algorithm (Agrawal et al., 1996) to find association rules in multiple relations

in (Knobbe et al., 1999a), and also by adapting the first order logical decision tree induction

proposed in (Blockeel, 1998) that is a first order upgrade of the common top-down induction

of decision tree in (Knobbe et al., 1999b).

One of the first drawbacks to appear when the search space of a relational learning

algorithm consists of structures considering relational databases queries only is that SQL has

lower expressive power than first order logical clauses. For instance, if a concept consists of

a recursive definition in terms of one or several relations, it can not be represented in

relational algebra or SQL. This should not be a problem for most of the existing relational

databases in different domains because the expressive power of non-recursive languages such

as SQL is enough to query those databases (Blockeel and De Raedt, 1997a).

Finally, SQL provides more possibilities than relational algebra and some different

features than logic programming such as grouping, counting, etc. Then, it is expected that the

search space be organized in a different way than the clausal logic space and the relational

algebra space.

2.4. Other Recent Approaches and Extensions

When relational learning was introduced in the first chapter, the second way of transforming

a multiple relations database into a single relation to which propositional learning algorithms

can be applied to was the creation of new attributes in a central relation that summarizes or

aggregate information from other tables in the relational database. Variants of this method

have been used in systems such as LINUS (Lavrac et al., 1991) and DINUS (Lavrac and

Dzeroski, 1994) (successor of the previous one). These two systems are examples of a class

of ILP methods that transform restricted ILP problems into attribute-value form through the

technique called proposionalization and solve the transformed problem with a propositional

20

learning algorithm. These two systems have some limitations that do not allow them to tackle

some problems that can be present in relational databases such as non-determinate

relationships (a record in one table can have more than one corresponding record in another

table).

More recently, (Krogel and Wrobel, 2001) introduce a new transformation-based ILP

learner similar to the previous mentioned systems that can deal with non-determinate

relationships, non-constrained literals and it is oriented to the business domain where the

relational databases are often structurally simple, but large in size. This approach is called

Rely on Aggregation, Sometimes (RELAGGS) and has been applied with significant success

to learning problems from the business domain (Krogel and Wrobel, 2001) but also from the

biology domain (Cheng et al., 2002). This feature construction method shows that if good

attributes are constructed by the proposionalization algorithm, a feature-based learner can

outperform relational learning techniques.

Continuing in the same trend, (Neville and Jensen, 2000) propose the use of a simple

propositional Bayesian classifier in an iterative way for relational domains. The approach

keeps the relational structure and the objects are “flattened” when is required by the

algorithm. Inferences made about an object can assist inferences about related objects;

therefore, inferences made with high confidence about some objects are fed back into the

database and used for posterior inferences about possible related objects. Although simple

Bayesian classifier is an attribute-value learner, by keeping the relational structure of the data

helps to perform the feedback procedure into related objects.

In the framework of Probabilistic Relational Models, (Pfeffer, 2000) proposes an

extension to this language in order to make PRMs capable of cumulative learning. A

cumulative learning agent learns and reasons as it interacts with the world. Bayesian

networks provide a natural framework for this kind of learning. This is different to those

static relational approaches that take a snapshot of the relational database at some time, build

the classifier and use it for unseen instances. The dynamic technique proposed in (Pfeffer,

2000) modifies the learned model to represent the reality in a more fair way along the time.

Approaches for mining structural data in form of graph have been proposed too (Holder

and Cook, 2000, Gonzalez et al., 2000). In this framework, objects in the data correspond to

21

vertices in the graph, and relationships between objects correspond to directed or undirected

edges in the graph. The Subdue system looks for patterns embedded in graphs. Once a

pattern (substructure) is found, is added to the graph in order to simplify it by replacing

instances of the substructure with the substructure itself.

22

33.. MMUULLTTII--RREELLAATTIIOONNAALL DDAATTAA MMIINNIINNGG

This chapter introduces a framework recently proposed to mine relational databases

searching through a space consisting of SQL queries only and it is based on the work

by Knobbe et al. (Knobbe et al., 1999a, Knobbe et al., 1999b). This is preceded by a

brief description of relational notation.

It also describes an implementation of Multi-relational decision tree learning

(MRDTL) algorithm for induction of decision trees from relational databases using

the previously mentioned approach.

3.1. Relational Vocabulary

A relational database consists of a set of tables, },...,,{= 21 nXXXχ and a set of associations

between pairs of tables. These associations can be seen as constraints on how the records

from one table relate to records in the other table. Both tables and associations are also

known as relations. We will use the distinction between these two terms here.

The columns in a table denote the attributes of that table and the rows correspond to

records. Each table can have at least one key attribute that uniquely identifies the records in

it; we will denote this attribute as KX . . The remaining attributes are either descriptive

attributes or foreign key attributes. A foreign key attribute is a key attribute of another table.

Foreign keys allow associations between tables to be defined. The nature of this relationship

denotes the multiplicity of the association (many-to-one, one-to-many).

Following with the notational convention in (Getoor, 2001), a descriptive attribute A of

table X will be denoted AX . , and its domain is).(AXD . For a foreign key, the same

notation is used. However, for foreign key attributes we need to define their domain type

23

(Dom[F]) and range type (Range[F]). If FX . is a foreign key attribute in table X and

happens to be primary key in table Y , then Dom[F] is X and Range[F] is Y .

Most of associations in a relational database correspond to foreign key relations. These

relations can be seen as having two directions. One goes from the table where the attribute is

primary key to the table where the attribute is foreign and the other one in the reverse way.

Let us call them F and F-1, respectively.

An object in a relational database can consist of several records fragmented across

several tables and connected by associations.

As an example, the subset of the data model of the mutagenesis database used in this and

the following chapter is described in Fig. 3.1 by mean of an entity-relation diagram.

The figure shows that the database consists of three tables and four relations. A molecule

has at least one atom, and at least one bond (this makes a total of at least two atoms per

molecule). Table bond describes the type of relation between two atoms; therefore both

Figure 4.1: Entity-relation diagram for Mutagenesis database.

24

atoms must be already in their respective table. The two associations between atom and bond

tables represent the latter.

3.2. Multi-Relational Data Mining Framework

In the multi-relational data mining framework (Knobbe et al., 1999a), although the data

model can consist of several tables, each describing particular objects’ features, only one

view of the objects is central to the analysis. The user can choose the kind of objects to

analyze by selecting one of the tables as target table (this table will be called

},...,1{∈ somefor =0 niXT i). The important point here is that each record in the target table

will correspond to a single object in the database1. Once the target table has been selected, a

particular descriptive attribute of that table can be chosen for classification or regression

purposes, this is known as the target attribute within the target table.

Given a schema of a relational database and the physical implementation of it, the goal of

this approach is to find interesting patterns, that can explain or predict the target attribute

within the target table, that not only involve attribute-value descriptions but also structural

information denoted by the associations.

Multi-relational patterns can be expressed by using a graphical language consisting of

selection graphs. These graphs can be translated to SQL or first order logic expressions.

The definition of selection graphs in this work is the one given in (Knobbe et al., 1999b)

because it is more adequate to the approach taken here than the other definition in (Knobbe et

al., 1999a).

Definition 3.1:

“A selection graph G is a directed graph (N,E), where N is a set of triples (T, C, s)

called selection nodes, T is a table in the data model and C is a, possibly empty, set of

conditions on attributes in T of type T.A ⊕ c; ⊕ is one of the usual selection operators

=, <=, >, etc. s is a flag with possible values open and closed.

E is a set of tuples (p, q, a, e) called selection edges, where p and q are selection nodes

and a is an association between p.T and q.T in the data model. e is a flag with possible

1 This point is very important in the discussion of the experimental results in Chapter 4.

25

values present and absent. The selection graph contains at least one node n0 that

corresponds to the target table T0.”
Selection graphs can be represented as directed labeled graphs. An example is shown in

Fig. 3.2 based on the data model for Mutagenesis database shown in Figure 4.1. The current

graph selects those molecules that have at least one atom whose partial charge is less than or

equal to -0.392, but for which none of them have charge less than or equal to -0.392 and

element equal to ‘b’ at the same time.

Note, from that figure, that the value of s is represented by the presence or absence of a

cross in the node, representing the value open and closed respectively. The value for e, in

turn, is indicated by the presence (present value) or absence (absent value) of a cross on the

corresponding arrow representing the edge.

From the current instance and schema for this relational database, the target table is

Molecule, and within molecule the target attribute trying to be predicted is Label although is

not shown in the figure.

A present edge between tables p and q represents a join between these two tables using as

the join attribute that one that is primary key in p and foreign key in q with two exceptions to

be described later (see adding a negated condition and adding absent edge and closed

node).This edge combined with a list of conditions selects those records that match the list of

conditions and belong to the join.

Fig. 3.2: Example of a selection graph for Mutagenesis database.

Charge <= -.392

Atom

Molecule

Charge <= -.392 and
Element = ‘b’

Atom

26

On the other hand, an absent edge between table p and q combined with a list of

conditions q.C selects those records in p that do not match the list of condition. Any subgraph

that is pointed by an absent edge thus corresponds to a set of negative conditions.

Algorithms to translate selection graphs to SQL are given in (Knobbe et al., 1999b). They

point out that the resulting SQL statements should not be used in actual implementations.

They propose a dedicated architecture (Knobbe et al., 1999a), where these SQL statements

are implemented as primitive calls in order to be processed more efficiently. Because the

purpose of this work is to test the “goodness” of this approach highlighting strengths and

weaknesses, we actually did not implement the dedicated server part. The gathering of

statistic is handled by an Oracle DBMS server and the search algorithm run in a different

machine, and as we will see later, having a dedicated architecture is the best option for this

framework. As a consequence, we directly apply SQL statements to collect statistics in order

to find possible refinements for a graph.

Using the algorithms given in (Knobbe et al., 1999b), the graph in Fig. 3.2 translates to

the following SQL statement:

select distinct T0.mol_id
from Molecule T0, Atom T1
where T0.mol_id = T1.mol_id
and T1.charge <= -0.392
and T0.mol_id not in

(select T2.mol_id
 from Atom T2
 where T2.charge <= -0.392
 and T2.element = ‘b’)

Basically, the algorithm can be seen as returning, after have traversed a selection graph, a

list of the tables (table_list) that correspond to the open nodes in the graph, a list of joins

(join_list) between tables (i.e. conditions such as Ti.K=Tj.F, where K is primary key in Ti and

foreign key represented by F in Tj), and finally a list of conditions (condition_list) on

attributes in the appropriate tables. Also, the last list includes the translation of those

subgraphs representing negative conditions. Thus, the format of a generic query resulting

from a selection graph is the following:

27

select distinct T0.primary_key
from table_list
where join_list
and condition_list

Notice that table_list can never be empty but join_list or/and condition_list might be. In these

cases, the preceding query should be modified accordingly.

3.2.1. Multi-Relational Decision Tree Learning (MRDTL) Algorithm

Multi-relational decision tree learning algorithm constructs decision tree whose nodes are

multirelational patterns i.e., selection graphs.

The algorithm described in (Knobbe et al., 1999b) which we have called MRDTL is an

extension of the logical decision tree induction algorithm called TILDE proposed by

Blockeel (Blockeel, 1998). TILDE uses first order logic clauses to represent decisions

(nodes) in the tree. The data are represented in first order logic rather than a collection of

records in a relational database. MRDTL extends TILDE’s approach to deal with records in

relational databases. They use similar refinements operators, and the way the tree is inducted

follows the same logic2.

Essentially, MRDTL, like the propositional version of the decision tree algorithm

(Quinlan, 1987), adds decision nodes to the tree through a process of successive refinement

until some termination criterion is met (e.g., correct classification of instances in the training

set). Whenever some termination criterion is met, a leaf node with its corresponding class is

introduced instead. The choice of decision node to be added at each step is guided by a

suitable impurity measure (e.g., information gain) Thus, MRDTL starts with a single node at

the root of the tree, which represents the set of all objects of interest in the relational

database. This node corresponds to the target table T0 together with the specified target

attribute. The pseudocode for the algorithm is shown in Figure 3.4.

The function optimal_refinement considers every possible refinement that can be made to

the current pattern G with respect to the database D and selects, in a greedy fashion, the

optimal refinement (i.e., one that maximizes information gain). The possible set of

refinements to be made at certain point during the process is governed by the current

2 For short introduction to TILDE refer to (Blockeel and De Raedt, 1997b); for a more detailed one (Blockeel,
1998).

28

selection graph, the structure of the database D, and the multiplicity of the associations

involved. G denotes the complement of the selection graph (i.e., it selects objects from the

database that are not selected by G .

The induction algorithm outlined before generates binary splits decision trees. A possible

modification can be made to consider multiple splits when a condition on some attribute is

chosen as the optimal refinement for the graph in question. In this case, we can have one

branch for each one of the possible values of the attribute. But, if the optimal refinement to

be made is to add an edge and a node then this has only one possible complement.

Another point to highlight about this way of constructing decision trees is the way in

which unseen instances will be classified in the future. This is discussed in a later subsection.

3.2.2. Refinements

As noted above, once the target table and the target attribute have been selected (i.e. the kind

of objects central to the analysis have been completely defined) a number of possible

refinements can be made to the initial node that represents T0 in order to find a hypothesis to

be consistent with the data in the training database.

Knobbe et al. (1999a) describe six possible ways of refining selection graphs. Three of

them are straightforward refinements for these kinds of graphs. A graph can be specialized

by adding a condition, an edge and a node, or by adding an edge between two already

existing nodes. But refinements that are designed to deal with multiplicity of the associations

in a relational database and the usefulness of look ahead in search are also discussed.

Tree_induction(T: tree, D: database, G: selection graph)

 R := optimal_refinement(G, D)
 if stopping_criteria(G)
 T := leaf(G)
 else
 Tleft := R(G)
 Tright := Rcomplement(G)
 tree_induction(Tleft, D, G)
 tree_induction(Tright, D, G)
 T := node(Tleft, Tright, R)

Fig. 3.4: general outline of a decision tree learning algorithm

29

Given the characteristics of the MRDTL algorithm implemented, we are interested on

five out of the six refinements previously mentioned. They are: add condition, add edge and

node, look ahead, multiple instantiations of associations and mutual exclusion. The

refinement that has been left out takes part of an enclosing refinement as it is explained later.

All of them are described below using examples from the Mutagenesis database:

• Mutual exclusion: algorithms inducing decision trees require that the subsets

belonging to patterns derived from the same parent, by applying some kind of

refinement, to be mutually exclusive. Because of this, the two main refinements (add a

condition and add an edge plus a node) are introduced with their complementary

operations. So, the requirement for mutual exclusion introduces two more refinements.

• Add condition (positive): this refinement simply adds a condition to a selection node

in G without changing its structure. Suppose the graph given below; the refinement to

be made was atom.element = ‘b’. Previous to this operation the set of conditions for

atom node contained only the condition atom.charge <= -0.392, and the set of

conditions for molecule node was empty. After have added the first condition

mentioned, the graph becomes the following:

• Add condition (negative): it is the complementary operation of the previous one. In

(Knobbe et al., 1999b) this refinement is explained as follows. If the node that is being

refined does not represent the target table, this refinement introduces a new absent edge

from the parent of that selection node to a new closed node that is a copy of the

selection node being refined. Its condition list and join list (denoted by the edges

coming out from this node) must be copied to the new closed node, and the first list

must be extended by adding the new condition not negated.

Charge <= -.392 and
Element = ‘b’

Molecule Atom

30

In order to copy the join list (if there is any) of the node being refined to the new closed

node, it is not necessary to create new nodes similar to those that are related to the first

node, it is enough to add copies of its edges from the new node to already existent

nodes. Although one of the nodes is the recently added one and the addition of edges to

existent nodes is one of the steps within the enclosing refinement discussed here, this

point makes necessary the existence of one of the refinements mentioned before: the

addition of an edge between two existent nodes.

On the other hand, if the node that is refined represents the target table, the condition is

negated and added to the current list of conditions for that node.

Graphically and using the same condition as for the previous example but negated, the

resulting selection graph is the following:

In the case that the node that is refined does not correspond to the target table, the

simple negated condition can not just be added to the set of conditions of that node for

the following reason explained with an example. Let a hypothetical subset of an

instance of the Mutagenesis database be that one shown in section a) of Fig. 3.3 for

Molecule and Atom tables and the condition to be added is the negation of the

aforementioned condition, that is atom.element != ‘b’.

Then, if just the negated condition is added to the current graph it will correspond to the

selection graph and SQL query shown in section b) of the same figure. And the result

of that selection is shown in section c). However the correct result should be the empty

set. The complementary set of adding the corresponding positive condition is the set of

molecules for which none of their atoms have b elements.

Charge <= -.392

Atom

Molecule

Charge <= -.392 and
Element = ‘b’

Atom

31

Therefore the addition of a negative condition to a selection node requires to be handled

in the way explained at the beginning. In that case the corresponding SQL query is:

select distinct(T0.mol_id)
from Molecule T0, Atom T1
where T0.mol_id=T1.mol_id
and T1.type <= -.392
and T0.mol_id not in
 (select distinct(T1.mol_id)
 from Atom T1
 where T1.charge <= -.392

Molecule
mol_id …
d1
d2
d3

Atom
atom_id mol_id charge element …
d1_1 d1 -0.241 C
d1_2 d1 -0.4 B
d1_3 d1 -0.721 O
d2_1 d2 0.231 C
d2_2 d2 -0.45 S
d3_1 d3 -0.412 F
d3_2 d3 -0.392 F
d3_3 d3 -0.63 B
d3_4 d3 -0.392 C

select distinct(T0.mol_id)
 from Molecule T0, Atom T1
 where T0.mol_id=T1.mol_id
 and T1.charge <= -.392
 and T1.element != ‘b’

Charge <= -.392 and
Element != ‘b’

Molecule Atom

Result
mol_id …
d1
d2
d3

a)

b)

c)

Fig. 3.3: Explanation about adding negative condition.

32

 and T1.element = ‘b’)

Basically, the inner subquery corresponds to the original graph after have added the

positive condition. From the example, the molecules returned by the inner query are d1,

d2, and d3. This resulting set must be subtracted from the result of the original graph

that is also d1, d2, and d3. Then the final result is the empty set as required.

The first part of the previous implementation of this refinement, when the node to be

refined does not correspond to the target table, is only valid for the case where that

node is directly connected to the node representing the target table, as it is in the picture

drawn before. Otherwise, the whole graph (or a subgraph of it) should be negated.

The following example shows the mentioned in the previous paragraph in a more

detailed manner. Suppose the following selection graph at a certain point during the

search process:

Let part a) of Fig. 3.4 be a description of the subset of Mutagenesis database that

corresponds to the set of records selected by the above graph, and let the condition to

be negated and added to the previous graph be atom.element=‘n’.

By using the mechanism for adding negated conditions described in (Knobbe et al.,

1999b), the selection graph, after have been refined, will look like that one shown in

part b) of Fig. 3.4. Its corresponding translation to SQL is to the right of the same part.

Molecule Bond Atom

33

Molecule
mol_id …
e2 …
e19 …

Atom
atom_id mol_id element …
e2_1 e2 C
e2_2 e2 C
e2_3 e2 N
e2_4 e2 N
e2_5 e2 N
e2_6 e2 C
e19_1 e19 C
e19_2 e19 C
e19_3 e19 C
e19_4 e19 C

a)

Fig. 3.4: Explanation about adding negative condition when the node object of the
refinement is not directly connected to n0.

Bond
mol_id atom_id1 atom_id2
e2 e2_1 e2_2
e2 e2_2 e2_3
e2 e2_3 e2_4
e2 e2_4 e2_5
e2 e2_5 e2_6
e2 e2_6 e2_1
e19 e19_1 e19_2
e19 e19_2 e19_3
e19 e19_3 e19_4

b) select distinct(T0.mol_id)
 from Molecule T0, Bond T1, Atom T2
 where T0.mol_id = T1.mol_id
 and T1.atom_id1 = T2.atom_id
 and T1.atom_id1 not in
 (select distinct(T3.atom_id)
 from Atom T3

 where T3.element = ‘n’)

Molecule Bond

Atom

Element = ‘n’

Atom

Molecule

Element = ‘n’

Bond Atom

Bond Atom Molecule

select distinct(T0.mol_id)
 from Molecule T0, Bond T1, Atom T2
 where T0.mol_id = T1.mol_id
 and T1.mol_id1 = T2.mol_id
 and T0.mol_id not in
 (select distinct(T3.mol_id)
 from Molecule T3, Bond T4,
 Atom T5
 where T3.mol_id = T4.mol_id
 and T4.atom_id1 = T5.atom_id
 and T5.element = ‘n’)

34

Although the original graph shown prior to Fig. 3.4 selects both molecules, the

derivative graphs resulting from the addition of the previous condition and its negation

should selects only one molecule each. The graph that includes the positive condition

should select e2 (and it does that). And the graph that includes the negation of that

condition should select e19 (i.e. those molecules for which none of their atoms has

element ‘n’). But the graph shown in part b) of Fig. 3.4 corresponding to the first way

of adding a negative (complementary) condition selects both molecules: e2, and e19.

Therefore, the correct complementary graph is that one shown in section c).

Thus, for the case where a negated condition has to be added to a node that is not

directly connected to the node representing the target table (this does not mean that can

not exist a relation in the database between these two tables), it is necessary to

complement the whole graph by adding an absent edge from n0 node to a subgraph

representing the original graph plus the condition not negated added to the

corresponding node’s condition list. The only difference between this new subgraph

and the original one is that it has its root node (copy of n0) closed (see section c of Fig.

3.4 for a graphical example).

The aforementioned process can be made more efficient (in terms of space and time) if

instead of copying the complete graph we only copy the subgraph to which the node

being refined belongs. That is, we just need to add an absent edge from n0 to a copy of

the first node of the subgraph to which the node where the condition has to be added

belongs (Bond node in the example). This copy of the node should be closed. Also the

nodes and edges that form the subgraph (Atom and the edge between Bond and Atom

in the example) should be copied as they are after the root of the subgraph.

Note that if we follow the first approach (shown in section c) of Fig. 3.4), and not the

described in the preceding paragraph, an edge that do not instantiate any association in

the data model will connect the target node to a copy of itself but closed. Because of

this, that edge should be handled in a different way than those edges that indeed

correspond to associations in the relational database.

35

• Add present edge and open node: this refinement instantiates an association in the

data model as a present edge together with its corresponding table represented as an

open node and adds these to G.

We find it useful to distinguish between two cases of this refinement. Generally, the

associations in relational databases are one (from table p) to many (in table q). In this

case, the key attribute in table p is a foreign attribute in table q. These associations, as

said earlier, can be seen as having two directions: forward and backward. Thus, we can

add a present edge from the node representing the table where attribute F is primary

key to the new open node that represents the table where F is foreign key (as proposed

in (Knobbe et al., 1999b)). This corresponds to adding an edge and a node in the

forward direction. However, sometimes it is necessary to add an edge and a node in the

backward direction. That is, given the current node where F is a foreign key, add a

present edge to the node representing the node where F is primary key. This is

especially necessary in learning tasks where the objects to be classified can have

multiple class labels for a given assignment of values to their attributes. This would be

the case when class labels are not mutually exclusive (Caragea et al., 2002). This point

is further elaborated in the following chapter when KDD Cup 2001 (Cheng et al., 2002)

datasets are treated.

The modification precedingly outlined also extends MRDTL’s classification

possibilities by allowing us to consider any attribute within any table in the relational

database to be the target attribute.

• Add absent edge and closed node: this refinement is complementary to the previous

one and instantiates an association in the data model as an absent edge together with its

corresponding table represented as a closed node and adds these to G.

36

Actually, there are two cases for this kind of refinement too and they follow the same

argumentation as described for the previous refinement.

At this point it is worth noting that a closed node means that the node in question can

not be further refined by adding more conditions on its attributes or edges coming out

from it.

For this refinement we need to make the same considerations as when a negated

condition is going to be added. Because this refinement should be the complement of

the previous one, when the closed node to be added is not directly associated to the

target node in the selection graph a procedure similar to that described when a negated

condition is added must be followed.

• Add edge (present or absent) between two existent nodes: as explained before, this is

not a refinement by its own but it is an important component when adding a negative

condition to a node. Graphically, this “refinement” is as follows:

• Look-ahead refinement: Sometimes while refining a selection graph, the addition of

the optimal refinement may result in no information gain. In general, if a modification

to a selection graph does not produce any improvement, then the search through that

path is discontinued and a leaf node is introduced instead, even if it may introduce

future possible conditions or edges that are relevant to the search process.

An example of this scenario occurs when adding an edge from an existing node to a

new one it happens that the multiplicity of the association (represented by the edge)

between the respective two tables is one to many and each record in the first table has

37

Molecule

T0.inda=0
T0.lumo > -2.142

at least one corresponding record in the other one. The entropy of the new selection

graph will be the same as its parent.

For instance, in the Mutagenesis database each molecule has at least one corresponding

atom and one corresponding bond associated to it in the respective tables. So, the

algorithm previously described will reach a point where no more conditions can be

added to the first node because either there are no more conditions to be added or no

information gain is obtained with them. Then, one of the possible refinements to be

made is to add an edge from Molecule to either Atom or Bond. But, by database

definition this will no achieve any improvement because the entropy of the new

selection graph does not change respect to its parent due to the number of records to be

analyzed is the same as before.

One approach to dealing with this scenario is to provide some sort of look ahead

capability to the learner. In the TILDE system (Blockeel, 1998) such a look ahead

capability allows several successive refinement steps at once.

Our implementation of MRDTL includes such look ahead capability which is employed

in special circumstances when none of the refinements result in a positive information

gain although the termination criterion of the algorithm is not met. For instance,

suppose one branch of the induced decision tree for the Mutagenesis example has

reached the following point:

Furthermore, any other condition that can be added to this node does not improve the

classification capability of this graph. We cannot add any edge from this node to a node

representing atom or bond table neither since no improvement is achieved. Then, the

basic idea is to evaluate the impact of adding a new edge with its corresponding open

node plus some condition on an attribute of the new node for one branch and its

38

negation for the other one. In general, we can consider adding several edges and nodes

as part of the look ahead process.

Following the previous example, the refinement with highest information gain is the

look ahead shown in Fig. 3.5. The successive refinements performed in this case for the

left branch are to add an edge from Molecule to Atom with the corresponding node for

Atom table and a condition (charge <= -.392) on table Atom; and for the right branch

its negation.

The case shown in Fig. 3.5 (and in general for all look ahead refinements considered

here) is different to that of adding a negative condition described before. The node

corresponding to the Atom table named T1 can be removed from the subgraph in the

right branch and the remaining graph will still have the same classification power. But,

since we are performing several refinements at once it might be the case that later

during the search that node can be expanded too.

Look-ahead techniques are computationally expensive but may lead to significant

improvements. Because of its computational cost, only two-step look ahead refinements

on the possible edges whose respective associations hold the previous constraint are

Fig. 3.5: Example of look ahead refinement.

Molecule

T0.inda=0
T0.lumo > -2.142

T1.Charge <= -.392

Molecule Atom

T0.inda=0
T0.lumo > -2.142

T2.Charge <= -.392

Atom

Molecule

Atom

T0.inda=0
T0.lumo > -2.142

T1

39

allowed. But the learner could consider more than one level ahead and the results can

be better; it also can consider look-ahead on the conditions to be added to a node.

The TILDE system relies on the user to provide some information in order to determine

when look ahead is needed (Blockeel, 1998). Our implementation of MRDTL

automatically determines from the relational schema and the current database instance

when look ahead might be needed.

• Multiple instantiation of associations: actually, this is not a refinement operator. This

is the case when multiple instantiations of a particular association exist in a selection

graph. This can be possible thanks to the addition of edges in both “directions” of an

association or when adding the negation of a condition for a node different to n0.

3.2.3. Computing Information Gain Associated with a Refinement

Each candidate refinement is evaluated in terms of the possible improvement that can make

to the classification accuracy of a selection graph by means of information gain (Mitchell,

1997), which involves the characterization of a set of example with respect to the target

attribute using entropy measure as in the case of the propositional version of the decision tree

learning algorithm (Quinlan, 1987). In order to measure information gain for each possible

refinement, some kind of statistics’ gathering from the database is necessary. For that

purpose, a series of queries has been proposed in (Knobbe et al., 1999b), and they are

outlined below.

The actual implementation of these queries should be made in a dedicated architecture as

primitive calls for efficiency purposes. This is not the case in the current implementation of

MRDTL because as said earlier one of the main purposes was to test this new approach to

relational data mining in terms of accuracy mainly at this point.

Support of a selection graph

The support of a selection graph (i.e., the number of examples covered by a graph) is

computed using the following query:

select count(distinct T0.primary_key)
from table_list
where join_list

40

and condition_list

The preceding query is known as CountSelection primitive in (Knobbe et al., 1999a).

Note that only join_list and condition_list can be empty, but at least one table will be in

table_list. If any of the first two lists is empty, then the query should be modified

accordingly. This holds for all the following queries.

Evaluating the addition of an edge plus node

For the possible addition of an edge plus a node, we need to calculate the resulting

information gain of the new selection graph. The following query produces a histogram that

shows the distribution of the number of examples per values of the target attribute. The

histogram is used to calculate the entropy for the new multirelational pattern.

select T0.target_attribute, count(distinct T0.primary_key)
from table_list
where join_list
and condition_list
group by T0.target_attribute

The sum of the resulting counts must be equal to the result of the prior query that

measures the support of a pattern.

The lists table_list and join_list correspond to the selection graph being refined plus the

addition of the new table (represented by the new node) to the first list and the join condition

between a table already in the list and the new “to be added” node to the join_list.

Condition_list remains unchanged.

Evaluating nominal attributes

Each possible pattern resulting from the addition of a condition on some nominal attribute

(one pattern for each possible value) of a table is evaluated by means of the following query:

select T0.target_attribute, Ti.Aj, count(distinct T0.primary_key)
from table_list
where join_list
and condition_list
group by Ti.Aj , T0.target_attr;

The MultiRelationalCrossTable primitive, that is the name given in (Knobbe et al.,

1999a), produces a table with the distribution of pairs of values for the target attribute and an

arbitrary nominal attribute Ti.Aj in any table Ti. The sum of these counts can exceed the

41

support of the given pattern if the nominal attribute is not in the target table and multiple

records with different values for the selected attribute may correspond to a single record in

the target table.

Evaluating numerical attributes

Splits based on numerical attributes are handled using a technique similar to that of C4.5

algorithm (Quinlan, 1993b) with modifications proposed in (Fayyad, 1992, Quinlan, 1996).

The tests considered by C4.5 for continuous attributes are of the kind A ≤ y, with

outcomes true and false. To find the value y of A that maximizes the splitting criterion

(information gain), first the cases in the database are sorted on their values of attribute A. Let

nvvv ,...,, 21 be the list of ordered distinct values for such attribute. Every pair of distinct

adjacent values is considered for a potential threshold () 2+= 1+ii vvy . The threshold that

gives the highest information gain is selected.

Fayyad and Irani in (Fayyad an Irani, 1992) propose and prove that for convex splitting

criteria such as information gain it is only necessary to consider pair of distinct values that

are adjacent but for which the corresponding instances belong to different classes. This

diminishes the number of threshold to be considered.

The other modification proposed by Quinlan in (Quinlan, 1996) is to adjust the

information gain of numerical attributes by multiplying it by () DN 1 - log2 , where 1 - N is

the number of possible thresholds and D the number of instances covered by the selection

graph. This modification changes the relative bias toward the use of continuous attributes that

was outlined as a drawback of C4.5. (Quinlan, 1996).

To obtain the statistics necessary to calculate the information gain resulting from splitting

on a continuous attribute the algorithm uses the following query:

select target, m, count(*)
from
 (select T0.target_attribute target, T0.primary_key, min(Ti.Aj) m
 from table_list
 where join_list

 and condition_list
 group by T0.target_attribute, T0.primary_key)

group by m, target;

42

Assuming that each record in the target table has multiple associated records in table Ti,

for each of these sets the minimum value of the current continuous attribute can be

calculated. The occurring minimums will be used as possible splitting thresholds. The fact

used here is that testing whether each member of a set has a value for the attribute less than

some threshold is equal to test whether the minimum value of that set is less than the

threshold. If the assumption at the beginning of this paragraph does not hold (for instance,

when the refinement to be made is to add an edge and a node in the “backward” direction or

when the numerical attribute to be considered is in the target table), the minimum condition

is not necessary and we need to a add one more group by clause on Ti.Aj.

3.2.4. Classifying Instances

The hypothesis resulting from the relational induction of decision trees described can be

viewed as a set of SQL queries associated with the selection graphs that correspond to the

leaves of the decision tree. Each selection graph (query) has a class label associated with it. If

the corresponding node is not a pure node, (i.e., it does not unambiguously classify the

training instances that match the query), the label associated with the node can be based on

the classification of the majority of training instances that match the corresponding selection

graph. Alternatively, we can use probabilistic assignment of labels based on the distribution

of class labels among the training instances that match the corresponding selection graph.

Given a new set of previously unseen instances to be classified, these queries are applied

to the database. The set of instances that a query returns will be assigned the class label that

the corresponding selection graph has. The complementary nature of the different branches

of a decision tree ensures that a given instance will not be assigned conflicting labels.

It is also worth noting that it is not necessary to traverse the whole tree in order to classify

a new instance; all the constraints on a certain path are stored in the selection graph

associated with the corresponding leaf node. Instances that do not match the selection graphs

associated with any of the leaf nodes in the tree are assigned unknown label and are counted

as incorrectly classified when evaluating the accuracy of the tree on the test data.

43

3.2.5. Handling Missing Values

The current implementation of MRDTL uses an extra value for each attribute to denote

values that may be missing. This extra value is treated in the same way as other possible

attribute values. However, this kind of treatment only makes sense when missing values for

certain attribute are representative of some characteristic. For example, given a database of

personnel, for those employees with height greater than certain value that attribute is not

measured but left without filling it out (missing value). In this case, those missing values

denote those people having height grater than certain threshold.

If we know beforehand the purpose (or possible future purposes) of collecting data, it is

possible to minimize or avoid the occurrences of missing values if data mining is one of the

possible uses for example. But, most of the data to be mined are results of by-product of

some other activity that has the knowledge discovery process as a mean to explain something

but not as a goal in itself. In these cases, missing values are likely to be present (Liu et al.,

1997) and most of the time they are not representative of any subgroup of instances.

There has been substantial research done on handling missing values in machine learning

(Grzymala-Busse and Hu, 2001, Liu et al., 1997, Ortega and Numao, 1999, Quinlan, 1989,

Zheng and Low, 1999). Several of them provide a comparison between different methods of

dealing with missing or unknown values (e.g., (Quinlan, 1989)) but others like (Ortega and

Numao, 1999) propose new or improved methods. One of the first approaches to tackle this

problem was to ignore those instances with missing data (Quinlan, 1987), but soon it was

noted that those deleted instances could add useful information to the search process and

should be kept and be considered using methods to handle missing values.

As noted before, our implementation of MRDTL supports treatment of missing values as

a new attribute value, therefore the straightforward way to cope with missing values that are

not representative of any set of instances is to fill them out following some of the techniques

proposed for such a purpose. However, we can easily incorporate a variety of more

sophisticated approaches for handling missing values that have been proposed in the machine

learning literature such as the probabilistic method suggested in (Cestnik et al., 1987) and

used for C4.5 (Quinlan, 1993b).

44

By considering missing values as a new attribute value we assume attributes’

independence. That method does not consider dependences between attributes. It is expected

that predicting missing values based on the values of other attributes can lead to better

accuracy.

In our experiments, we tried with methods based on the most frequent attribute value and

the most frequent value for the class of the instance that has the missing value (concept most

common attribute value (Grzymala-Busse and Hu, 2001)) as possible candidates for filling in

the missing values.

We also could consider the induction of decision trees for each attribute that contains

missing values based on the information of other attributes, the original class attribute can be

used too (Ortega and Numao, 1999). The attribute values (class labels) are those present in

the database, thus those instances having missing data for the class attribute should be

deleted. Although this method could be more exact in filling in missing information, it

significantly increases the computational cost. This approach is thought to be suitable in

domains where a lowering in classification error is worth the increase in computational cost.

Other techniques such as Naïve Bayes or Bayesian Networks could be use instead. These

approaches seem appropriate for the second data set presented in the next chapter; but their

possible application is left for future extensions.

Concept most common attribute value and attribute trees methods mentioned before

suffer of a major drawback. As they are described, they can not be used for filling missing

values in the test data. Although attribute trees that do not consider the original target

attribute to fill in missing information could be an option, the first method mentioned in this

paragraph can not be used at all because in real world problems the classes to which the

instances to be classified belong are not known. However, in controlled experiments (as it is

the case in this work) they can be used, but a comparison with other techniques for handling

missing values should be carried out.

The preprocessing of the input data to eliminate missing information is not part of the

system yet although all the necessary programs for such a purpose have been done. Their

addition should not be a difficult task. Due to this, preprocessing of the data should be done

45

prior to run the MRDTL algorithm. That is, the instance of relational database to be input

should be ready to be mined.

3.3. Description of MRDTL Software

The system implemented can be seen as consisting of three parts. The front-end part, the

induction algorithm part which performs the search of relational patterns, and the back-end

part.

The front-end of the system is a rudimentary GUI shown in Fig. 3.6 which allows the

user to connect to the database to be mined and define in an easy way the numerical and

nominal attributes as well as delete those attributes that are not central or of interest to the

classification task in question. It also enables the user to specify the target table and target

attribute. Finally, an error percentage can be provided by the user. This error percentage can

be used to terminate refinement of a path in the decision tree if the error criterion is satisfied

by the current node (this serves as a crude pruning method).. The user does not need to type

any input (except the error expected), just need to select those attributes that are nominal,

numerical, and the target table and target attribute from the corresponding lists shown by the

interface. That and the rest of the information used by the algorithm is extracted from the

relational schema of the database.

The input to the system can be any Oracle database for which the user wants to find

interesting patterns for classification purposes. One of the main constraints that the input

database has to hold is that the attributes involved in any of the associations or as primary

keys should be single attributes. The software developed does not support composite primary

or composite foreign keys yet.

One of the first objectives of this work was to provide to the user with a system where

he/she can select any table as the target and within that table any attribute as the classification

attribute without worrying to much about the relational representation. This introduces one

more constraint on the format of the relational database. That table that is going to be the

target must have a primary key and the classification attribute must be nominal (this latter

requirement is necessary because the system does not support regression yet).

46

The result of learning is the set of SQL queries associated with the selection graphs that

correspond to the leaves of the decision tree. That set is enough to classify new instances

previously unseen as explained in subsection 3.2.4 and it is shown in the white portion of the

GUI in Fig. 3.6. Nevertheless, the complete decision tree is stored into the relational database

for future use.

Fig. 3.6: System’s Graphic User Interface

47

44.. EEXXPPEERRIIMMEENNTTAALL RREESSUULLTTSS

This chapter describes experiments carriede out using MRDTL algorithm on three

databases – mutagenesis, gene localization from KDD Cup 2001 and adult database.

Results from these experiments are shown, discussed, and compared against other

methods.

4.1. Mutagenesis Database

4.1.1. Task Description

This database, available from the Machine Learning Network (MLNet), is one of the most

widely used databases in ILP research. For such a reason the original format of this database

was Prolog syntax. Therefore, the first step in order to use this database with MRDTL

algorithm was to translate it to relational format.

There are several results in the relational data mining literature applying different ILP

systems in order to learn from this database. One of our first goals was to compare the

performance of our implementation of MRDTL against already existent systems. This is a

database that can be used for such a purpose; however, a more thorough comparison is

needed.

The entity-relation diagram for the part of the Mutagenesis database used in this study

was shown in Chapter 3, figure 3.1 (reproduced below in Fig. 4.1) and briefly described in

Section 3.1.

The data set consists of 230 molecules divided into two subsets: 188 molecules for which

linear regression yields good results and 42 molecules that are regression-unfriendly. For the

regression-friendly molecules, this database instance consists of 4893 atoms and 5243 bonds.

For the other set, there are 1001 atoms and 1066 bonds.

48

This database contains descriptions of molecules and the characteristic to be predicted is

their mutagenic activity (ability to cause DNA to mutate) represented by attribute label in

molecule table. This problem comes from the field of organic chemistry and the compounds

analyzed are nitroaromatics. These compounds occur in automobile exhaust fumes and

sometimes are intermediates in the synthesis of thousands of industrial compounds. High

mutagenic level has been found to be carcinogenic.

Originally, mutagenicity has been measured by a real value represented by the attribute

log_mut in molecule table. But, in most experiments with ILP systems this numerical

attribute has been discretized into two values: active for those molecules with positive levels

of mutagenicity (log_mut > 0), and inactive for those with zero or negative levels of

mutagenicity (log_mut <= 0), respectively. Table 4.1 shows the class distribution for the 230

compounds (Srinivasan et al., 1996).

The data model in Fig. 4.1 shows both attributes log_mut and label. Since MRDTL is

limited to learning classifiers, we chose label as the target attribute without taking into

account log_mut during the learning and classification processes.

Figure 4.1: Entity-relation diagram for Mutagenesis database.

49

Table 4.1: Class distribution for Mutagenesis database.

Compounds Active Inactive Total

Regression friendly 125 63 188

Regression unfriendly 13 29 42

Total 138 92 230

A recent study using this database (Srinivasan et al., 1999) recognizes five levels of

background knowledge for mutagenesis which can provide richer descriptions of the

examples. Table 4.2 shows the five sets of background knowledge1 where 1+⊆ ii BB for

3,...,0=i . In this study we used only the first three levels of background knowledge in order

to compare the performance of MRDTL with other methods for which experimental results

are available in the literature.

Table 4.2: Background knowledge for Mutagenesis database extracted from (Srinivasan et al., 1999).

Background Description

B0 Consists of those data obtained with the molecular modeling
package QUANTA. For each compound it obtains the atoms, bonds,
bonds types, atom types, and partial charges on atoms.

B1 Consists of Definitions in B0 plus indicators ind1, and inda in
molecule table.

B2 Variables (attributes) logp, and lumo are added to definitions in B1.

B3 Generic 2-D structures, such as methyl groups, nitro groups, etc., are
added to B2 using atom and bond description.

B4 Using 3-dimensional position of each atom in a molecule, generic 3-
D calculations are added to descriptions in B3.

4.1.2. Method

We have followed the same methodology that has been used in most of the other studies that

have considered this database as a test case. As mentioned earlier, the data can be split into

1 For a more detailed description of each set of background knowledge the reader should refer to (Srinivasan et
al., 1996) and (Srinivasan et al., 1999).

50

two disjoint subsets. To avoid bias against linear regression (Srinivasan et al., 1996) and to

make our results comparable to those in the literature we treat them as two separate subsets.

The classification results obtained from the theory inferred by the learner implemented

here are averages over k-fold cross-validation; with 10=k for the regression friendly set and

41=k (i.e., leave-one-out cross-validation, because of the relatively small number of

samples) for the regression unfriendly data.

4.1.3. Experimental Results

Table 4.2 shows a comparison of the performance of the current implementation of MRDTL

with that of Progol (based on results reported in (Blockeel, 1998) and in (Srinivasan et al.,

1999)), FOIL (based on results reported in (Blockeel, 1998)), and Tilde (based on results

reported in (Blockeel, 1998)).

Due to different hardware has been used for the experiments, the times should be

considered to be indicative rather than absolute. Although some ILP systems such as Tilde

and FOIL are available from the internet, they are Solaris OS versions only. Therefore, we

could not replicate the results in the literature in our systems. The goal of this replication had

to be the update of running times only.

The complexity of the theories (as in (Blockeel, 1998)) can not be compared because of

the different search spaces the systems have. We can talk about number of literals for ILP

systems but that is not applicable for the MRDTL algorithm. But, in the Table 4.4 a

comparison of size of decision trees obtained with different levels of background knowledge

for MRDTL is shown.

51

Table 4.3: Accuracy and running time comparisons of Progol, FOIL, Tilde and MRDTL on the set of
188 regression friendly compounds of Mutagenesis database. The numbers represent averages based
on ten-fold cross-validation. Entries marked with “--” indicate that the corresponding results are not
available at present. Note that the running times are shown mainly to give a general feel for the speed
of the algorithms in question. The exact values of the running times are not comparable because of
the differences in hardware and software platforms used in the different studies.

Systems Accuracy (%) Time (secs.)

 B0 B1 B2 B3 B4 B0 B1 B2 B3 B4

Progol2 79 86 86 88 89 8695 4627 4974 6530 9587

Progol3 76 81 83 88 -- 117k 64k 42k 41k --

Foil4 61 61 83 82 -- 4950 9138 0.5 0.5 --

Tilde5 75 79 85 86 -- 41 170 142 352 --

MRDTL 67 87 88 -- -- 0.85 332 221 -- --

Results shown in Table 4.3 and Table 4.4 show that the richer description of examples

obtained using background knowledge does in fact improve the accuracy of the resulting

classifiers. In the case of MRDTL, the improvement obtained by using B1 as opposed to B0

is quite pronounced but the improvement resulting from the use of B2 as opposed to B1 is

marginal. It is also clear that different algorithms benefit to varying degrees from the use of

different levels of background knowledge. For instance, use of B1 as opposed to B0 results in

no improvement in FOIL’s performance on the regression friendly mutagenesis data (see

Table 4.3). This can be explained by the differences in the representational and inductive

biases of the algorithms in question.

Table 4.4: Comparison of size of decision trees obtained with the different levels of background
knowledge for MRDTL.

Systems Number of nodes

 B0 B1 B2

MRDTL 1 53 51

2 Results for this row were extracted from (Srinivasan et al., 1999).
3 Results for this row were extracted from (Blockeel, 1998).
4 Results for FOIL were taken from (Blockeel, 1998).
5 Results for Tilde were taken from (Blockeel, 1998).

52

It is interesting to note from Tables 4.3 and 4.4 that MRDTL yields a decision tree with

one node when B0 is used as background knowledge. In this case, in the current

implementation of MRDTL, the instances are assigned the class label of the majority class

(alternatively, a probabilistic assignment of class labels based on the class distribution at that

node could be used). Thus, the classification accuracy (67%) obtained with a single node

decision tree can be considered a lower bound on accuracy against which we can compare

the different algorithms. Ideally, none of the algorithms should have accuracy lower than

67% on the regression friendly subset of the mutagenesis data. We find that this is in fact true

for all of the algorithms studied with the exception of FOIL which has an accuracy of 61%

when B0 and B1 are used as background knowledge.

Another point worth noting is that MRDTL results in smaller trees when B2 is used as

background knowledge as compared to B1 and the execution time in the case of B2 is lower

than for B1. We can not make a direct comparison of running time but with exception of

Progol, the minimum execution time is obtained with B0, followed by B2 and B3.

On other hand, MRDTL obtains better results than the other systems in except for B0. It

is a pending task to try MRDTL with the remaining two sets of background knowledge.

The results from leave one out method for the second set of compounds are shown in

Table 4.5 for MRDTL.

Table 4.5: Accuracy, running time, and decision tree size obtained with the MRDTL on the set of 42
regression unfriendly compounds of Mutagenesis database. The numbers represent averages based on
41-fold (i.e., leave-one out) cross-validation.

Background Accuracy Time #Nodes

B0 70 % 0.6 secs. 1

B1 81 % 86 secs. 24

B2 81 % 60 secs 22

Essentially, MRDTL’s behavior on the regression unfriendly subset of the Mutagenesis

data shows the same general pattern as that in the case of regression-friendly subset. Use of

background knowledge B0 yields a single node decision tree which classified instances

according to the label of the majority class. This can be corroborated on the basis of the

53

distribution of instances shown in Table 4.1: a majority of 70% of the regression-unfriendly

instances are inactive compounds.

There is not improvement in accuracy resulting from the use of B2 over B1 but the

running time using B2 is lower than that for B1. Although an accuracy of 81 % was achieved,

the experiments carried out using Progol in (Srinivasan et al., 1996) show an average

accuracy of 83 %.

Two recent approaches, (Sebag and Rouveirol, 1997) and (Kramer and De Raedt, 2001)

have reported a maximum accuracy of 93.6% and 94.7%, respectively for mutagenesis

database. The approach taken by Sebag and Rouveirol (1997) comes from the field of ILP

and is concerned with polynomial induction and use of first order logic hypotheses with no

size restriction. Instead of exhaustively exploring the set of matchings between any example

and any candidate hypothesis, the user determines the number of matchings samples to

consider; thus, controlling the cost of induction and classification. The experiments do not

specify if the whole data set was used or two disjoint sets were considered; they did not use

10-fold cross validation, but the data set was randomly divided into a training set including

90% of the data and a test set with the remainder. The result was averaged on 25 independent

selections of these sets. Kramer and De Raedt (2001) propose a novel feature construction

method where the user can specify the features of interest using a conjunctive query. The

solutions to the query are organized in a version space and the resulting features can be used

by traditional attribute-value machine learning algorithms. Particularly, they used the

propositional learners C4.5, PART (Frank and Witten, 19980), logistic regression and linear

support vector machines available in the Weka workbench (Witten and Frank, 1999). In their

experiments, they only used 2-D information (subset B3 of background knowledge). They

did not use partial charges, atom types, functional groups or the like, but LUMO and logP

values were considered. The experiments description do not specify if they considered the

two disjoint sets of compounds as described above or just the complete data set.

54

4.2. Gene Localization Database

This database was used in the last competition on data mining hold in conjunction with the

Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

(KDD 2001) and it is available online (Cheng et al., 2002).

KDD Cup 2001 was focused on data from genomic and drug design applications and

involved three tasks based on two data sets. Here, we focus on only one data set and one task.

The election of the data set was based on its relational nature.

4.2.1. Database and Task Description

The three tasks that KDD Cup 2001 involved were: prediction of molecular bioactivity for

drug design, prediction of gene/protein function and localization. Although both last tasks

may involve a relational approach, in the case of gene/protein function prediction, an

instance may have several class labels. MRDTL, much like its propositional counterpart

C4.5, assumes that each instance can be assigned to only one of several non-overlapping

classes. Thus we, in MRDTL’s current form, decided to focus the experiments on the

gene/protein localization task where each instance has a single class label. We will use the

name Gene Localization database to refer to the data for the gene/protein localization task.

Two variants of the data set for the mentioned task were provided. The first version

consists of a single table with 2960 attributes and it is appropriate for propositional learning.

The second consists of two tables with 13 attributes in total. We used the second variant due

to its relational nature but not as it was given because those two tables were not in normal

form as it is required by the relational algorithm.

The names of the two original tables are genes_relation and interactions_relation. The

genes_relation table contains 862 different genes but there could be more than one row in the

table for each gene. The attribute gene_id identifies a gene uniquely. Since our current

implementation of MRDTL requires that the target table must have a primary key, it was

necessary to normalize gene_relation table before we can use it as the target table. This

normalization was achieved by creating the tables named gene, interaction, and composition

as follows: attributes in the genes_relation table that did not have unique values for each

gene were placed in the composition table and the rest of the attributes were placed in the

55

gene table. The gene_id attribute is primary key in the gene table and foreign key in the

composition table. The interaction table is identical to the original interactions_relation

table. This represents one of several ways of normalizing the original tables. This

renormalization of the relational database given is different from the one described in (Cheng

et al., 2002). It is possible that the particular renormalization used might have an impact on

the performance of different algorithms. It is left for future experiments to compare the

performance of the algorithm using both renormalizations.

The entity-relation diagram for the normalized version of the Gene Localization database

is shown in Figure 4.2. For this task, the target table is gene and the target attribute is

localization. From this point of view, the training set consists of 862 genes and the test set

381. If we want to predict function, the number of instances in the training set will be 4346,

that is, the number of distinct records in composition table. In this latter case, it might be

necessary to follow an association in the backward direction as explained in Chapter 3 if the

algorithm has to consider the remaining tables and attributes.

The experiments described here focused on building a classifier for predicting the

localization of proteins by assigning the corresponding instance to one of 15 possible

localizations.

56

4.2.2. Method

For this task, we followed the general procedure used in the KDD Cup competition namely,

construct a classifier using all of the training data and test the resulting classifier on the test

set provided (Cheng et al., 2002).

4.2.3. Discussion of Results

Gene localization task presents significant challenges because many attribute values in the

training instances corresponding to the 862 training genes are missing. Initial experiments

using a special value (missing) to encode a missing value for an attribute resulted in

classifiers whose accuracy is around 50 % on the test data that also have many missing

attribute values.

This prompted us to investigate incorporation of more sophisticated approaches to

handling missing values that have been proposed in the literature. As noted in the previous

chapter we use techniques for filling in the missing values. The methods used were concept

most common attribute value, majority value and eventually we will use decision trees for all

Figure 4.2: entity-relation diagram for Genes Localization data set

57

the attributes with missing values or other probabilistic methods that consider information

available from other attributes such as Naïve Bayes.

Replacing missing values by the most common value of the attribute for the class during

training resulted in an accuracy of around 85% with a decision tree of 367 nodes. This result

was achieved by allowing the traversing of associations in the forward and backward

direction and not placing any limit in the number of times an association can be instantiated.

If we heuristically limit the number of times an association can be instantiated but still using

the same method to fill in missing values, the accuracy lowered to 80%. Finally, if we allow

the algorithm to follow associations only in the forward direction, then an accuracy of around

75% is obtained. This shows that providing reasonable guesses for missing values can

significantly enhance the performance of MRDTL on real world data sets. However, in

practice, since the class labels for test data are unknown, it is not possible to replace a

missing attribute value by the most frequent value for the class during testing, so the use of

alternative methods of handling missing values are mandatory.

Based on these preliminary results, we conclude that there is a need for incorporating

more sophisticated techniques for handling missing values (e.g., predicting missing values

based on the values of other attributes). Work in progress is aimed at extending the current

implementation of MRDTL to include principled approaches for dealing with missing values

that can be applied in a realistic setting.

4.3. Adult Database

4.3.1. Database and Task Description

This is the simplest of the three databases used. It consists of only one table and it is suitable

for propositional learning with 6 numerical attributes and 8 nominal attributes. It is available

online at (UCI, Machine Learning Repository).

The information in this database was extracted from the 1994 census database and the

prediction task is to determine whether a person makes over $50,000 a year (i.e., attribute

being predicted is salary greater or less than 50,000). For this purpose, the class attribute

values have been discretized into two values: >50k and <=50k.

58

The purpose of using this database was to test the implemented MRDTL algorithm in a

purely propositional setting. There are some results in the literature using this database (e.g.

(Kohavi, 1996)) against which we can compare our results.

Table 4.6: Class distribution for Adult database.

 Training Test Total

 >50k <=50k >50k <=50k

w/ missing values 7841 24720 3846 12435 48842

w/o missing values 7508 22654 3700 11360 45222

4.3.2. Method and Results

Most of the results in the literature that used this database were obtained by following the

same methodology: removal of unknowns and use of the original train/test split.

Adult database domain is hard with a considerable number of records. Removal of

instances with missing values resulted in an accuracy of 82.2% on the original test set. This

can be compared to the accuracy reported in (Kohavi, 1996) of 84.46+-0.30 for C4.5,

83.88+-30 for Naïve-Bayes and 85.90+-0.28 for NBTree (a decision tree Naïve-Bayes hybrid

approach). The current MRDTL version should be augmented with pruning and other

characteristics in order to make these results really comparable to those of C4.5 in a purely

propositional setting. But the preliminary results reported are promising and deeper research

has to be done in order to make the current version more efficient and more competitive.

59

55.. SSUUMMMMAARRYY aanndd DDIISSCCUUSSSSIIOONN

Learning from relational databases and from data describing complex/structured objects is an

important problem in machine learning nowadays. Most of real-world data are organized in

relational format, with databases consisting of multiple relations and not just one as typical

data mining approaches assume. Also, structured types of data such as in bioinformatics,

computational biology, HTML and XML documents require the use of a more expressive

pattern language than propositional.

In this context, (multi)-relational data mining deals with knowledge discovery from

database consisting of multiple tables directly, without the need to squeeze data fragmented

across several tables into a single one.

(Multi)-relational data mining approaches do not only focus on relational database but

also deductive databases (e.g., ILP systems). They consider all of the main data mining tasks

(i.e. association analysis, classification, clustering, learning probabilistic models and

regression) and several of them are extensions of their single-table counterparts to the

multiple-table case.

In this paper, we have described an implementation of multi-relational decision tree

learning (MRDTL) algorithm based on the techniques proposed by Knobbe et al. (Knobbe et

al., 1999a, Knobbe et al., 1999b).

The main contribution of this paper is the empirical evaluation of the MRDTL system,

for which there are no results on the literature, on widely used data sets for relational learning

such as mutagenesis database, databases from the last KDD competition, and one

propositional database. We also gained insights about the algorithm and they resulted in the

proposal of two important modifications described in Chapter 3 and future extensions in term

of storage and speed efficiency that are currently being explored.

Results of our experiments on the widely used Mutagenesis database indicate that

MRDTL offers a promising alternative to existing algorithms such as Progol (Muggleton,

60

1995), FOIL (Quinlan, 1993a), and Tilde (Blockeel, 1998). Preliminary results of our

experiments with the protein/gene localization task (based on the data from the KDD Cup

2001 competition) indicate that MRDTL, if equipped with principled approaches to handling

missing attribute values, can be an effective algorithm for learning from relational databases

in real-world applications. Finally, results of experiments on a pure propositional database

show that this algorithm is also an alternative for this kind of learning.

Work in progress and for the future is aimed at:

• Incorporation of sophisticated methods for handling missing attribute values into

MRDTL

• Incorporation of sophisticated pruning methods or complexity regularization

techniques into MRDTL to minimize overfitting and improve generalization

• More extensive experimental evaluation of MRDTL on real-world data sets

• Development of ontology-guided multi-relational decision tree learning algorithms to

generate classifiers at multiple levels of abstraction, based on the recently developed

propositional decision tree counterparts of such algorithms (Zhang et al., 2002)

• Development of variants of MRDTL for classification tasks where the classes are not

disjoint, based on the recently developed propositional decision tree counterparts of

such algorithms (Caragea et al., 2002)

• Development of variants of MRDTL that can learn from heterogeneous, distributed,

autonomous data sources based on recently developed techniques for distributed

learning (Caragea et al., 2001a; Caragea et al., 2001b) and ontology-based data

integration (Honavar et al., 2001; Honavar et al., 2002; Reinoso-Castillo, 2002).

• Application of multi-relational data mining algorithms to data-driven knowledge

discovery problems in bioinformatics and computational biology.

• One of the most important drawbacks we identified using this framework for

relational induction of decision trees is that sometimes extremely complex or long

queries that correspond to the leaves of the tree result. Alternative techniques to deal

with this problem and to make the algorithm more efficient are being explored.

61

• In a more specific context, it is of interest to try MRDTL algorithm with the two

remaining sets of background knowledge for mutagenesis database.

• In the context of first-order extensions of probabilistic models (Bayesian Networks),

the method proposed in (Cheng et al., 2002) based on the use of Markov blanket

concept together with information gain based feature filtering can be combined with

first order extensions of BNs to obtain more compact models but with the same

predictive power.

62

REFERENCES

[Agrawal et al., 1996] Agrawal, R., Mannila, H., Srikant, R., Toivonen, H, and Verkamo, A.

I. Fast discovery of association rules. In U. Fayyad, G. Piatesky-Shapiro, R. Smyth, and

R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, MIT Press,

1996.

[Blockeel and De Raedt, 1997a] Blockeel, H., and De Raedt, L. Relational Knowledge

Discovery in Databases. In Proceedings of the 6th International Workshop on Inductive

Logic Programming, volume 1314 of Lecture Notes in Artificial Intelligence, Springer-

Verlag, 1997.

[Blockeel and De Raedt, 1997b] Blockeel, H., and De Raedt, L. Top-down induction of

Logical Decision Trees. In W. K. Van Marcke, editor, Proceedings of the Ninth Dutch

Conference on Artificial Intelligence (NAIC'97), 1997.

[Blockeel, 1998] Blockeel, H. Top-down induction of first order logical decision trees. PhD

dissertation, Department of Computer Science, Katholieke Universiteit Leuven, 1998.

[Caragea et al., 2001a] Caragea, D., Silvescu, A., and Honavar, V. Invited Chapter. Towards

a Theoretical Framework for Analysis and Synthesis of Agents That Learn from

Distributed Dynamic Data Sources. In Emerging Neural Architectures Based on

Neuroscience, Springer-Verlag, 2001.

[Caragea et al., 2001b] Caragea, D., Silvescu, A., and Honavar, V. Learning Classification

Trees from Distributed Data. Technical Report TR-2001-10, Department of Computer

Science, Iowa State University, Ames, Iowa 50011-1040, 2001.

[Caragea et al., 2002] Caragea, D., Silvescu, A., and Honavar, V. Learning decision tree

classifiers when the classes are not disjoint. In preparation, 2002.

[Cestnik et al., 1987] Cestnik, B., Kononenko, I., and Bratko, I. Assistant-86: A knowledge-

elicitation tool for sophisticated users. In I. Bratko and N. Lavrac, editors, Progress in

Machine Learning, Sigma Press, 1987.

63

[Cheng et al., 2002] Cheng, J., Krogel, M., Sese, J., Hatzis, C., Morishita, S, Hayashi, H.,

and Page, D. KDD Cup 2001 Report. ACM Special Interest Group on Knowledge

Discovery and Data Mining (SIGKDD) Explorations, volume 3, issue 2, January 2002.

http://www.acm.org/sigs/sigkdd/explorations/ (Last date accessed: July 9th, 2002)

[Cussens, 1999] Cussens, J. Loglinear models for first-order probabilistic reasoning. In

Proceedings of the 15th Annual Conference on Uncertainty in Artificial Intelligence,

Kaufmann, 1999.

[Dehaspe and De Raedt, 1997] Dehaspe, L., and De Raedt, L. Mining association rules in

multiple relations. In Proceedings of the 7th International Workshop on Inductive Logic

Programming, volume 1297of Lecture Notes in Artificial Intelligence, Springer-Verlag,

1997.

[De Raedt, 1997] De Raedt, L. Logical settings for concept-learning. Artificial Intelligence,

volume 95, issue 1, 1997.

[De Raedt, 1998] De Raedt, L. Attribute-value learning versus Inductive Logic

Programming: the Missing Links (Extended Abstract). In Proceedings of the 8th

International Conference on Inductive Logic Programming, volume 1446 of Lecture

Notes in Artificial Intelligence, Springer-Verlag, 1998.

[De Raedt et al., 2001] De Raedt, L., Blockeel, H., Dehaspe, L., and Van Laer, W. Three

companions for data mining in first order logic. In (Dzeroski and Lavrac, 2001).

[Dietterich et al., 1997] Dietterich, T. G., Lathrop, R. H., and Lozano-Pérez, T. Solving the

multiple-instance problem with axis-parallel rectangles. Artificial Intelligence, volume

89, 1997.

[Dzeroski et al., 2001] Dzeroski, S., De Raedt, L., and Driessens, K. Relational

Reinforcement Learning. Report CW 311, Department of Computer Science, Katholieke

Universiteit Leuven, 2001.

[Dzeroski and Lavrac, 2001] Dzeroski, S. and Lavrac, N. editors. Relational Data Mining.

Springer-Verlag, 2001.

[Fayyad an Irani, 1992] Fayyad, U. M. and Irani, K. B. On the handling of continuous-valued

attributes in decision tree generation. Machine Learning, volume 8, 1992.

64

[Frank and Witten, 1998] Frank, E. and Witten, I. H. Generating Accurate Rule Sets without

Global Optimization. In Proceedings of the 15th International Conference on Machine

Learning (ICML-98), Morgan Kaufmann Publishers, San Francisco, CA, 1998.

[Friedman et al., 1999] Friedman, N., Getoor, L., Koller, D., and Pfeffer, A. Learning

probabilistic relational models. In Proceedings of the 16th International Joint Conference

on Artificial Intelligence, Morgan Kaufman, 1999.

[Friedman et al., 2001] Friedman, N., Getoor, L., Koller, D., and Pfeffer, A. Learning

probabilistic relational models. In (Dzeroski and Lavrac, 2001).

[Friedman and Koller, 2001] Friedman, N., and Koller, D. Tutorial: Learning Bayesian

Networks from Data. Neural Information Processing Systems: Natural and Synthetic

(NIPS 2001), 2001.

http://www-2.cs.cmu.edu/Web/Groups/NIPS/NIPS2001/nips2001.html

(Last date accessed: July 9th, 2002)

[Getoor, 2001] Getoor, L. Multi-relational data mining using probabilistic relational models:

research summary. In (Knobbe and Van der Wallen, 2001).

[Gonzalez et al., 2000] Gonzalez, J., Jonyer, I., Holder, L. B., and Cook, D. J. Efficient

Mining of Graph-Based Data. In Proceedings of AAAI 2000 Workshop on Learning

Statististical Models from Relational Data, AAAI Press, 2000.

[Grzymala-Busse and Hu, 2001] Grzymala-Busse, J. W., and Hu, M. A comparison of

several approaches to missing attribute values in data mining. In Proceedings of the

Second International Conference on Rough Sets and Current Trends in Computing,

RSCTC 2000, volume 2005 of Lecture Notes in Computer Science, Springer, 2001.

[Holder and Cook, 2000] Holder, L. B., and Cook, D. J. Graph-based data mining. IEEE

Intelligent Systems 15, 2000.

[Information Discovery] Information Discovery Inc. OLAP and DataMining; Bridging the

Gap. http://www.datamining.com/bridge.htm (Last date accessed: July 9th, 2002)

[Jaeger, 1997] Jaeger, M. Relational Bayesian networks. In Proceedings of the 13th Annual

Conference on Uncertainty in Artificial Intelligence (UAI-1997), 1997.

[Jensen, 2001] Jensen, F. V. Bayesian Networks and Decision Graphs. Springer-Verlag,

2001.

65

[Karalic and Bratko, 1997] Karalic, A. and Bratko, I. First order regression. Machine

Learning, volume 26, 1997.

[Kersting and De Raedt, 2000] Kersting, K., and De Raedt, L. Bayesian Logic Programs. In

Proceedings of the Work-in-Progress Track at the 10th International Conference on

Inductive Logic Programming, 2000.

[Kersting et al., 2000] Kersting, K., De Raedt, L., and Kramer, S. Interpreting Bayesian

Logic Programs. In L. Getoor and D. Jensen, editors, Proceedings of the AAAI-2000

Workshop on Learning Statistical Models from Relational Data, AAAI Press, 2000.

[Kietz and Wrobel, 1992] Kietz, J-U. and Wrobel, S. Controlling the complexity of learning

in logic through syntactic and task-oriented models. In S. Muggleton, editor, Inductive

logic programming, Academic Press, 1992.

[Knobbe et al., 1999a] Knobbe, J., Blockeel, H., Siebes, A., and Van der Wallen, D. M. G.

Multi-relational Data Mining. In Proceedings of Benelearn ’99, 1999.

[Knobbe et al, 1999b] Knobbe, J., Siebes, A., and Van der Wallen, D. M. G. Multi-relational

decision tree induction. In Proceedings of the 3rdEuropean Conference on Principles and

Practice of Knowledge Discovery in Databases, PKDD ’99, 1999.

[Knobbe et al., 2001] Knobbe, A. J., Siebes, A., Blockeel, H., and Van der Wallen, D. M. G.

Multi-relational data mining using UML for ILP. In (Knobbe and Van der Wallen, 2001).

[Knobbe and Van der Wallen, 2001] Knobbe, A. J. and Van der Wallen, D. M. G. editors.

Proceedings of the First Workshop in Multi-relational Data Mining, 2001.

[Kohavi, 1996] Kohavi, R. Scaling up the accuracy of Naïve Bayes Classifiers: a decision

tree hybrid. In Proceedings of the 2nd International Conference on Knowledge Discovery

and Data Mining, 1996.

[Koller, 1999] Koller, D. Probabilistic Relational Models. In S. Dzeroski and P. Flach,

editors, Proceedings of 9th International Workshop on Inductive Logic Programming

(ILP-99), Springer, 1999.

[Kramer and De Raedt, 2001] Kramer, S. and De Raedt, L. Feature Construction with

Version Spaces for Biochemical Applications. In Proceedings of the 18th International

Conference on Machine Learning (ICML-2001), 2001.

66

[Kramer, 1996] Kramer, S. Structural regression trees. In Proceedings of the 13th National

Conference on Artificial Intelligence, 1996.

[Krogel and Wrobel, 2001] Krogel, M. and Wrobel, S. Transformation-Based Learning

Using Multirelational Aggregation. In Céline Rouveirol and Michèle Sebag, editors,

Proceedings of the 11th International Conference on Inductive Logic Programming,

volume 2157 of Lecture Notes in Artificial Intelligence, Springer-Verlag, 2001.

[Lari and Young, 1990] Lari, K. and Young, S. J. The estimation of stochastic context-free

grammars using the inside-outside algorithm. Computer Speech and Language, volume 4,

1990.

[Lavrac et al., 1991] Lavrac, N., Dzeroski, S., and Grobelnik, M. Learning nonrecursive

definitions of relations with LINUS. In Proceedings of the 5th European Working Session

on Learning, Springer, 1991.

[Lavrac and Dzeroski, 1994] Lavrac, N. and Dzeroski, S. Inductive Logic Programming:

Techniques and Applications. Ellis Horwood, 1994.

[Lavrac, 2002] Lavrac, N. Introduction to Inductive Logic Programming. Computer Science

course ComS70301: Learning from Structured Data, University of Bristol, Department of

Computer Science.

http://www.cs.bris.ac.uk/Teaching/Resources/COMS70301/

(Last date accessed: July 9th, 2002)

[Lindner and Morik, 1995] Lindner, G., and Morik, K. Coupling a relational learning

algorithm with a database system. In Y. Kodratoff, G. Nakhaeizadeh, and C. Taylor,

editor, Workshop Notes of the MLnet Familiarization Workshop on Statistics, Machine

Learning and Knowledge Discovery in Databases, 1995.

[Liu et al., 1997] Liu, W. Z., White, A. P., White, S. G., Thompson, S. G., and Bramer, M.

A. Techniques for dealing with missing values in classifications. In X. Liu, P. Cohen and

M. Berthold, editors, Advances on Intelligent Data Analysis, Springer-Verlag, 1997.

[MLNet] The Machine Learning Network, Online Information Service.

http://www.mlnet.org/ (Last date accessed: July 9th, 2002)

[Mitchell, 1997] Mitchell, T. Machine Learning. McGraw Hill, 1997.

67

[Muggleton, 1995] Muggleton, S. H. Inverse entailment and progol. New Generation

Computing, 1995.

[Muggleton, 1996] Muggleton, S. H. Stochastic Logic Programs. In Proceedings of the 5th

International Workshop on Inductive Logic Programming, 1996.

[Muggleton, 2000] Muggleton, S. H. Learning Stochastic Logic Programs. In Proceedings of

the AAAI-2000 Workshop on Learning Statistical Models from Relational Data, AAAI

Press, 2000.

[Neville and Jensen, 2000] Neville, J., and Jensen, D. Iterative Classification in Relational

Data. AAAI 2000 Workshop on Learning Statistical Models from Relational Data, 2000.

http://robotics.stanford.edu/srl/workshop.html (Last date accessed: July 9th, 2002)

[Ngo and Haddawy, 1997] Ngo, L., and Haddawy, P. Answering queries form context-

sensitive probabilistic knowledge bases. Theoretical Computer Science, 1997.

[Ortega and Numao, 1999] Ortega, O., and Numao, M. Ordered estimation of missing values.

In Proceedings of the 3rd Pacific-Asia Conference on Knowledge Discovery and Data

Mining (PAKDD-99), Springer-Verlag, 1999.

[Pearl, 1991] Pearl, J. Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann, 2nd edition, 1991.

[Pfeffer, 2000] Pfeffer, A. A Bayesian Language for Cumulative Learning. In Proceedings of

AAAI 2000 Workshop on Learning Statististical Models from Relational Data, AAAI

Press, 2000.

[Quinlan, 1987] Quinlan, J. R. Induction of decision trees. Machine Learning, volume 1,

1987.

[Quinlan, 1989] Quinlan, J. R. Unknown attribute values in induction. In Proceedings of the

6th International Machine Learning Workshop, 1989.

[Quinlan, 1993a] Quinlan, J. R. FOIL: A midterm report. In Proceedings of the 6th European

Conference on Machine Learning, volume 667 of Lecture Notes in Artificial Intelligence,

Springer-Verlag, 1993.

[Quinlan, 1993b] Quinlan, J. R. C4.5: Programs for Machine Learning. San Mateo: Morgan

Kaufmann, 1993.

68

[Quinlan, 1996] Quinlan, J. R. Improved Use of Continuous Attributes in C4.5. Journal of

Artificial Intelligence Research, AI Access Foundation and Morgan Kaufmann

Publishers, volume 4, 1996.

[Quinlan, Rulequest] Quinlan, J. R. RuleQuest Research Pty Ltd.

http://www.rulequest.com/ (Last date accessed: July 9th, 2002)

[Reinoso-Castillo, 2002] Reinoso-Castillo, J. Ontology-Driven Query-Centric Federated

Solution for Information Extraction and Integration from Autonomous, Heterogeneous,

Distributed Data Sources. Masters Thesis, Department of Computer Science, Iowa State

University, 2002.

[Sebag and Rouveirol, 1997] Sebag, M. and Rouveirol, C. Tractable Induction and

Classification in First Order Logic via Stochastic Matching. In Proceeding of the 15th

International Joint Conference on Artificial Intelligence, 1997.

[Srinivasan et al., 1996] Srinivasan, A., Muggleton, S., Sternberg, M., and King, R. D.

Theories for mutagenicity: a study in first-order and feature-based induction. Artificial

Intelligence, volume 85, 1996.

[Srinivasan et al., 1999] Srinivasan, A., King, R. D., and Muggleton, S. The role of

background knowledge: using a problem from chemistry to examine the performance of

an ILP program. Technical Report PRG-TR-08-99, Oxford University Computing

Laboratory, Oxford, 1999.

[UCI, Machine Learning Repository] University of California, Irvine Machine Learning

Repository.

http://www.ics.uci.edu/~mlearn/MLRepository.html (Last date accessed: July 9th, 2002)

[Witten and Frank, 1999] Witten, I. H. and Frank, E. Data Mining: Practical Machine

Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, 1999.

[Zhang et al., 2002] Zhang, J., Silvescu, A., and Honavar, V. Ontology-Driven Induction of

Decision Trees at Multiple Levels of Abstraction. In Proceedings of the Symposium on

Abstraction, Reformulation, and Approximation (SARA-2002), 2002.

[Zheng and Low, 1999] Zheng, Z., and Low, B.T. Classifying unseen cases with many

missing values. In Proceedings of the 3rd Pacific-Asia Conference on Knowledge

Discovery and Data Mining (PAKDD-99), Springer-Verlag, 1999.

