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Abstract

Gaussian processes offer an attractive framework for predic-
tive modeling from longitudinal data, i.e., irregularly sampled,
sparse observations from a set of individuals over time. How-
ever, such methods have two key shortcomings: (i) They rely
on ad hoc heuristics or expensive trial and error to choose the
effective kernels, and (ii) They fail to handle multilevel corre-
lation structure in the data. We introduce Longitudinal deep
kernel Gaussian process regression (L-DKGPR) to overcome
these limitations by fully automating the discovery of com-
plex multilevel correlation structure from longitudinal data.
Specifically, L-DKGPR eliminates the need for ad hoc heuris-
tics or trial and error using a novel adaptation of deep kernel
learning that combines the expressive power of deep neural
networks with the flexibility of non-parametric kernel methods.
L-DKGPR effectively learns the multilevel correlation with
a novel additive kernel that simultaneously accommodates
both time-varying and the time-invariant effects. We derive
an efficient algorithm to train L-DKGPR using latent space
inducing points and variational inference. Results of exten-
sive experiments on several benchmark data sets demonstrate
that L-DKGPR significantly outperforms the state-of-the-art
longitudinal data analysis (LDA) methods.

Introduction
Longitudinal studies, which involve repeated observations,
taken at irregularly spaced time points, for a set of individ-
uals over time, are ubiquitous in many applications, e.g.,
in health, cognitive, social, and economic sciences. Such
studies are used to identify the time-varying as well as
the time-invariant factors associated with a particular out-
come of interest, e.g., health risk (Hedeker and Gibbons
2006), urban computing (Tang et al. 2020; Hsieh et al.
2021). Longitudinal data typically exhibit longitudinal cor-
relation (LC), i.e., correlations among the repeated observa-
tions of a given individual over time; and cluster correlation
(CC), i.e., correlations among observations across individu-
als, e.g., due to the characteristics that they share among them-
selves e.g., age, demographics factors; or both, i.e., multilevel
correlation (MC). In general, the structure of MC can be com-
plex and a priori unknown. Failure to adequately account for
the structure of MC in predictive modeling from longitudinal
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data can lead to misleading statistical inferences (Gibbons
and Hedeker 1997; Liang et al. 2020). It can be non-trivial
to choose a suitable correlation structure that reflects the cor-
relations present in the data. The relationships between the
covariates and outcomes of interest can be highly complex
and non-linear. Furthermore, modern applications often call
for LDA methods that scale gracefully with increasing num-
ber of variables, the number of individuals, and the number
of longitudinal observations per individual.

Related Work
Conventional LDA Methods LDA methods have been ex-
tensively studied for decades (Hedeker and Gibbons 2006;
Verbeke et al. 2014). Conventional LDA methods fall into
to two broad categories: (i) marginal models and (ii) condi-
tional models. Marginal models rely on assumptions about
the marginal association among the observed outcomes. The
generalized estimating equations (GEE) (Liang and Zeger
1986), where a working correlation matrix is specified to
model the marginal association among the observed out-
comes, offer an example of marginal models. The parameters
of marginal models are often shared by all individuals in
the population, yielding population-averaged effects or fixed
effects. Conditional models on the other hand avoid directly
specifying the full correlation matrix by distinguishing ran-
dom effects, i.e., parameters that differ across individuals,
from fixed effects, so as to estimate the individual parameters
conditioned on the population parameters. A popular example
of conditional models is the generalized linear mixed-effects
models (GLMM) (McCulloch 1997). Despite much work on
both marginal and conditional models (Fitzmaurice, Laird,
and Ware 2012; Wang 2014; Xiong, Kim, and Singh 2019;
Liang et al. 2020), many of the challenges, especially the
choice of correlation structure, and the selection of variables
to model random versus fixed effects, and the scalability of
the methods remain to be addressed.

Non-parametric LDA Methods More recently, there is a
growing interest in Gaussian processes (GP) (Quintana et al.
2016; Cheng et al. 2019; Wang et al. 2019) for LDA because
of their advantages over conventional parametric LDA meth-
ods: (i) GP make fewer assumptions about the underlying
data distribution by dispensing with the need to choose a
particular parametric form of the nonlinear predictive model;



(ii) GP permit the use of parametertized kernels to model the
correlation between observed outcomes, to cope with data
sampled at irregularly spaced time points, by interpolating
between samples; (iii) The interpretability of GP models can
be enhanced by choosing modular kernels that are composed
of simpler kernels that capture the shared correlation struc-
ture of a subset of covariates, and (iv) GP models can flexibly
account for both longitudinal and cluster correlations in the
data. For example, Cheng et al. (2019) utilize an additive ker-
nel for Gaussian data and employ a step-wise search strategy
to select the kernel components and covariates that optimize
the predictive accuracy of the model. Timonen et al. (2019)
consider a heterogeneous kernel to model individual-specific
(random) effects in the case of non-Gaussian data. Despite
their advantages, existing GP based approaches to LDA suf-
fer from several shortcomings that limit their applicability in
real-world settings: (i) The choice of an appropriate kernel
often involves a tedious, often expensive and unreliable, pro-
cess of trial and error (Rasmussen 2003) or ad hoc heuristics
for identifying a kernel or selecting a subset of kernels from
a pool of candidates (Cheng et al. 2019). (ii) Suboptimal
choice of kernels can fail to adequately model the complex
MC structure in the data. (iii) They do not scale to thousands
of covariates and/or millions of data points that are common
in modern LDA applications.

Overview of contributions
A key challenge in predictive modeling of longitudinal data
has to do with modeling the complex correlation structure in
the data. We posit that the observed correlation structure is in-
duced by the interactions between time-invariant, individual-
specific effects, and time-varying population effects. Hence,
we can divide the task of predictive modeling from longitu-
dinal data into three sub-tasks: (i) Given an observed data
set, how do we estimate the time-varying and time-invariant
effects? (ii) Given the learned effects, how do we estimate
the correlation structure present in the data? (iii) Given the
correlation structure, how do we predict as yet unobserved,
e.g., future outcomes?

We introduce Longitudinal deep kernel Gaussian process
regression (L-DKGPR) to fully automate the discovery of
complex multi level correlation structure from longitudinal
data. L-DKGPR inherits the attractive features of GP while
overcoming their key limitations. Specifically, L-DKGPR
eliminates the need for ad hoc heuristics or trial and error by
using a deep kernel learning method (Wilson et al. 2016a) that
combines the expressive power of deep neural networks with
the flexibility of non-parametric kernel methods. L-DKGPR
extends (Wilson et al. 2016a) by introducing a novel addi-
tive kernel that includes two components, one for modeling
the time-varying (fixed) effects and the other for modeling
the time-invariant (random) effects, to compensate for the
multilevel correlation structure in longitudinal data. To en-
hance the effectiveness and efficiency of model inference,
we improve the inducing points technique by introducing
inducing points directly in the latent space. Our formula-
tion permits a tractable ELBO, which not only eliminates
the need for Monte Carlo sampling, but also dramatically
reduces the number of parameters and iterations needed to

achieve state-of-the-art regression performance.

Preliminaries

Notations. We denote a longitudinal data set byD = (X,y),
where X ∈ RN×P is the covariate matrix and y ∈ RN×1
is the vector of measured outcomes. We denote a row in X
by xit, with i, t indexing the individual and the time for the
observation respectively. Because the observations for each
individual are irregularly sampled over time, we have for each
individual i, a submatrix Xi ∈ RNi×P ⊂ X , where Ni is the
number of observations available for the individual i. If we
denote by I be the number of individuals in D, the covariate
matrix X is given by X> = (X>1 , · · · , X>I )>. Accordingly,
the outcomes y are given by y> = (y>1 , · · · ,y>I )>.

Gaussian Process. A Gaussian process (GP) is a stochas-
tic process, i.e., a distribution over functions or an infinite
collection of (real-valued) random variables, such that any
finite subset of random variables has a multivariate Gaus-
sian distribution (Williams and Rasmussen 2006). A kernel
describes the covariance of the random variables that make
up the GP. More precisely, if a function f : X → R has a
GP prior f∼GP(µ, kγ) where µ is the mean function and
kγ(·, ·) is a (positive semi-definite) kernel function param-
eterized by γ, then any finite collection of components of
f (denoted as f) has a multivariate Gaussian distribution
(f|X)∼N (µ(X),KXX), where µ(X) is the mean vector,
and (KXX)ij = kγ(xi,xj) is the covariance matrix. In the
regression setting, the function f is treated as an unobserved
signal linked to the outcomes through a (typically Gaussian)
likelihood function, such that (y|f)∼N (f, σ2I).

Additive GP is a special case of GP where unobserved
signal is expressed as the sum of J independent signal com-
ponents, i.e., f =

∑J
j=1 αjf

(j), where α = {αj}Jj=1 are
the the coefficients associated with the individual compo-
nents (Duvenaud, Nickisch, and Rasmussen 2011). In prac-
tice, each signal component is computed on a (typically small
(Cheng et al. 2019; Timonen et al. 2019)) subset of the ob-
served covariates in x. The fact that each signal component
has a GP prior ensures that the joint signal f is also GP.
Additive GP allows using different kernel functions for dif-
ferent signal components, so to model the shared correlation
structure of a subset of covariates, thus enhancing the inter-
pretability of the resulting GP. More importantly, it permits
the time-varying and time-invariant effects to be modeled
using different kernel functions, which is especially attractive
in modeling longitudinal data.

Longitudinal Deep Kernel Gaussian Process
Regression

Predictive modeling from longitudinal data typically requires
solving two sub-problems: (i) Extracting the time-varying
and time-invariant information from the observed data to
estimate the underlying multilevel correlation structure; and
(ii) using the estimated correlation structure to predict the
future outcomes. In what follows, we describe our solutions
to both sub-problems.
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Figure 1: Structure of the deep kernels.

Modeling the Multilevel Correlation using Deep
Kernels
Recall that longitudinal data exhibit complex correlations
arising from the interaction between time-varying effects and
time-invariant effects. Hence, we decompose the signal func-
tion f into two parts, i.e., f (v) which models the time-varying
effects and f (i), which models the time-invariant effects. The
result is a probabilistic model that can be specified as follows:

(y|f)∼N (f, σ2I)

f = α(v)f (v) + α(i)f (i)

(f(v)|X)∼N (µ(v)(X), k(v)γ (X,X))

(f(i)|X)∼N (µ(i)(X), k
(i)
φ (X,X))

We denote the kernel parameters for time-varying effects
and time-invariant effects respectively by γ and φ. The mean
functions µ(v),µ(i), if unknown, can be estimated from data.
In this study, without loss of generality, following (Williams
and Rasmussen 2006; Wilson et al. 2016a,b; Cheng et al.
2019; Timonen et al. 2019), we set µ(v) = µ(i) = 0. Assum-
ing that f(v) and f(i) are conditionally independent given X ,
we can express the joint signal distribution f as follows:

(f|X)∼N
(
0, kθ = α(v)2k(v)γ + α(i)2k

(i)
φ

)
(1)

Time-varying Kernel k(v)γ . We introduce a time-varying
kernel to capture the longitudinal correlation in the data. The
structure of our time-varying kernel k(v)γ is shown in the
upper part of Figure 1. Let eγ : X → S(v) ∈ RDv be a
non-linear encoder function given by a deep architecture pa-
rameterized by γ. Given a pair of data points xit,xjq , where
i, j index the individuals and t, q index the time-dependent
observations, the time-varying kernel is given by:

k(v)γ (xit,xjq) = kSE(eγ(xit), eγ(xjq)) (2)

with kSE denoting the squared exponential kernel (Williams
and Rasmussen 2006). Note that SE kernel is based on Eu-
clidean distance, which is not a useful measure of distance in
the high dimensional input space (Aggarwal, Hinneburg, and
Keim 2001). Hence, we use a deep neural network (Goodfel-
low, Bengio, and Courville 2016), specifically, a nonlinear
encoder to map the input space to a low-dimensional latent
space and then apply the SE kernel to the latent space.

Time-invariant Kernel k(i)φ . We introduce a time-invariant
kernel to capture cluster correlation, i.e., time-invariant cor-
relations among individuals that share similar characteristics.

The structure of time-invariant kernel is shown in the bottom
part of Figure 1. Let ι(xi·) = i be a mapping function that
identifies the individuals, and gφ : ι(X ) → S(i) ∈ RDi be
an embedding function that maps each individual to a vector
in the latent space. Then for any pair of data points xi·,xj·
with arbitrary observation indices, the time-invariant kernel
is given by:

k
(i)
φ (xi·,xj·) = kSE(gφ ◦ ι(xi·), gφ ◦ ι(xj·)) (3)

Learning a L-DKGPR model from data
We now proceed to describe how to efficiently learn an L-
DKGPR model and use it to make predictions. Because of
space constraints, the details of the derivations are relegated
to Appendix .

Model Inference. Our approach to efficiently learning an L-
DKGPR model draws inspiration from (Wilson et al. 2016b),
to greatly simplify the computation of the GP posterior by re-
ducing the effective number of rows in X , from N to M
(M � N ), where M is the number of inducing points.
However, unlike (Wilson et al. 2016b), which uses induc-
ing points in the input space, we use inducing points from
a low-dimensional latent space. Let Z = {zm}Mm=1 be the
collection of inducing points, and u their corresponding sig-
nal. The kernel computations based on the inducing points
are given by:

k(v)γ (x, z) = kSE(eγ(x), z)

k(v)γ (zi, zj) = kSE(zi, zj)

Replacing inducing points in the input space with those in a
low-dimensional latent space offers several advantages. First,
we no longer need to use the encoder network eγ(·) to trans-
form the inducing points z, thus increasing the computational
efficiency of the model. Second, the latent space is dense,
continuous, and usually is of much lower dimension than
the input space (Dv � P ). The resulting parameterization
of inducing points directly in the latent space, results in a
reduction in the number of parameters that describe the in-
ducing points (i.e., Z) fromO(MP ) toO(MDv). Third, the
latent space simplifies the optimization of L-DKGPR, es-
pecially when the input space is defined by heterogeneous
data types subject to domain-specific constraints, because the
latent space is always continuous regardless the constraints
in the input space. We define ι(zm) = I +m to distinguish
the inducing points from the input data. We can now express
the joint signal distribution as follows:

(f,u|X,Z)∼N
([

0
0

]
,

[
KXX KXZ

K>XZ KZZ

])
(4)

Therefore, the signal distribution conditioned on the inducing
points is given by:

(f|u, X, Z)∼N (KXZK
−1
ZZu,KXX −KXZK

−1
ZZK

>
XZ)

(5)
Let Θ = {α(v), α(i), γ, φ, σ2, Z} be the model parame-
ters. We aim to learn the parameters by maximizing the
log of marginal likelihood p(y|X,Z). By assuming a vari-
ational posterior over the joint signals q(f,u|X,Z) =



q(u|X,Z)p(f|u, X, Z), we can derive the evidence lower
bound (see e.g., (Wilson et al. 2016b)):

L , Eq(f,u|X,Z)[log p(y|f)]− KL[q(u|X,Z)||p(u|Z)] (6)

We define the proposal posterior q(u|X,Z) =
N (µq, LqL

>
q ). To speed up the computation, we fol-

low the deterministic training conditional (DTC) (Seeger,
Williams, and Lawrence 2003), an elegant sparse method
for accurate computation of the Gaussian process posterior
by retaining exact likelihood coupled with an approximate
posterior (Liu et al. 2020), rendering (f|u, X, Z) determinis-
tic during the training phase. Letting A = KXZK

−1
ZZ and

reparameterizing u = µq + Lqε with ε∼N(0, I), we can
rewrite the ELBO in closed form:

2L =− 2N log σ − σ−2(‖y‖22 − 2y>Aµq + ‖Aµq‖22
+ ‖ALq1‖22)− log |KZZ |+ 2 log |Lq|+M

− tr(K−1ZZLqL
>
q )− µ>q K−1ZZµq (7)

where 1 is a column vector of ones. We can then compute the
partial derivatives of L w.r.t. the parameters of the proposal
posterior q(u|X,Z) (i.e., {µq, Lq}), yielding:

∂L
∂µq

=
1

σ2
(−A>y +A>Aµq) +K−1ZZµq = 0 (8)

∂L
∂Lq

=
1

σ2
A>ALq11

> + (L−>q +K−1ZZLq) = 0 (9)

Solving the above equations gives:

µq = σ−2KZZBK
>
XZy (10)

Lq(I + 11>) = KZZBKZZ (11)

with B = (KZZ + σ−2K>XZKXZ)−1. To solve the trian-
gular matrix Lq from (11), we first compute the Cholesky
decomposition of I+11> = CC> andKZZBKZZ = UUT .
We then simplify both side of (11) to LqC = U . Lq can then
be solved by exploiting the triangular structure on both side
with

Li,i−k =
Ui,i−k −

∑k−1
j=0 Li,i−jCi−j,i−k

Ci−k,i−k
(12)

where k = 0, · · · , i − 1, Li,j is a shorthand for
[Lq]i,j . We separate the model parameters into two groups,
i.e., parameters w.r.t. the proposal posterior {µq, Lq} and the
remaining parameters Θ, and use an EM-like algorithm to
update both groups alternatively. The L-DKGPR algorithm
is listed in Algorithm 1.

Prediction. Given the covariate matrix X∗ for the test data,
the predictive distribution is given by:

p(f∗|X∗, X,y, Z) ' N (KX∗Z(KZZ + σ2I)−1µq,

KX∗X∗ −KX∗Z(KZZ + σ2I)−1K>X∗Z) (13)

Complexity. The time complexity and space complexity of

both inference and prediction are O(NM2) and O(NM)
respectively, where N is the number of measured outcomes,
and M the number of inducing points.

Algorithm 1: L-DKGPR
Input: Training set S = {X,y}, latent dimension

Dv, Di, number of inducing points M ,
gradient-based optimizer and its related
hyper-parameters (i.e., learning rate, weight
decay, mini-batch size), alternating frequency
T .

1 Initialize the parameters Θ = {σ2, Z, α(v), α(i), γ, φ}
2 while Not converged do
3 Update proposal posterior q(u|X,Z) according to

(10) and (12)
4 t = 0
5 for t < T do
6 Update Θ using the input optimizer.
7 t = t+ 1

Experiments
We compare L-DKGPR to several state-of-the-art LDA and
GP methods on simulated as well as real-world benchmark
data. The experiments are designed to answer research ques-
tions about accuracy, scalability, and interpretability of L-
DKGPR: (RQ1) How does the performance of L-DKGPR
compare with the state-of-the-art methods on standard lon-
gitudinal regression tasks? (RQ2) How does the scalability
of L-DKGPR compare with that of the state-of-the-art lon-
gitudinal regression models? (RQ3) Can L-DKGPR reliably
recover the rich correlation structure from the data? (RQ4)
How do the different components of L-DKGPR contribute
to its overall performance? (RQ5) What is the advantage of
solving the exact ELBO in (7) compared to solving its orig-
inal form in (6) using Monte Carlo sampling (Wilson et al.
2016b)?

Data
We used one simulated data set and three real-world longitu-
dinal data sets in our experiments:1
Simulated data. We construct simulated longitudinal data
that exhibit i.e., longitudinal correlation (LC) and multilevel
correlation (MC) as follows: The outcome is generated using
y = f(X) + ε where f(X) is a non-linear transformation
based on the observed covariate matrix X and the residual
ε∼N(0,Σ). To simulate longitudinal correlation, we simply
set Σ to a block diagonal matrix with non-zero entries for
within-individual observations. To simulate multilevel corre-
lation, we first split the individuals into C clusters and assign
non-zero entries for the data points in the same cluster. Fol-
lowing (Cheng et al. 2019; Timonen et al. 2019), we simulate
40 individuals, 20 observations, and 30 covariates for each
individual. We vary the number of clusters C from [2, 5].
Study of Women’s Health Across the Nation (SWAN)
(Sutton-Tyrrell et al. 2005). SWAN is a multi-site longitudi-
nal study designed to examine the health of women during the
midlife years. We consider the task of predicting the CESD

1Details of generation of simulated data and of pre-processing
of real-world data are provided in the Appendix.



score, which is used for screening for depression. Similar
to (Liang et al. 2020), we define the adjusted CESD score
by y = CESD − 15, thus y ≥ 0 indicates depression. The
variables of interest include aspects of physical and mental
health, and demographic factors such as race and income.
The resulting data set has 3, 300 individuals, 137 variables
and 28, 405 records.
General Social Survey (GSS) (Smith et al. 2017). The GSS
data were gathered over 30 years on contemporary American
society collected with the goal of understanding and explain-
ing trends and constants in attitudes, behaviors, and attributes.
In our experiment, we consider the task of predicting the self-
reported general happiness of 4, 510 individuals using 1, 553
features and 59, 599 records. We follow the experimental
setup in (Liang et al. 2020), with y = 1 indicates happy and
y = −1 indicates the opposite.
The Alzheimer’s Disease Prediction Of Longitudinal
Evolution (TADPOLE) (Marinescu et al. 2018). The TAD-
POLE challenge involves predicting the symptoms related
to Alzheimer’s Disease (AD) within 1-5 years of a group of
high-risk subjects. In our experiment, we focus on predict-
ing the ADAS-Cog13 score using the demographic features
and MRI measures (Hippocampus, Fusiform, WholeBrain,
Entorhinal, and MidTemp). The resulting data set has 1, 681
individuals, 24 variables and 8, 771 records.

Experimental Setup
To answer RQ1, we use both simulated data and real-world
data. To evaluate the regression performance, similar to
(Liang et al. 2020), we compute the mean and standard devia-
tion of R2 between the actual and predicted outcomes of each
method on each data set across 10 independent runs. We use
50%, 20%, 30% of data for training, validation, and testing
respectively.

To answer RQ2, we take data from a subset consisting of
50 individuals with the largest number of observations from
each real-world data. We record the run time per iteration
of each method on both the 50-individual subset and full
data set. Because not all baseline methods implement GPU
acceleration, we compare the run times of all the methods
without GPU acceleration. We report execution failure if a
method fails to converge within 48 hours or generates an
execution error (Liang et al. 2020).

To answer RQ3, we rely mainly on the simulated data
since the actual correlation structures underlying the real-
world data sets are not known. We evaluate the performance
of each method by visualizing the learned correlation matrix
and compare it to the ground truth correlation matrix on
simulated data. Additionally, we illustrate how the correlation
matrix learned by L-DKGPR can provide gain useful insights
using a case study with the SWAN data. Results for case
study is presented in the Appendix.

To answer RQ4, we compare the performance of L-
DKGPR with L-RBF-GPR, a variant that replaces the learned
deep kernel with a simple RBF kernel; and L-DKGPR-, a
variant of L-DKGPR without the time-invariant effects.

To answer RQ5, we compare the regression performance
and hyper-parameter choices of L-DKGPR solved using Al-
gorithm 1 with the version of L-DKGPR solved using Monte

Carlo sampling (Wilson et al. 2016b) on SWAN and GSS
data sets.

Baseline Methods We compare L-DKGPR with the follow-
ing baseline methods: (i) Conventional longitudinal regres-
sion models, i.e., GLMM (Bates et al. 2015) and GEE (Inan
and Wang 2017); (ii) State-of-the-art longitudinal regression
models, i.e., LMLFM (Liang et al. 2020) and LGPR (Ti-
monen et al. 2019); (iii) State-of-the-art Gaussian Process
models for general regression, i.e., KISSGP with deep ker-
nel (Wilson et al. 2016b) (we use the same deep structure
as in our time-varying kernel) and ODVGP (Salimbeni et al.
2018). Implementation details2 and hyper-parameter settings
of L-DKGPR as well as the baseline approaches are provided
in the Appendix.

Results
We report the results of our experiments designed to answer
the research questions RQ1-RQ4.
L-DKGPR vs baseline longitudinal regression methods.
The results are reported in Table 1 and Table 2 for simulated
and real-world data sets respectively. In the case of simulated
data, we find that KISSGP, ODVGP, GEE and GLMM fail in
the presence of MC with the mean R2 being negative (indica-
tive of models containing variables that are not predictive of
the response variable). This can be explained by the fact that
GEE is designed only to handle pure LC, thus fails to account
for CC or MC. While GLMM is capable of handling MC, it re-
quires practitioners to specify the cluster structure responsible
for CC prior to model fitting. However, in our experiments,
the cluster structure is unknown a priori. Hence it is not sur-
prising that GLMM performs poorly. Though both KISSGP
and ODVGP are conceptually viable to handle data with com-
plex correlation, they both experience dramatic performance
drop when cluster correlation (or time-invariant effects) are
presented. Moreover, we find that although LMLFM outper-
forms GLMM and GEE in the presence of MC, its R2 is
still quite low. This is because LMLFM accounts for only a
special case of MC, namely, for CC among individuals ob-
served at the same time points, and not all of the CC present
in the data. We find that LGPR performs rather poorly on
both simulated and real-world data. This might due to the fact
that LGPR obtains the contributions of each variable to the
kernel independently before calculating their weighted sum.
Though it is possible to incorporate higher-order interactions
between variables into LGPR, doing so requires estimating
large numbers of interaction parameters, with its attendant
challenges, especially when working with small populations.
In contrast to the baseline methods, L-DKGPR consistently
and significantly outperforms the baselines by a large mar-
gin. On the real-world data sets, L-DKGPR outperforms the
longitudinal baselines in most of the cases.
Scalability of L-DKGPR vs. baseline methods. We see
from Table 2 that most longitudinal baselines, i.e., LGPR,
GLMM, and GEE, fail to process real-world data sets with
large numbers of covariates. Indeed, their computational com-
plexity increases in proportion to P 3 where P is the number

2Data and codes used in this paper are publicly available at
https://github.com/junjieliang672/L-DKGPR.



Table 1: Regression accuracy R2 (%) comparison on simulated data with different correlation structures.

Method LC MC(C = 2) MC(C = 3) MC(C = 4) MC(C = 5)

L-DKGPR 86.0±0.2 91.3±0.2 99.6±0.2 99.8±0.2 99.8±0.2
KISSGP 85.9±1.7 -43.4±33.3 -55.5±7.1 -58.2±14.4 -57.2±17.9
ODVGP 82.3±5.2 -1.6±16.9 -14.7±6.5 -13.5±8.4 -6.1±4.4
LGPR -37.1±19.1 -123.6±162.0 -26.3±43.2 -9.1±14.8 -0.1±5.9

LMLFM 54.7±15.1 -138.3±121.9 -48.3±123.6 22.6±49.0 36.2±41.1
GLMM 5.3±27.9 -656.3±719.8 -801.4±507.4 -684.1±491.3 -528.7±313.5

GEE 59.0±24.5 -636.1±606.0 -703.6±465.8 -665.6±554.3 -516.5±457.5

Table 2: Regression accuracy R2 (%) on real-world data sets. We use ‘N/A’ to denote execution error.

Data sets N I P L-DKGPR KISSGP ODVGP LGPR LMLFM GLMM GEE

TADPOLE 595 50 24 44.0±5.6 1.2±10.1 9.0±14.1 -261.1±9.0 8.7±5.1 50.8±5.5 -11.4±4.8
SWAN 550 50 137 46.8±4.9 42.4±4.6 29.0±3.1 -16.6±12.7 38.6±4.2 40.1±7.7 46.4±8.0
GSS 1,500 50 1,553 19.1±3.7 12.5±6.3 -7.6±3.3 N/A 15.3±1.4 N/A -4.6±3.5

TADPOLE 8,771 1,681 24 64.9±1.4 0.6±3.9 21.1±1.0 N/A 10.4±0.6 61.9±1.9 17.6±0.7
SWAN 28,405 3,300 137 52.5±0.4 20.5±7.6 24.9±21.8 N/A 48.6±2.0 N/A N/A
GSS 59,599 4,510 1,553 56.9±0.1 53.1±0.9 15.4±27.0 N/A 54.8±2.2 N/A N/A

of covariates. In contrast, L-DKGPR, LMLFM and state-of-
the-art GP baselines (KISSGP and ODVGP) scale gracefully
with increasing number of data points and covariates. For
CPU run time analysis, please refer to our Appendix.

Recovery of Correlation Structure. The outcome correla-
tions estimated by all GP methods on the simulated data are
shown in Figure 2. We see that KISSGP and ODVGP are in-
capable of recovering any correlation structure from the data.
LGPR seems to be slightly better than KISSGP and ODVGP
when MC is presented. However, we see that only one known
cluster is correctly recovered when C > 2. This suggests
that these methods fail to recover accurate correlation struc-
tures, which is consistent with their poor performance in
terms of R2. In contrast, L-DKGPR is able to recover most
of the correlation structure present in the data. It is worth
noting that recovering correlation structure is a challenging
task and although L-DKGPR is the best performing model,
the learned correlation structure is still far from perfect. A
possible explanation is that without further prior constraints
on the kernel structure, the kernel search space is very large.
Since L-DKGPR works in an MLE framework, it searches
for a kernel to improve the likelihood. When optimal solution
is surrounded by infinitely many local maxima, each with
simpler kernel structure but sufficiently high likelihood, it
is not surprising that L-DKGPR gets stuck in one of such
local maxima since the kernel initialization of L-DKGPR is
uninformative.

Ablation study. Regression accuracy comparison on com-
plete real-world data sets is shown in Table 3. Role of
time-invariant component: We see a dramatic drop in re-
gression performance when time-invariant effects are not
modeled (L-DKGPR-v) as compared to when they are (L-
DKGPR). This result underscores the importance of mod-
eling the time-independent components of LC and CC for

Figure 2: Outcome correlation estimated by all GP methods
on simulated data.

accurate modeling of longitudinal data. This task is simpli-
fied by the decomposition of the correlation structure into
the time-varying and time-invariant components. The time-
invariant component is analogous to estimating the mean
correlation whereas the time-varying component contributes
to the residual. Hence, the decomposition of the correlation
structure into time-varying and time-invariant components
should help reduce the variance of the correlation estimates.
Role of time-varying component: We observe significant
performance drop when time-varying effects are not modeled
(L-DKGPR-i) as compared to L-DKGPR. This is reasonable



Table 3: Effect on the regression accuracy R2 (%) of different
components of L-DKGPR

Data sets L-DKGPR L-DKGPR-v L-DKGPR-i L-RBF-GPR

TADPOLE 64.9±1.4 13.2±1.1 56.3±1.3 55.5±2.4
SWAN 52.5±0.4 29.0±3.2 16.7± 2.4 5.4±1.6
GSS 56.9±0.1 56.2±0.1 -0.2±0.2 -14.1±0.4

Table 4: Effect of solving L-DKGPR using Algorithm 1 vs.
Monte Carlo sampling.

Data sets Solver M Iterations R2 (%)

SWAN
Alg. 1 10 300 52.5±0.4

Sampling 10 300 3.1±0.2
Sampling 128 3,000 51.4±0.4

GSS
Alg. 1 10 300 56.9±0.1

Sampling 10 300 4.5±0.1
Sampling 128 3,000 55.6±0.1

because without the time-varying kernel, the model gives the
same outcome prediction for an individual at all time. This
is unrealistic for longitudinal data. Role of deep kernel: L-
DKGPR consistently outperforms L-RBF-GPR (which uses
RBF kernel instead of the deep kernel used by L-DKGPR),
with the performance gap between between the two increas-
ing with increase in the number of covariates. This is perhaps
explained by the pitfalls of Euclidean distance as a measure
of similarity between data points in a high dimensional data
space (Aggarwal, Hinneburg, and Keim 2001) (and hence ker-
nels such as the RBF kernel which rely on Euclidian distance
in the data space), and the apparent ability of the learned
deep kernel to perform such similarity computations in a low-
dimensional latent space where the computed similarities are
far more reliable.
Effect of solving the exact ELBO with Algorithm 1. Ta-
ble 4 presents the results in comparing L-DKGPR solved
using Algorithm 1 with a version of L-DKGPR solved us-
ing the vanilla Monte Carlo sampling (Wilson et al. 2016b).
We find that under the same hyper-parameter setting, our
solver outperforms the sampling solver by a large margin. To
ensure similar regression performance, we have to modify
the hyper-parameters for the sampling solver by increasing
the number of inducing points M to 128 and using about
10 times more training iterations. The result indicates that
coping with the variance of the noisy ELBO approximation
increases the number of parameters and hence the number of
iterations needed.
Effect of the number of inducing points M . Inducing
points provide a trade-off between approximation accuracy
and efficiency in sparse GP methods. In this experiment, we
vary the number of inducing points M from 5 to 100 on sim-
ulated data and record the R2 as shown in Figure 3. We find
that when the number of inducing points reaches a certain
threshold, i.e., 10 in all simulated settings, regression perfor-
mance is rather stable, an observation that is supported by our

Figure 3: Regression performance with different numbers of
inducing points on simulated data.

experiments with real-world data as well (results omitted). A
theoretical study (Burt, Rasmussen, and Van Der Wilk 2019)
points out that when input data are normally distributed and
inducing points are drawn from a k-deterministic point pro-
cess with an SE-ARD kernel, then M = O(logP N). In our
case, since the inducing points lie in the latent space, the num-
ber of inducing points suffice to our simulated data should
be as large as M = [2 log(40)]10. In contrast, we empirically
show that M ≈ logN is sufficient to get consistent and ap-
pealing results. We conjecture that this is because instead of
drawing the inducing points from a k-DPP process from the
input data, we optimize representation of the inducing points
jointly with the other model parameters, thus delivering more
effective inducing points that summarize the variance of the
input data. Proving or disproving this conjecture would re-
quire a deeper theoretical analysis of L-DKGPR.

Conclusion
We have presented L-DKGPR, a novel longitudinal deep ker-
nel Gaussian process regression model that overcomes some
of the key limitations of existing state-of-the-art GP regres-
sion methods for predictive modeling from longitudinal data.
L-DKGPR fully automates the discovery of complex multi-
level correlations from longitudinal data. It incorporates a
deep kernel learning method that combines the expressive
power of deep neural networks with the flexibility of non-
parametric kernel methods, to capture the complex multilevel
correlation structure from longitudinal data. L-DKGPR uses
a novel additive kernel that simultaneously models both time-
varying and the time-invariant effects. We have shown how
L-DKGPR can be efficiently trained using latent space induc-
ing points and the stochastic variational method. We report
results of extensive experiments using both simulated and
real-world benchmark longitudinal data sets that demonstrate
the superior predictive accuracy as well as scalability of L-
DKGPR over the state-of-the-art LDA and GP methods. A
case study with a real-world data set illustrates the potential
of L-DKGPR as a source of useful insights from complex
longitudinal data.
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