
Scalable, Updatable Predictive Models for Sequence Data

Neeraj Koul, Ngot Bui, Vasant Honavar
Artificial Intelligence Research Laboratory

Dept. of Computer Science
Iowa State University

Ames, IA - 50014, USA.
Email: {neeraj, bpngot,honavar}@iastate.edu

Abstract—The emergence of data rich domains has led to an
exponential growth in the size and number of data repositories,
offering exciting opportunities to learn from the data using
machine learning algorithms. In particular, sequence data is
being made available at a rapid rate. In many applications,
the learning algorithm may not have direct access to the
entire dataset because of a variety of reasons such as massive
data size or bandwidth limitation. In such settings, there is
a need for techniques that can learn predictive models (e.g.,
classifiers) from large datasets without direct access to the
data. We describe an approach to learn from massive sequence
datasets using statistical queries. Specifically we show how
Markov Models and Probabilistic Suffix Trees (PSTs) can be
constructed from sequence databases that answer only a class
of count queries. We analyze the query complexity (a measure
of the number of queries needed) for constructing classifiers
in such settings and outline some techniques to minimize the
query complexity. We also show how some of the models can
be updated in response to addition or deletion of subsets of
sequences from the underlying sequence database.

Keywords-sufficient statistics; PSTs; Markov Model;

I. INTRODUCTION

Advances in high throughput sequencing and other data
acquisition technologies have resulted in gigabytes of DNA,
protein sequence data, and gene expression data being gath-
ered at steadily increasing rates. These developments have
resulted in unprecedented opportunities for learning from
such data. Most machine learning techniques assume direct
access to data. However, in many practical applications, the
massive size of the data being made available coupled with
memory and bandwidth constraints prohibit direct access to
data. In addition, it is not difficult to envision settings in the
near future, such as personalized medicine where privacy
concerns may prohibit direct access to the data (e.g. DNA
sequence of patients under treatment). Further, in settings
where data is being made available at a rapid rate (e.g.
sequence data), a local copy of the data may quickly become
out of date. Hence, there is an urgent need for approaches to
learning predictive models, from large datasets (that cannot
fit in the memory available on the device where the learning
algorithm is executed), that are scalable, able to cope with
frequent data updates and do not require access to the
underlying dataset.

Caragea et al. [1] have introduced a general strategy for
transforming a broad class of standard learning algorithms
that assume in memory access to a dataset into algorithms
that interact with the data source(s) only through statistical
queries or procedures that can be executed on the remote
data sources. This involves separating a learning algorithm
into two components: (i) a statistical query1 generation
component that poses a set of statistical queries to be
answered by a data source and (ii) a hypothesis construction
component that uses the resulting statistics to modify a
partially constructed hypothesis (and may further invoke the
statistical query component as needed). Inspired by this work
we extend this strategy to the setting of building predictive
models from large sequence datasets by interacting with the
data source that holds the dataset only through means of
certain count queries. This approach allows us to cope with
the challenges of massive data size (since in general the
statistics of the data are much smaller than the size of the
data), no access to underlying dataset (because it interacts
with data source only through statistical queries) and in
certain cases, data source updates (additions, deletions of
large subsets of data).

We focus our attention on a class of Markov Property
based class of predictive models for sequences: Markov
Models, Probabilistic Suffix Trees, Interpolated Markov
Models that are among some of the most widely used in
sequence classification [2], text analysis [3] and related
applications. We describe the specific type of queries that the
data source should answer in order to build the predictive
model, and precisely calculate the number of queries that
are posed to a data source to build the predictor. The
number of queries posed (called the query complexity in our
model) is a measure of steps required to build the model
and may be important in the cases where the data source
associates a cost with answering a query or in the setting
where bandwidth is at a premium. We describe certain
optimization techniques that can be used to minimize the
query complexity and in particular describe a lazy approach
to classifying a test dataset that can be used to ameliorate

1A statistic is simply a function of a dataset; A statistical query returns
a statistic (e.g., the number of instances in the dataset that have a specified
value for a specified attribute.)



the exponential query complexity associated with a Markov
Model. The rest of the paper is organized as follows. Section
II covers the preliminaries. Section III describes a statisti-
cal query based approach to constructing Markov Model
based sequence classifier and outlines some optimization
techniques to minimize the query complexity. Section IV
describes an extension of this approach to Probabilistic
Suffix Trees. Section V describes an approach to updating
Markov model based predictors using statistical queries.
Section VI concludes with a brief summary and description
of related work.

II. PRELIMINARIES AND NOTATION

Let Σ be the alphabet from which the sequences are
constructed and C be the set of classes to which the se-
quences can be assigned. Given a sequence s = σ1σ2 . . . σn
and a symbol σ ∈ Σ, let sσ represent the sequence
σ1σ2 . . . σnσ, let σs represent the sequence σσ1σ2 . . . σn
and suffix(s) represent the sequence σ1σ2 . . . σn−1. We
associate with each dataset D of sequences a descriptor
Descs(D) = 〈Σ, C〉 where Σ is the alphabet from which
the sequences in D are constructed and C is the classes
(e.g. protein family classes) to which the sequences in D
can be assigned. Let P (s) be the probability of observing
a sequence s and P (σ|s) be the probability of observing
the symbol σ right after the subsequence s. The empirical
values for P (s) and P (σ|s) are represented by P̂ (s) and
P̂ (σ|s) respectively.

Suppose the data source D supports a set of primitive
queries QD expressed in a query language supported by
the data source holding D (e.g. if D is a RDBMS such
as Oracle the query language will be SQL). To build a
predictive model, we assume that the system expresses
statistical queries against D in its own statistical query
language Λ. A query planner Π that transforms a query
q(sD) expressed in Λ for a statistic sD into a plan for
answering sD using some subset of the primitive statistical
queries QD. We assume that the query planner Π has at its
disposal, a set of operators O that can be used to combine
the answers to queries in QD to obtain a statistic sD. In the
case where QD correspond to count queries, O may include
+,−. A query plan for sD, denoted by plan(sD), is simply
an expression tree that successively combines the answers
to the primitive queries to obtain the answer to query sD
(expressed in the query language that is understood by the
query planner): Each leaf node corresponds to a primitive
query in QD and each non-leaf nodes corresponds to an
operator in O. We assume that the planner Π is guaranteed
to produce a correct plan plan(sD) for every statistic sD
that is expressible in Λ.

The learning algorithm L (say PST), when executed
against a dataset D, generates at each step i, a set of
statistical queries Si(D) = {sD(i, 1) · · · sD(i, ni)} where
each query in Si is expressed in Λ. Let Plan(Si(D)) =

{plan(sD(i, 1)) · · · plan(SD(i, ni))} be the set of plans
generated by the query planner for the set of queries
Si(D). We denote by Q(plan(sD(i, j))), the set of the
primitive queries used in the plan plan(sD(i, j)). Note that
Q(Plan(Si(D))) denotes the subset of primitive queries
against D that to answer the set of queries Si(D). Let
Q(Plan(Si(D))) =

∑ni

j=1Q(plan(sD(i, j))). Let QL =∑
iQ(Plan(Si(D))). Clearly, ∀j Q(plan(sD(i, j))) ⊆

Q(Plan(Si(D))) ⊆ QL ⊆ QD. Consider a sequence
of sets of statistical queries S1(D) · · ·Si(D) generated
by L when it is executed against a dataset D. Let φi
be the corresponding sequence of sets of query plans
Plan(S1(D)), P lan(S2(D)) · · ·Plan(Si(D)) produced by
the query planner. Let Q̂(φi) = ∪il=1Q̂(Plan(Sl(D)))
denotes the set of primitive queries retrieved as a result.
Assuming that L generates a sequence of m query sets
S1(D) · · ·Sm(D) prior to terminating with a learned hy-
pothesis, we can define the query complexity of φm, denoted
by QC(φm), as

∣∣∣Q̂(φm)
∣∣∣, that is the total number of

primitive queries that are posed to the data source based on
φm. The task of the query planner is to generate a sequence
of sets of query plans φm so as to minimize the query
complexity QC(φm) which can be important in settings
where the data source imposes a cost for answering each
primitive query .

III. MM(K-1): MARKOV MODEL OF ORDER K -1

Markov Models have been used successfully in literature
to address sequence based tasks (see [4], [5], [6]). In general,
it is assumed that access to the training dataset D is
available. In contrast, in our setting, we assume local access
to D is unavailable due to a variety of reasons. However,
we assume that the learner has access to the descriptor of
the data (i.e. Descs(D) = 〈Σ, C〉) and the data source
holding D answers certain count queries over the dataset
D. In particular, we assume the data source answers the
following three types of queries: (1) the query to compute
the count of sequences in D that have the subsequence s
(including overlaps), denoted by S(D, s); (2) the query to
compute the count of the sequences in D that belong to the
class ck and have the subsequence s (including overlaps),
denoted by S(D, s, C = ck) and (3) the query to compute
the count of sequences in D that belong to the class ck
and have subsequences of length |s| (including overlaps),
denoted by S(D, |s|, C = ck).

In the MM(k-1), the estimate of the probability that a
given sequence (unlabeled) s = σ1σ2 . . . σn belongs to the
class cj is given by

P̂MM(k−1)(s, cj) =

n∏
i=k

P̂ (σi|σi−1 . . . σi−k+1, C = cj)

(1)
In the sufficient statistics model, the required terms in

equation (1) can be computed using the supported queries



as

P̂ (σi|σi−1 . . . σi−k+1, cj) =
S(D,σiσi−1 . . . σi−k+1, C = cj)

S(D, |s|, C = cj)
(2)

The Naive Bayes for sequence classification is special case
of the MM(k-1) with k = 1 and as such can be implemented
in the sufficient statistics model in a straightforward way.
A straightforward approach to classify any given sequences
using MM(k − 1) would be to precompute the results for
all possible queries that may be needed to classify the set
of sequences in Σ∗. It is clear from equations (1) and (2)
that this involves all queries of the form S(D, s, C = cj)
where |s| = k and S(D, |s|, C = cj) that can be posed over
Descs(D). Since the total number of unique subsequences
of length (k) is |Σ|k, the Query Complexity of this approach
is |C|(|Σ|k + 1). As, the number of queries posed in this
approach is exponential in k, it is often not feasible for large
k. Hence, it is of interest to explore optimization techniques
that minimize the number of queries posed to the data source
D.

A. Optimization Techniques for MM(k-1)

In what follows, we give some examples of optimizations
that can help reduce the query complexity of sequence
classification. Let Σk ⊂ Σ∗ be the set of all possible
sequences of length k over the alphabet Σ. It follows that
S(D, |s|, C = cj) =

∑
si∈Σ|s| S(D, si, C = cj). Hence, the

queries of form S(D, |s|, C = cj)(where|s| = k) needed
in equation (2) need not be posed and can be computed
from the queries of the form S(D, s, C = cj). With this
optimization QC(MM(k − 1) = |C||Σ|k. However, the
query complexity is still exponential in k. An approach
to ameliorate this exponential explosion in the number of
queries is to use the lazy approach to classify sequences,
where instead of precomputing the results for all the possible
queries ahead of time, only the answers to the queries
needed to classify a given dataset of sequences are re-
trieved. Consider a test dataset T = {s1, s2, . . . st} of t
sequences that need to be classified. Given a sequence s,
let Λ(s, k) be the set of unique subsequences of length k
in s. From equation (1) it follows that the required queries
to classify a sequence s is |C|(1 + |Λ(s, k)|). Hence, the
query complexity of the lazy approach to classify the dataset
T is |C|(1 +

∑|T |
i=1 |Λ(si, k)|). Since Λ(s, k) is atmost

|s| − k + 1 (i.e. when all subsequences of length k in s
are unique), the query complexity QC(MM(k − 1)) ≤
|C|
(

1 +
∑|T |
i=1 (|si| − k + 1)

)
. The query complexity can

be further reduced through the use of caching. Suppose that
the system maintains a cache of answers to primitive queries
answered during the execution of L against D. Before
querying the data source D we can check if the answer
to the query is available in the cache. Assuming that the
sequences to be classified arrive in the order s1, s2 . . . st, let

cachei contain the answers to queries answered by D in the
course of classifying sequences s1 through si−1. Because the
cache is initially empty, cache1 = φ. Let Λ(si, k,D) denote
the results to the queries for the counts, as obtained from D,
of corresponding sequences in Λ(si, k). Hence, cachei+1 =
{Λ(s1, k,D)∪Λ(s2, k,D) . . .∪Λ(si, k), D}. The additional
queries needed to be posed to the datasource D to classify
sequence si given that the sequences s1 . . . si−1 have been
already classified correspond to obtaining the set of counts
∆(si, k,D) = Λ(si, k,D)−{Λ(s1, k,D)∪Λ(s2, k,D) . . .∪
Λ(si−1, k,D)}. Hence, the query complexity of the resulting
approach is QC(MM(k− 1)) = |C|(1 + Σ

|T |
i=1|Λ(si, k)|)−

{|Λ(si−1, k) ∪ Λ(si−2, k) . . .Λ(s0, k)|} with Λ(s0, k) = φ.

B. Interpolated Markov Models

Higher order Markov Models have a greater expressive
power than their lower order counterparts. However, the
higher the order of the Markov model, the less reliable
are the estimates of the model parameters. The Interpolated
Markov Models provide a means of dealing with this prob-
lem using a weighted combination of Markov models with
several different choices of k (see [7], [8]). Given a sequence
s = σ1σ2 . . . σn let si = σ1σ2 . . . σi be the subsequence
ending at position i and si,j = σi−jσi−j+1 . . . σi−1 be
sequence composed of the j positions that precede σi. Then
the estimate of the probability of a sequence s belonging to
the class cj using an Interpolated Markov Model of order k
is denoted by P̂IMM(k)(s, cj) and

P̂IMM(k)(s, cj) = Σni=1IMMk(si, cj)

where IMMk(si, cj) = λk(si−1)P̂MM(k)(si, cj) + (1 −
λk(si−1))IMMk−1(si, cj) and λk(si−1) is the numeric
weight associated with the k-mer ending at position i − 1
in sequence s (i.e. si,k) and P̂MM(k)(si, cj) is the estimate
obtained from training data with the kth order Markov model
(see [8], [9] for details). The estimate P̂MM(k)(si, cj) re-
quired to build the Interpolated Markov Models (IMMs) can
be computed, in the sufficient statistics model, as described
earlier in section III. Hence we need a way to compute
the numeric weight λk(si−1) using only statistical queries.
Consider for example, the computation of λk(si−1) in
Glimmer [9]. These weights can be computed in our setting
using statistical queries of the form S(D, si,k, C = cj) and
S(D, si,kσ,C = cj) where σ ∈ Σ. Specifically, λk(si−1) =
1 when S(D, si,k, C = cj) is greater than some threshold
(for Glimmer the threshold is 400). When the count is less
than the threshold, we compare the observed frequencies
of S(D, si,kσ,C = cj) (σ ∈ Σ) with those predicted by
IMM of order k − 1. Using a statistical test we compute
the confidence (say d) that the observed frequencies are not
consistent with those predicted by P̂IMM(k−1)(si,kσ, cj).
When d < 0.5, λk(si−1) = 0 and for d ≥ 0.5, λk(si−1) =
d/400 × S(D, si,k, C = cj) . Thus Interpolated Markov



Models can be implemented using statistical queries against
the data source D.

IV. PROBABILISTIC SUFFIX TREES

The Probabilistic Suffix Trees (PSTs) originally intro-
duced by Ron et al. [10] have been successfully used to
model and predict protein families [2] [11]. The PSTs exploit
the so called short memory feature of natural sequences
wherein the probability distribution of the next symbol given
the preceding sequence can be approximated by observing
at most L preceding symbols of the sequence (L being
the memory length of the PST). To use PSTs for sequence
classification, we need to train a PST for each class; To
classify an unlabeled sequence, we compute the probability
of the sequence given the class (i.e., the corresponding PST)
and assign it to the class with the largest probability. We
first describe the algorithm to build a PST (say for class
label C = cj) using an available training dataset. The
specific construction algorithm, Build-PST, is adapted from
[2] and is described below. The procedure uses five external
parameters: L the memory length, Pmin the minimum prob-
ability which subsequences are required to occur and three
parameters α, γmin and r with values between zero and one
(refer [2] for details). The procedure uses T̄ to denote the
PST and T̄ is constructed iteratively starting with the root
node. Each node (say labeled with s) maintains a vector
γ̄s which encodes the probability distribution (over the next
symbol) associated with the node s (we use γ̄s(σ) to denote
the probability of the symbol σ in the distribution γ̄s).

Algorithm: Build-PST(Pmin, α, γmin, r, L)
(1) Initialization: let T̄ consists of a single root node (with

an empty label), and let S̄ ← {σ|σ ∈ Σ and ˆP (σ) ≤ Pmin}

(2) Building the PST skeleton: while S̄ 6= φ, pick any
s ∈ S̄ and do:

(a) Remove s from S̄

(b) If there exists a symbol σ ∈ Σ such that

P̂ (σ|s) ≥ (1 + α)γmin

and

P̂ (σ|s)
P̂ (σ|suffix(s))


≥ r
or

≤ 1/r

then add to T̄ the node corresponding to s and all the
nodes on the path to s from the deepest node in T̄ that is a
suffix of s.

(c) If |s| ≤ L then add the strings {σ́s|σ́ ∈ Σ and
P̂ (σ́s) ≥ Pmin} (if any) to S̄.

(3) Smoothing the prediction probabilities For each s
labeling a node in T̄ , let

γ̄s(σ) = (1− |Σ|γmin)P̂ (σ|s) + γmin

Note the final step (step(3)) of the algorithm corresponds to
a parameter smoothing step.

Build-PST iteratively adds nodes (step (2)) to obtain a
PST. The terms calculated in step (2) are P̂ (σ|s), P̂ (σ́s)
and P̂ (σ|suffix(s)). These terms can be calculated using
statistical queries as follows:
• P̂ (σ|s) =

S(D,sσ,C=cj)
S(D,|sσ|,C=cj)

• P̂ (σ́|s) =
S(D,σ́s,C=cj)
S(D,|σ́s|,C=cj)

• P̂ (σ|suffix(s)) =
S(D,suffix(s)σ,C=cj)
S(D,|suffix(s)σ|,C=cj)

Since |sσ| = |σ́s|, it follows that the query
S(D, |sσ|, C = cj) is the same as S(D, |σ́s|, C = cj).
Hence, in each iteration of step (2), requires five different
queries to be answered by D. If r(D, ci) is the number of
times the step (2) is executed during the construction of the
PST for class ci ∈ C, then QC(PST ) = 5

∑|C|
i=1 r(D, ci).

In practice r(D, ci) and hence the Query Complexity de-
pends on the dataset D as well as choice of Pmin. However,
in the worst case the number of queries submitted is bounded
by the number of queries needed to to build Markov Models
of length through 1 and L. Hence, the query complexity
QC(PST ) ≤ |C|

∑L
k=1 |Σ|k.

V. UPDATABLE PREDICTIVE MODELS

The advent of automated high throughput sequencing
techniques has resulted in an exponential increase in the
rate at which genomic sequence data is being generated.
Many practical applications call for techniques that allow
the predictive models to be updated without the need to
regenerate the model from scratch. The update can either be
additive wherein new data needs to be incorporated into the
model or subtractive wherein the contributions of some of
the old data need to be discarded from the model.

Given a dataset D and a learning algorithm ψ, let ψ(D)
be a predictive model (e.g., a Markov model) built from the
data set D using a learning algorithm ψ. In the sufficient
statistics model, let θψ(D) be the set of primitive queries
required over dataset D to build ψ(D).
Updatable Model Given datasets D1 and D2 such that
D1 ⊆ D2 , we say that the predictive model constructed
using ψ is updatable iff we can specify functions f and g
such that

1) θψ(D2) = f(θψ(D2 −D1), θψ(D1))
2) θψ(D1) = g(θψ(D2), θψ(D2 −D1))

Theorem 1: Markov Models are updatable by a statistical
query based learning algorithm.

Proof: For a Markov Model queries of the form
S(D, s, C = cj) and S(D, |s|, C = cj) over Descs(D)
form the set θψ(D) (see equations (1) and (2)). Given
datasets D2 and D1 such that D1 ⊆ D2, it is easy to see that



S(D2, s, C = cj) = S(D2−D1, s, C = cj) +S(D1, s, C =
cj). Similarly, S(D2, |s|, C = cj) = S(D2 − D1, |s|, C =
cj) + S(D1, |s|, C = cj). As a result the set θψ(D2) can
be constructed from θψ(D2 − D1) and θψ(D1). Similarly,
S(D1, s, C = ck) = S(D2, s, C = ck)−S(D2−D1, s, C =
ck) and S(D1, |s|, C = ck) = S(D2, |s|, C = ck)−S(D2−
D1, |s|, C = ck). Consequently the set θψ(D1) can be
constructed from θψ(D2) and θψ(D2 −D1).

Observation The PST built using the Build-PST proce-
dure is not updatable. This is due to the fact that in step
2(c) a string is added to set S̄ only if it probability is greater
than Pmin. It is possible that this condition is satisfied for a
string (say x) in D2−D1 but not in D1 (say when x never
occurs in D1 but occurs in D2−D1). As a result the queries
to estimate P (σ|x) from dataset D1 are never posed while
being posed for the dataset D2−D1. Hence, the PST is not
updatable since it is not possible to compute P̂ (σ|x) for the
dataset D2 only from queries posed to compute P̂ (σ|x) for
dataset D2 −D1

VI. SUMMARY AND RELATED WORK

Summary: Due to the exponential increase in the rate at
which sequence data are being generated, there is an urgent
need for efficient algorithms for learning predictive models
of sequence data from large sequence databases and for
updating the learned models to accommodate additions or
deletions of data in settings where the sequence database
can answer only a certain class of statistical queries.

In this paper we presented an approach to learning
predictive models from sequence data using sufficient
statistics by posing count queries against a sequence data
source. This approach can be used to build the predictive
model without access to the underlying data as long the
data source is able to answer a class of count queries. In
addition, this approach scales well to settings where the
dataset is very large in size because it does not need to load
the entire dataset in memory. We have also outlined some
optimization techniques to minimize the number of queries
submitted to the data source. In addition, we showed how
the class of Markov model based predictors can be updated
in response to addition or deletion of subsets of the data.

Related Work: The approach to learning Markov models
and their variants presented in this paper builds on the sta-
tistical query based approach to learning from large datasets
(including distributed data sets) introduced by Caragea et al.
[1]. Markov Models have been successfully used in a broad
range of applications in computational biology including
gene finding (e.g. GeneMark [4] and GenScan [5]), protein
classification [12] [13] , among others. Interpolated Markov
Models have been used for gene finding by Salzberg et al.
[8]. Bajerono et al. [2] and [11] have used Probabilistic
Suffix Trees for protein classification. Variable order Markov

Models are discussed in [6]. Abouelhoda et al. [14] have in-
vestigated approaches to reducing the memory requirements
of suffix tree construction algorithms.

ACKNOWLEDGEMENT

This research was supported in part by the grant IIS
0711356 to Vasant Honavar from the National Science
Foundation.

REFERENCES

[1] D. Caragea, A. Silvescu, and V. Honavar, “A framework for
learning from distributed data using sufficient statistics and its
application to learning decision trees,” International Journal
of Hybrid Intelligent Systems, vol. 1, p. 2004, 2004.

[2] G. Bejerano and G. Yona, “Variations on probabilistic suffix
trees: statistical modeling and prediction of protein families,”
Bioinformatics, vol. 17, no. 1, pp. 23–43, 2001.

[3] A. McCallum, D. Freitag, and F. C. N. Pereira, “Maximum
entropy markov models for information extraction and seg-
mentation,” in ICML, 2000, pp. 591–598.

[4] M. Borodovsky and J. D. McIninch, “Genmark: Parallel gene
recognition for both dna strands,” Computers & Chemistry,
vol. 17, no. 2, pp. 123–133, 1993.

[5] C. Burge and S. Karlin, “Prediction of complete gene struc-
tures in human genomic dna,” J. Mol. Biol, vol. 268, pp.
78–94, 1997.

[6] R. Begleiter, R. El-Yaniv, and G. Yona, “On prediction using
variable order markov models,” J. Artif. Intell. Res. (JAIR),
vol. 22, pp. 385–421, 2004.

[7] H. Zhu, J. Wang, Z. Yang, and Y. Song, “Interpolated hidden
markov models estimated using conditional ml for eukaryotic
gene annotation,” in Computational Intelligence and Bioinfor-
matics, 2006, pp. 267–274.

[8] S. Salzberg, A. L. Delcher, S. Kasif, and O. White, “Micro-
bial gene identification using interpolated markov models,”
Nucleic Acids Research, vol. 26, pp. 544–548, 1998.

[9] S. L. Salzberg, M. Pertea, A. L. Delcher, M. J. Gardner, and
H. Tettelin, “Interpolated markov models for eukaryotic gene
finding,” Genomics, vol. 59, pp. 24–31, 1999.

[10] D. Ron, Y. Singer, and N. Tishby, “The power of amnesia,”
in Machine Learning, vol. 6, 1996, pp. 176–183.

[11] Z. Sun and J. S. Deogun, “Local prediction approach for pro-
tein classification using probabilistic suffix trees,” in APBC,
2004, pp. 357–362.

[12] Z. Yuan, “Prediction of protein subcellular locations using
markov chain models,” FEBS Letters, pp. 23–26, 1999.

[13] O. Yakhnenko, A. Silvescu, and V. Honavar, “Discrimina-
tively trained markov model for sequence classification,” in
ICDM, 2005, pp. 498–505.

[14] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch, “Replacing
suffix trees with enhanced suffix arrays,” J. of Discrete
Algorithms, vol. 2, no. 1, pp. 53–86, March 2004.


